TWI700884B - Power generation device - Google Patents
Power generation device Download PDFInfo
- Publication number
- TWI700884B TWI700884B TW108114707A TW108114707A TWI700884B TW I700884 B TWI700884 B TW I700884B TW 108114707 A TW108114707 A TW 108114707A TW 108114707 A TW108114707 A TW 108114707A TW I700884 B TWI700884 B TW I700884B
- Authority
- TW
- Taiwan
- Prior art keywords
- electrode layer
- friction unit
- power generation
- layer
- generation device
- Prior art date
Links
Images
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
本發明係一種發電裝置,包含有一第一摩擦單元、以及一第二摩擦單元,該第一摩擦單元包含有一第一電極層、以及一第一導線與該第一電極層電性連接,該第二摩擦單元包含有一第二電極層貼近於該第一電極層、一第二絕緣層設於該第二電極層靠近該第一摩擦單元之一側、以及一第二導線與該第二電極層電性連接,其中,該第一電極層與該第二電極層中至少其一為包含有導電纖維的導電紡織物。藉此,該發電裝置對外界微小力量反應顯著且發電效率高,同時提升使用者的舒適度,並可兼具產品美觀。The present invention is a power generating device, which includes a first friction unit and a second friction unit. The first friction unit includes a first electrode layer and a first wire electrically connected to the first electrode layer. The two rubbing units include a second electrode layer close to the first electrode layer, a second insulating layer disposed on a side of the second electrode layer close to the first rubbing unit, and a second wire and the second electrode layer Electrical connection, wherein at least one of the first electrode layer and the second electrode layer is a conductive textile containing conductive fibers. As a result, the power generating device responds significantly to small external forces and has high power generation efficiency, at the same time, it improves the comfort of the user and has the beautiful appearance of the product.
Description
本發明與發電裝置有關,特別是指一種基於表面電荷轉移與靜電感應原理的發電裝置。The present invention is related to power generation devices, in particular to a power generation device based on the principles of surface charge transfer and electrostatic induction.
美國奈米通訊(Nano Letters)公開的摩擦奈米發電機(Triboelectric Nanogenerator, TENG),提供一種基於接觸起電、摩擦起電與靜電感應原理的發電裝置,可有效地將人體活動的機械能,或者如風力、水波等環境能量轉換成電能。CN106655874、CN107134943專利分別公開了可任意拉伸、變形的電極層,該電極層係採用摻有導電材料的彈性高分子材料製成,例如摻有金屬顆粒的矽膠或矽橡膠,解決傳統發電裝置採用剛性材料的應用限制,並大幅擴張應用範圍。然而,採用前述電極層之發電裝置欲收集風力或水等環境能量時,因高分子材料之特性,需受較大的外力才可使發電裝置內部元件距離改變進而產生發電效果,其對外界微小力量的反應較不明顯,使得發電效率較低,無法有效利用外界能量,而欲收集人體活動的機械能,應用於穿戴裝置或智慧型紡織品時,由於高分子材料與紡織品質感差異性大,使用者皮膚接觸到該發電裝置時的舒適度不佳,且外觀突兀,進而影響產品美觀。因此,如何避免上述缺失,即成了本領域從業人員欲解決的技術問題。The Triboelectric Nanogenerator (TENG) disclosed by Nano Letters in the United States provides a power generation device based on the principles of contact electrification, triboelectricity and electrostatic induction, which can effectively transfer the mechanical energy of human activities, or Environmental energy such as wind and water waves are converted into electrical energy. CN106655874 and CN107134943 patents respectively disclose electrode layers that can be stretched and deformed arbitrarily. The electrode layer is made of elastic polymer materials doped with conductive materials, such as silicone or silicone rubber doped with metal particles. The application of rigid materials is limited, and the application range is greatly expanded. However, when a power generating device using the aforementioned electrode layer wants to collect environmental energy such as wind or water, due to the characteristics of polymer materials, a relatively large external force is required to change the distance between the internal components of the power generating device and generate a power generation effect. The response of power is less obvious, which makes the power generation efficiency low, and the external energy cannot be used effectively. When the mechanical energy of human body activities is to be collected, when applied to wearable devices or smart textiles, due to the large difference in texture between polymer materials and textiles, The comfort of the skin contacting the power generation device is not good, and the appearance is abrupt, which affects the appearance of the product. Therefore, how to avoid the above deficiencies has become a technical problem that practitioners in this field want to solve.
