TWI701122B - Multi-axis robot arm system and path planning method thereof - Google Patents

Multi-axis robot arm system and path planning method thereof Download PDF

Info

Publication number
TWI701122B
TWI701122B TW108124956A TW108124956A TWI701122B TW I701122 B TWI701122 B TW I701122B TW 108124956 A TW108124956 A TW 108124956A TW 108124956 A TW108124956 A TW 108124956A TW I701122 B TWI701122 B TW I701122B
Authority
TW
Taiwan
Prior art keywords
path
data
axis
unit
robotic arm
Prior art date
Application number
TW108124956A
Other languages
Chinese (zh)
Other versions
TW202103874A (en
Inventor
黃孝維
劉軒
Original Assignee
由田新技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 由田新技股份有限公司 filed Critical 由田新技股份有限公司
Priority to TW108124956A priority Critical patent/TWI701122B/en
Priority to CN202010326687.3A priority patent/CN112223272B/en
Application granted granted Critical
Publication of TWI701122B publication Critical patent/TWI701122B/en
Publication of TW202103874A publication Critical patent/TW202103874A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

A multi-axis robot arm system having a multi-axis robot arm and a processor is provided. The processor obtains a best route data and a best posture data from an initial location to a target location according to an initial posture information, the initial location, a target posture information and the target location. The processor further obtains a second posture information and a second route data from an initial location to a target location according to the best route data and a best posture data. The processor integrates the best posture data, the second posture data and the best route data and the second route data, so as to generate a working path of the multi-axis robot arm.

Description

多軸機械手臂系統及其路徑規劃方法Multi-axis mechanical arm system and path planning method thereof

本發明是有關於一種路徑規劃技術,且特別是有關於一種多軸機械手臂系統及其路徑規劃方法。 The present invention relates to a path planning technology, and particularly relates to a multi-axis robotic arm system and a path planning method thereof.

在自動化的趨勢下,機械手臂已實際被應用在自動化製程、倉儲管理等產業之中。特別是,多軸機械手臂的自由度高,能夠在空間中自由的移動,更是工業機器人領域中的潮流。為了維持機械手臂的移動效率,同時維持廠房的安全,路徑規劃是很重要的一環。然而,在自由度高的特性之下,相對地也會讓路徑規劃的過程變得複雜。基此,如何能夠提供路徑規劃的同時,也提供更有效率的路徑規劃流程為本領域技術人員所致力的課題。 Under the trend of automation, robotic arms have actually been used in industries such as automated manufacturing and warehouse management. In particular, the multi-axis robot arm has a high degree of freedom and can move freely in space, which is a trend in the field of industrial robots. In order to maintain the mobile efficiency of the robotic arm and maintain the safety of the plant, path planning is an important part. However, due to the high degree of freedom, the path planning process will be relatively complicated. Based on this, how to provide path planning while also providing a more efficient path planning process is a subject for those skilled in the art.

本發明提供一種多軸機械手臂系統及其路徑規劃方法,以提供更有效率的路徑規劃流程。 The invention provides a multi-axis mechanical arm system and a path planning method thereof to provide a more efficient path planning process.

本發明的一實施例提供多軸機械手臂系統,此系統具有 多軸機械手臂以及處理單元。多軸機械手臂具有至少一個前軸單元、至少一個後軸單元以及控制單元。處理單元電性連接至多軸機械手臂,處理單元依據起始姿態資訊、起始位置、目標姿態資訊及目標位置,計算前軸單元由起始位置至目標位置的最佳路徑資料及相應的最佳姿態資料。處理單元會依據最佳路徑資料及最佳姿態資料,計算後軸單元由起始位置至目標位置的第二姿態資料及相應的第二路徑資料。處理單元還分別整合最佳姿態資料及第二姿態資料,以及最佳路徑資料及第二路徑資料,以產生多軸機械手臂的一工作路徑。 An embodiment of the present invention provides a multi-axis robotic arm system, which has Multi-axis robotic arm and processing unit. The multi-axis robot arm has at least one front axle unit, at least one rear axle unit, and a control unit. The processing unit is electrically connected to the multi-axis robotic arm. The processing unit calculates the best path data and the corresponding best of the front axis unit from the start position to the target position based on the start posture information, start position, target posture information, and target position Posture information. The processing unit calculates the second posture data and corresponding second path data of the rear axle unit from the starting position to the target position based on the best path data and the best posture data. The processing unit further integrates the best posture data and the second posture data, as well as the best path data and the second path data respectively, to generate a working path of the multi-axis robotic arm.

