TWI701324B - Immobilized microorganism gel, preparation method thereof, and composition for degrading chlorinated-organic substance - Google Patents

Immobilized microorganism gel, preparation method thereof, and composition for degrading chlorinated-organic substance Download PDF

Info

Publication number
TWI701324B
TWI701324B TW108114190A TW108114190A TWI701324B TW I701324 B TWI701324 B TW I701324B TW 108114190 A TW108114190 A TW 108114190A TW 108114190 A TW108114190 A TW 108114190A TW I701324 B TWI701324 B TW I701324B
Authority
TW
Taiwan
Prior art keywords
alkoxysilane
hydrogen
bacteria
embedded
silicon
Prior art date
Application number
TW108114190A
Other languages
Chinese (zh)
Other versions
TW202039780A (en
Inventor
陳師慶
呂哲瑋
羅凱泓
林韋翰
高志明
簡志青
Original Assignee
國立中央大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中央大學 filed Critical 國立中央大學
Priority to TW108114190A priority Critical patent/TWI701324B/en
Application granted granted Critical
Publication of TWI701324B publication Critical patent/TWI701324B/en
Publication of TW202039780A publication Critical patent/TW202039780A/en

Links

Images

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

A method of manufacturing an immobilized microorganism gel is provided, including providing alkoxysilane (AS); providing tetraalkyl orthosilicate (TAOS); mixing the AS, the TAOS and acid solution to obtain an alkoxide solution; providing a bacterial suspension including a hydrogen-producing bacteria; mixing the alkoxide solution, bacterial suspension and silica nanoparticles to obtain the immobilized microorganism gel after gel formation. The immobilized microorganism gel manufactured by the above mentioned method is also provided. A composition for degrading chlorinated-organic substance is also provided, comprising the immobilized microorganism gel and a dechlorination bacteria.

Description

包埋微生物膠體、其製備方法以及降 解含氯有機物的組合物 Embedding microbial colloid, its preparation method and reducing Composition for decomposing chlorinated organic matter

本發明是有關於一種膠體及其製備方法,且特別是有關於一種包埋微生物膠體及其製備方法。 The invention relates to a colloid and a preparation method thereof, and particularly relates to a colloid embedded with microorganisms and a preparation method thereof.

三氯乙烯(trichloroethylene,TCE)為一種易揮發透明無色的液體,是普遍造成地下水資源汙染的物質之一。傳統脫氯的做法,是在現地提供細菌營養鹽,以進行還原脫氯反應。然而,在缺氧條件下,雖然有許多環境細菌能將四氯乙烯和三氯乙烯還原脫氯至順-二氯乙烯(cis-DCE),但仍需要藉由脫氯菌才能夠完整的將二氯乙烯和氯乙烯還原脫氯成對環境無害的乙烯。 Trichloroethylene (TCE) is a volatile, transparent and colorless liquid, and it is one of the substances that commonly cause groundwater pollution. The traditional method of dechlorination is to provide bacterial nutrients on site to carry out reductive dechlorination reactions. However, under hypoxic conditions, although there are many environmental bacteria that can dechlorinate tetrachloroethylene and trichloroethylene to cis-dichloroethylene (cis-DCE), it still requires dechlorination bacteria to completely dechlorinate Dichloroethylene and vinyl chloride are reductively dechlorinated into environmentally friendly ethylene.

近幾年的研究中發現,氫氣在還原脫氯反應中常扮演直接供給電子的角色,且被認為是促使還原脫氯反應進行的關鍵因子。在含氯有機物汙染場址中,氫氣有助於強化使脫氯菌將二氯乙烯和氯乙烯還原脫氯成乙烯的成效。 In recent years, studies have found that hydrogen often plays a role of directly supplying electrons in the reductive dechlorination reaction, and is considered to be a key factor in promoting the reductive dechlorination reaction. In sites contaminated with chlorinated organic matter, hydrogen can help strengthen the effectiveness of dechlorinating bacteria in reducing dichloroethylene and vinyl chloride to ethylene.

因此,如何在現地提供氫氣協助脫氯菌進行還原脫氯反應,現有技術實有待改善的必要。 Therefore, how to provide hydrogen on-site to assist dechlorination bacteria to carry out reductive dechlorination reactions requires improvement in the existing technology.

本揭示內容的目的在於提供一種包埋微生物膠體,以達成能使產氫菌於含氯有機物的環境中具穩定性、並提供大量氫氣的效果。 The purpose of the present disclosure is to provide an embedded microbial colloid to achieve the effect of making hydrogen-producing bacteria stable in an environment containing chlorinated organic matter and providing a large amount of hydrogen.

本揭示內容提供了一種包埋微生物膠體的製備方法,包含:提供烷氧基矽烷(alkoxysilane,AS);提供四烷基原矽酸鹽(tetraalkyl orthosilicate,TAOS);混合烷氧基矽烷、四烷基原矽酸鹽與酸性溶液,使烷氧基矽烷與四烷基原矽酸鹽進行水解,獲得烷氧溶液;提供菌液,包含產氫菌種;以及混合烷氧溶液、菌液以及矽奈米顆粒,使烷氧溶液、菌液以及矽奈米顆粒進行縮合,以獲得包埋微生物膠體。 The present disclosure provides a method for preparing microbial-embedded colloids, including: providing alkoxysilane (AS); providing tetraalkyl orthosilicate (TAOS); mixing alkoxysilane, tetraalkylene Base orthosilicate and acid solution to hydrolyze alkoxysilane and tetraalkylorthosilicate to obtain alkoxy solution; provide bacteria solution, including hydrogen-producing bacteria; and mix alkoxy silane, bacteria solution and silicon Nanoparticles are condensed with alkoxy solution, bacterial liquid and silicon nanoparticle to obtain embedded microbial colloid.

