TWI699733B - 結構光深度感測器及感測方法 - Google Patents
結構光深度感測器及感測方法 Download PDFInfo
- Publication number
- TWI699733B TWI699733B TW107141979A TW107141979A TWI699733B TW I699733 B TWI699733 B TW I699733B TW 107141979 A TW107141979 A TW 107141979A TW 107141979 A TW107141979 A TW 107141979A TW I699733 B TWI699733 B TW I699733B
- Authority
- TW
- Taiwan
- Prior art keywords
- light source
- block
- coded
- point
- projector
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/2513—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/521—Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/22—Measuring arrangements characterised by the use of optical techniques for measuring depth
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Optics & Photonics (AREA)
- Theoretical Computer Science (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
本發明提出一種結構光深度感測器,用於感測對象的深度。結構光深
度感測器包括投射器、相機、處理器及存儲器;投射器包括多點光源,多點光源包括複數等間距排列的光源點,相機設於所述投射器的一側,處理器分別與投射器、相機、存儲器電性連接,存儲器存儲有相機的參數資訊、以及投射器與相機的距離資訊。本發明提出一種結構光深度感測器的感測方法,通過處理器控制多點光源向對象連續投射多次不同編碼的結構光形成複數編碼圖像,控制相機拍攝每次由對象反射的結構光形成複數拍攝圖像,並根據存儲器內的參數資訊、距離資訊計算對象的深度。本發明使用等間距排列的光源點的多點光源,縮小了檢測區塊的面積,從而提高了感測精度。
Description
本發明涉及一種深度感測器,特別係一種編碼結構光深度感測器及感測方法。
結構光深度感測器主要分為時間域與空間域兩種辨識技術,可廣泛應用於3D人臉辨識、手勢辨識、3D掃描器與精密加工等。人臉辨識與手勢辨識因辨識速度的需求與感測距離限制等因素,大多使用空間域結構光的深度感測技術。
結構光深度感測器利用結構光投射器主動對投射物或投射空間進行特徵標定,再由相機拍攝,通過比對投射器的圖像及相機拍攝的圖像得到投射空間中每一點的視差,從而計算其深度。比對時,由於需先於投射器的圖像中確定一個區塊,然後於相機拍攝的圖像中匹配到一樣的區塊,因此區塊大小直接影響到計算精度,區塊尺寸越大,精度越低。先前技術中使用的結構光投射器必須為光源點不規則排列的光源,否則無法匹配區塊,但這種光源不易獲得。
本發明一方面提供一種結構光深度感測器,用於感測對象的深度,所述結構光深度感測器包括:投射器,包括多點光源,所述多點光源包括複數等間距排列的光源點,所述多點光源用於向所述對象投射不同編碼的結構光;相機,設於所述投射器的一側,用於拍攝由所述對象反射的結構光;存儲器,用於存儲所述相機的參數資訊、以及所述投射器與所述相機的距離資訊;及處理器,分別與所述投射器、所述相機及所述存儲器電性連接;所述處理器控制所述投射器向所述對象多次投射不同編碼的結構光,控制所述相機拍攝多次由所述對象反射的結構光,並根據所述存儲器內的所述參數資訊與所述距離資訊,所述投射器投射的不同編碼的結構光的資訊及所述相機拍攝的結構光的資訊計算所述對象的深度。
本發明另一方面提供一種感測方法,包括:生成不同編碼的結構光;向對象連續投射不同編碼的結構光,形成複數編碼圖像;獲取經所述對象反射的不同編碼的結構光,形成複數拍攝圖像;按投射次序分別將複數所述編碼圖像生成編碼圖像組及對應的複數拍攝圖像生成拍攝圖像組;設定檢測區塊;根據所述檢測區塊的尺寸分別於複數所述編碼圖像內提取同一位置的編碼區塊;按所述編碼圖像組的次序將複數所述編碼區塊生成編碼區塊組;根據所述檢測區塊的尺寸分別於複數所述拍攝圖像內提取同一位置的拍攝區塊;按所述拍攝圖像組的次序將複數所述拍攝區塊生成拍攝區塊組;匹配所述編碼區塊組與所述拍攝區塊組;計算匹配完成的所述編碼區塊組與所述拍攝區塊組的視差;根據所述視差計算所述對象的深度。
相較於先前技術,本發明通過所述處理器控制所述多點光源向對象連續投射多次不同編碼的結構光形成複數編碼圖像,控制所述相機拍攝每次由所述對象反射的結構光形成複數所述拍攝圖像,並根據所述存儲器內的所述參數資訊、所述距離資訊計算所述對象的深度。本發明使用等間