本發明的一實施例提供一種多軸機械手臂路徑規劃方法,具有下列步驟。依據一起始姿態資訊、一起始位置、一目標姿態資訊及一目標位置,獲取多軸機械手臂的至少一個前軸單元由起始位置至目標位置的最佳路徑資料及最佳姿態資料;依據最佳路徑資料及最佳姿態資料,獲取多軸機械手臂的至少一個後軸單元由起始位置至目標位置的第二姿態資料及第二路徑資料;以及整合最佳姿態資料、第二姿態資料、最佳路徑資料及第二路徑資料,以產生多軸機械手臂的一工作路徑。 An embodiment of the present invention provides a path planning method for a multi-axis robotic arm, which has the following steps. According to a starting posture information, a starting position, a target posture information and a target position, the best path data and best posture data of at least one front axle unit of the multi-axis robot arm from the starting position to the target position are acquired; Best path data and best posture data, acquire second posture data and second path data of at least one rear axle unit of the multi-axis robotic arm from the starting position to the target position; and integrate the best posture data, second posture data, The best path data and the second path data are used to generate a working path of the multi-axis robotic arm.

基於上述,本發明的多軸機械手臂系統以及多軸機械手臂路徑規劃方法會分別依據機械手臂的前軸單元以及後軸單元分別計算最佳路徑。由於每次需要進行路徑規劃的軸單元自由度減少,因此能夠有效的降低路徑規劃的複雜性,加快路徑規劃的速 度。於此同時,多軸機械手臂系統以及多軸機械手臂路徑規劃方法所獲取的路徑是依據前軸單元的最佳路徑以及後軸單元的最佳路徑所組成。基此,而在路徑規劃的速度與最佳路徑之間取的權衡。 Based on the above, the multi-axis robotic arm system and the multi-axis robotic arm path planning method of the present invention respectively calculate the optimal path according to the front axis unit and the rear axis unit of the robot arm. Since the degree of freedom of the axis unit for path planning is reduced each time, it can effectively reduce the complexity of path planning and speed up path planning. degree. At the same time, the path obtained by the multi-axis robotic arm system and the multi-axis robotic arm path planning method is composed of the optimal path of the front axis unit and the optimal path of the rear axis unit. Based on this, it is a trade-off between the speed of path planning and the best path.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

110:多軸機械手臂 110: Multi-axis robotic arm

113~115:前軸單元 113~115: Front axle unit

116~118:後軸單元 116~118: Rear axle unit

120:處理單元 120: processing unit

S210~S230:步驟 S210~S230: steps

S:起始位置 S: starting position

D:目標位置 D: target location

圖1繪示本發明一實施例多軸機械手臂系統的系統示意圖。 Fig. 1 shows a system schematic diagram of a multi-axis robotic arm system according to an embodiment of the present invention.

圖2繪示本發明一實施例多軸機械手臂路徑規劃方法的流程示意圖。 2 is a schematic flowchart of a path planning method for a multi-axis robotic arm according to an embodiment of the present invention.

圖3繪示本發明一實施例虛擬空間的示意圖。 FIG. 3 is a schematic diagram of a virtual space according to an embodiment of the invention.

圖4繪示本發明一實施例位形空間的示意圖。 4 is a schematic diagram of a configuration space according to an embodiment of the present invention.

圖1繪示本發明一實施例多軸機械手臂系統的系統示意圖。請參照圖1,在本發明的實施例中,多軸機械手臂系統具有至少一前軸單元、至少一後軸單元與一控制單元多軸機械手臂110以及處理單元120。多軸機械手臂110具有多個軸單元(joint)113~118,以及安設於機械手臂內部的控制單元(未顯示)。並且,多軸機械手臂是串聯式機械手臂,也就是說,每一個軸單元都會 在一個軸向上位移、旋轉,並帶動其他軸一起移動。 Fig. 1 shows a system schematic diagram of a multi-axis robotic arm system according to an embodiment of the present invention. Please refer to FIG. 1, in the embodiment of the present invention, the multi-axis robot arm system has at least one front axle unit, at least one rear axle unit, and one control unit. The multi-axis robot arm 110 and the processing unit 120 are provided. The multi-axis robotic arm 110 has a plurality of joints 113-118, and a control unit (not shown) installed inside the robotic arm. Moreover, the multi-axis robot arm is a tandem robot arm, that is to say, each axis unit will Displace and rotate in one axis, and drive other axes to move together.