本發明之目的在於提供一種發電裝置,其對外界微小力量反應顯著且發電效率高。本發明之另一目的在於提供一種發電裝置,可提升使用者的舒適度並兼具產品美觀。The object of the present invention is to provide a power generation device which has a significant response to external small forces and high power generation efficiency. Another object of the present invention is to provide a power generating device, which can improve the comfort of the user and has the beautiful appearance of the product.
為了達成上述目的,本發明之發電裝置包含有一第一摩擦單元、以及一第二摩擦單元,該第一摩擦單元包含有一第一電極層、以及一第一導線與該第一電極層電性連接,該第二摩擦單元包含有一第二電極層貼近於該第一電極層、一第二絕緣層設於該第二電極層靠近該第一摩擦單元之一側、以及一第二導線與該第二電極層電性連接,其中,該第一電極層與該第二電極層中至少其一為包含有導電纖維的導電紡織物。藉此,該發電裝置對外界微小力量反應較為顯著且發電效率高,同時提升使用者的舒適度並可兼具產品美觀。In order to achieve the above object, the power generation device of the present invention includes a first friction unit and a second friction unit. The first friction unit includes a first electrode layer and a first wire electrically connected to the first electrode layer. The second rubbing unit includes a second electrode layer close to the first electrode layer, a second insulating layer disposed on a side of the second electrode layer close to the first rubbing unit, and a second wire and the first electrode layer. The two electrode layers are electrically connected, wherein at least one of the first electrode layer and the second electrode layer is a conductive textile containing conductive fibers. In this way, the power generating device responds significantly to small external forces and has a high power generation efficiency, while improving the comfort of the user and having the beautiful appearance of the product.
以下藉由二較佳實施例配合圖式,詳細說明本發明的技術內容及特徵,如第1圖所示,係本發明第一較佳實施例所提供之發電裝置1,包含有一第一摩擦單元10、一第二摩擦單元20、一間隔層30、一第一防水層40、一第二防水層50、以及一蓄電裝置60分別與該第一、二摩擦單元10,20電性連接。
Hereinafter, the technical content and features of the present invention will be described in detail with two preferred embodiments in conjunction with the drawings. As shown in Figure 1, the