距排列的所述光源點的所述多點光源,縮小了所述檢測區塊的面積,從而提高了感測精度。
100:結構光深度感測器
10:投射器
11:多點光源
111:光源點
111a:第一光源點
111b:第二光源點
111c:第三光源點
111d:第四光源點
111e:第五光源點
111f:第六光源點
111g:第七光源點
12:衍射光學元件
13:透鏡
20:相機
30:處理器
40:存儲器
60:編碼圖像
61:編碼區塊
70:拍攝圖像
71:拍攝區塊
90:檢測區塊
400:對象
圖1為本發明所提供的結構光深度感測器的結構框圖。
圖2A為圖1所示的結構光深度感測器的投射器的結構示意圖。
圖2B為圖2A所示的投射器的光源的另一角度的結構示意圖。
圖3為圖1所示的結構光深度感測器的原理圖。
圖4為本發明所提供的一種感測方法的流程圖。
圖5A為圖4所示的感測方法的第一實施例的多點光源的結構示意圖。
圖5B為圖4所示的感測方法的第一實施例的編碼圖像組的示意圖。
圖5C為圖4所示的感測方法的第一實施例的拍攝圖像組的示意圖。
圖6為圖4所示的感測方法的第一實施例的流程圖。
圖7A為圖4所示的感測方法的第二實施例的編碼圖像的示意圖。
圖7B為圖4所示的感測方法的第二實施例的拍攝圖像的示意圖。
圖8為圖4所示的感測方法的第二實施例的流程圖。
需要說明的係,當元件被稱為“固定於”另一個元件,它可直接設於另一個元件上或者也可備具居中的元件。當一個元件被認為“連接於”另一個元件,它可為直接連接到另一個元件或者可能備具居中元件。當一個元件被認為係“設置於”另一個元件,它可為直接設置於另一個元
件上或者可能備具居中元件。本文所使用的術語“垂直的”、“水平的”、“左”、“右”以及類似的表述只係為了說明的目的。
請參閱圖1,結構光深度感測器100包括投射器10、相機20、處理器30及存儲器40。處理器30分別與投射器10、相機20、存儲器40電性連接,存儲器40存儲有相機20的參數資訊、投射器10與相機20的距離資訊。
請參閱圖2A與圖2B,投射器10包括多點光源11、透鏡13與衍射光學元件12。多點光源11包括複數等間距排列的光源點111,用於連續向對象投射結構光。衍射光學元件12與多點光源11相對設置,用於將多點光源11發射的雷射分成多束。透鏡13設於多點光源11與衍射光學元件12之間。於本實施例中,多點光源11為垂直腔面發射雷射器,但不限於此。
請參閱圖3,相機20設於投射器10的一側,相機20與投射器10的距離為B。相機20的焦距為F。處理器30能夠控制投射器10向對象400多次投射不同編碼的結構光,控制相機20拍攝多次由對象400反射的結構光,並根據存儲器40內的參數資訊、距離資訊、投射器投射的不同編碼的結構光資訊及相機拍攝的結構光資訊計算對象400的深度。結構光深度感測器100感測對象400的深度的原理為:處理器30控制多點光源11經過透鏡13與衍射光學元件12投射編碼結構光,以獲取一編碼圖像60。結構光被對象400反射而由相機20拍攝為拍攝圖像70。於編碼圖像60中設定編碼區塊61,經過處理器30比對拍攝圖像70,匹配到拍攝圖像70中的拍攝區塊71。編碼區塊61距投射器10的延長線的距離為xl,拍攝區塊71距相機20的延長線的距離為xr,xl與xr的差為編碼區塊61與拍攝區塊71的視差δ。根據相似三角形原理,處理器30計算對象的深度D的公式為D=(B×F)/δ。
請參閱圖4,本發明提供一種感測方法,包括如下步驟:S401:設定檢測區塊90;
S402:生成不同編碼的結構光;S403:向對象400連續投射不同編碼的結構光,形成複數編碼圖像60;S404:獲取經對象400反射的不同編碼的結構光,形成複數拍攝圖像70;S405:按投射次序分別將複數編碼圖像60生成編碼圖像組及對應的複數拍攝圖像70生成拍攝圖像組;S406:根據檢測區塊90的尺寸分別於複數編碼圖像60內提取同一位置的編碼區塊61;S407:按編碼圖像組的次序將複數編碼區塊61生成編碼區塊組;S408:根據檢測區塊90的尺寸分別於複數拍攝圖像70內提取同一位置的拍攝區塊71;S409:按拍攝圖像組的次序將複數拍攝區塊71生成拍攝區塊組;S410:匹配編碼區塊組與拍攝區塊組;S411:計算匹配完成的編碼區塊組與拍攝區塊組的視差;S412:根據視差計算對象400的深度。
於步驟S410中匹配編碼區塊組與拍攝區塊組時,若編碼區塊組與拍攝區塊組的圖像按次序均一致,則匹配成功。
請參閱圖5A、圖5B、圖5C與圖6,為本發明提供一種感測方法的第一實施例,將檢測區塊90的邊長設為相鄰光源點111的間距,則根據檢測區塊90分別於編碼圖像60與拍攝圖像70內提取編碼區塊61與拍攝區塊71時,編碼區塊61與拍攝區塊71內分別有且只包含一個光源點111的圖像。光源點111的點亮狀態包括亮與不亮兩種,圖5B與圖5C中空白為點亮,填充為不亮。於本實施例中,光源點111的數量為7個,分別為第一光源點111a、第二光源點111b、第三光源點111c、第四光源點111d、第五光源點111e、
