TWI697747B - Control method and testing method for micro-electro-mechanical systems device - Google Patents

Control method and testing method for micro-electro-mechanical systems device Download PDF

Info

Publication number
TWI697747B
TWI697747B TW108101511A TW108101511A TWI697747B TW I697747 B TWI697747 B TW I697747B TW 108101511 A TW108101511 A TW 108101511A TW 108101511 A TW108101511 A TW 108101511A TW I697747 B TWI697747 B TW I697747B
Authority
TW
Taiwan
Prior art keywords
electrode
state
signal
time interval
mems device
Prior art date
Application number
TW108101511A
Other languages
Chinese (zh)
Other versions
TW202028896A (en
Inventor
妮娜 阿維納什 吉爾達
蔡連堯
寶華 牛
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Priority to TW108101511A priority Critical patent/TWI697747B/en
Application granted granted Critical
Publication of TWI697747B publication Critical patent/TWI697747B/en
Publication of TW202028896A publication Critical patent/TW202028896A/en

Links

Images

Landscapes

  • Micromachines (AREA)

Abstract

A control method for MEMS device is provided. The MEMS device includes a first electrode and a second electrode. The control method includes the following operations. A starting signal is provided. The starting signal has a ramp-up stage and a ramp-down stage. The ramp-up stage is applied to the MEMS device to move the first electrode to form a power on state with the second electrode. The ramp-down stage is applied to the MEMS device. The first electrode and the second electrode are maintained at the power on state. A shutdown signal is provided. The shutdown signal is applied to the MEMS device to change the first electrode and the second electrode from the power on state to the shutdown state. A testing method for MEMS device is also provided.

Description

微機電系統裝置之控制方法及測試方法Control method and test method of MEMS device

本揭露是有關於一種微機電系統裝置,特別是有關於一種微機電系統裝置之控制方法及測試方法。This disclosure relates to a micro-electro-mechanical system device, in particular to a control method and a test method of the micro-electro-mechanical system device.

對於許多現代應用而言,涉及半導體裝置的電子設備是很重要的。材料與設計的技術進展已經產生數代半導體裝置,每一代都比前一代具有更小且更複雜的電路。在進步與創新的過程中,通常會增加功能性設計(亦即每一晶片面積上的互連裝置之數目)而降低幾何尺寸(亦即使用製造製程可產生的最小元件)。此進展已增加處理與製造半導體裝置的複雜度。近來,已發展微機電系統(micro-electro mechanical system,MEMS)裝置,並且亦通常與電子設備有關。MEMS裝置係微尺寸裝置,通常為小於1微米至數毫米的範圍。MEMS裝置包含使用半導體材料的製造以形成機械與電性特徵。MEMS裝置可包含一些元件(例如靜態或可動元件),用於達到電機功能性。MEMS裝置廣泛使用於各種應用中。MEMS應用包含運動感測器、壓力感測器、印刷噴嘴、或類似物。其他的MEMD應用包含慣性感測器,例如用於量測線性加速度的加速度計,以及用於量測角速度的陀螺儀(gyroscope)。再者,MEMS應用延伸至光學應用,例如可動的反射鏡,以及無線射頻(radio frequency,RF)應用,例如RF開關或類似物。For many modern applications, electronic equipment involving semiconductor devices is very important. Technological advances in materials and design have produced generations of semiconductor devices, each with smaller and more complex circuits than the previous generation. In the process of progress and innovation, it is common to increase the functional design (that is, the number of interconnected devices per chip area) and reduce the geometric size (that is, the smallest component that can be produced using a manufacturing process). This progress has increased the complexity of processing and manufacturing semiconductor devices. Recently, micro-electro mechanical system (MEMS) devices have been developed, and they are also generally related to electronic equipment. MEMS devices are micro-sized devices, usually in the range of less than 1 micron to several millimeters. MEMS devices include manufacturing using semiconductor materials to form mechanical and electrical features. The MEMS device may include some elements (such as static or movable elements) to achieve motor functionality. MEMS devices are widely used in various applications. MEMS applications include motion sensors, pressure sensors, printing nozzles, or the like. Other MEMD applications include inertial sensors, such as accelerometers for measuring linear acceleration, and gyroscopes for measuring angular velocity. Furthermore, MEMS applications extend to optical applications, such as movable mirrors, and radio frequency (RF) applications, such as RF switches or the like.