該第一摩擦單元10包含有一第一電極層12、以及一第一導線16與該第一電極層12電性連接,該第一電極層12為包含有導電纖維的導電紡織物,該導電紡織物係由導電纖維及非導電纖維編織而成,該第一導線16與該蓄電裝置60電性連接。於本實施例中,該導電紡織物係由不鏽鋼纖維和聚酯纖維編織而成,於其他實施例中,該導電纖維可採用其他金屬、奈米碳管或者導電高分子等材料製成,該非導電纖維可採用尼龍、壓克力等材料製成;或者該導電紡織物可全由導電纖維編織而成。
The
該第二摩擦單元20包含有一第二電極層22貼近於該第一電極層12、一第二絕緣層24設於該第二電極層22靠近該第一摩擦單元10之一側、以及一第二導線26與該第二電極層22電性連接,該第二電極層22與該第一電極層12係與該第一電極層12為相同材料所製成,亦即該第一、二電極層12,22皆為導電紡織物,該第二導線26與該蓄電裝置60電性連接。需要說明的是,該第二絕緣層24可採用矽膠、橡膠、矽橡膠、聚二甲基矽氧烷、環氧樹脂或Eco-flex等彈性材料製成且為絕緣體,該第二絕緣層24之一部分可滲入該第二電極層22的網孔內,使該第二電極層22與該第二絕緣層24之連接更為緊密且二者不易脫離。
The
需要說明的是,該發電裝置1主要係藉由該第一摩擦單元10與該第二摩擦單元20之間的表面電荷轉移與靜電感應來達到發電效果,若增加該第一摩擦單元10與該第二摩擦單元20之間的接觸面積即可增加轉移的電荷量,因此,該第二絕緣層24靠近該第一摩擦單元10之一側可更具有多數突起25,該等突起25係互相間隔地設置,事實上,該等突起25係由該第二絕緣層24朝該第一摩擦
單元10延伸而出,即該等突起25與該第二絕緣層24同為彈性材料,該第二絕緣層24及該等突起25受到該第一摩擦單元10壓抵時可發生變形,由於該等突起25的設置可增加該第二絕緣層24靠近該第一摩擦單元10之一側表面積,故可增加該第一摩擦單元10與該第二摩擦單元20之間的接觸面積,以提升發電效果。
It should be noted that the
需要說明的是,於本實施例中,該等突起25係呈矩形柱狀及三角錐狀,於其他實施例中,該等突起25之形狀、數量可有其他變化,例如:該等突起25皆係呈三角錐狀;或者該等突起25係為該第二絕緣層之粗糙表面的相對高點,亦即只要該第二絕緣層24靠近該第一摩擦單元10之一側表面不平整即可。
It should be noted that in this embodiment, the
於初始時,該第一摩擦單元10與該第二摩擦單元20之間有預定距離,該第一電極層12中的非導電纖維與該第二絕緣層24皆不帶電。接著,在外力作用下,例如人體活動、風力或雨水之作用,使該第一摩擦單元10與該第二摩擦單元20靠近甚至接觸時,該第一電極層12中的非導電纖維與該第二絕緣層24之間產生電荷轉移,使該第一電極層12中的非導電纖維帶正電,該第二絕緣層24帶負電,當該第一摩擦單元10與該第二摩擦單元20遠離或分開時,該第一電極層12中的導電纖維與該第二電極層22分別對於該第一電極層12中的非導電纖維與該第二絕緣層24產生感應起電,此時,該第二電極層22為平衡該第二絕緣層24的負電荷而將自身的負電荷經該第二導線26導出,而該第一電極層12的導電纖維為平衡非導電纖維的正電荷,接收由該第一導線16導入的負電荷,進而使該第一摩擦單元10與該第二摩擦單元20之各自達到電中性。當該第一摩擦單元10與該第二摩擦單元20再度靠近甚至接觸時,負電荷會由該第一電極層12中的導電纖維向該第二電極層22移動。藉由該第一摩擦單元10與該第二摩擦單元20之間距離改變引發的電荷移動,即形成了電壓/電流,與該第一、二導線16, 26電性連接的該蓄電裝置60即可儲存電力。Initially, there is a predetermined distance between the
需要說明的是,當該第一摩擦單元10與該第二摩擦單元20接觸時,該第一摩擦單元10與該第二摩擦單元20容易因靜電而吸附,而若外力不足以將該第一、二摩擦單元10, 20分離時,便無法有效地發電。It should be noted that when the
為避免上述狀況,將該間隔層30設於該第一摩擦單元10與該第二摩擦單元20之間,可避免該第一、二摩擦單元10, 20吸附在一起,然而,若單純在該第一、二摩擦單元10, 20之間設置該間隔層30,將使得該第一、二摩擦單元10, 20無法直接接觸,如此一來,其發電效果相較於可直接接觸的發電效果差。因此,該間隔層30可以更進一步地具有多數穿孔32,於本實施例中,該間隔層30係一網狀布料且採用絕緣材料製成,如尼龍網布,藉此,該第一、二摩擦單元10, 20仍可透過該等穿孔32接觸,不僅是該第二摩擦單元20之突起25會與該第一摩擦單元10接觸,而當外力作用足夠大的時候,該第二絕緣層24未設置該突起25之表面亦會透過該等穿孔32與該第一摩擦單元10產生接觸,該發電裝置1可藉由電荷轉移達到發電效果,又不會因該第一、二摩擦單元10, 20貼合無法分離而失效。於其他實施例中,該間隔層30可採用導電材料製成,且該間隔層30只要具有至少一穿孔32即可。In order to avoid the above situation, the