在一些實施方式中,產氫菌種包含梭菌屬(Clostridium)菌種、腸桿菌屬(Enterobacter)菌種或其組合。 In some embodiments, the hydrogen-producing strains comprise Clostridium ( Clostridium ) strains, Enterobacter ( Enterobacter ) strains, or a combination thereof.

在一些實施方式中,梭菌屬菌種包含丁酸梭菌(Clostridium butyricum)。 In some embodiments, the Clostridium species includes Clostridium butyricum .

在一些實施方式中,烷氧基矽烷(AS)包含甲基三甲氧基矽烷(methyltrimethoxysilane,MTMS)、甲基三乙氧基矽烷(methyl triethoxysilane,MTES)或其混合物。 In some embodiments, the alkoxysilane (AS) includes methyltrimethoxysilane (MTMS), methyl triethoxysilane (MTES), or a mixture thereof.

在一些實施方式中,四烷基原矽酸鹽(TAOS)包含四乙基原矽酸鹽(tetraethyl orthosilicate,TEOS)、四甲氧基矽烷(tetramethoxysilane,TMOS)或其組合。 In some embodiments, the tetraalkyl orthosilicate (TAOS) includes tetraethyl orthosilicate (TEOS), tetramethoxysilane (TMOS), or a combination thereof.

在一些實施方式中,混合烷氧基矽烷、四烷基原矽酸鹽與酸性溶液的步驟,烷氧基矽烷與四烷基原矽酸鹽的體積比為1:0.01~100。 In some embodiments, in the step of mixing the alkoxysilane, the tetraalkylorthosilicate and the acid solution, the volume ratio of the alkoxysilane to the tetraalkylorthosilicate is 1:0.01-100.

在一些實施方式中,烷氧基矽烷與四烷基原矽酸鹽相加後與酸性溶液的體積比為1:0.1~10。 In some embodiments, the volume ratio of the alkoxysilane and the tetraalkylorthosilicate to the acid solution is 1:0.1-10.

在一些實施方式中,混合烷氧溶液、菌液以及矽奈米顆粒的步驟,矽奈米顆粒由複數二氧化矽共價鍵結而成。 In some embodiments, in the step of mixing the alkoxy solution, the bacterial solution and the silicon nanoparticle, the silicon nanoparticle is formed by covalently bonding a plurality of silicon dioxide.

本揭示內容另提供了一種包埋微生物膠體,其係由如前述之製備方法製備而得。 The present disclosure also provides an embedded microbial colloid, which is prepared by the aforementioned preparation method.

本揭示內容另提供了一種包埋微生物膠體,包含:複數矽奈米顆粒以及複數產氫菌。這些矽奈米顆粒之間以氧-矽-氧的排列方式共價鍵結,圍繞包埋各產氫菌,其中,包埋微生物膠體具有複數孔洞散佈於包埋微生物膠體的內部與表面。 The present disclosure also provides an embedded microbial colloid, which includes a plurality of silicon nano particles and a plurality of hydrogen-producing bacteria. These silicon nano-particles are covalently bonded in an oxygen-silica-oxygen arrangement to surround the embedded hydrogen-producing bacteria. Among them, the embedded microbial colloid has multiple holes scattered on the inside and surface of the embedded microbial colloid.

在一些實施方式中,甲基三甲氧基矽烷與四甲氧基矽烷之間以矽-氧-矽(矽氧烷鍵,siloxane bond)的排列方式共價鍵結。 In some embodiments, the methyltrimethoxysilane and the tetramethoxysilane are covalently bonded in a silicon-oxygen-silicon (siloxane bond) arrangement.

本揭示內容另提供了一種降解含氯有機物的組合物,包含如前述之包埋微生物膠體以及脫氯菌。 The present disclosure also provides a composition for degrading chlorine-containing organic matter, including the aforementioned embedded microbial colloid and dechlorinating bacteria.

在一些實施方式中,脫氯菌包含 DehalococcoidesDehalobacterDehalospirillum、脫亞硫酸菌屬(Desulfitobacterium)、脫硫念珠菌屬(Desulfomonile)或其組合。 In some embodiments, the bacteria comprising dechlorination Dehalococcoides, Dehalobacter, Dehalospirillum, the genus off sulfite (Desulfitobacterium), Candida desulfurization (Desulfomonile) or combinations thereof.

在一些實施方式中,組合物更包含提供碳源的培養基。 In some embodiments, the composition further includes a medium that provides a carbon source.

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖繪示本揭示內容之七種不同組別隨著時間產生氫氣的濃度;第2圖繪示本揭示內容之七種不同組別隨著時間降解三氯乙烯的濃度;第3圖繪示本揭示內容之七種不同組別隨著時間增加順-二氯乙烯的濃度;第4圖繪示本揭示內容之七種不同組別隨著時間增加1,1-二氯乙烯的濃度;第5圖繪示本揭示內容之七種不同組別隨著時間增加氯乙烯的濃度;以及第6圖繪示本揭示內容之七種不同組別隨著時間增加乙烯的濃度。 In order to make the above and other objects, features, advantages and embodiments of the present invention more comprehensible, the description of the accompanying drawings is as follows: Figure 1 shows the seven different groups of the present disclosure that generate hydrogen over time Concentration; Figure 2 shows the concentration of degraded trichloroethylene in seven different groups of the present disclosure over time; Figure 3 shows the increase of cis-dichloroethylene in seven different groups of the present disclosure over time Concentration; Figure 4 shows the seven different groups of this disclosure increasing the concentration of 1,1-dichloroethylene over time; Figure 5 shows the seven different groups of this disclosure increasing vinyl chloride over time The concentration of ethylene; and Figure 6 shows the seven different groups of the present disclosure that increase the concentration of ethylene over time.