在下述的描述中,軸單元在邏輯上會被區分為前軸單元及後軸單元,並且在路徑規劃時,會分別規劃前軸單元與後軸單元的路徑。以圖1實施例為例,設在基座內側的軸單元113以及靠近基座的軸單元114~115視為前軸單元,遠離基座的軸單元116~118為後軸單元。前軸單元113~115及後軸單元116~118的區分會依據實際路徑規劃的設計而有所調整。惟需注意的是,在本發明的一實施例中,路徑規劃會採用位形空間(Configuration Space)估算機械手臂在空間中的動作範圍和情形。因此,在本發明實施例中,包含但不限於,前軸單元的數量為三個,使前軸單元能夠在位形空間轉換並進行分析。 In the following description, the axle unit is logically divided into a front axle unit and a rear axle unit, and during path planning, the paths of the front axle unit and the rear axle unit are planned separately. Taking the embodiment of FIG. 1 as an example, the shaft unit 113 arranged inside the base and the shaft units 114 to 115 close to the base are regarded as front axle units, and the shaft units 116 to 118 far from the base are regarded as rear axle units. The distinction between the front axle units 113 to 115 and the rear axle units 116 to 118 will be adjusted according to the actual path planning design. It should be noted that, in an embodiment of the present invention, the path planning uses Configuration Space to estimate the motion range and situation of the robotic arm in space. Therefore, in the embodiment of the present invention, including but not limited to, the number of the front axle unit is three, so that the front axle unit can be transformed and analyzed in the configuration space.

控制單元電性連接至前軸單元113~115及後軸單元116~118,用以接收控制訊號,以控制多軸機械手臂110在各軸向的移動。控制單元可以採用任意型號的控制晶片進行實作,本發明不限於此。 The control unit is electrically connected to the front axle units 113 to 115 and the rear axle units 116 to 118 for receiving control signals to control the movement of the multi-axis robotic arm 110 in each axis. The control unit can be implemented with any type of control chip, and the present invention is not limited to this.

在本發明的實施例中,機器手臂是由基座所支撐的。軸單元113~118設置於基座上,用以通過自身的移動而使機械手臂在各軸向旋轉、位移。並且,每一個軸單元113~118分別在不同的軸向運動。在本發明的實施例中,每一個軸單元113~118分別以一個馬達所實現。 In the embodiment of the present invention, the robot arm is supported by the base. The shaft units 113 to 118 are arranged on the base, and are used for rotating and displacing the mechanical arm in each axial direction through its own movement. In addition, each of the shaft units 113-118 moves in a different axial direction. In the embodiment of the present invention, each shaft unit 113-118 is implemented by a motor.

處理單元120電性連接於機械手臂110,用以執行各類邏 輯運算,並進行路徑規劃。處理單元120例如為,中央處理單元(Central Processing Unit,CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位信號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuit,ASIC)或其他類似元件或上述元件的組合,本發明不限於此。 The processing unit 120 is electrically connected to the robotic arm 110 for executing various logics Edit calculations, and carry out path planning. The processing unit 120 is, for example, a central processing unit (Central Processing Unit, CPU), or other programmable general-purpose or special-purpose microprocessor (Microprocessor), digital signal processor (Digital Signal Processor, DSP), Programmable controller, Application Specific Integrated Circuit (ASIC) or other similar components or a combination of the above components, the present invention is not limited to this.

圖2繪示本發明一實施例多軸機械手臂路徑規劃方法的流程示意圖。圖2的實施例至少適用於圖1實施例所繪示的多軸機械手臂系統。因此,以下將通過圖1與圖2說明以多軸機械手臂系統運行多軸機械手臂路徑規劃方法的過程。 2 is a schematic flowchart of a path planning method for a multi-axis robotic arm according to an embodiment of the present invention. The embodiment of FIG. 2 is at least applicable to the multi-axis robotic arm system depicted in the embodiment of FIG. 1. Therefore, the process of running the multi-axis robotic arm path planning method with the multi-axis robotic arm system will be described below with reference to FIGS. 1 and 2.

在運行機械手臂路徑規劃方法時,操作人員會選擇機械手臂的目標位置及姿態。 When running the robot arm path planning method, the operator will select the target position and posture of the robot arm.

在步驟S210,處理單元120依據起始姿態資訊、起始位置、目標姿態資訊及目標位置,計算前軸單元113~115由起始位置至目標位置的最佳路徑資料及相應的最佳姿態資料。具體來說,在本發明的一實施例中,由於起始位置、起始姿態資訊、目標位置以及目標姿態資訊皆為已知。也就是說,每一個前軸單元113~115的具體起始位置以及最終位置為已知的。基此,處理單元120能夠依據已知的起始位置及目標位置安排在空間中的路徑。 In step S210, the processing unit 120 calculates the best path data from the start position to the target position of the front axle units 113~115 and the corresponding best posture data according to the start posture information, start position, target posture information, and target position. . Specifically, in an embodiment of the present invention, the starting position, starting attitude information, target position, and target attitude information are all known. In other words, the specific starting position and final position of each front axle unit 113 to 115 are known. Based on this, the processing unit 120 can arrange a path in space according to the known starting position and target position.