該第一防水層40設於該第一電極層12遠離該第二摩擦單元20之一側,該第二防水層50設於該第二電極層22遠離該第一摩擦單元10之一側。於本實施例中,該第一、二防水層40, 50係採用EVA(乙烯-醋酸乙烯共聚物)薄膜製成,於其他實施例中,該第一、二防水層40, 50只要採用可防水的材質並設於該發電裝置1的相對外側,可使該發電裝置1具有防水功能即可。The first
需要說明的是,該第一摩擦單元10、該第二摩擦單元20、該間隔層30、該第一防水層40、以及一第二防水層50之外周緣係以縫合、膠黏等固定手段結合在一起。It should be noted that the outer peripheries of the
藉由上述結構,該發電裝置1採用二導電紡織物作為感應電極,由於導電紡織物具有一定的柔性和韌性,該發電裝置1對於外界微小力量的反應更加明顯,進而可提升發電效率,此外,該發電裝置1更可直接製成穿戴裝置或是智慧型紡織品,或者以外加的方式設置於紡織品上,例如服飾、鞋子等。同時,該發電裝置1可有效防止該發電裝置1因汗水、雨水或水氣而失效,如此即可同時收集人體活動的機械能,亦可藉由風力、水波或是雨水等環境能量以轉換成電能,可有效利用外界能量,並可應用於防水用品,例如雨傘、雨衣等,大幅度拓廣了該發電裝置1的應用範圍,並具有市場競爭力。With the above structure, the
根據實驗結果顯示,該發電裝置1可以利用雨水動能產生電能,如圖3A和圖3B所示。在雨量較小為31.8ml/s時,單位面積約有數十伏的電壓輸出;在雨量增加為111.85ml/s時,輸出之電壓密度可達到約850伏/平方米,電流密度可達到約160微安/平方米。測試結果顯示雨量越大,輸出電訊號越強。According to the experimental results, the
根據另一項實驗結果顯示,該發電裝置1還可以利用風吹的力量產生電能,如圖4A和圖4B所示,風速為4.5m/s,就可以有電壓輸出,當風速增加到15.4m/s時,輸出之電壓密度可達到約1000伏/平方米,電流密度可達到約150微安/平方米。當風吹在發電裝置1上,會使發電裝置1的內部產生震盪,因此可以不斷產生該第一、二摩擦單元10, 20接觸與分離的效果。可以將該發電裝置1做成旗幟等,收集自然界無處不在的風能轉變為電能進行利用。According to another experimental result, the
需要說明的是,於其他實施例中,該第一、二導線16,26可分別作為二訊號線,該第一、二電極層12,22對靜電響應之電荷可經該第一、二導線16,26移動而產生電訊號,如此一來,該發電裝置1亦可作為自驅動的感測裝置使用。
It should be noted that, in other embodiments, the first and
基於本發明之設計精神,該發電裝置1之結構可有其他變化,如第2圖所示,係本發明第二較佳實施例所提供之發電裝置1a,該發電裝置1a的結構與第一實施例的發電裝置1大致相同,其差異在於該第一摩擦單元10a更包含有一第一絕緣層14a設於該第一電極層12a靠近該第二摩擦單元20a之一側,該第一絕緣層14a可採用矽膠、橡膠、矽橡膠、聚二甲基矽氧烷、環氧樹脂或Eco-flex等具有彈性且不導電之材料製成,且該第一絕緣層14a可滲入該第一電極層12a之網孔中,如此一來,該第一電極層12a與該第一絕緣層14a可緊密連接且不易脫離,此外,該第二絕緣層24a不具有突起,且該間隔層30a不具有穿孔,當該第一、二摩擦單元10a,20a距離改變時,該第一、二電極層12a,22a亦可產生靜電響應。如此一來,當該發電裝置1a應用於穿戴裝置或智慧型紡織品如衣物時,若該第二電極層22a設於貼近使用者一側,該第一防水層40a設於遠離使用者之一側時,使用者接觸到該第二電極層22a並不會因該發電裝置1a與紡織品的質感差異而有不適感,且藉由該第一防水層40a的設置,使應用之產品具有防水功能,若該第二電極層22a設於遠離使用者之一側,該第一防水層40a設於貼近使用者之一側時,則由於該第二電極層22a以紡織品的型態設置於衣物外顯之處,兩者外觀一致而不影響外觀之整體性。