為使本揭示內容的敘述更加詳盡與完備,下文 針對本發明的實施態樣與具體實施例提出說明性的描述,但這並非實施或運用本發明具體實施例的唯一形式。以下所揭露的各實施例,在有益的情形下可相互組合或取代,也可在一實施例中附加其他的實施例,而無須進一步的記載或說明。在以下描述中,將詳細敘述許多特定細節,以使讀者能夠充分理解以下的實施例。然而,亦可在無此等特定細節之情況下實踐本發明之實施例。 In order to make the description of this disclosure more detailed and complete, the following An illustrative description is provided for the implementation aspects and specific embodiments of the present invention, but this is not the only way to implement or use the specific embodiments of the present invention. The embodiments disclosed below can be combined or substituted with each other under beneficial circumstances, and other embodiments can also be added to an embodiment without further description or description. In the following description, many specific details will be described in detail so that the reader can fully understand the following embodiments. However, the embodiments of the present invention can also be practiced without these specific details.

於本文中,除非內文中對於冠詞有所特別限定,否則『一』與『該』可泛指單一個或多個。將進一步理解的是,本文中所使用之『包含』、『包括』、『具有』及相似詞彙,指明其所記載的特徵、區域、整數、步驟、操作、元件與/或組件,但不排除其它的特徵、區域、整數、步驟、操作、元件、組件,與/或其中之群組。 In this article, unless the article is specifically limited in the context, "一" and "the" can generally refer to one or more. It will be further understood that the terms "include", "include", "have" and similar words used in this article indicate the recorded features, regions, integers, steps, operations, elements and/or components, but do not exclude Other features, regions, integers, steps, operations, elements, components, and/or groups thereof.

本揭示內容所使用的產氫菌種,包含但不限於目前已知的產氫菌種,例如梭菌屬菌種或腸桿菌屬菌種。在一些實施方式中,產氫菌株自汙染場址現地(in-situ)地下水中篩選出,並利用固定化技術將產氫菌株包埋於膠體之中,以增加產氫菌株產氫之穩定度、產氫活性與對毒物的耐受性,進而提升野外地下水含氯有機物整治效益。 The hydrogen-producing strains used in the present disclosure include, but are not limited to, currently known hydrogen-producing strains, such as Clostridium species or Enterobacter species. In some embodiments, the hydrogen-producing strains are selected from in-situ groundwater of the contaminated site, and the hydrogen-producing strains are embedded in the colloid using immobilization technology to increase the stability of hydrogen-producing strains , Hydrogen production activity and tolerance to poisons, thereby enhancing the effectiveness of remediation of chlorinated organic compounds in groundwater in the wild.

在一些實施方式中,自汙染場址地下水中篩選出具有產氫氣能力的丁酸梭菌。三氯乙烯作為汙染物在還原脫氣的過程中,丁酸梭菌提供氫氣作為電子之供應者,以此協助環境脫氯菌加速降解含氯有機物。氫氣在厭氧還原脫率過程中扮演重要角色,而在地下水現地微生物中,產氫菌株 由於競爭、碳源不足等原因,常無法穩定提供氫氣做為脫氯菌群進行還原脫氯反應的電子來源,導致還原脫氯反應的效率低落。 In some embodiments, Clostridium butyricum with the ability to produce hydrogen is screened out from groundwater of the contaminated site. In the process of reducing and degassing trichloroethylene as a pollutant, Clostridium butyricum provides hydrogen as a supplier of electrons to assist environmental dechlorination bacteria to accelerate the degradation of chlorine-containing organic matter. Hydrogen plays an important role in the process of anaerobic reduction and removal rate. Among the microorganisms in groundwater, hydrogen-producing strains Due to competition, insufficient carbon sources, etc., it is often impossible to stably provide hydrogen as a source of electrons for dechlorination bacteria to perform reductive dechlorination reactions, resulting in low efficiency of reductive dechlorination reactions.

在一些實施方式中,菌株包埋化技術能強化菌株耐受性與穩定性,作為生物強化的方式。本揭示內容選用矽膠體作為包埋載體,此膠體可以通透有機物,使得被包埋之菌株可以有效利用環境基質,穩定產出氫氣。將本揭示內容所製之包埋微生物膠體用於地下水環境行生物復育,至少維持30天(720小時)以上能夠穩定產出氫氣。因此,添加本揭示內容所製之包埋微生物膠體可以提升環境降解含氯有機物之速率。 In some embodiments, strain embedding technology can enhance the tolerance and stability of strains as a means of bioaugmentation. In the present disclosure, silica gel is used as the embedding carrier, which can permeate organic matter, so that the embedded strain can effectively use the environmental matrix and stably produce hydrogen. The embedded microbial colloid prepared by the present disclosure can be used to regenerate organisms in the groundwater environment, and it can produce hydrogen stably for at least 30 days (720 hours). Therefore, adding the embedded microbial colloid prepared by the present disclosure can increase the rate of environmental degradation of chlorine-containing organic matter.

本文中,術語「生物強化」(biological augmentation)在文中表示通過添加微生物來提高生物降解速度的過程。源自受污染地區的微生物可能已經能夠分解廢物,但可能效率低下、速度過慢。因此,通常需要研究現地微生物物種特性,以確定是否有可能進行生物刺激。 In this article, the term "biological augmentation" refers to the process of increasing the rate of biodegradation by adding microorganisms. Microbes originating from contaminated areas may already be able to break down waste, but they may be inefficient and slow. Therefore, it is usually necessary to study the characteristics of local microbial species to determine whether biological stimulation is possible.

在一些實施方式中,本揭示內容提供一種包埋微生物膠體的製備方法,包含提供烷氧基矽烷;提供四烷基原矽酸鹽;混合烷氧基矽烷、四烷基原矽酸鹽與酸性溶液,使烷氧基矽烷與四烷基原矽酸鹽進行水解,獲得烷氧溶液;提供菌液,包含產氫菌種;混合烷氧溶液、菌液以及矽奈米顆粒,使烷氧溶液、菌液以及矽奈米顆粒進行縮合,以獲得包埋微生物膠體。 In some embodiments, the present disclosure provides a method for preparing microbial-embedded colloids, including providing alkoxysilane; providing tetraalkylorthosilicate; mixing alkoxysilane, tetraalkylorthosilicate and acid Solution, hydrolyze alkoxysilane and tetraalkylorthosilicate to obtain alkoxy solution; provide bacteria solution, including hydrogen-producing bacteria; mix alkoxy solution, bacteria solution and silicon nano particles to make alkoxy solution , Bacteria liquid and silicon nano particles are condensed to obtain embedded microbial colloid.