在本揭露的一實施例中,處理單元120是依據一路徑搜尋法,例如A*搜尋演算法、D*搜尋演算法或戴克斯特拉演算法 (Dijkstra’s algorithm),藉此以搜尋至少一個計算前軸單元113~115由起始位置至目標位置的最佳姿態資料,以及相應的最佳路徑資料。舉例來說,倘若前軸單元113~115的起始位置被設置為(0,0,0),目標位置被設置為(-70,-30,20),則處理單元120獲取前軸單元113~115的最佳目標位置以及最佳目標姿態的路徑例如為表一:

Figure 108124956-A0305-02-0008-3
In an embodiment of the disclosure, the processing unit 120 is based on a path search method, such as A* search algorithm, D* search algorithm, or Dijkstra's algorithm, to search for at least one path Calculate the best posture data of the front axle units 113-115 from the starting position to the target position, and the corresponding best path data. For example, if the starting positions of the front axle units 113 to 115 are set to (0, 0, 0) and the target position is set to (-70, -30, 20), the processing unit 120 obtains the front axle unit 113 The best target position of ~115 and the path of the best target posture are shown in Table 1:
Figure 108124956-A0305-02-0008-3

需說明的是,在本實施例中,最佳路徑、最佳姿態所述的「最佳」是在處理單元120所運行的方式下所產生最佳的路徑與最佳姿態。舉例來說,A*搜尋演算法會以移動代價最小的路徑作為最佳路徑。此時,倘若處理單元120採用A*搜尋演算法,最佳路徑及最佳姿態即為移動代價最小的路徑及其相應的姿態。也就是說,最佳路徑、最佳姿態會依據處理單元120所採用的演算 方式而使結果有所不同,本發明並不以此為限。 It should be noted that, in this embodiment, the “best” mentioned in the best path and best posture is the best path and best posture generated in the way the processing unit 120 runs. For example, the A* search algorithm will take the path with the least moving cost as the best path. At this time, if the processing unit 120 adopts the A* search algorithm, the best path and the best posture are the path with the least moving cost and the corresponding posture. In other words, the best path and best posture will be based on the calculation used by the processing unit 120 The method makes the result different, and the present invention is not limited to this.

在步驟S220,處理單元120會依據最佳路徑資料及最佳姿態資料,計算後軸單元116~118由起始位置至目標位置的第二姿態資料及相應的第二路徑資料。也就是說,處理單元120會在前軸單元113~115的最佳路徑和最佳姿態的限制下,使得多軸機械手臂110的移動範圍(自由度)僅剩相應後軸單元116~118三軸的狀態。基此,再進一步計算相應後軸單元116~118最佳的第二路徑。若從路徑的角度來說明,也就是說,處理單元120會依據前軸單元113~115在第t步時的姿態資料進行運算,以產生第t+1步時的第二姿態資料。六軸的第二步伐資料和第二姿態資料如表二:

Figure 108124956-A0305-02-0009-4
Figure 108124956-A0305-02-0010-5
In step S220, the processing unit 120 calculates the second posture data and the corresponding second path data from the starting position to the target position of the rear axle units 116-118 based on the best path data and the best posture data. In other words, the processing unit 120 will be limited by the best path and best posture of the front axle units 113 to 115, so that the movement range (degrees of freedom) of the multi-axis robotic arm 110 is only three of the corresponding rear axle units 116 to 118. The state of the axis. Based on this, the optimal second path of the corresponding rear axle units 116 to 118 is further calculated. From the perspective of the path, that is to say, the processing unit 120 will perform calculations based on the posture data of the front axle units 113 to 115 at the t-th step to generate the second posture data at the t+1-th step. The second step data and second posture data of the six axes are shown in Table 2:
Figure 108124956-A0305-02-0009-4
Figure 108124956-A0305-02-0010-5

在步驟S220的最後一步時,前軸單元113~115的姿態分別是落於(-70,-30,20)。因此,處理單元120會以前軸單元113~115的姿態為(-70,-30,20)為基礎,進而獲取後軸單元116~118的路徑。並且,在本發明的實施例中,處理單元120是以相應於步驟S220計算前軸單元113~115由起始位置至目標位置的最佳姿態資料及相應的最佳路徑資料的方式來計算後軸單元116~118由起始位置至目標位置的最佳姿態資料及相應的最佳路徑資料。也就是說,處理單元120是依據起始位置中以及起始姿態資訊中相應後軸單元的部分、最佳路徑資料與最佳姿態資料中的最後一個路徑與姿態以及目標位置,獲取後軸單元由起始位置至目標位置的第二姿態資料及第二路徑資料。 In the last step of step S220, the postures of the front axle units 113 to 115 are respectively (-70, -30, 20). Therefore, the processing unit 120 obtains the paths of the rear axle units 116 to 118 based on the postures of the front axle units 113 to 115 being (-70, -30, 20). Moreover, in the embodiment of the present invention, the processing unit 120 calculates the best posture data and the corresponding best path data from the starting position to the target position of the front axle units 113 to 115 corresponding to step S220. The best posture data of the axis units 116-118 from the starting position to the target position and the corresponding best path data. That is to say, the processing unit 120 obtains the rear axle unit according to the part of the corresponding rear axle unit in the starting position and the starting attitude information, the best path data and the last path and attitude in the best attitude data, and the target position. The second posture data and the second path data from the starting position to the target position.

