TWI698398B - Method and application of synthesizing titanium-containing silicon oxide material using biopolymer - Google Patents
Method and application of synthesizing titanium-containing silicon oxide material using biopolymer Download PDFInfo
- Publication number
- TWI698398B TWI698398B TW108109910A TW108109910A TWI698398B TW I698398 B TWI698398 B TW I698398B TW 108109910 A TW108109910 A TW 108109910A TW 108109910 A TW108109910 A TW 108109910A TW I698398 B TWI698398 B TW I698398B
- Authority
- TW
- Taiwan
- Prior art keywords
- acid
- titanium
- silicon oxide
- containing silicon
- oxide material
- Prior art date
Links
Images
Landscapes
- Epoxy Compounds (AREA)
- Catalysts (AREA)
Abstract
一種利用生物聚合物合成含鈦氧化矽材料的方法及應用,直接將由鈦源、矽源、酸源、鹼源、生物聚合物及溶劑所配製的水溶液,經熟成處理後,進行固液分離並乾燥,再經過煅燒程序或萃取程序,即可得到具高比表面積的含鈦氧化矽材料;由於本發明使用生物聚合物作為模板劑,使得含鈦氧化矽材料於製程上更符合環保的需求,且其產物在經過煅燒程序或萃取程序後仍具有傑出的催化活性,可用於催化烯烴類化合物進行環氧化反應,有助於環氧化物的生產。A method and application for synthesizing titanium-containing silicon oxide materials from biopolymers. The aqueous solution prepared from the titanium source, silicon source, acid source, alkali source, biopolymer and solvent is directly subjected to solid-liquid separation after maturation. After drying, and then undergoing a calcination process or an extraction process, a titanium-containing silicon oxide material with a high specific surface area can be obtained; because the present invention uses a biopolymer as a template, the titanium-containing silicon oxide material is more environmentally friendly in the manufacturing process. And its product still has outstanding catalytic activity after calcination process or extraction process, and can be used to catalyze the epoxidation reaction of olefin compounds and contribute to the production of epoxides.
Description
本發明有關於一種利用模板法合成含鈦氧化矽材料的方法及應用,特別是有關於一種利用生物聚合物(biopolymer)作為模板劑來合成含鈦氧化矽材料的方法,以及將此含鈦氧化矽材料作為觸媒,用以使烯烴類化合物(olefin)經由直接氧化反應生產環氧化物。The present invention relates to a method and application for synthesizing titanium-containing silicon oxide material by template method, and in particular to a method for synthesizing titanium-containing silicon oxide material by using biopolymer as a template, and the titanium-containing oxide material Silicon material is used as a catalyst to produce epoxides through direct oxidation reaction of olefins.
含鈦氧化矽材料往往具有高表面積之孔洞結構,可以作為優良的吸附劑、觸媒或觸媒載體。目前最普遍地,含鈦氧化矽材料的合成是通過使用界面活性劑作為模板劑,並配合水熱反應法所製備而得,其中最著名的例子是利用帶正電性之四級銨鹽界面活性劑當作模板劑;例如,美國專利US 7018950、US 688782和US 6512128均揭露有關含鈦氧化矽觸媒的製備方法,其步驟主要是將矽源、鈦源和作為模板劑的四級銨離子於溶劑中進行混合並攪拌,由此得到含有觸媒成分和模板劑的固體,再從所獲得的固體中除去模板劑,從而製得一種具有特定孔徑、特定孔徑分佈及特定容量比的含鈦氧化矽觸媒。Titanium-containing silicon oxide materials often have a high surface area pore structure, which can be used as an excellent adsorbent, catalyst or catalyst carrier. At present, the most common synthesis of titanium-containing silicon oxide materials is prepared by using surfactants as templates and combined with hydrothermal reaction methods. The most famous example is the use of positively charged quaternary ammonium salt interfaces. The active agent is used as a template; for example, US patents US 7018950, US 688782 and US 6512128 all disclose methods for preparing titanium-containing silica catalysts. The steps are mainly to use silicon source, titanium source and quaternary ammonium as a template The ions are mixed and stirred in the solvent to obtain a solid containing the catalyst component and the template agent, and then the template agent is removed from the obtained solid, so as to obtain a specific pore size, specific pore size distribution and specific volume ratio containing Titanium silica catalyst.
利用模板法製備含鈦氧化矽材料,是將鈦導入具有高表面積的二氧化矽材料中,可使該材料的催化活性更具多樣性。在製備過程中,模板劑會在水溶液中形成微胞,而所添加之矽化合物將會圍繞著微胞聚集並於其上形成氧化矽基材,此模板劑(即界面活性劑)可經由高溫煅燒程序或萃取程序予以移除,進而創造出具有和模板劑之大小及形狀相類似之孔洞結構材料。此製備過程的好處是所合成之材料其孔隙體積可經由模板劑之分子大小來進行調控,而其孔洞大小則可經由模板劑之微胞大小來進行調控。然而,使用界面活性劑作為模板劑除了成本比較高並且可能會產生毒性之外,更有造成環境污染的疑慮。Using the template method to prepare titanium-containing silicon oxide material is to introduce titanium into a silicon dioxide material with a high surface area, which can make the material's catalytic activity more diverse. During the preparation process, the templating agent will form micelles in the aqueous solution, and the added silicon compound will gather around the micelles and form a silicon oxide substrate on them. The templating agent (ie, surfactant) can pass high temperature The calcination process or the extraction process removes it, thereby creating a porous structure material with a size and shape similar to the template agent. The advantage of this preparation process is that the pore volume of the synthesized material can be controlled by the molecular size of the template, and the pore size can be controlled by the microcell size of the template. However, the use of surfactants as templates is not only costly and may cause toxicity, but also causes environmental pollution.
為了克服上述先前技術之各種缺失,本發明之申請人係為此特別開發一種成本比較低並且不含毒性的綠色材料作為模板劑來製備含鈦氧化矽材料,以減輕製程對於環境的污染,同時,由此所製備的含鈦氧化矽材料能夠在環氧化反應中具有高的催化活性。In order to overcome the various deficiencies of the above-mentioned prior art, the applicant of the present invention specially developed a relatively low-cost and non-toxic green material as a template to prepare titanium-containing silicon oxide materials to reduce the environmental pollution caused by the process. Therefore, the prepared titanium-containing silicon oxide material can have high catalytic activity in the epoxidation reaction.
本發明的主要目的在於提供一種利用生物聚合物合成含鈦氧化矽材料的方法及應用,是利用鈦源、矽源、酸源、鹼源、生物聚合物及溶劑所配製的水溶液經熟成處理(aging)後,經由過濾、乾燥及煅燒程序或萃取程序後,即可得到具有高比表面積與高催化活性的含鈦氧化矽材料,進一步可作為觸媒催化烯烴類化合物進行環氧化反應,以產生環氧化物。The main purpose of the present invention is to provide a method and application for synthesizing titanium-containing silicon oxide materials using biopolymers. The aqueous solution prepared by using titanium sources, silicon sources, acid sources, alkali sources, biopolymers and solvents is matured ( After aging), after filtration, drying and calcination procedures or extraction procedures, a titanium-containing silicon oxide material with high specific surface area and high catalytic activity can be obtained, which can be further used as a catalyst to catalyze the epoxidation reaction of olefin compounds to produce Epoxide.