第六光源點111f與第七光源點111g。處理器30控制多點光源11點亮三次,並且控制7個光源點111的連續三次的點亮狀態均各不相同,包括如下步驟:S501:處理器30控制投射器10第一次向對象400投射結構光,分別為第一光源點111a、第二光源點111b、第三光源點111c與第四光源點111d點亮,第五光源點111e、第六光源點111f與第七光源點111g不亮;S502:處理器30控制相機20第一次拍攝;S503:處理器30控制投射器10第二次向對象400投射結構光,分別為第一光源點111a、第二光源點111b、第五光源點111e與第六光源點111f點亮,第三光源點111c、第四光源點111d與第七光源點111g不亮;S504:處理器30控制相機20第二次拍攝;S505:處理器30控制投射器10第三次向對象400投射結構光,分別為第一光源點111a、第三光源點111c、第五光源點111e與第七光源點111g點亮,第二光源點111b、第四光源點111d與第六光源點111f不亮;S506:處理器30控制相機20第三次拍攝;S507:處理器30匹配編碼圖像組與拍攝圖像組;S508:處理器30計算視差δ,並根據視差δ計算對象400的深度D。
於本實施例中,光源點111的數量為7個,但不限於此,光源點111的數量可為m(m不小於2)個,且最少投射次數n與m的關係為2n-1 m2n,且多點光源11的n次點亮方式分別為每間隔20個光源點111點亮20個、每間隔21個光源點111點亮21個到每間隔2n-1個光源點111點亮2n-1個。
請參閱圖7A、圖7B與圖8,為本發明提供感測方法的第二實施例,多點光源11設有分成兩行的64個光源點111,每行包括32個等間距排列的光源點111。控制據檢測區塊90分別於編碼圖像60與拍攝圖像70內提取編碼區塊61與拍攝區塊71時,編碼區塊61與拍攝區塊71內分別包含四個光源點111
的圖像,則編碼區塊61與拍攝區塊71內所包含的光源點111的點亮狀態有24=16種。處理器30控制多點光源11點亮兩次,包括如下步驟:S701:處理器30控制投射器10第一次向對象400投射結構光,且64個光源點111的點亮狀態分別為不同的16種;S702:處理器30控制相機20第一次拍攝;S703:處理器30控制投射器10第二次向對象400投射結構光,64個光源點111的點亮狀態則為其中一行的光源點111每間隔一個點亮一個;S704:處理器30控制相機20第二次拍攝;S705:處理器30匹配編碼圖像組與拍攝圖像組;S706:處理器30計算視差δ,並根據視差δ計算對象400的深度D。
於本實施例中,多點光源11設有分成兩行的64個光源點111,每行包括32個等間距排列的光源點111,但不限於此,於其他實施例中,多點光源可設有少於64個光源點111,只要能夠控制步驟S701中複數編碼區塊61內所包含的光源點111的點亮狀態各不相同即可。
設置步驟S703的作用為避免步驟S701中連續的六個光源點111的點亮狀態中,前四個光源點111的點亮狀態可能會出現與後四個光源點111的點亮狀態相同的情況。於本實施例中,步驟S703令64個光源點111的點亮狀態則為其中一行的光源點111每間隔一個點亮一個,但不限於此,於其他實施例中,光源點111的點亮狀態可有其他方式,只要能夠於任意連續的六個光源點111中前四個光源點111與後四個光源點111不同即可。
相較於先前技術,本發明通過處理器30控制多點光源11向對象連續投射多次不同編碼的結構光形成複數編碼圖像,並控制相機20拍攝每次由對象反射的結構光形成複數拍攝圖像,並根據存儲器40內的參數資訊、
距離資訊計算對象400的深度,使用等間距排列的光源點111的多點光源11,縮小了檢測區塊90的面積,從而提高了感測精度。
應當理解,雖然本說明書按照實施方式加以描述,但並非每個實施方式僅包含一個獨立之技術方案,說明書之該等敘述方式僅係為清楚起見,本領域技術人員應當將說明書作為一個整體,各實施方式中之技術方案也可經適當組合,形成本領域技術人員可理解之其他實施方式。
上文所列出之一系列之詳細說明僅係針對本發明之可行性實施方式之具體說明,它們並非用以限制本發明之保護範圍,凡未脫離本發明技藝精神所作之等效實施方式或變更均應包含於本發明之保護範圍之內。
100:結構光深度感測器
10:投射器
20:相機
30:處理器
40:存儲器
Claims (8)
- 一種結構光深度感測器,用於感測對象的深度D,其改良在於:所述結構光深度感測器包括:投射器,包括多點光源,所述多點光源包括複數等間距排列的光源點,所述多點光源用於向所述對象投射不同編碼的結構光;相機,設於所述投射器的一側,用於拍攝由所述對象反射的結構光;存儲器,用於存儲所述相機的焦距F及所述投射器與所述相機的距離B;及處理器,分別與所述投射器、所述相機及所述存儲器電性連接;所述處理器控制所述投射器向所述對象多次投射不同編碼的結構光,形成複數編碼圖像,控制所述相機拍攝多次由所述對象反射的結構光,形成複數拍攝圖像,於所述複數編碼圖像中設定編碼區塊,於所述複數拍攝圖像中匹配到對應所述編碼區塊之拍攝區塊,計算所述編碼區塊與所述拍攝區塊的視差δ,並通過公式D=(B×F)/δ計算所述對象的深度D;其中所述編碼區塊的邊長設為相鄰所述光源點的間距,所述投射器的最少投射次數n與所述光源點的數量m的關係為2n-1 m2n,且所述多點光源的n次點亮方式分別為每間隔20個所述光源點點亮20個、每間隔21個所述光源點點亮21個到每間隔2n-1個所述光源點點亮2n-1個,n為大於等於2的整數。