在步驟S230,處理單元120還分別整合最佳姿態資料及 第二姿態資料,以及最佳路徑資料及第二路徑資料,以產生多軸機械手臂的工作路徑。整合的工作路徑例如為表三:

Figure 108124956-A0305-02-0011-6
在整合的工作路徑中,路徑0至路徑14是在步驟S220中所產生的最佳路徑資料及最佳路徑姿態,路徑15到路徑33是在步驟S230中所產生的路徑1至18。並且,在整合最佳路徑資料及第二路徑資料之後,處理單元120會進一步在路徑33及路徑34的時候, 依據目標位置對多軸機械手臂110校正偏差。 In step S230, the processing unit 120 further integrates the best posture data and the second posture data, as well as the best path data and the second path data, respectively, to generate the working path of the multi-axis robot arm. The integrated working path is shown in Table 3 for example:
Figure 108124956-A0305-02-0011-6
In the integrated working path, path 0 to path 14 are the best path data and the best path attitude generated in step S220, and path 15 to path 33 are paths 1 to 18 generated in step S230. Moreover, after integrating the best path data and the second path data, the processing unit 120 will further correct the deviation of the multi-axis robot arm 110 during the path 33 and the path 34 according to the target position.

需說明的是,由於處理單元120並非直接由起始位置到目標位置的路徑與姿態規劃所有軸單元的整體路徑與姿態。因此,工作路徑並不一定是在所有可能產生的路徑中最短的路徑。然而通過將前軸單元113~115以及後軸單元116~118分開規劃路徑,能夠大幅的降低路徑規劃耗費的時間,以在最佳工作路徑及工作路徑規劃時間之間取得權衡。 It should be noted that the processing unit 120 does not directly plan the overall path and posture of all axis units from the path and posture from the starting position to the target position. Therefore, the working path is not necessarily the shortest path among all possible paths. However, by separating the front axle units 113 to 115 and the rear axle units 116 to 118 to plan the path, the time spent in path planning can be greatly reduced, so as to achieve a trade-off between the optimal working path and the working path planning time.

值得一提的是,為了確保多軸機械手臂在運行的過程中不會受到障礙物的干擾,在本發明的一實施例中,處理單元120還會事先依據環境影像資訊建立位形空間(Configuration Space)。圖3繪示本發明一實施例虛擬空間的示意圖。具體來說,處理單元120可以通過電性連接至攝影機而對環境進行拍攝,或者是接收來自操作人員輸入至處理單元120的影像建立三維虛擬空間。 It is worth mentioning that, in order to ensure that the multi-axis robot arm will not be interfered by obstacles during operation, in an embodiment of the present invention, the processing unit 120 also creates a configuration space (Configuration Space). FIG. 3 is a schematic diagram of a virtual space according to an embodiment of the invention. Specifically, the processing unit 120 may be electrically connected to a camera to photograph the environment, or may receive images input from the operator to the processing unit 120 to establish a three-dimensional virtual space.

藉由三為虛擬空間,處理單元120會進一步建立相應於每一個軸單元(joint)的位形空間。並且,處理單元120會在該位形空間中產生該前軸單元前軸路徑資訊與前軸姿態資訊。詳細來說,處理單元120會在位形空間中模擬多軸機械手臂110的前軸單元113~115所有的移動情形,以將多軸機械手臂110的移動區域分為干涉情形及非干涉情形。圖4繪示本發明一實施例位形空間的示意圖。請參照圖4,S代表的是起始位置,D代表的是目 標位置。而幾何圖案代表著是障礙物。基此,處理單元120能夠判斷前軸單元113~115所有的移動路徑中,哪些會使多軸機械手臂110撞到障礙物,哪些則會使多軸機械手臂110順利的到達目標位置。基此,處理單元120會將會撞到障礙物的路徑進行整合,以形成會撞到障礙物的移動區域,並將此移動區域標示為干涉情形,其餘的移動區域則屬於非干涉情形。基此,處理單元120在執行步驟S220的當下,能夠事先排除前軸單元落入干涉情形的移動區域,並據此產生前軸單元的前軸路徑資訊與前軸姿態資訊,以減少處理單元120執行不必要運算的負擔。 With three virtual spaces, the processing unit 120 will further create a configuration space corresponding to each joint. In addition, the processing unit 120 generates the front axle path information and the front axle posture information of the front axle unit in the configuration space. In detail, the processing unit 120 simulates all the movement situations of the front axle units 113 to 115 of the multi-axis robotic arm 110 in the configuration space, so as to divide the movement area of the multi-axis robotic arm 110 into interference situations and non-interference situations. 4 is a schematic diagram of a configuration space according to an embodiment of the present invention. Please refer to Figure 4, S represents the starting position, D represents the target 标 location. The geometric patterns represent obstacles. Based on this, the processing unit 120 can determine which of all the movement paths of the front axle units 113 to 115 will cause the multi-axis robotic arm 110 to hit an obstacle, and which will make the multi-axis robotic arm 110 reach the target position smoothly. Based on this, the processing unit 120 integrates the paths that hit the obstacle to form a moving area that will hit the obstacle, and marks the moving area as an interference situation, and the remaining moving areas are in a non-interference situation. Based on this, the processing unit 120 can exclude the front axle unit from falling into the interference movement area in advance when step S220 is executed, and generate the front axle path information and front axle attitude information of the front axle unit accordingly, so as to reduce the processing unit 120 The burden of performing unnecessary calculations.