本文中,術語「縮合」(condensation)是化 學反應的一種,當中兩個分子透過官能團的變化結合成一個新的分子,過程中有小分子失去。所失去的小分子常見為水、氯化氫、甲醇或乙酸等。在本揭示內容中,失去的小分子為甲醇。 In this article, the term "condensation" (condensation) is A type of scientific reaction in which two molecules combine to form a new molecule through changes in functional groups, and small molecules are lost in the process. The small molecules lost are usually water, hydrogen chloride, methanol or acetic acid. In the present disclosure, the small molecule lost is methanol.

在一些實施方式中,本揭示內容之一種包埋微生物膠體的製備方法,其中烷氧基矽烷為甲基三甲氧基矽烷、四烷基原矽酸鹽為四甲氧基矽烷、矽奈米顆粒由複數二氧化矽共價鍵結而成,並在矽奈米顆粒外圍露出複數羥基。首先,混合甲基三甲氧基矽烷與四甲氧基矽烷與鹽酸,使甲基三甲氧基矽烷與四甲氧基矽烷進行水解,獲得烷氧溶液。接著,混合烷氧溶液、菌液以及矽奈米顆粒,使烷氧溶液、菌液以及矽奈米顆粒進行縮合,以獲得包埋微生物膠體。詳細而言,在縮合反應中,矽奈米顆粒上的羥基對甲基三甲氧基矽烷與四甲氧基矽烷的矽原子進行親核性取代反應,使矽奈米顆粒與甲基三甲氧基矽烷、四甲氧基矽烷共價鍵結,並產生副產物甲醇(CH3OH)。矽奈米顆粒之間藉由與甲基三甲氧基矽烷及/或四甲氧基矽烷縮合,以氧-矽-氧的排列共價鍵結,而甲基三甲氧基矽烷與四甲氧基矽烷之間以矽-氧-矽(矽氧烷鍵,siloxane bond)的排列方式共價鍵結。當縮合繼續進行的同時圍繞包埋菌株,並於包埋微生物膠體的內部與表面形成複數孔洞。膠體成形之後可以PBS清洗,以移除甲醇。 In some embodiments, a method for preparing microbial-embedded colloids of the present disclosure, wherein the alkoxysilane is methyltrimethoxysilane, the tetraalkylorthosilicate is tetramethoxysilane, silicon nanoparticle It is formed by covalent bonding of multiple silicon dioxides, and multiple hydroxyl groups are exposed on the periphery of silicon nano particles. First, methyltrimethoxysilane, tetramethoxysilane, and hydrochloric acid are mixed to hydrolyze methyltrimethoxysilane and tetramethoxysilane to obtain an alkoxy solution. Then, the alkoxy solution, the bacteria solution and the silicon nano particles are mixed, and the alkoxy solution, the bacteria solution and the silicon nano particles are condensed to obtain an embedded microbial colloid. In detail, in the condensation reaction, the hydroxyl group on the silicon nanoparticle undergoes a nucleophilic substitution reaction with the silicon atom of methyltrimethoxysilane and the silicon atom of tetramethoxysilane, so that the silicon nanoparticle can react with methyltrimethoxysilane. Silane and tetramethoxysilane are covalently bonded and produce methanol (CH 3 OH) as a by-product. Silicon nano-particles are covalently bonded in an oxygen-silicon-oxygen arrangement by condensing with methyltrimethoxysilane and/or tetramethoxysilane, and methyltrimethoxysilane and tetramethoxysilane are covalently bonded. Silanes are covalently bonded in a silicon-oxygen-silicon (siloxane bond) arrangement. When the condensation continues, it surrounds the embedded strain and forms multiple holes in the inside and surface of the embedded microbial colloid. After the gel is formed, it can be washed with PBS to remove methanol.

在一實施方式中,各孔洞的直徑大小約5奈米至約15奈米。 In one embodiment, the diameter of each hole is about 5 nanometers to about 15 nanometers.

在一些實施方式中,將甲基三甲氧基矽烷(MTMS)與四甲氧基矽烷(TMOS)以1:0.01~100的體積比例混合後,再將(MTMS+TMOS)與酸性溶液以1:0.1~10的體積比例混合,獲得烷氧溶液。在一些實施例中,酸性溶液為鹽酸。在一些實施例中,MTMS與TMOS的比例為1:0.01、1:0.05、1:0.1、1:0.2、1:0.5、1:0.7、1:0.9、1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9、1:10、1:15、1:20、1:30、1:40、1:50、1:60、1:70、1:80、1:90或1:100。在一些實施例中,(MTMS+TMOS)與酸性溶液的比例為1:0.1、1:0.2、1:0.3、1:0.4、1:0.5、1:0.6、1:0.7、1:0.8、1:0.9、1:1、1:1.1、1:1.2、1:1.3、1:1.4、1:1.5、1:1.6、1:1.7、1:1.8、1:1.9、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9或1:10。 In some embodiments, after mixing methyltrimethoxysilane (MTMS) and tetramethoxysilane (TMOS) in a volume ratio of 1:0.01 to 100, then (MTMS+TMOS) and acidic solution are mixed at 1: Mix in a volume ratio of 0.1-10 to obtain an alkoxy solution. In some embodiments, the acidic solution is hydrochloric acid. In some embodiments, the ratio of MTMS to TMOS is 1:0.01, 1:0.05, 1:0.1, 1:0.2, 1:0.5, 1:0.7, 1:0.9, 1:1, 1:2, 1: 3. 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 1:15, 1:20, 1:30, 1:40, 1:50, 1:60, 1:70, 1:80, 1:90 or 1:100. In some embodiments, the ratio of (MTMS+TMOS) to acidic solution is 1:0.1, 1:0.2, 1:0.3, 1:0.4, 1:0.5, 1:0.6, 1:0.7, 1:0.8, 1. : 0.9, 1: 1, 1: 1.1, 1: 1.2, 1: 1.3, 1: 1.4, 1: 1.5, 1: 1.6, 1: 1.7, 1: 1.8, 1: 1.9, 1: 2, 1: 3 , 1:4, 1:5, 1:6, 1:7, 1:8, 1:9 or 1:10.