為達上述之目的,本發明提供一種含鈦氧化矽材料的製備方法,將鈦源、矽源、酸源、鹼源、生物聚合物及溶劑所配製的水溶液攪拌均勻,再將此水溶液置於-20-200℃的溫度下反應,持續攪拌0.5-5小時。接著,經過60-200℃的熟成處理6-48小時。然後,進行固液分離,將經由固液分離所得的固體進行乾燥。最後,將乾燥後的固體進行煅燒程序或萃取程序,即可得到高比表面積的含鈦氧化矽材料。In order to achieve the above purpose, the present invention provides a method for preparing titanium-containing silicon oxide material. The aqueous solution prepared by the titanium source, silicon source, acid source, alkali source, biopolymer and solvent is stirred uniformly, and then the aqueous solution is placed React at a temperature of -20-200°C and continue stirring for 0.5-5 hours. Then, it undergoes an aging treatment at 60-200°C for 6-48 hours. Then, solid-liquid separation is performed, and the solid obtained through the solid-liquid separation is dried. Finally, the dried solid is subjected to a calcination process or an extraction process to obtain a titanium-containing silicon oxide material with a high specific surface area.
本發明所製備的含鈦氧化矽材料滿足下列條件: 1、 含鈦氧化矽材料的平均孔徑大於10埃(Å)。 2、 含鈦氧化矽材料的總孔體積的90%以上的孔徑為5-200埃。 3、 含鈦氧化矽材料的比孔體積為0.2立方公分/公克(cm 3/g)以上。 The titanium-containing silicon oxide material prepared by the present invention meets the following conditions: 1. The average pore diameter of the titanium-containing silicon oxide material is greater than 10 angstroms (Å). 2. The pore diameter of more than 90% of the total pore volume of the titanium-containing silicon oxide material is 5-200 angstroms. 3. The specific pore volume of the titanium-containing silicon oxide material is 0.2 cubic centimeters/gram (cm 3 /g) or more.
前述方法中之鈦源可源自鈦酸酯、無機鈦源或其組合;矽源可源自非晶相(amorphous)的二氧化矽、烷氧基矽烷(alkoxysilane)、矽酸鹽或其組合;酸源可源自任何可使系統pH值下降的物質,例如有機酸、無機酸或其組合;鹼源可源自任何可使系統pH值上升的物質,例如有機鹼、無機鹼、相對離子(counter ion)為氫氧基陰離子的有機分子或其組合;生物聚合物可源自生物體所產生的聚合物;溶劑可源自醇類溶劑;萃取程序所使用的萃取劑可源自溶劑與酸源的混合水溶液。The titanium source in the foregoing method can be derived from titanate, an inorganic titanium source, or a combination thereof; the silicon source can be derived from amorphous silicon dioxide, alkoxysilane, silicate, or a combination thereof ; The acid source can be derived from any substance that can lower the pH of the system, such as organic acid, inorganic acid or a combination thereof; the alkali source can be derived from any substance that can increase the pH of the system, such as organic bases, inorganic bases, and relative ions (Counter ion) is an organic molecule or a combination of hydroxyl anions; biopolymers can be derived from polymers produced by organisms; solvents can be derived from alcoholic solvents; the extractant used in the extraction process can be derived from solvents and Mixed aqueous solutions of acid sources.
另外,本發明也提供一種環氧化物的製備方法,其步驟是先提供前述方法所製得之含鈦氧化矽材料作為觸媒,使烯烴類化合物及氧化物進行反應,俾形成環氧化物。In addition, the present invention also provides a method for preparing epoxides, the steps of which are to first provide the titanium-containing silicon oxide material prepared by the foregoing method as a catalyst to react olefin compounds and oxides to form epoxides.
並且,在進行催化反應前可以利用矽烷化(silylation)的方式增加觸媒的催化活性。In addition, silylation can be used to increase the catalytic activity of the catalyst before the catalytic reaction.
前述方法中,觸媒的使用量並沒有嚴格的限制,觸媒用量只需在最短的時間內能使環氧化反應完全進行即可。反應進行時所使用的烯烴類化合物與氧化物之莫耳比介於1 : 100-100 : 1,較佳是介於1 : 10-10 : 1。反應溫度並無特別限制,通常為0-200℃,較佳為25-150℃。反應壓力為足夠使所有反應物為液態以上之壓力即可,較佳是介於1-100大氣壓力。反應滯留時間為1分鐘-48小時,較佳為5分鐘-8小時。此程序適用於任何的反應器或儀器,例如固定床、輸送床、流體床、漿態攪拌、或連續流攪拌反應器以批次式、連續式或半連續式的方式進行。In the foregoing method, the amount of catalyst used is not strictly limited, and the amount of catalyst only needs to be able to complete the epoxidation reaction in the shortest time. The molar ratio of the olefin compound to the oxide used during the reaction is between 1:100-100:1, preferably between 1:10-10:1. The reaction temperature is not particularly limited, and is usually 0-200°C, preferably 25-150°C. The reaction pressure may be a pressure sufficient to make all the reactants liquid or above, preferably between 1-100 atmospheric pressure. The reaction residence time is 1 minute to 48 hours, preferably 5 minutes to 8 hours. This procedure is applicable to any reactor or instrument, such as fixed bed, conveying bed, fluid bed, slurry stirring, or continuous flow stirring reactor in batch, continuous or semi-continuous mode.
本發明之方法,不僅程序簡單、成本低廉,且所使用的有機物質是對於環境是友善無汙染的,實利於產業上之應用。The method of the present invention has simple procedures and low cost, and the organic substances used are environmentally friendly and non-polluting, which is practical for industrial applications.
底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。Detailed descriptions are given below by specific embodiments, so that it will be easier to understand the purpose, technical content, features and effects of the present invention.
請參照第1圖,說明本發明所提供之一種含鈦氧化矽材料的製備方法之流程步驟。圖中顯示五個步驟S100-S140。步驟S100~S120中說明一種含鈦氧化矽材料的製備方法。步驟S130和S140中定義可以加入含鈦氧化矽材料的製備過程中的二個可能步驟,來提供具有高比表面積的含鈦氧化矽材料。在實務上,可使用步驟S130和S140的其中一個或多個步驟在單一的製作過程中,但為了簡明起見,而將這些步驟一併呈現(以虛線框表示這些特徵為可以選擇的),放在單個流程圖中。Please refer to Figure 1 to illustrate the process steps of a method for preparing a titanium-containing silicon oxide material provided by the present invention. The figure shows five steps S100-S140. Steps S100 to S120 illustrate a method for preparing a titanium-containing silicon oxide material. It is defined in steps S130 and S140 that two possible steps in the preparation process of the titanium-containing silicon oxide material can be added to provide a titanium-containing silicon oxide material with a high specific surface area. In practice, one or more of steps S130 and S140 can be used in a single production process, but for the sake of brevity, these steps are presented together (the dotted box indicates that these features are optional), Put it in a single flowchart.