值得一提的是,在本發明的實施例中,多軸機械手臂是以六軸機械手臂作為範例,然在其他實施例中,多軸機械手臂也可以是2軸、3軸,甚至是9軸、10軸,本發明不以此為限。惟需注意的是,倘若多軸機械手臂超過6軸時,軸單元可以被劃分成前軸單元以及多組後軸單元。舉例來說,處理單元120可以以前軸單元的最佳路徑資料及最佳姿態資料為基準,進而規劃第一組後軸單元的路徑。接著,處理單元120再以前軸單元與第一組後軸單元的路徑為基準,進而規劃第二組後軸單元的路徑。然本發明不限於此。 It is worth mentioning that in the embodiment of the present invention, the multi-axis robotic arm is a six-axis robotic arm as an example. However, in other embodiments, the multi-axis robotic arm can also be 2-axis, 3-axis, or even 9-axis. Axis, 10-axis, the present invention is not limited to this. The only thing to note is that if the multi-axis robot arm exceeds 6 axes, the axis unit can be divided into a front axis unit and multiple groups of rear axis units. For example, the processing unit 120 can plan the path of the first group of rear axle units based on the best path data and best attitude data of the front axle unit. Then, the processing unit 120 uses the path of the front axle unit and the first group of rear axle units as a reference, and then plans the path of the second group of rear axle units. However, the present invention is not limited to this.

綜上所述,本發明的多軸機械手臂系統以及多軸機械手臂路徑規劃方法會分別依據機械手臂的前軸單元以及後軸單元分別計算最佳路徑。由於每次需要進行路徑規劃的軸單元自由度減 少,因此能夠有效的降低路徑規劃的複雜性,加快路徑規劃的速度。於此同時,多軸機械手臂系統以及多軸機械手臂路徑規劃方法所獲取的路徑是依據前軸單元的最佳路徑以及後軸單元的最佳路徑所組成。基此,而在路徑規劃的速度與最佳路徑之間取的權衡。 To sum up, the multi-axis robotic arm system and the multi-axis robotic arm path planning method of the present invention will respectively calculate the optimal path according to the front axis unit and the rear axis unit of the robot arm. Since the degree of freedom of the axis unit for path planning is reduced each time Therefore, it can effectively reduce the complexity of path planning and accelerate the speed of path planning. At the same time, the path obtained by the multi-axis robotic arm system and the multi-axis robotic arm path planning method is composed of the optimal path of the front axis unit and the optimal path of the rear axis unit. Based on this, it is a trade-off between the speed of path planning and the best path.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

113~115:前軸單元 113~115: Front axle unit

116~118:後軸單元 116~118: Rear axle unit

120:處理單元 120: processing unit

Claims (9)