Based on the design spirit of the present invention, the structure of the
需要說明的是,該第一電極層12a可與該第一絕緣層14a共同編織而成,該第一電極層12a係為導電纖維,該第一絕緣層14a係為非導電纖維,亦即,
本發明第一較佳實施例所提供之發電裝置1中該第一電極層12中的非導電纖維可視為絕緣層。
It should be noted that the
上述僅為本發明實施例的說明,舉凡未超脫本發明精神所做的簡易結構潤飾或變化,例如:該間隔層30可省略不設,而該第二絕緣層24之突起25具有一預定高度,由於該突起25亦為彈性材料製成,當該發電裝置1接收外力使該第一摩擦單元10接觸或下壓該第二絕緣層24之突起25時,該突起25可提供該第一摩擦單元10一回復彈力,即可確實將該第一、二摩擦單元10,20分隔開來;或者該第一、二防水層40,50皆可省略不設,此時,該發電裝置1可提升使用者的舒適度並可兼具產品美觀;又或者該第一電極層12或該第二電極層22其中一者為導電材料製成的薄膜,如金屬薄膜,亦即只要該第一電極層12或該第二電極層22至少一為包含有導電纖維的導電紡織物,仍應屬於本發明申請專利範圍所涵蓋。The foregoing is only an illustration of the embodiments of the present invention, and all simple structural modifications or changes made without going beyond the spirit of the present invention, for example: the
1、1a:發電裝置
10、10a:第一摩擦單元
12、12a:第一電極層
14a:第一絕緣層
16:第一導線
20、20a:第二摩擦單元
22、22a:第二電極層
24、24a:第二絕緣層
25:突起
26:第二導線
30、30a:間隔層
32:穿孔
40、40a:第一防水層
50:第二防水層
60:蓄電裝置
1.1a: Power generation device
10.10a: The
第1圖為本發明第一較佳實施例之發電裝置之示意圖; 第2圖為本發明第二較佳實施例之發電裝置的示意圖; 第3A圖為本發明之發電裝置在不同雨量條件下的電壓輸出圖; 第3B圖為本發明之發電裝置在不同雨量條件下的電流輸出圖; 第4A圖為本發明之發電裝置在不同風速條件下的電壓輸出圖; 第4B圖為本發明之發電裝置在不同風速條件下的電流輸出圖。 Figure 1 is a schematic diagram of a power generating device according to a first preferred embodiment of the present invention; Figure 2 is a schematic diagram of a power generating device according to a second preferred embodiment of the present invention; Figure 3A is the voltage output diagram of the power generating device of the present invention under different rainfall conditions; Figure 3B is a diagram of the current output of the power generating device of the present invention under different rainfall conditions; Figure 4A is the voltage output diagram of the power generating device of the present invention under different wind speed conditions; Figure 4B is the current output diagram of the power generating device of the present invention under different wind speed conditions.