- 如申請專利範圍第1項所述之結構光深度感測器,其中所述投射器還包括衍射光學元件,所述衍射光學元件與所述多點光源相對設置,用於將所述多點光源發射的雷射分成多束。
- 如申請專利範圍第2項所述之結構光深度感測器,其中所述投射器還包括透鏡,所述透鏡設於所述多點光源與所述衍射光學元件之間。
- 如申請專利範圍第1項所述之結構光深度感測器,其中所述多點光源為垂直腔面發射雷射器。
- 一種結構光深度感測器的感測方法,所述結構光深度感測器包括相機、包括複數等間距排列光源點的多點光源、處理器與存儲器,所述感測方法包括:生成不同編碼的結構光;向對象連續投射不同編碼的結構光,形成複數編碼圖像;獲取經所述對象反射的不同編碼的結構光,形成複數拍攝圖像;按投射次序分別將複數所述編碼圖像生成編碼圖像組及對應的複數拍攝圖像生成拍攝圖像組;設定檢測區塊;根據所述檢測區塊的尺寸分別於複數所述編碼圖像內提取同一位置的編碼區塊;按所述編碼圖像組的次序將複數所述編碼區塊生成編碼區塊組;根據所述檢測區塊的尺寸分別於複數所述拍攝圖像內提取同一位置的拍攝區塊;按所述拍攝圖像組的次序將複數所述拍攝區塊生成拍攝區塊組;匹配所述編碼區塊組與所述拍攝區塊組;計算匹配完成的所述編碼區塊組與所述拍攝區塊組的視差;根據所述視差計算所述對象的深度,其中所述檢測區塊的邊長設為相鄰所述光源點的間距,所述投射器的最少投射次數n與所述光源點的數量m的關係為2n-1 m2n,且所述多點光源的n次點亮方式分別為每間隔20個所述光源點點亮20個、每間隔21個所述光源點點亮21個到每間隔2n-1個所述光源點點亮2n-1個,n為大於等於2的整數。
- 如申請專利範圍第5項所述之感測方法,匹配所述編碼區塊組與所述拍攝區塊組時,若所述編碼區塊組與所述拍攝區塊組的圖像按次序均一致,則匹配成功。
- 如申請專利範圍第5項所述之感測方法,其中所述多點光源設有分成兩行的少於等於64個所述光源點,每行包括複數等間距排列的所述光源點,控制據所述檢測區塊分別於所述編碼圖像與所述拍攝圖像內提取所述編碼區塊與所述拍攝區塊時,所述編碼區塊與所述拍攝區塊內分別包含四個所述光源點的圖像,則一個所述編碼區塊內所包含的所述光源點的點亮狀態有16種。
- 如申請專利範圍第7項所述之感測方法,其中所述處理器控制所述多點光源點亮兩次,一次複數所述編碼區塊內所包含的所述光源點的圖像的點亮狀態各不相同,另一次所述光源點的點亮狀態為任意連續的六個所述光源點中前四個所述光源點與後四個所述光源點不同。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811331270.5A CN109470166B (zh) | 2018-11-09 | 2018-11-09 | 结构光深度感测器及感测方法 |
CN201811331270.5 | 2018-11-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202018663A TW202018663A (zh) | 2020-05-16 |
TWI699733B true TWI699733B (zh) | 2020-07-21 |
Family
ID=65671872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107141979A TWI699733B (zh) | 2018-11-09 | 2018-11-26 | 結構光深度感測器及感測方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10540774B1 (zh) |
CN (1) | CN109470166B (zh) |
TW (1) | TWI699733B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110174075B (zh) * | 2019-04-08 | 2020-11-03 | 深圳奥比中光科技有限公司 | 一种单变焦结构光深度相机及变焦方法 |
JP7451110B2 (ja) * | 2019-08-27 | 2024-03-18 | ソニーグループ株式会社 | 測距システム及び電子機器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040007664A1 (en) * | 2002-07-08 | 2004-01-15 | Microe Systems, Inc. | Multi-track optical encoder employing beam divider |
US20110288684A1 (en) * | 2010-05-20 | 2011-11-24 | Irobot Corporation | Mobile Robot System |
TW201215873A (en) * | 2009-05-01 | 2012-04-16 | Ron Knox | Particle detection |
CN103245641A (zh) * | 2012-02-10 | 2013-08-14 | 清华大学 | 多通道平面波导倏逝波生物传感器 |