一種多軸機械手臂系統,包括:一多軸機械手臂,具有至少一前軸單元、至少一後軸單元與一控制單元;以及一處理單元,電性連接至該多軸機械手臂,依據一起始姿態資訊、一起始位置、一目標姿態資訊及一目標位置,獲取該前軸單元由該起始位置至該目標位置的最佳路徑資料及最佳姿態資料;其中該處理單元依據該最佳路徑資料及該最佳姿態資料,獲取該後軸單元由該起始位置至該目標位置的一第二姿態資料及第二路徑資料,該處理單元整合該最佳姿態資料、該第二姿態資料、該最佳路徑資料及該第二路徑資料,以產生該多軸機械手臂的一工作路徑。 A multi-axis robotic arm system includes: a multi-axis robotic arm having at least one front axle unit, at least one rear axle unit, and a control unit; and a processing unit, electrically connected to the multi-axis robotic arm, according to a start Posture information, a starting position, a target posture information and a target position, the best path data and best posture data of the front axle unit from the starting position to the target position are obtained; wherein the processing unit is based on the best path Data and the best posture data, obtain a second posture data and second path data of the rear axle unit from the starting position to the target position, and the processing unit integrates the best posture data, the second posture data, The best path data and the second path data are used to generate a working path of the multi-axis robotic arm. 如申請專利範圍第1項所述的多軸機械手臂系統,其中該處理單元依據一環境影像資訊建立一位形空間(Configuration Space),並在該位形空間中產生該前軸單元前軸路徑資訊與前軸姿態資訊。 The multi-axis robotic arm system described in item 1 of the scope of patent application, wherein the processing unit creates a configuration space (Configuration Space) based on environmental image information, and generates the front axis path of the front axis unit in the configuration space Information and front axle attitude information. 如申請專利範圍第2項所述的多軸機械手臂系統,其中,該處理單元透過一路徑搜尋法,自該前軸路徑資訊與前軸姿態資訊中,獲得該最佳路徑資料及對應的該最佳姿態資料。 For example, the multi-axis robotic arm system described in item 2 of the scope of patent application, wherein the processing unit obtains the optimal path data and the corresponding path from the front axle path information and front axle posture information through a path search method Best posture information. 如申請專利範圍第3項所述的多軸機械手臂系統,其中,該路徑搜尋法包含A*搜尋演算法、D*搜尋演算法或戴克斯特拉演算法(Dijkstra’s algorithm),藉以該處理單元計算該前軸單元的該最佳路徑資料及對應的該最佳姿態資料。 For example, the multi-axis robotic arm system described in item 3 of the scope of patent application, wherein the path search method includes A* search algorithm, D* search algorithm or Dijkstra's algorithm, by which the processing The unit calculates the best path data of the front axle unit and the corresponding best posture data. 如申請專利範圍第1項所述的多軸機械手臂系統,更包括,一基座,且該前軸單元連接於該基座、該後軸單元以及該控制單元,且該前軸單元與該後軸單元分別在不同的軸向運動。 The multi-axis robotic arm system described in item 1 of the scope of patent application further includes a base, and the front axle unit is connected to the base, the rear axle unit, and the control unit, and the front axle unit and the control unit The rear axle units move in different axial directions. 一種多軸機械手臂路徑規劃方法,包括:依據一起始姿態資訊、一起始位置、一目標姿態資訊及一目標位置,獲取一多軸機械手臂的至少一個前軸單元由該起始位置至該目標位置的最佳路徑資料及最佳姿態資料;依據該最佳路徑資料及該最佳姿態資料,獲取該多軸機械手臂的至少一個後軸單元由該起始位置至該目標位置的第二姿態資料及第二路徑資料;以及整合該最佳姿態資料、該第二姿態資料、該最佳路徑資料及該第二路徑資料,以產生該多軸機械手臂的一工作路徑。 A path planning method for a multi-axis robotic arm includes: obtaining at least one front axis unit of a multi-axis robotic arm from the initial position to the target based on a starting attitude information, a starting position, a target attitude information, and a target position The best path data and best posture data of the position; according to the best path data and the best posture data, obtain the second posture of at least one rear axis unit of the multi-axis robotic arm from the starting position to the target position Data and second path data; and integrating the best posture data, the second posture data, the best path data, and the second path data to generate a working path of the multi-axis robotic arm. 如申請專利範圍第6項所述的多軸機械手臂路徑規劃方法,更包括:依據一環境影像資訊建立一位形空間(Configuration Space),在該位形空間中產生該前軸單元前軸路徑資訊與前軸姿 態資訊。 For example, the multi-axis robot arm path planning method described in item 6 of the scope of patent application further includes: establishing a configuration space according to an environmental image information, and generating the front axis path of the front axis unit in the configuration space Information and front axle pose State information. 如申請專利範圍第7項所述的多軸機械手臂路徑規劃方法,其中,在依據該起始姿態資訊、該起始位置、該目標姿態資訊及該目標位置,獲取該多軸機械手臂的該前軸單元由該起始位置至該目標位置的最佳路徑資料及最佳姿態資料的步驟中,包括:透過一路徑搜尋法,自該前軸路徑資訊與前軸姿態資訊中,獲得該最佳路徑資料及對應的該最佳姿態資料。 For example, the method for path planning of a multi-axis robotic arm as described in item 7 of the scope of patent application, wherein, based on the initial attitude information, the initial position, the target attitude information, and the target position, the multi-axis robotic arm is obtained The step of the best path data and best posture data of the front axle unit from the starting position to the target position includes: obtaining the best path data from the front axle path information and the front axle posture information through a path search method The best path data and the corresponding best posture data. 如申請專利範圍第8項所述的多軸機械手臂路徑規劃方法,其中,該路徑搜尋法包含A*搜尋演算法、D*搜尋演算法或戴克斯特拉演算法(Dijkstra’s algorithm),藉以計算該前軸單元由該起始位置至該目標位置的該最佳姿態資料及相應的該最佳路徑資料。 For example, the path planning method of the multi-axis robotic arm described in the scope of patent application, wherein the path search method includes A* search algorithm, D* search algorithm or Dijkstra's algorithm, whereby Calculate the best posture data and the corresponding best path data of the front axle unit from the starting position to the target position.
TW108124956A 2019-07-15 2019-07-15 Multi-axis robot arm system and path planning method thereof TWI701122B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108124956A TWI701122B (en) 2019-07-15 2019-07-15 Multi-axis robot arm system and path planning method thereof
CN202010326687.3A CN112223272B (en) 2019-07-15 2020-04-23 Multi-axis mechanical arm system and path planning method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108124956A TWI701122B (en) 2019-07-15 2019-07-15 Multi-axis robot arm system and path planning method thereof