1:發電裝置 1: Power generation device
10:第一摩擦單元 10: The first friction unit
12:第一電極層 12: The first electrode layer
16:第一導線 16: first wire
20:第二摩擦單元 20: The second friction unit
22:第二電極層 22: second electrode layer
24:第二絕緣層 24: second insulating layer
25:突起 25: protrusion
26:第二導線 26: second wire
30:間隔層 30: Interval layer
32:穿孔 32: Piercing
40:第一防水層 40: The first waterproof layer
50:第二防水層 50: second waterproof layer
60:蓄電裝置 60: Power storage device
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108114707A TWI700884B (en) | 2019-04-26 | 2019-04-26 | Power generation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108114707A TWI700884B (en) | 2019-04-26 | 2019-04-26 | Power generation device |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI700884B true TWI700884B (en) | 2020-08-01 |
TW202040926A TW202040926A (en) | 2020-11-01 |
Family
ID=73003435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108114707A TWI700884B (en) | 2019-04-26 | 2019-04-26 | Power generation device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI700884B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI847298B (en) * | 2022-10-06 | 2024-07-01 | 國立清華大學 | Wear resistant triboelectric nanogenerating device, wear resistant scaly triboelectric membrane fabricating method and bicycle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201726992A (en) * | 2016-01-19 | 2017-08-01 | Nat Taipei Univ Of Nursing And Health Sciences | Wearable fabric device integrating with functions of power generation and power storage characterized by a large bending-folding angle, high flexibility, and cleaning endurance |
CN107430937A (en) * | 2015-01-22 | 2017-12-01 | 株式会社理光 | element and generator |
CN208078921U (en) * | 2018-03-22 | 2018-11-09 | 大连理工大学 | A kind of flexible wearable friction nanometer power generator of comprehensive multi-mode collecting mechanical energy |
-
2019
- 2019-04-26 TW TW108114707A patent/TWI700884B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107430937A (en) * | 2015-01-22 | 2017-12-01 | 株式会社理光 | element and generator |
TW201726992A (en) * | 2016-01-19 | 2017-08-01 | Nat Taipei Univ Of Nursing And Health Sciences | Wearable fabric device integrating with functions of power generation and power storage characterized by a large bending-folding angle, high flexibility, and cleaning endurance |
CN208078921U (en) * | 2018-03-22 | 2018-11-09 | 大连理工大学 | A kind of flexible wearable friction nanometer power generator of comprehensive multi-mode collecting mechanical energy |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI847298B (en) * | 2022-10-06 | 2024-07-01 | 國立清華大學 | Wear resistant triboelectric nanogenerating device, wear resistant scaly triboelectric membrane fabricating method and bicycle |
Also Published As
Publication number | Publication date |
---|---|
TW202040926A (en) | 2020-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Direct current fabric triboelectric nanogenerator for biomotion energy harvesting | |
Maharjan et al. | A human skin-inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation | |
Zhu et al. | Making use of nanoenergy from human–Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems | |
Chen et al. | An ultrathin stretchable triboelectric nanogenerator with coplanar electrode for energy harvesting and gesture sensing | |
Guo et al. | All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring | |
Fu et al. | Fibrous self-powered sensor with high stretchability for physiological information monitoring | |
Shi et al. | Self-powered wireless smart patch for healthcare monitoring | |
Shi et al. | Artificial intelligence of things (AIoT) enabled floor monitoring system for smart home applications | |
Dudem et al. | Enhanced performance of microarchitectured PTFE-based triboelectric nanogenerator via simple thermal imprinting lithography for self-powered electronics | |
Shi et al. | More than energy harvesting–Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems | |
Liu et al. | Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids | |
Wu et al. | Ultrasoft and cuttable paper-based triboelectric nanogenerators for mechanical energy harvesting | |
Chen et al. | Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring | |
Li et al. | Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing | |
Yang et al. | Study on fabric-based triboelectric nanogenerator using graphene oxide/porous PDMS as a compound friction layer | |
US10868478B2 (en) | Wearable energy generating apparatus | |
So et al. | Flexible corrugated triboelectric nanogenerators for efficient biomechanical energy harvesting and human motion monitoring | |
US10879817B2 (en) | Paper-based triboelectric nanogenerator and method of manufacturing the same | |
CN106301062B (en) | Deformable friction nanometer power generator and electricity-generating method, motion sensor and clothes | |
Park et al. | Ingenious use of natural triboelectrification on the human body for versatile applications in walking energy harvesting and body action monitoring | |
KR101829541B1 (en) | Pressure sensor using Triboelectricity and Manufacturing method thereof | |
CN104426412A (en) | Electric-signal output device and electric-signal output method based on skin | |
Lv et al. | Interconnected array design for enhancing the performance of an enclosed flexible triboelectric nanogenerator | |
JP2018532892A (en) | Woven fabric | |
KR20150027415A (en) | Textile-based energy generator |