US20170186166A1 (en) * | 2015-12-26 | 2017-06-29 | Intel Corporation | Stereo depth camera using vcsel with spatially and temporally interleaved patterns |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003046640A1 (fr) * | 2001-11-27 | 2003-06-05 | Matsushita Electric Industrial Co., Ltd. | Visualisateur d'image de type projection a panneau unique |
WO2004001332A1 (en) * | 2002-06-19 | 2003-12-31 | Canesta, Inc. | System and method for determining 3-d coordinates of a surface using a coded array |
EP2084491A2 (en) * | 2006-11-21 | 2009-08-05 | Mantisvision Ltd. | 3d geometric modeling and 3d video content creation |
US7852461B2 (en) * | 2007-11-15 | 2010-12-14 | Microsoft International Holdings B.V. | Dual mode depth imaging |
CN101961698B (zh) * | 2010-08-04 | 2013-02-13 | 中国科学院自动化研究所 | 一种嵌入式喷枪位姿实时测量装置及方法 |
CN102760234B (zh) * | 2011-04-14 | 2014-08-20 | 财团法人工业技术研究院 | 深度图像采集装置、系统及其方法 |
US8896594B2 (en) * | 2012-06-30 | 2014-11-25 | Microsoft Corporation | Depth sensing with depth-adaptive illumination |
US9438888B2 (en) * | 2013-03-15 | 2016-09-06 | Pelican Imaging Corporation | Systems and methods for stereo imaging with camera arrays |
JP2015114307A (ja) * | 2013-12-16 | 2015-06-22 | ソニー株式会社 | 画像処理装置と画像処理方法および撮像装置 |
WO2016003253A1 (en) * | 2014-07-04 | 2016-01-07 | Samsung Electronics Co., Ltd. | Method and apparatus for image capturing and simultaneous depth extraction |
CN104359405B (zh) * | 2014-11-27 | 2017-11-07 | 上海集成电路研发中心有限公司 | 三维扫描装置 |
US9712806B2 (en) * | 2014-12-19 | 2017-07-18 | Datalogic ADC, Inc. | Depth camera system using coded structured light |
US9948920B2 (en) * | 2015-02-27 | 2018-04-17 | Qualcomm Incorporated | Systems and methods for error correction in structured light |
US10068338B2 (en) * | 2015-03-12 | 2018-09-04 | Qualcomm Incorporated | Active sensing spatial resolution improvement through multiple receivers and code reuse |
US9530215B2 (en) * | 2015-03-20 | 2016-12-27 | Qualcomm Incorporated | Systems and methods for enhanced depth map retrieval for moving objects using active sensing technology |
CN105120257B (zh) * | 2015-08-18 | 2017-12-15 | 宁波盈芯信息科技有限公司 | 一种基于结构光编码的垂直深度感知装置 |
US9445081B1 (en) * | 2015-09-25 | 2016-09-13 | Intel Corporation | Method and system of 3D image capture with dynamic cameras |