首先,如步驟S100,將鈦源、矽源、酸源、鹼源、生物聚合物及溶劑配置成水溶液,攪拌均勻;再如步驟S110,將此水溶液置於-20-200℃的溫度下進行反應,持續攪拌0.5-5小時,接著,經過60-200℃的熟成處理6-48小時,然後,進行固液分離,將固體自反應溶液中分離出來,再對於經由固液分離所得的固體於30-120℃下持續乾燥0.5-6小時;最後,如步驟S120,將乾燥後的固體進行煅燒程序或以溶劑與酸源的混合水溶液所調配而成的萃取劑進行萃取程序,即可得到高比表面積的含鈦氧化矽材料。First, in step S100, prepare the titanium source, silicon source, acid source, alkali source, biopolymer and solvent into an aqueous solution, and stir uniformly; then in step S110, place the aqueous solution at a temperature of -20-200°C. The reaction is continuously stirred for 0.5-5 hours, followed by a 60-200°C maturation treatment for 6-48 hours, and then solid-liquid separation is carried out to separate the solid from the reaction solution, and then the solid obtained through the solid-liquid separation is Continuous drying at 30-120°C for 0.5-6 hours; finally, in step S120, the dried solid is subjected to a calcination procedure or an extraction procedure with an extractant prepared by a mixed aqueous solution of a solvent and an acid source to obtain high Titanium-containing silicon oxide material with specific surface area.
本發明所製備的含鈦氧化矽材料滿足下列條件: 1、 含鈦氧化矽材料的平均孔徑大於10埃(Å)。 2、 含鈦氧化矽材料的總孔體積的90%以上的孔徑為5-200埃。 3、 含鈦氧化矽材料的比孔體積為0.2立方公分/公克(cm 3/g)以上 The titanium-containing silicon oxide material prepared by the present invention meets the following conditions: 1. The average pore diameter of the titanium-containing silicon oxide material is greater than 10 angstroms (Å). 2. The pore diameter of more than 90% of the total pore volume of the titanium-containing silicon oxide material is 5-200 angstroms. 3. The specific pore volume of the titanium-containing silicon oxide material is 0.2 cubic centimeters/gram (cm 3 /g) or more
本發明所使用的鈦源,包括,但不限制於:鈦酸酯、無機鈦源或其組合。具體而言,鈦酸酯可以為鈦酸四甲酯、鈦酸四乙酯、正-鈦酸四丙酯、鈦酸四異丙酯、正-鈦酸四丁酯、鈦酸四第二丁酯、異-鈦酸四丁酯、鈦酸四第三丁酯、四(2-乙基己醇)鈦酸酯、四(十八烷基)正鈦酸酯或其組合;無機鈦源可以為鹵化鈦,包含三氯化鈦、四氯化鈦、三溴化鈦、四溴化鈦、三碘化鈦、四碘化鈦、硫酸鈦或其組合。以上鈦源皆可以單獨使用或將多種鈦源混合使用。The titanium source used in the present invention includes, but is not limited to: titanate, inorganic titanium source or a combination thereof. Specifically, the titanate may be tetramethyl titanate, tetraethyl titanate, n-tetrapropyl titanate, tetraisopropyl titanate, n-tetrabutyl titanate, and tetrabutyl titanate. Ester, iso-tetrabutyl titanate, tetra-tertiary butyl titanate, tetra(2-ethylhexanol) titanate, tetra(octadecyl)ortho titanate or a combination thereof; the inorganic titanium source can be It is a titanium halide and includes titanium trichloride, titanium tetrachloride, titanium tribromide, titanium tetrabromide, titanium triiodide, titanium tetraiodide, titanium sulfate or a combination thereof. The above titanium sources can be used alone or in a mixture of multiple titanium sources.
本發明所使用的矽源,包括,但不限制於:非晶相的二氧化矽、烷氧基矽烷、矽酸鹽或其組合。具體而言,非晶相的二氧化矽其通式為SiO 2,包括,但不限制於:燻矽、白煙、二氧化矽凝膠、二氧化矽溶膠等二氧化矽粉體或塊材;烷氧基矽烷可以為含有四個烷氧基的矽烷,包括四甲氧基矽烷(tetramethylorthosilicate)、四乙氧基矽烷(tetraethylorthosilicate)及四丙氧基矽烷(tetrapropylorthosilicate) 及類似物質。更進一步說明,含有不同的有機官能基的烷氧基矽烷也可以做為矽源,例如單烷基三烷氧基矽烷(alkyltrialkoxysilanes)、二烷基二烷氧基矽烷(dialkyldialkoxysilanes) 、三烷基單烷氧基矽烷(trialkylmonoalkoxysilanes) 及類似物質;矽酸鹽可以為水玻璃(Sodium Silicate)、矽酸鉀鹽、矽酸鎂鹽、矽酸鈣鹽及類似物質。以上矽源可以單獨使用或將多種矽源混合使用。 The silicon source used in the present invention includes, but is not limited to: amorphous silicon dioxide, alkoxysilane, silicate or a combination thereof. Specifically, the general formula of amorphous silicon dioxide is SiO 2 , including, but not limited to: smoked silica, white smoke, silica gel, silica sol and other silica powders or bulk materials ; Alkoxysilane can be a silane containing four alkoxy groups, including tetramethylorthosilicate, tetraethylorthosilicate, tetrapropylorthosilicate and similar substances. Furthermore, alkoxysilanes containing different organic functional groups can also be used as silicon sources, such as monoalkyltrialkoxysilanes, dialkyldialkoxysilanes, trialkyl Trialkylmonoalkoxysilanes and similar substances; silicate can be sodium silicate, potassium silicate, magnesium silicate, calcium silicate and similar substances. The above silicon sources can be used alone or in a mixture of multiple silicon sources.
本發明所使用的酸源,包括,但不限制於:有機酸、無機酸或任何可使系統pH值下降的物質;具體而言,有機酸可以為含有羧基或磺酸基的物質,如甲酸、乙酸、丙酸、磺酸、亞磺酸、硫羧酸、檸檬酸、蘋果酸、酒石酸、草酸、琥珀酸、乳酸及類似物質;無機酸可以為溶於水中時會釋出氫離子和共軛鹼離子的物質,如鹽酸、次氯酸、亞氯酸、氯酸、高氯酸、硝酸、疊氮酸、連二次硝酸、次硝酸、亞硝酸、過氧硝酸、硫酸、氫硫酸、二硫化氫、硫代硫酸、次硫酸、過硫酸、磷酸、次磷酸、亞磷酸、偏磷酸、偏亞磷酸、二磷酸、連二磷酸、焦磷酸、硼酸、偏硼酸、四硼酸、氟硼酸、過硼酸、碳酸、氫氰酸、氰酸、雷酸、異氰酸、硫氰酸、異硫氰酸、硒氰酸、三硫代碳酸、過氧化氫、氫氟酸、次氟酸、溴酸、氫溴酸、鉻酸、重鉻酸、高錳酸及類似物質。以上酸源可以單獨使用或將多種酸源混合使用。The acid source used in the present invention includes, but is not limited to: organic acid, inorganic acid or any substance that can lower the pH of the system; specifically, the organic acid can be a substance containing carboxyl or sulfonic acid groups, such as formic acid , Acetic acid, propionic acid, sulfonic acid, sulfinic acid, thiocarboxylic acid, citric acid, malic acid, tartaric acid, oxalic acid, succinic acid, lactic acid and similar substances; inorganic acids can release hydrogen ions and co- Substances of conjugate alkali ions, such as hydrochloric acid, hypochlorous acid, chlorous acid, chloric acid, perchloric acid, nitric acid, hydrazoic acid, hyponitric acid, hyponitric acid, nitrous acid, peroxynitric acid, sulfuric acid, hydrogen sulfuric acid, Hydrogen disulfide, thiosulfuric acid, hyposulfuric acid, persulfuric acid, phosphoric acid, hypophosphorous acid, phosphorous acid, metaphosphoric acid, metaphosphorous acid, diphosphoric acid, hypophosphoric acid, pyrophosphoric acid, boric acid, metaboric acid, tetraboric acid, fluoroboric acid, Perboric acid, carbonic acid, hydrocyanic acid, cyanic acid, fulvic acid, isocyanic acid, thiocyanic acid, isothiocyanic acid, selenocyanic acid, trithiocarbonic acid, hydrogen peroxide, hydrofluoric acid, hypofluoric acid, bromine Acid, hydrobromic acid, chromic acid, dichromic acid, permanganic acid and similar substances. The above acid sources can be used alone or in a mixture of multiple acid sources.