實施例Example

雖然下文中利用一系列的操作或步驟來說明在此揭露之方法,但是這些操作或步驟所示的順序不應被解釋為本發明的限制。例如,某些操作或步驟可以按不同順序進行及/或與其它步驟同時進行。此外,並非必須執行所有繪示的操作、步驟及/或特徵才能實現本發明的實施方式。此外,在此所述的每一個操作或步驟可以包含數個子步驟或動作。 Although a series of operations or steps are used in the following to illustrate the method disclosed herein, the sequence of these operations or steps should not be construed as a limitation of the present invention. For example, certain operations or steps may be performed in a different order and/or simultaneously with other steps. In addition, it is not necessary to perform all the illustrated operations, steps and/or features to realize the embodiments of the present invention. In addition, each operation or step described herein may include several sub-steps or actions.

包埋微生物膠體的製備Preparation of embedded microbial colloid

TMOS為98%純度液體、MTMS為98%純度液 體(購自Sigma-Aldrich)、矽奈米顆粒(Ludox TM-40 colloidal silica nanoparticles,直徑22mm的二氧化矽)、菌液為含有丁酸梭菌1×109或5×109並懸浮於磷酸鹽緩衝生理鹽水(phosphate buffered saline,PBS)中。將TMOS與MTMS以2:3的體積比例混合後(60% MTMS),再將(TMOS+MTMS)與5mM鹽酸以1:1的體積比例混合,使MTMS與TMOS進行水解,獲得烷氧溶液,並於室溫攪拌約2個小時。將烷氧溶液、矽奈米顆粒與菌液以2.5:2.5:1的體積比例混合,使烷氧溶液、菌液以及矽奈米顆粒開始進行縮合,同時倒入模具中成形,以獲得包埋微生物膠體。成形之後可以PBS清洗包埋微生物膠體,以移除副產物甲醇。在一實施例中,包埋微生物膠體呈圓球狀。 TMOS is a 98% pure liquid, MTMS is a 98% pure liquid (purchased from Sigma-Aldrich), silica nanoparticles (Ludox TM-40 colloidal silica nanoparticles, 22mm diameter silica), and the bacterial solution contains Clostridium butyricum 1×10 9 or 5×10 9 and suspended in phosphate buffered saline (PBS). After mixing TMOS and MTMS in a volume ratio of 2:3 (60% MTMS), then mix (TMOS+MTMS) and 5mM hydrochloric acid in a volume ratio of 1:1 to hydrolyze MTMS and TMOS to obtain an alkoxy solution. And stir at room temperature for about 2 hours. Mix the alkoxide solution, silicon nanoparticle and bacteria liquid in a volume ratio of 2.5:2.5:1, so that the alkoxide solution, bacteria liquid and silicon nanoparticle will begin to condense, and pour it into a mold to form an embedding Microbial colloid. After shaping, the embedded microbial colloid can be washed with PBS to remove the by-product methanol. In one embodiment, the microbial-embedded colloid is spherical.

實施例1 產氫能力Example 1 Hydrogen production capacity

從含有三氯乙烯汙染的現地收集含水層沉積物(aquifer sediments)(如,土壤),並加入於合成地下水,使三氯乙烯含量約為2.5毫克/升。合成地下水成分包含磷酸二氫鉀(KH2PO4)326.4毫克、磷酸一氫鈉(Na2HPO4)1263.8毫克、七水硫酸鎂(Mg2SO4.7H2O)98.6毫克、CaCl2.2H2O2 44.1毫克、氯化銨(NH4Cl)10.7毫克、微量元素(trace elements)3.35毫克(起始pH=7.5),可參酌Kao等人於J.Harzard.Mater.254-255,107-115,2013年發表的論文。 Collect aquifer sediments (such as soil) from the site containing trichloroethylene pollution and add it to synthetic groundwater to make the trichloroethylene content approximately 2.5 mg/L. Synthetic groundwater components include potassium dihydrogen phosphate (KH 2 PO 4 ) 326.4 mg, sodium monohydrogen phosphate (Na 2 HPO 4 ) 1263.8 mg, magnesium sulfate heptahydrate (Mg 2 SO 4 7.7H 2 O) 98.6 mg, and CaCl 2 . 2H 2 O 2 44.1 mg, ammonium chloride (NH 4 Cl) 10.7 mg, trace elements (trace elements) 3.35 mg (initial pH=7.5), please refer to Kao et al. in J. Harzard. Mater. 254-255, 107- 115, papers published in 2013.

培養菌株的培養基主要為提供碳源,在一實施例中,培養基為聚膠體緩釋基質(slow polycolloid -releasing substrate,SPRS)。SPRS包含表面活性劑(surfactants)、植物油(vegetable oil)、甘蔗蜜糖(cane molasses)、水及多種維生素複合物,可參酌Liang等人於Water Res.37(1),27-38,2013年發表的論文。 The culture medium for culturing strains is mainly to provide carbon source. In one embodiment, the culture medium is a slow polycolloid matrix (slow polycolloid -releasing substrate, SPRS). SPRS includes surfactants, vegetable oils, cane molasses, water and multivitamin complexes. Please refer to Liang et al. in Water Res. 37(1), 27-38, 2013 presented paper.