Publications (2)

Publication Number Publication Date
TWI701122B true TWI701122B (en) 2020-08-11
TW202103874A TW202103874A (en) 2021-02-01

Family

ID=73002976

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108124956A TWI701122B (en) 2019-07-15 2019-07-15 Multi-axis robot arm system and path planning method thereof

Country Status (2)

Country Link
CN (1) CN112223272B (en)
TW (1) TWI701122B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104985586A (en) * 2015-06-17 2015-10-21 北京控制工程研究所 Structure changing space robot and route planning method
CN106166750A (en) * 2016-09-27 2016-11-30 北京邮电大学 A kind of modified model D* mechanical arm dynamic obstacle avoidance paths planning method
CN106737671A (en) * 2016-12-21 2017-05-31 西安科技大学 The bilayer personification motion planning method of seven degrees of freedom copy man mechanical arm

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6083145B2 (en) * 2012-07-31 2017-02-22 セイコーエプソン株式会社 Robot control device and robot
CN103128737B (en) * 2013-03-22 2014-11-26 天津理工大学 Location control method of 2R underactuated planar mechanical arm based on subdivision control
CH709347A2 (en) * 2014-03-10 2015-09-15 Tecan Trading Ag A method for path finding in an automated handling system and handling system with corresponding control module for pathfinding.
JP6450737B2 (en) * 2016-12-08 2019-01-09 ファナック株式会社 Robot system
TWI650626B (en) * 2017-08-15 2019-02-11 由田新技股份有限公司 Robot processing method and system based on 3d image
CN108381553B (en) * 2018-04-28 2021-02-09 北京空间飞行器总体设计部 Relative navigation close-range tracking method and system for space non-cooperative target capture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104985586A (en) * 2015-06-17 2015-10-21 北京控制工程研究所 Structure changing space robot and route planning method
CN106166750A (en) * 2016-09-27 2016-11-30 北京邮电大学 A kind of modified model D* mechanical arm dynamic obstacle avoidance paths planning method
CN106737671A (en) * 2016-12-21 2017-05-31 西安科技大学 The bilayer personification motion planning method of seven degrees of freedom copy man mechanical arm

Also Published As

Publication number Publication date
CN112223272A (en) 2021-01-15
TW202103874A (en) 2021-02-01
CN112223272B (en) 2022-05-31

Similar Documents

Publication Publication Date Title
JP5114019B2 (en) Method for controlling the trajectory of an effector
US20190314989A1 (en) Robot path generating device and robot system
JP6420229B2 (en) A robot system including a video display device that superimposes and displays an image of a virtual object on a video of a robot
Baeten et al. Hybrid vision/force control at corners in planar robotic-contour following
JP2019517929A (en) Trajectory planning method of point-to-point movement in robot joint space
US8972056B2 (en) Method of finding feasible joint trajectories for an n-dof robot with rotation invariant process (n>5)
JP2014024162A (en) Robot system, robot control device, robot control method and robot control program
US9120223B2 (en) Method of controlling seven-axis articulated robot, control program, and robot control device
Kaldestad et al. Collision avoidance with potential fields based on parallel processing of 3D-point cloud data on the GPU
JP2016000442A (en) Robot, robotic system, and control device
CN111002315A (en) Trajectory planning method and device and robot
JP2020110885A (en) Route generation device, route generation method, and route generation program
Kanellakis et al. On vision enabled aerial manipulation for multirotors
WO2011086032A1 (en) Method of finding feasible joint trajectories for an n-dof robot with rotation invariant process (n>5)
TWI701122B (en) Multi-axis robot arm system and path planning method thereof
US11203117B2 (en) Teaching data generation system for vertical multi-joint robot
JP2018012159A (en) Robot system, control method of robot system, and program
Cong Combination of two visual servoing techniques in contour following task
JP2661703B2 (en) Robot autonomous proximity control device
Bae et al. A dynamic visual servoing of robot manipulator with eye-in-hand camera
Papoutsidakis et al. Intelligent design and algorithms to control a stereoscopic camera on a robotic workspace
WO2023053374A1 (en) Control device and robot system
Rodionov et al. 3D modeling of Laser Robotic Complex Motion in CAM Spaces
Zhang et al. An Autonomous Robotic Alignment Strategy Based on Visual Gudiance
RU2756437C1 (en) Method and system for planning the movement of a manipulator robot by correcting the reference trajectories