本發明所使用的鹼源,包括,但不限制於:有機鹼、無機鹼、相對離子為氫氧基陰離子的有機分子或任何可以使pH值上升的物質;具體而言,有機鹼可以為含有鹼金屬的醇類、有機金屬化合物或含有氮原子的物質,如甲醇鈉、乙醇鉀、第三丁醇鉀、丁基鋰、苯基鋰、二異苯基胺基鋰(lithium diisopropylamide)、六甲基二矽胺基鋰(lithium hexamethyldisilazide)、吡啶、咪唑、苯並咪唑、組胺酸及類似物質;無機鹼可以為含有金屬離子的氫氧化物或碳酸化物,如氫氧化鋰、氫氧化鈉、氫氧化鉀、氫氧化鎂、氫氧化鈣、氫氧化鍶、氫氧化鋇、氫氧化鋁、氫氧化銨、氫氧化鋅、氫氧化銅、氫氧化鎳、氫氧化鉻、碳酸鈉、碳酸氫鈉、碳酸鉀、碳酸氫鉀及類似物質;相對離子為氫氧基陰離子的有機分子可以為十八烷基三甲基氫氧化銨(trimethyloctadecylammonium hydroxide )、十六烷基三甲基氫氧化銨(cetyltrimethylammonium hydroxide )、十二烷基三甲基氫氧化銨(dodecyl trimethyl ammonium hydroxide) 及類似物質。以上鹼源可以單獨使用或將多種鹼源混合使用。The alkali source used in the present invention includes, but is not limited to: organic bases, inorganic bases, organic molecules with hydroxyl anions as the counter ion, or any substance that can increase the pH; specifically, the organic base may contain Alkali metal alcohols, organometallic compounds or substances containing nitrogen atoms, such as sodium methoxide, potassium ethoxide, potassium tertiary butoxide, butyl lithium, phenyl lithium, lithium diisopropylamide, six Lithium hexamethyldisilazide (lithium hexamethyldisilazide), pyridine, imidazole, benzimidazole, histidine and similar substances; inorganic bases can be hydroxides or carbonates containing metal ions, such as lithium hydroxide, sodium hydroxide , Potassium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, aluminum hydroxide, ammonium hydroxide, zinc hydroxide, copper hydroxide, nickel hydroxide, chromium hydroxide, sodium carbonate, bicarbonate Sodium, potassium carbonate, potassium bicarbonate and similar substances; organic molecules whose opposite ions are hydroxide anions can be trimethyloctadecylammonium hydroxide (trimethyloctadecylammonium hydroxide), cetyltrimethylammonium hydroxide ( cetyltrimethylammonium hydroxide, dodecyl trimethyl ammonium hydroxide and similar substances. The above alkali sources can be used alone or in a mixture of multiple alkali sources.
本發明所使用的生物聚合物為自生物體所產生的聚合物;例如,幾丁聚醣(chitosan)、膠原蛋白(collagen)、明膠(gelatin)、瓊脂糖(agarose)、幾丁質(chitin)、聚羥基脂肪酸酯(polyhydroxyalkanoates)、聚三葡萄糖(pullulan)、澱粉(starch )、纖維素(cellulose)、玻尿酸(hyaluronic acid)及類似物質。其中,澱粉包括直鏈澱粉(amylose)、支鏈澱粉(amylopectin)。以上生物聚合物可以單獨使用或將多種生物聚合物混合使用。The biopolymer used in the present invention is a polymer produced from living organisms; for example, chitosan, collagen, gelatin, agarose, chitin ), polyhydroxyalkanoates (polyhydroxyalkanoates), pullulan, starch (starch), cellulose (hyaluronic acid) and similar substances. Among them, starch includes amylose (amylose) and amylopectin (amylopectin). The above biopolymers can be used alone or in a mixture of multiple biopolymers.
本發明所使用的溶劑,包括,但不限制於:醇類溶劑;具體而言,醇類溶劑是指包括具1-10個碳之醇類,例如,甲醇、乙醇、正丙醇、異丙醇、乙烯基丁醇(vinyl butanol)、丙烯基丁醇(allyl butanol)、正丁醇、第二丁醇、第三丁醇、戊醇、環己醇、苯甲醇及雙醇化合物等一種或多種醇類相互混合的組合。The solvents used in the present invention include, but are not limited to: alcoholic solvents; specifically, alcoholic solvents include alcohols with 1-10 carbons, for example, methanol, ethanol, n-propanol, isopropanol Alcohol, vinyl butanol, allyl butanol, n-butanol, second butanol, tertiary butanol, pentanol, cyclohexanol, benzyl alcohol and diol compounds, etc. or A combination of multiple alcohols mixed with each other.
另外,水溶液中的鈦源與矽源的莫耳比的比值範圍為0.00001-0.5,較佳為0.0001-0.1;生物聚合物與矽源的重量比的比值範圍為0.005-5;酸源與矽源的莫耳比的比值範圍為0.01-6,較佳為0.1-3;鹼源與矽源的莫耳比的比值範圍為0.01-6,較佳為0.1-3;生物聚合物與水的重量比的比值範圍為0.0001-1;溶劑與水的重量比的比值範圍為0-5,較佳為0.01-3。煅燒溫度範圍為300-800℃,較佳為450-750℃;煅燒時間範圍為1-9小時,較佳為3-6小時;萃取劑組成中溶劑、酸源與水的重量比範圍為3-10:0.01-5:0-10,較佳為5-8:0.05-3:0-3;萃取溫度範圍為25-150℃,較佳為40-90℃;萃取時間範圍為0.5-6小時,較佳為1-3小時;萃取劑與乾燥後的固體的重量比的比值範圍為1000-10。In addition, the molar ratio of the titanium source to the silicon source in the aqueous solution is in the range of 0.00001-0.5, preferably 0.0001 to 0.1; the weight ratio of the biopolymer to the silicon source is in the range of 0.005-5; the acid source and the silicon The molar ratio of the source ranges from 0.01-6, preferably 0.1-3; the molar ratio of the alkali source to the silicon source ranges from 0.01-6, preferably 0.1-3; the ratio of the biopolymer to water The weight ratio is in the range of 0.0001 to 1; the solvent to water weight ratio is in the range of 0-5, preferably 0.01-3. The calcination temperature range is 300-800°C, preferably 450-750°C; the calcination time range is 1-9 hours, preferably 3-6 hours; the weight ratio of solvent, acid source and water in the extractant composition is in the range of 3. -10:0.01-5:0-10, preferably 5-8:0.05-3:0-3; extraction temperature range is 25-150℃, preferably 40-90℃; extraction time range is 0.5-6 Hour, preferably 1-3 hours; the ratio of the weight ratio of the extractant to the dried solid is in the range of 1000-10.