US10007994B2 (en) * | 2015-12-26 | 2018-06-26 | Intel Corporation | Stereodepth camera using VCSEL projector with controlled projection lens |
US11057608B2 (en) * | 2016-01-04 | 2021-07-06 | Qualcomm Incorporated | Depth map generation in structured light system |
US9916524B2 (en) * | 2016-02-17 | 2018-03-13 | Microsoft Technology Licensing, Llc | Determining depth from structured light using trained classifiers |
TWI567693B (zh) * | 2016-05-17 | 2017-01-21 | 緯創資通股份有限公司 | 產生深度資訊的方法及其系統 |
US10574947B2 (en) * | 2016-07-15 | 2020-02-25 | Qualcomm Incorporated | Object reconstruction in disparity maps using displaced shadow outlines |
US10192311B2 (en) * | 2016-08-05 | 2019-01-29 | Qualcomm Incorporated | Methods and apparatus for codeword boundary detection for generating depth maps |
US10466714B2 (en) * | 2016-09-01 | 2019-11-05 | Ford Global Technologies, Llc | Depth map estimation with stereo images |
US10755428B2 (en) * | 2017-04-17 | 2020-08-25 | The United States Of America, As Represented By The Secretary Of The Navy | Apparatuses and methods for machine vision system including creation of a point cloud model and/or three dimensional model |
US10620316B2 (en) * | 2017-05-05 | 2020-04-14 | Qualcomm Incorporated | Systems and methods for generating a structured light depth map with a non-uniform codeword pattern |
WO2019041116A1 (zh) * | 2017-08-29 | 2019-03-07 | 深圳市汇顶科技股份有限公司 | 光学测距方法以及光学测距装置 |
US20190089939A1 (en) * | 2017-09-18 | 2019-03-21 | Intel Corporation | Depth sensor optimization based on detected distance |
US10928190B2 (en) * | 2017-09-27 | 2021-02-23 | Brown University | Techniques for shape measurement using high frequency patterns and related systems and methods |
US10516876B2 (en) * | 2017-12-19 | 2019-12-24 | Intel Corporation | Dynamic vision sensor and projector for depth imaging |
JP6986683B2 (ja) * | 2018-01-05 | 2021-12-22 | パナソニックIpマネジメント株式会社 | 視差値算出装置、視差値算出方法及びプログラム |
CN108592788B (zh) * | 2018-03-29 | 2020-07-24 | 湖南大学 | 一种面向喷涂生产线的3d智能相机系统与工件在线测量方法 |
CN208013572U (zh) * | 2018-04-08 | 2018-10-26 | 迪鹏光电科技股份有限公司 | 多点光源式图案投射器 |
CN108718406B (zh) * | 2018-05-31 | 2020-04-03 | 西安知微传感技术有限公司 | 一种可变焦3d深度相机及其成像方法 |
-
2018
- 2018-11-09 CN CN201811331270.5A patent/CN109470166B/zh active Active