實驗分為七組如下表1所示,分別為:(1)LC組:自然降解控制組;(2)OC組:含SPRS控制組;(3)SC組:含SPRS與膠體控制組;(4)HA組:低劑量丁酸梭菌不含膠體組(非包埋菌株);(5)HB組:高劑量丁酸梭菌不含膠體組(非包埋菌株);(6)SHA組:低劑量丁酸梭菌含膠體組(包埋菌株);及(7)SHB組:高劑量丁酸梭菌含膠體組(包埋菌株)。 The experiment was divided into seven groups as shown in Table 1, respectively: (1) LC group: natural degradation control group; (2) OC group: SPRS control group; (3) SC group: SPRS and colloid control group; 4) HA group: low-dose Clostridium butyricum without colloid group (non-embedded strain); (5) HB group: high-dose Clostridium butyricum without colloid group (non-embedded strain); (6) SHA group : Low-dose Clostridium butyricum colloid-containing group (embedded strain); and (7) SHB group: High-dose Clostridium butyricum colloid-containing group (embedded strain).

Figure 108114190-A0101-12-0010-1
Figure 108114190-A0101-12-0010-1

將以上七組進行培養30天,並測量第0至30天 溶於水中的氫氣濃度。 Cultivate the above seven groups for 30 days, and measure from 0 to 30 days The concentration of hydrogen dissolved in water.

請參閱如第1圖所示,SHA組與SHB組在第4至6天時氫氣的產量達到最高峰,至於HA組與HB組則須在第15天才能達到產生氫氣的最大量,其中HB組的氫氣濃度只有SHB組的一半。換言之,相較於非包埋菌株的情形下,本揭示內容之包埋微生物膠體不但能使產氫菌株在產氫的時間上縮減超過一半之外,最大氫氣產量更是能超越非包埋菌株約1倍的程度。這顯示產氫菌能穩定存活於TMOS、MTMS與矽奈米顆粒所組成的膠體中,並使得產氫菌能維持產生氫氣的功能。 Please refer to Figure 1, the SHA group and SHB group reached the highest level of hydrogen production on the 4th to 6th day. As for the HA group and HB group, the maximum amount of hydrogen production must be reached on the 15th day, where HB The hydrogen concentration of the group was only half of that of the SHB group. In other words, compared with the case of non-embedded strains, the embedded microbial colloid of the present disclosure not only reduces the hydrogen-producing time of hydrogen-producing strains by more than half, but the maximum hydrogen production can surpass that of non-embedded strains. About 1 times the degree. This shows that hydrogen-producing bacteria can stably survive in the colloid composed of TMOS, MTMS and silicon nanoparticle, and enable the hydrogen-producing bacteria to maintain the function of producing hydrogen.

實施例2 降解含氯有機物的能力Example 2 Ability to degrade chlorine-containing organic matter

實驗組別同實施例1,將以上七組進行培養30天,並測量第0至30天於水中的三氯乙烯、順-二氯乙烯、1,2-二氯乙烯、氯乙烯以及乙烯的濃度。 The experimental group was the same as in Example 1. The above seven groups were cultured for 30 days, and the levels of trichloroethylene, cis-dichloroethylene, 1,2-dichloroethylene, vinyl chloride and ethylene in water from 0 to 30 days were measured. concentration.

請參閱如第2圖所示,除了LC組別(自然降解的情況下),其他組別中三氯乙烯都有一定程度的減少,其中SHB組下降幅度最高。請參閱如第3及4圖所示,三氯乙烯降解後中間產物順-二氯乙烯與1,2-二氯乙烯的含量,則隨著三氯乙烯降解時間的增加而增加。值得觀察的是,氯乙烯(第5圖)與乙烯(第6圖)只有SHA組與SHB組中能夠隨著時間增加而增加,其他組別則無法有效將三氯乙烯的中間產物進一步分解為對環境無害的乙烯。由此可知,非包埋菌株的組別(HA、HB組)並無法在含氯有機物的環境中並無法有足夠的活性提供足量的氫氣,以至於無法提供位於現地收集含 水層沉積物的脫氯菌將含氯有機物分解至對環境無害的乙烯。 Please refer to Figure 2, except for the LC group (in the case of natural degradation), the trichloroethylene in the other groups has a certain degree of reduction, and the SHB group has the highest decrease. Please refer to Figures 3 and 4, the content of intermediate products cis-dichloroethylene and 1,2-dichloroethylene after the degradation of trichloroethylene increases as the degradation time of trichloroethylene increases. It is worth observing that only the SHA group and SHB group of vinyl chloride (Figure 5) and ethylene (Figure 6) can increase with time, and other groups cannot effectively decompose the intermediate products of trichloroethylene into Ethylene which is harmless to the environment. It can be seen that the groups of non-embedded strains (HA and HB groups) cannot provide sufficient activity in the environment of chlorinated organic matter and provide sufficient hydrogen, so that they cannot provide on-site collection of The dechlorination bacteria in the sediments of the water layer decompose the chlorinated organic matter into ethylene which is harmless to the environment.

這顯示本揭示內容的包埋微生物膠體可有效改善還原脫氯反應的效率,並藉由提供大量的氫氣以加速三氯乙烯進行脫氯。若同樣是添加產氫菌但以非包埋的方式處理下,則由於氫氣產量的不足而限制了還原脫氯反應的效率,最終無法將三氯乙烯降解至對環境無害的乙烯。 This shows that the embedded microbial colloid of the present disclosure can effectively improve the efficiency of the reductive dechlorination reaction and accelerate the dechlorination of trichloroethylene by providing a large amount of hydrogen. If the hydrogen-producing bacteria are also added but treated in a non-embedded manner, the efficiency of the reductive dechlorination reaction will be limited due to insufficient hydrogen production, and the trichloroethylene cannot be degraded to environmentally harmless ethylene.