本發明所製備的含鈦氧化矽材料可以做為觸媒,此觸媒在進行催化反應前可以利用矽烷化處理的方式,如步驟S130,來降低矽醇基的含量,以降低觸媒本質上的酸性,改變觸媒的表面特性,進而增加觸媒的催化活性。The titanium-containing silicon oxide material prepared by the present invention can be used as a catalyst. The catalyst can be treated by silylation before the catalytic reaction, such as step S130, to reduce the content of silanol groups to reduce the nature of the catalyst. The acidity of the catalyst changes the surface characteristics of the catalyst, thereby increasing the catalytic activity of the catalyst.
進行矽烷化處理的方法可以採用含鈦氧化矽材料與氣相矽烷化試劑反應的氣相法,或是採用含鈦氧化矽材料與液相矽烷化試劑反應的液相法。矽烷化可以使用一種或多種有機矽烷依照一般方式進行,而執行矽烷化所使用的有機矽烷可以是鹵矽烷(通式為R 1R 2R 3SiX)、矽氮烷(通式為[R 4R 5R 6Si] 2NH)、甲矽烷基咪唑(通式為R 7R 8R 9Si[N 2C 3H 3])或甲矽烷基胺(通式為(R 10) 3SiN(R 11) 2),其中R 1、R 2和R 3相同或不同,各自分別為1-6個碳的飽和烷基或苯基;R 4、R 5和R 6相同或不同,各自分別為1-6個烷基、鹵烷基或苯基;R 7-R 11各自分別為1-3個碳的飽和烷基。優先選擇的有機矽烷為六甲基二矽氮烷、甲矽烷基胺、三甲基氯矽烷及N-三甲基甲矽烷基咪唑中的一種或多種組合。執行矽烷化所需的溶劑可以使用一種或多種由6-16個碳所組成的芳香烴或由6-16個碳所組成的飽和烷烴,優先選擇的溶劑為甲苯、苯和環己烷異丙苯中的一種或多種組合。 The method for silylation treatment can be a gas phase method in which a titanium-containing silicon oxide material reacts with a gas phase silylation reagent, or a liquid phase method in which a titanium-containing silicon oxide material reacts with a liquid phase silylation reagent. Silylation can use one or more organosilanes in a general way, and the organosilanes used for silylation can be halosilanes (general formula R 1 R 2 R 3 SiX), silazanes (general formula [R 4 R 5 R 6 Si] 2 NH), silyl imidazole (general formula R 7 R 8 R 9 Si[N 2 C 3 H 3 ]) or silylamine (general formula (R 10 ) 3 SiN ( R 11 ) 2 ), wherein R 1 , R 2 and R 3 are the same or different, and are each a saturated alkyl group of 1-6 carbons or a phenyl group; R 4 , R 5 and R 6 are the same or different, and are each 1-6 alkyl groups, haloalkyl groups or phenyl groups; R 7 -R 11 are each saturated alkyl groups of 1-3 carbons. The preferred organosilanes are one or more combinations of hexamethyldisilazane, silylamine, trimethylchlorosilane, and N-trimethylsilylimidazole. The solvent required for silylation can be one or more aromatic hydrocarbons composed of 6-16 carbons or saturated alkanes composed of 6-16 carbons. The preferred solvents are toluene, benzene and cyclohexane isopropyl One or more combinations of benzene.
執行矽烷化時,有機矽烷與含鈦氧化矽材料的重量比的比值為0.01-1,較佳為0.1-0.8;溶劑與含鈦氧化矽材料的重量比的比值為1-200,較佳為1-100。且矽烷化之反應溫度為25-200℃,較佳為50-150℃;反應時間為0.5-3小時,較佳為1-2小時。When performing silylation, the weight ratio of organosilane to titanium-containing silicon oxide material is 0.01-1, preferably 0.1-0.8; the weight ratio of solvent to titanium-containing silicon oxide material is 1-200, preferably 1-100. And the reaction temperature of silylation is 25-200°C, preferably 50-150°C; the reaction time is 0.5-3 hours, preferably 1-2 hours.
此外,還有一種可選擇的作法,如步驟S140,將過渡金屬併入含鈦氧化矽材料,以提升該材料的催化活性。In addition, there is an alternative method, such as step S140, incorporating the transition metal into the titanium-containing silicon oxide material to enhance the catalytic activity of the material.
本發明所製備的含鈦氧化矽材料中,可視需要以含浸法、沉澱法、摻合法或其他類似方法併入其他過渡金屬。其中,含浸法是將過渡金屬溶液分散於適當的溶劑後與含鈦氧化矽材料混合,形成已含浸過渡金屬的含鈦氧化矽材料,並視需要將已含浸過渡金屬的含鈦氧化矽材料作進一步的乾燥與煅燒程序。其中,過渡金屬之濃度範圍佔含鈦氧化矽材料之總量的0.001-10重量百分比(wt%),較佳為0.005-5 wt%。由此方法製得之已含浸過渡金屬的含鈦氧化矽材料,過渡金屬位於含鈦氧化矽材料的骨架內或骨架外。In the titanium-containing silicon oxide material prepared by the present invention, other transition metals can be incorporated by impregnation, precipitation, blending or other similar methods as needed. Among them, the impregnation method is to disperse the transition metal solution in a suitable solvent and mix it with the titanium-containing silicon oxide material to form the titanium-containing silicon oxide material impregnated with the transition metal, and optionally use the titanium-containing silicon oxide material impregnated with the transition metal as the material. Further drying and calcination procedures. Wherein, the concentration range of the transition metal accounts for 0.001-10 weight percent (wt%) of the total amount of the titanium-containing silicon oxide material, preferably 0.005-5 wt%. The titanium-containing silicon oxide material impregnated with transition metal prepared by this method, the transition metal is located in or outside the framework of the titanium-containing silicon oxide material.
本發明所製備的含鈦氧化矽材料可視需要在煅燒程序前、煅燒程序後、萃取程序前、萃取程序後、矽烷化前及矽烷化後…等的任何階段進行成型造粒的處理。成型造粒的方式可視需要選擇壓縮成型法(compression molding process)或擠出成型法(extrusion molding process)等適合的方式將含鈦氧化矽材料製成具特定粒徑範圍的顆粒。The titanium-containing silicon oxide material prepared by the present invention can be shaped and granulated at any stage before the calcination process, after the calcination process, before the extraction process, after the extraction process, before silylation, and after silylation. The method of molding and granulation can be selected according to needs such as compression molding process or extrusion molding process to make titanium-containing silicon oxide material into particles with a specific particle size range.
本發明所製備的含鈦氧化矽材料因為具有高的比表面積及高分散程度的鈦活性位置,因此可被用來作為許多有機化合物進行氧化或選擇性氧化反應的觸媒。另一方面,若在本發明所製備的含鈦氧化矽材料中加入第三組成份(例如,鋁…等)來提升酸性位置則可催化烷基化(alkylation)、重組反應(reforming)等。The titanium-containing silicon oxide material prepared by the invention has a high specific surface area and a high degree of dispersion of titanium active sites, so it can be used as a catalyst for the oxidation or selective oxidation of many organic compounds. On the other hand, if a third component (for example, aluminum... etc.) is added to the titanium-containing silicon oxide material prepared by the present invention to increase the acid site, it can catalyze alkylation, reforming, etc.