- 2018-11-26 TW TW107141979A patent/TWI699733B/zh active
-
2019
- 2019-02-26 US US16/285,499 patent/US10540774B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040007664A1 (en) * | 2002-07-08 | 2004-01-15 | Microe Systems, Inc. | Multi-track optical encoder employing beam divider |
TW201215873A (en) * | 2009-05-01 | 2012-04-16 | Ron Knox | Particle detection |
US20110288684A1 (en) * | 2010-05-20 | 2011-11-24 | Irobot Corporation | Mobile Robot System |
CN103245641A (zh) * | 2012-02-10 | 2013-08-14 | 清华大学 | 多通道平面波导倏逝波生物传感器 |
US20170186166A1 (en) * | 2015-12-26 | 2017-06-29 | Intel Corporation | Stereo depth camera using vcsel with spatially and temporally interleaved patterns |
Also Published As
Publication number | Publication date |
---|---|
CN109470166A (zh) | 2019-03-15 |
CN109470166B (zh) | 2020-12-08 |
US10540774B1 (en) | 2020-01-21 |
TW202018663A (zh) | 2020-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11115633B2 (en) | Method and system for projector calibration | |
CN106550228B (zh) | 获取三维场景的深度图的设备 | |
TWI758368B (zh) | 包含可調整焦距成像感測器的距離感測器 | |
US9501833B2 (en) | Method and system for providing three-dimensional and range inter-planar estimation | |
US20190063905A1 (en) | Systems and Methods for Estimating Depth from Projected Texture using Camera Arrays | |
US10041787B2 (en) | Object detection device | |
KR101605224B1 (ko) | 패턴 광을 이용한 깊이 정보 획득 장치 및 방법 | |
CN106875435B (zh) | 获取深度图像的方法及系统 | |
TWI699733B (zh) | 結構光深度感測器及感測方法 | |
KR20200123849A (ko) | 가변 밀도들의 투영 패턴을 사용하는 거리 측정 | |
CN105829829A (zh) | 图像处理装置和图像处理方法 | |
JP7078173B2 (ja) | 画像処理装置及び3次元計測システム | |
WO2023207756A1 (zh) | 图像重建方法和装置及设备 | |
WO2020235067A1 (ja) | 3次元計測システム及び3次元計測方法 | |
CN112816967A (zh) | 图像距离测量方法、装置、测距设备和可读存储介质 | |
CN112424641A (zh) | 使用用于立体图像处理的飞行时间技术 | |
CN108507494A (zh) | 一种能够抑制间接光照的三维形貌测量方法 | |
CN114373007A (zh) | 深度数据测量设备、方法及图像匹配方法 | |
RU2685761C1 (ru) | Фотограмметрический способ измерения расстояний вращением цифрового фотоаппарата | |
JP7184203B2 (ja) | 画像処理装置、3次元計測システム、画像処理方法 | |
CN111373222A (zh) | 光投射系统 | |
KR102029003B1 (ko) | 오브젝트 인식을 위한 센서 장치 | |
KR20190136592A (ko) | 다수 조명을 이용한 3차원 데이터 획득 방법 및 장치 | |
CN116228980A (zh) | 一种图像重建方法、装置及设备 | |
CN109887022A (zh) | 一种双目深度相机的特征点匹配方法 |