因此,本揭示內容之包埋微生物膠體能使產氫菌於含氯有機物的環境中具穩定性,使氫氣能快速、持續且大量地產生,並做為電子之供應者,以協助汙染現地脫氯菌加速降解含氯有機物。 Therefore, the embedded microbial colloid of the present disclosure can make hydrogen-producing bacteria stable in the environment of chlorinated organic matter, so that hydrogen can be produced quickly, continuously and in large quantities, and act as a supplier of electrons to assist in the removal of pollution. Chlorine bacteria accelerate the degradation of chlorine-containing organic matter.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone familiar with the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be subject to those defined in the attached patent scope.

Claims (13)

一種包埋微生物膠體的製備方法,包含:提供烷氧基矽烷(alkoxysilane,AS);提供四烷基原矽酸鹽(tetraalkyl orthosilicate,TAOS);混合該烷氧基矽烷、該四烷基原矽酸鹽與一酸性溶液,使該烷氧基矽烷與該四烷基原矽酸鹽進行水解,獲得一烷氧溶液;提供一菌液,包含一產氫菌種;以及混合該烷氧溶液、該菌液以及一矽奈米顆粒,使該烷氧溶液、該菌液以及該矽奈米顆粒進行縮合,以獲得該包埋微生物膠體。 A preparation method of embedded microbial colloid, comprising: providing alkoxysilane (AS); providing tetraalkyl orthosilicate (TAOS); mixing the alkoxysilane and the tetraalkyl orthosilicate Hydrolyze the alkoxysilane and the tetraalkylorthosilicate to obtain an alkoxy solution; provide a bacteria solution including a hydrogen-producing bacteria species; and mix the alkoxysilane, The bacterial liquid and a silicon nanoparticle are condensed to obtain the embedded microbial colloid. 如請求項1所述之方法,其中該產氫菌種包含梭菌屬(Clostridium)菌種、腸桿菌屬(Enterobacter)菌種或其組合。 The method according to claim 1, wherein the hydrogen-producing strain comprises Clostridium ( Clostridium ) strain, Enterobacter ( Enterobacter ) strain or a combination thereof. 如請求項2所述之方法,其中該梭菌屬菌種包含丁酸梭菌(Clostridium butyricum)。 The method according to claim 2, wherein the Clostridium species comprises Clostridium butyricum . 如請求項1所述之方法,其中該烷氧基矽烷(AS)包含甲基三甲氧基矽烷(methyltrimethoxysilane,MTMS)、甲基三乙氧基矽烷(methyl triethoxysilane,MTES)或其混合物。 The method according to claim 1, wherein the alkoxysilane (AS) comprises methyltrimethoxysilane (MTMS), methyl triethoxysilane (MTES) or a mixture thereof. 如請求項1所述之方法,其中該四烷基原矽酸鹽(TAOS)包含四乙基原矽酸鹽(tetraethyl orthosilicate,TEOS)、四甲氧基矽烷(tetramethoxysilane,TMOS)或其組合。 The method of claim 1, wherein the tetraalkyl orthosilicate (TAOS) comprises tetraethyl orthosilicate (TEOS), tetramethoxysilane (TMOS), or a combination thereof. 如請求項1所述之方法,其中混合該烷氧基矽烷、該四烷基原矽酸鹽與該酸性溶液的步驟,該烷氧基矽烷與該四烷基原矽酸鹽的體積比為1:0.01~100。 The method according to claim 1, wherein in the step of mixing the alkoxysilane, the tetraalkylorthosilicate and the acid solution, the volume ratio of the alkoxysilane to the tetraalkylorthosilicate is 1: 0.01~100. 如請求項1所述之方法,其中該烷氧基矽烷與該四烷基原矽酸鹽相加後與該酸性溶液的體積比為1:0.1~10。 The method according to claim 1, wherein the volume ratio of the alkoxysilane and the tetraalkylorthosilicate to the acid solution is 1:0.1-10. 如請求項1所述之方法,其中混合該烷氧溶液、該菌液以及該矽奈米顆粒的步驟,該矽奈米顆粒由複數二氧化矽共價鍵結而成。 The method according to claim 1, wherein in the step of mixing the alkoxy solution, the bacterial solution and the silicon nanoparticle, the silicon nanoparticle is formed by covalently bonding a plurality of silicon dioxide. 一種包埋微生物膠體,其係由如請求項1所述之製備方法製備而得。 An embedded microbial colloid prepared by the preparation method described in claim 1. 一種包埋微生物膠體,包含:複數矽奈米顆粒;以及複數產氫菌,其中,該些矽奈米顆粒之間以氧-矽-氧的排列方式共價鍵結,圍繞包埋各該產氫菌, 其中,該包埋微生物膠體具有複數孔洞散佈於該包埋微生物膠體的內部與表面。 An embedded microbial colloid, comprising: a plurality of silicon nano particles; and a plurality of hydrogen-producing bacteria, wherein the silicon nano particles are covalently bonded in an oxygen-silicon-oxygen arrangement, surrounding the embedded particles Hydrogen bacteria, Wherein, the embedded microbial colloid has a plurality of holes scattered on the inside and surface of the embedded microbial colloid. 一種降解含氯有機物的組合物,包含:一如請求項10所述之包埋微生物膠體;以及一脫氯菌。 A composition for degrading chlorinated organic matter, comprising: the embedded microbial colloid as described in claim 10; and a dechlorinating bacteria. 如請求項11所述之組合物,其中該脫氯菌包含DehalococcoidesDehalobacterDehalospirillum、脫亞硫酸菌屬(Desulfitobacterium)、脫硫念珠菌屬(Desulfomonile)或其組合。 The composition of item 11, wherein the bacteria comprises a dechlorination Dehalococcoides, Dehalobacter, Dehalospirillum, the genus off sulfite (Desulfitobacterium), Candida desulfurization (Desulfomonile) or combinations thereof request. 如請求項11所述之組合物,更包含一提供碳源的培養基。 The composition according to claim 11, further comprising a medium for providing a carbon source.
TW108114190A 2019-04-23 2019-04-23 Immobilized microorganism gel, preparation method thereof, and composition for degrading chlorinated-organic substance TWI701324B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108114190A TWI701324B (en) 2019-04-23 2019-04-23 Immobilized microorganism gel, preparation method thereof, and composition for degrading chlorinated-organic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108114190A TWI701324B (en) 2019-04-23 2019-04-23 Immobilized microorganism gel, preparation method thereof, and composition for degrading chlorinated-organic substance