本發明所製備的含鈦氧化矽材料作為觸媒可用於製備環氧化物。請參照第2圖,說明本發明將所製得的含鈦氧化矽材料應用於環氧化物的製備方法之流程步驟。圖中顯示三個步驟S200-S220。步驟S220中說明一種環氧化物的製備方法。步驟S200和S210中定義可以加入環氧化物的製備過程中的二個可能步驟,來提高觸媒的高催化活性。在實務上,可使用步驟S200和S210的其中一個或多個步驟在單一的製作過程中,但為了簡明起見,而將這些步驟一併呈現(以虛線框表示這些特徵為可以選擇的),放在單個流程圖中。The titanium-containing silicon oxide material prepared by the invention can be used as a catalyst to prepare epoxides. Please refer to FIG. 2 to illustrate the process steps of the method for applying the titanium-containing silicon oxide material prepared by the present invention to the preparation method of epoxide. The figure shows three steps S200-S220. In step S220, an epoxide preparation method is described. In steps S200 and S210, it is defined that two possible steps in the preparation process of the epoxide can be added to improve the high catalytic activity of the catalyst. In practice, one or more of steps S200 and S210 can be used in a single production process, but for the sake of brevity, these steps are presented together (the dotted box indicates that these features are optional), Put it in a single flowchart.
如步驟S200和S210,在進行催化反應前,可以選擇利用矽烷化和/或將過渡金屬併入含鈦氧化矽材料的方式增加觸媒的催化活性。此些步驟之其餘細節如同前述步驟S130和S140,亦可搭配成型造粒之處理步驟,在此恕不重複贅述。As in steps S200 and S210, before the catalytic reaction, silylation and/or incorporation of transition metals into the titanium-containing silicon oxide material can be selected to increase the catalytic activity of the catalyst. The rest of the details of these steps are the same as the aforementioned steps S130 and S140, and they can also be combined with the processing steps of molding and granulation, which will not be repeated here.
如步驟S220,將前述方法所製得的含鈦氧化矽材料作為觸媒,用以催化烯烴類化合物(olefin)與氧化物進行環氧化反應,以形成環氧化物。In step S220, the titanium-containing silicon oxide material obtained by the foregoing method is used as a catalyst to catalyze the epoxidation reaction of olefins and oxides to form epoxides.
上述環氧化反應所使用的含鈦氧化矽材料可為粉末狀、團塊狀、微球狀、單塊狀,亦可為擠壓成型、壓縮成型或其他任何形式。環氧化反應所使用的烯烴類化合物,包括,但不限制於:脂肪族、環狀,包含單環、雙環或多環化合物;也可以是單烯烴類(mono-olefin)、雙烯烴類(di-olefin)或多烯烴類(poly-olefin)化合物。當烯烴類化合物的雙鍵數目大於2時,雙鍵的類型可以是共軛雙鍵或非共軛雙鍵。其中,單烯烴類化合物,包括,但不限制於:由2-60個碳所組成的烯烴類化合物,烯烴類化合物可以具有一個取代基,而且該取代基以相對穩定的取代基為較佳。此些單烯烴類化合物,包括,但不限制於:乙烯、丙烯、1-丁烯、異丁烯、1-己烯、2-己烯、3-己烯、1-辛烯、1-癸烯、苯乙烯或環己烯。雙烯烴類化合物,包括,但不限制於 : 丁二烯或異戊二烯。The titanium-containing silicon oxide material used in the epoxidation reaction can be in the form of powder, agglomerates, microspheres, monoliths, and can also be extrusion molding, compression molding or any other form. The olefin compounds used in the epoxidation reaction include, but are not limited to: aliphatic, cyclic, monocyclic, bicyclic or polycyclic compounds; it can also be mono-olefin, diolefin (diolefin) -olefin) or poly-olefin compounds. When the number of double bonds of the olefin compound is greater than 2, the type of the double bond may be a conjugated double bond or a non-conjugated double bond. Among them, monoolefin compounds include, but are not limited to: olefin compounds composed of 2-60 carbons. The olefin compound may have a substituent, and the substituent is preferably a relatively stable substituent. These monoolefin compounds include, but are not limited to: ethylene, propylene, 1-butene, isobutene, 1-hexene, 2-hexene, 3-hexene, 1-octene, 1-decene, Styrene or cyclohexene. Diolefin compounds, including, but not limited to: butadiene or isoprene.
另外,環氧化反應所使用的氧化物可為有機過氧化物,其通式為R-O-O-H(R表示一種烴基);烴基是由3-20個碳所組成的基團(較佳碳數為3-10),包括,但不限制於:第二或第三烷基(tertiary alkyl group)或芳香烷基(aralkyl group),例如,第三丁基、第三戊基、環戊烷基或2-苯基-2-丙基。此些有機過氧化物,包括,但不限制於:乙苯過氧化氫、異丙苯過氧化氫、第三丁基過氧化氫或環己基過氧化氫;當以異丙苯過氧化氫作為有機過氧化物,反應後的產物為α-異丙苯醇(alpha-Cumyl alcohol)。α-異丙苯醇可經過脫水轉變成α-甲基苯乙烯(alpha-methyl styrene),此化合物除了在工業上有許多應用外,此化合物再經過氫化可轉變成異丙苯,而異丙苯在經過氧化可成為異丙苯過氧化氫;其他種類的有機過氧化物也具有類似此可循環重複使用的特性。In addition, the oxide used in the epoxidation reaction can be an organic peroxide whose general formula is ROOH (R represents a hydrocarbon group); a hydrocarbon group is a group composed of 3-20 carbons (preferably, the carbon number is 3- 10), including, but not limited to: second or third alkyl group or aralkyl group, for example, tertiary butyl, tertiary pentyl, cyclopentyl or 2- Phenyl-2-propyl. These organic peroxides include, but are not limited to: ethylbenzene hydroperoxide, cumene hydroperoxide, tertiary butyl hydroperoxide or cyclohexyl hydroperoxide; when cumene hydroperoxide is used as Organic peroxide, the product after the reaction is alpha-Cumyl alcohol. α-Cumene alcohol can be converted into α-methyl styrene (alpha-methyl styrene) through dehydration. In addition to many industrial applications, this compound can be converted into cumene after hydrogenation. Benzene can become cumene hydrogen peroxide after oxidation; other types of organic peroxides also have similar characteristics that can be recycled and reused.
環氧化反應所使用的氧化物也可為過氧化氫,其通式為H-O-O-H。過氧化氫可以水溶液的形式獲得,與烯烴類化合物反應後可產生環氧化物與水。The oxide used in the epoxidation reaction can also be hydrogen peroxide, and its general formula is H-O-O-H. Hydrogen peroxide can be obtained in the form of an aqueous solution, and can produce epoxide and water after reacting with olefin compounds.
作為反應物的氧化物可以是濃縮或稀釋過的純的或不純的物質。The oxide as a reactant may be a pure or impure substance that has been concentrated or diluted.
在進行環氧化反應生產環氧化物時可以添加一種溶劑或稀釋劑使反應在液態下進行。溶劑和稀釋劑在環氧化反應進行的條件下成液態且對各個反應物及產物皆呈現出惰性。此些溶劑,包括,但不限制於:甲醇、丙酮、乙苯、異丙苯、異丁烷或環己烷等一種或混合組成。而溶劑可以是存在於待使用的氧化物溶液中的一種物質,例如,當選定以異丙苯過氧化氫與異丙苯的混合溶液作為氧化物時,異丙苯可作為環氧化反應時所需的溶劑而不需額外添加一種溶劑。During the epoxidation reaction to produce epoxide, a solvent or diluent can be added to make the reaction proceed in a liquid state. The solvent and diluent become liquid under the conditions of the epoxidation reaction and are inert to each reactant and product. These solvents include, but are not limited to: methanol, acetone, ethylbenzene, cumene, isobutane or cyclohexane, etc., or a mixture of them. The solvent can be a substance that exists in the oxide solution to be used. For example, when a mixed solution of cumene hydrogen peroxide and cumene is selected as the oxide, cumene can be used for the epoxidation reaction. The required solvent does not need to add an additional solvent.
前述方法中,觸媒的使用量並沒有嚴格的限制,只需在最短的時間內能使環氧化反應完全進行即可。而反應進行時所使用的烯烴類化合物與氧化物之莫耳比是介於1 : 100-100 : 1,較佳則介於1 : 10-10 : 1。反應溫度並無特別限制,通常為0-200℃,較佳為25-150℃。反應壓力為足夠使所有反應物均有液態組成份以上之壓力即可,較佳則介於1-100大氣壓力。反應滯留時間為得到環氧化物最高產率的最短時間,一般為1分鐘到48小時,較佳為5分鐘-8小時。此程序適用於任何的反應器或儀器,例如,固定床、輸送床、流體床、漿態攪拌、或連續流攪拌反應器以批次式、連續式或半連續式的方式進行。In the aforementioned method, the amount of catalyst used is not strictly limited, as long as the epoxidation reaction can be completed in the shortest time. The molar ratio of the olefin compound to the oxide used during the reaction is between 1:100-100:1, preferably between 1:10-10:1. The reaction temperature is not particularly limited, and is usually 0-200°C, preferably 25-150°C. The reaction pressure is sufficient to ensure that all the reactants have a liquid composition or more, preferably between 1-100 atmospheric pressure. The reaction residence time is the shortest time for obtaining the highest yield of epoxide, generally 1 minute to 48 hours, preferably 5 minutes to 8 hours. This procedure is applicable to any reactor or instrument, for example, fixed bed, conveying bed, fluid bed, slurry stirring, or continuous flow stirring reactor in batch, continuous or semi-continuous mode.
接著,以下藉由提出數個具體實施例,將進一步說明本發明如何有效製備含鈦氧化矽材料,並且可以利用此材料作為觸媒催化烯烴類化合物與氧化物產生環氧化反應,而生產環氧化物。Next, by presenting several specific examples below, we will further illustrate how the present invention effectively prepares titanium-containing silicon oxide materials, and this material can be used as a catalyst to catalyze the epoxidation reaction of olefin compounds and oxides to produce epoxy化物.
實施例一Example one
製備含鈦氧化矽材料:將氨水(28%)2.9公斤加入由鈦酸四異丙酯(tetraisopropyl orthotitanate)0.26公斤、矽酸鈉3.6公斤、明膠(gelatin)0.54公斤、硫酸(98%)2.7公斤、異丙醇3公斤及水45公斤所配置成的混合液中,於室溫下攪拌2小時後,於100℃下進行熟成處理持續16小時。接著,進行過濾,把溶液移除後,將粉體置於70℃乾燥。將乾燥後的粉體進行煅燒程序,煅燒溫度為750℃,升溫速度為每分鐘5℃,持溫6小時後自然降溫,即可得具有高比表面積的含鈦氧化矽材料。本實施例中,經過煅燒程序後的有機物移除率高於97 %。Preparation of titanium-containing silicon oxide material: add 2.9 kg of ammonia (28%) to 0.26 kg of tetraisopropyl orthotitanate, 3.6 kg of sodium silicate, 0.54 kg of gelatin, and 2.7 kg of sulfuric acid (98%). , 3 kilograms of isopropanol and 45 kilograms of water, stir at room temperature for 2 hours, and then mature at 100°C for 16 hours. Then, after filtering and removing the solution, the powder is dried at 70°C. The dried powder is subjected to a calcination process, the calcination temperature is 750°C, the heating rate is 5°C per minute, and the temperature is naturally cooled after holding the temperature for 6 hours to obtain a titanium-containing silicon oxide material with a high specific surface area. In this embodiment, the organic matter removal rate after the calcination process is higher than 97%.
實施例二Example two
製備含鈦氧化矽材料:製備方式與實施例一相同,但將煅燒程序換成萃取程序。以硫酸10公斤、乙醇70公斤及水20公斤所調配的水溶液作為萃取液,取經過熟成處理並過濾乾燥後的粉體1公斤與萃取液100公斤,於80℃下攪拌2小時後進行過濾,並且再重複此萃取程序2次。把溶液移除後,將粉體置於70℃乾燥,即可得具有高比表面積的含鈦氧化矽材料。本實施例中,經過萃取程序後的有機物移除率高於90 %。Preparation of titanium-containing silicon oxide material: The preparation method is the same as in Example 1, but the calcination procedure is replaced with an extraction procedure. An aqueous solution of 10 kg of sulfuric acid, 70 kg of ethanol, and 20 kg of water was used as the extract. 1 kg of the powder and 100 kg of the extract were taken after maturation treatment and filtered and dried, stirred at 80°C for 2 hours, and filtered. And repeat this extraction procedure 2 more times. After the solution is removed, the powder is dried at 70°C to obtain a titanium-containing silicon oxide material with a high specific surface area. In this embodiment, the organic matter removal rate after the extraction process is higher than 90%.
實施例三Example three
製備環氧丙烷:將實施例一所製得的含鈦氧化矽材料15克作為觸媒,與225克25重量百分比(wt%)的過氧化氫異丙苯溶液(溶劑為異丙苯)及125克的丙烯於1公升密閉的高壓反應器(autoclave)中混合均勻,並加熱於95℃進行反應,反應時間小於1.5小時。反應結果如表一所示。Preparation of propylene oxide: 15 grams of titanium-containing silicon oxide material prepared in Example 1 was used as a catalyst, and 225 grams of 25 weight percent (wt%) cumene hydrogen peroxide solution (the solvent was cumene) and 125 grams of propylene was mixed uniformly in a 1 liter closed autoclave and heated at 95°C for reaction. The reaction time was less than 1.5 hours. The reaction results are shown in Table 1.
實施例四Example four
製備含鈦氧化矽材料:製備方式與實施例一相同,但將經過煅燒程序後所得的高比表面積含鈦氧化矽材料取16.5克進行矽烷化。將此含鈦氧化矽材料與165克甲苯及11.2克六甲基二矽氮烷(hexamethyldisilazane)混合均勻,並於120℃下攪拌1小時後,過濾乾燥。本實施例所得的含鈦氧化矽材料,其比表面積為353 m 2/g、孔體積為0.752 ml/g、平均孔徑為5.5 nm。 Preparation of titanium-containing silicon oxide material: The preparation method is the same as in Example 1, but the high specific surface area titanium-containing silicon oxide material obtained after the calcination process is taken 16.5 g for silylation. This titanium-containing silicon oxide material was uniformly mixed with 165 g of toluene and 11.2 g of hexamethyldisilazane, stirred at 120°C for 1 hour, and then filtered and dried. The titanium-containing silicon oxide material obtained in this embodiment has a specific surface area of 353 m 2 /g, a pore volume of 0.752 ml/g, and an average pore diameter of 5.5 nm.
製備環氧丙烷:製備方式與實施例三相同,但所使用之觸媒改為實施例四所製得的含鈦氧化矽材料。反應結果如表一所示。Preparation of propylene oxide: The preparation method is the same as in Example 3, but the catalyst used is changed to the titanium-containing silicon oxide material prepared in Example 4. The reaction results are shown in Table 1.