Publications (2)

Publication Number Publication Date
TWI701324B true TWI701324B (en) 2020-08-11
TW202039780A TW202039780A (en) 2020-11-01

Family

ID=73003052

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108114190A TWI701324B (en) 2019-04-23 2019-04-23 Immobilized microorganism gel, preparation method thereof, and composition for degrading chlorinated-organic substance

Country Status (1)

Country Link
TW (1) TWI701324B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI789838B (en) * 2021-07-22 2023-01-11 國立中央大學 Dehalococcoides mccartyi for dechlorinating organic-halide, composition, and method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103917098A (en) * 2011-02-22 2014-07-09 明尼苏达大学董事会 Silica encapsulated biomaterials
TW201631145A (en) * 2015-02-17 2016-09-01 台灣氯乙烯工業股份有限公司 Anaerobic bacteria strain for degrading chlorinated organic contaminant and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103917098A (en) * 2011-02-22 2014-07-09 明尼苏达大学董事会 Silica encapsulated biomaterials
TW201631145A (en) * 2015-02-17 2016-09-01 台灣氯乙烯工業股份有限公司 Anaerobic bacteria strain for degrading chlorinated organic contaminant and use thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Christof HOLLIGER,"Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra-and trichloroethene in an anaerobic respiration.", Archives of Microbiology, Volume 169, Issue 4, April 1998, page 313-321. *
Evelyn MILLER, "Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S.", Archives of microbiology, Vol. 168, Issue 6, December 1997, page 513-519. *
Heidrun SCHOLZ-MURAMATSU,"Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium.", Archives of Microbiology, Vol. 163, Issue 1, January 1995,page 48-56. *
Praveena BHATT,"Biodegradation of chlorinated compounds—a review.", Critical Reviews in Environmental Science and Technology", Vol. 37, Issue 2, 23 Nov. 2006, page 165-198. *
Xavier MAYMÓ-GATELL, "Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene.", Science, Vol. 276, Issue 5318, 6 June 1997, page 1568-1571. *

Also Published As

Publication number Publication date
TW202039780A (en) 2020-11-01

Similar Documents

Publication Publication Date Title
Li et al. Application of biochar immobilized microorganisms for pollutants removal from wastewater: A review
Patel et al. Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches
Zhang et al. Microbial nitrate removal in biologically enhanced treated coal gasification wastewater of low COD to nitrate ratio by coupling biological denitrification with iron and carbon micro-electrolysis
Yuan et al. Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii
Jiang et al. Rapid formation of aniline-degrading aerobic granular sludge and investigation of its microbial community succession
Zhang et al. Microbial action and mechanisms for Cr (VI) removal performance by layered double hydroxide modified zeolite and quartz sand in constructed wetlands
CN102319729B (en) New method for combined remediation of compound contaminated soil
Wang et al. Thermally enhanced bioremediation: A review of the fundamentals and applications in soil and groundwater remediation
Jin et al. Biodegradation of the benzo [a] pyrene-contaminated sediment of the Jiaozhou Bay wetland using Pseudomonas sp. immobilization
Zhao et al. An overview of in-situ remediation for nitrate in groundwater
Huang et al. Enhanced biodegradation of pyrene and indeno (1, 2, 3-cd) pyrene using bacteria immobilized in cinder beads in estuarine wetlands
Lenz et al. Bioaugmentation of UASB reactors with immobilized Sulfurospirillum barnesii for simultaneous selenate and nitrate removal
CN111333200B (en) Embedded immobilized microorganism particles, preparation method and sewage treatment method
Lo et al. Enhanced reductive dechlorination of trichloroethene with immobilized Clostridium butyricum in silica gel
Liu et al. Low-temperature biodegradation of aniline by freely suspended and magnetic modified Pseudomonas migulae AN-1
Ambaye et al. Ex-situ bioremediation of petroleum hydrocarbon contaminated soil using mixed stimulants: Response and dynamics of bacterial community and phytotoxicity
Xie et al. High-effectively degrade the di-(2-ethylhexyl) phthalate via biochemical system: Resistant bacterial flora and persulfate oxidation activated by BC@ Fe3O4
TWI701324B (en) Immobilized microorganism gel, preparation method thereof, and composition for degrading chlorinated-organic substance
Wang et al. Genetical surface display of silicatein on Yarrowia lipolytica confers living and renewable biosilica–yeast hybrid materials
Zhu et al. How bioaugmentation with Comamonas testosteroni accelerates pyridine mono-oxygenation and mineralization
Ramteke et al. Removal of benzene, toluene and xylene (BTX) from wastewater using immobilized modified prepared activated sludge (MPAS)
Rossi et al. Coupled adsorption and biodegradation of trichloroethylene on biochar from pine wood wastes: a combined approach for a sustainable bioremediation strategy
Lu et al. Effects of combined remediation of pre-ozonation and bioaugmentation on degradation of benzo [a] pyrene and microbial community structure in soils
Lu et al. Long-term dechlorination of cis-DCE to ethene with co-immobilized Dehalococcoides mccartyi BAV1 and Clostridium butyricum in silica gel system
CN1930298A (en) Method for effecting the anaerobic biological decomposition of organosiloxanes