表一
實施例一與實施例二顯示本發明利用生物聚合物所製備的含鈦氧化矽材料可利用煅燒程序或是萃取程序將生物聚合物從材料中移除。表一顯示,實施例三顯示本發明利用生物聚合物所製備的含鈦氧化矽材料對於催化烯烴類化合物的環氧化反應具有傑出的催化活性;實施例四顯示本發明利用生物聚合物所製備的含鈦氧化矽材料經過矽烷化後,可大幅提升其對催化烯烴類化合物進行環氧化反應的催化活性。Example 1 and Example 2 show that the titanium-containing silicon oxide material prepared by the biopolymer of the present invention can be removed from the material by a calcination process or an extraction process. Table 1 shows that Example 3 shows that the titanium-containing silicon oxide material prepared by using biopolymers of the present invention has outstanding catalytic activity for catalyzing the epoxidation reaction of olefin compounds; Example 4 shows that the present invention is prepared by using biopolymers. After the titanium-containing silicon oxide material is silanized, its catalytic activity for catalyzing the epoxidation of olefin compounds can be greatly improved.
總的來說,根據本發明的含鈦氧化矽材料的製備方法及應用,可利用對環境友善的生物聚合物作為模板劑,使用一般簡易的模板法即可製備出具有高比表面積的含鈦氧化矽材料,而所製得的含鈦氧化矽材料具有高的催化活性,可進一步作為觸媒,成功催化烯烴類化合物的環氧化反應。In general, according to the preparation method and application of the titanium-containing silicon oxide material of the present invention, an environmentally friendly biopolymer can be used as a template, and a generally simple template method can be used to prepare a titanium-containing material with a high specific surface area. Silicon oxide material, and the prepared titanium-containing silicon oxide material has high catalytic activity and can be further used as a catalyst to successfully catalyze the epoxidation reaction of olefin compounds.
唯以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍。故即凡依本發明申請範圍所述之特徵及精神所為之均等變化或修飾,均應包括於本發明之申請專利範圍內。Only the above are only preferred embodiments of the present invention, and are not used to limit the scope of implementation of the present invention. Therefore, all equivalent changes or modifications made in accordance with the characteristics and spirit of the application scope of the present invention shall be included in the patent application scope of the present invention.
無no
第1圖為本發明所提供之一種含鈦氧化矽材料的製備方法的流程圖。 第2圖為本發明所提供之一種環氧化物的製備方法的流程圖。Figure 1 is a flow chart of a method for preparing a titanium-containing silicon oxide material provided by the present invention. Figure 2 is a flow chart of an epoxide preparation method provided by the present invention.
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108109910A TWI698398B (en) | 2019-03-22 | 2019-03-22 | Method and application of synthesizing titanium-containing silicon oxide material using biopolymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108109910A TWI698398B (en) | 2019-03-22 | 2019-03-22 | Method and application of synthesizing titanium-containing silicon oxide material using biopolymer |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI698398B true TWI698398B (en) | 2020-07-11 |
TW202035289A TW202035289A (en) | 2020-10-01 |
Family
ID=72603232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108109910A TWI698398B (en) | 2019-03-22 | 2019-03-22 | Method and application of synthesizing titanium-containing silicon oxide material using biopolymer |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI698398B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101115561A (en) * | 2004-12-06 | 2008-01-30 | 住友化学株式会社 | Method for manufacturing titanium-containing silicon oxide catalyst and catalyst |
CN102600820A (en) * | 2004-12-06 | 2012-07-25 | 住友化学株式会社 | Process for producing titanium-containing silicon oxide catalyst, the catalyst, and process for producing olefin compound with the catalyst |
TWI594951B (en) * | 2016-06-14 | 2017-08-11 | Preparation and Application of Titanium Oxide - containing Materials | |
TWI628146B (en) * | 2016-11-28 | 2018-07-01 | 東聯化學股份有限公司 | Preparation method and application of titanium-containing cerium oxide material with high thermal stability |
-
2019
- 2019-03-22 TW TW108109910A patent/TWI698398B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101115561A (en) * | 2004-12-06 | 2008-01-30 | 住友化学株式会社 | Method for manufacturing titanium-containing silicon oxide catalyst and catalyst |
CN102600820A (en) * | 2004-12-06 | 2012-07-25 | 住友化学株式会社 | Process for producing titanium-containing silicon oxide catalyst, the catalyst, and process for producing olefin compound with the catalyst |
TWI594951B (en) * | 2016-06-14 | 2017-08-11 | Preparation and Application of Titanium Oxide - containing Materials | |
TWI628146B (en) * | 2016-11-28 | 2018-07-01 | 東聯化學股份有限公司 | Preparation method and application of titanium-containing cerium oxide material with high thermal stability |
Also Published As
Publication number | Publication date |
---|---|
TW202035289A (en) | 2020-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6783182B2 (en) | A method for producing a titanium-containing silica material having high thermal stability, and a method for producing an epoxidized product. | |
EP0734764B1 (en) | Catalyst and process for producing oxirane compounds | |
US6843978B2 (en) | Microporous materials (TIQ-6 and METIQ-6) of high surface area active in oxidation reactions | |
JP5978887B2 (en) | Propylene and linear butene production method | |
US10493430B2 (en) | Method for fabricating a titanium-containing silicon oxide material with high thermal stability and applications of the same | |
CN111017946B (en) | Preparation method of titanium-containing molecular sieve for olefin epoxidation process | |
US7875570B2 (en) | Process for producing titanium-containing silicon oxide catalyst, the catalyst, and process for producing olefin compound with the catalyst | |
EP1252928B1 (en) | Molded catalyst, process for producing the molded catalyst, and process for producing oxirane compound | |
US8664412B2 (en) | Epoxidation process | |
TWI698398B (en) | Method and application of synthesizing titanium-containing silicon oxide material using biopolymer | |
JP6734420B1 (en) | Method for synthesizing titanium-containing silica material utilizing biopolymer and use thereof | |
US10780431B1 (en) | Method of using biopolymer to synthesize titanium-containing silicon oxide material and applications thereof | |
TWI594951B (en) | Preparation and Application of Titanium Oxide - containing Materials | |
AU2004253299A1 (en) | Catalyst preparation | |
US10011575B2 (en) | Method for fabricating titanium-containing silicon oxide material and application of the same | |
WO2006098421A1 (en) | Method for storing titanium-containing silicon oxide catalyst | |
CN107552031B (en) | Preparation method and application of titanium-containing silicon oxide material | |
JP4399913B2 (en) | Method for producing oxirane compound | |
EP3228384A1 (en) | Catalyst and preparation method thereof, and method for preparing isobutylene by applying the same | |
JP2000107605A (en) | Titanium-containing silicon oxide catalyst, production of the catalyst and production of propylene oxide | |
CN112221537B (en) | Using white carbon black and TiCl4Method for preparing high-activity propylene and hydrogen peroxide gas phase epoxidation catalyst by gas-solid phase reaction | |
CN112246278B (en) | Using white carbon black and TiCl4Method for preparing high-selectivity propylene and hydrogen peroxide gas phase epoxidation catalyst by gas-solid phase reaction | |
US7294727B2 (en) | Catalyst preparation | |
CN108262030A (en) | The preparation method and application of titanium-containing silicon oxide material with high thermal stability | |
TW202346272A (en) | Method for producing titanium-containing silicon oxide, method for producing epoxide, and titanium-containing silicon oxide |