本揭露的一實施例係關於一種微機電系統裝置的控制方法,該微機電系統裝置包含一第一電極及一第二電極,該方法包括:提供一開啟訊號,其中該開啟訊號具有一上升區段及一下降區段;施加該上升區段至該微機電系統裝置,使該第一電極移動以與該第二電極形成一開啟狀態;施加該下降區段至該微機電系統裝置,該第一電極與該第二電極維持在該開啟狀態;提供一關閉訊號;施加該關閉訊號至該微機電系統裝置,使該第一電極與該第二電極由該開啟狀態變為一關閉狀態。An embodiment of the present disclosure relates to a control method of a micro-electro-mechanical system device, the micro-electro-mechanical system device includes a first electrode and a second electrode, the method includes: providing a turn-on signal, wherein the turn-on signal has a rising area Section and a descending section; applying the ascending section to the MEMS device, so that the first electrode moves to form an open state with the second electrode; applying the descending section to the MEMS device, the first An electrode and the second electrode are maintained in the open state; an off signal is provided; the off signal is applied to the microelectromechanical system device, so that the first electrode and the second electrode change from the open state to an off state.

本揭露的另一實施例係關於一種微機電系統裝置的控制方法,該微機電系統裝置包含一第一電極及一第二電極,該方法包括:在一第一時間間隔,施加一正電流,使該第一電極移動以與該第二電極形成一開啟狀態;在一第二時間間隔,施加一負電流,使該第一電極與該第二電極維持在該開啟狀態;在一第三時間間隔,施加一關閉訊號,使該第一電極與該第二電極由該開啟狀態變為一關閉狀態。Another embodiment of the present disclosure relates to a method for controlling a MEMS device. The MEMS device includes a first electrode and a second electrode. The method includes: applying a positive current at a first time interval, Move the first electrode to form an open state with the second electrode; apply a negative current at a second time interval to maintain the first electrode and the second electrode in the open state; a third time At intervals, an off signal is applied to make the first electrode and the second electrode change from the open state to a closed state.

本揭露的另一實施例係關於一種微機電系統裝置的測試方法,該方法包括:提供該微機電系統裝置,其包含一第一電極及一第二電極;在一第一時間間隔,施加一正電流至該微機電系統裝置,使該第一電極移動以與該第二電極形成一開啟狀態;在一第二時間間隔,施加一負電流至該微機電系統裝置,使該第一電極與該第二電極維持在該開啟狀態;在一第三時間間隔,施加一關閉訊號至該微機電系統裝置,使該第一電極與該第二電極由該開啟狀態變為一關閉狀態。Another embodiment of the present disclosure relates to a method for testing a MEMS device. The method includes: providing the MEMS device, which includes a first electrode and a second electrode; and applying a A positive current is applied to the MEMS device to move the first electrode to form an open state with the second electrode; a negative current is applied to the MEMS device at a second time interval to make the first electrode and The second electrode is maintained in the open state; in a third time interval, an off signal is applied to the MEMS device, so that the first electrode and the second electrode change from the open state to an off state.

以下揭露提供用於實施所提供標的物之不同特徵之許多不同實施例或實例。下文描述組件及配置之特定實例以簡化本揭露。此等僅為實例且不意欲為限制性的。例如,在下文描述中,一第一構件形成於一第二構件上方或上可包含其中第一構件及第二構件形成為直接接觸之實施例,且亦可包含其中額外構件可形成於第一構件與第二構件之間使得第一構件及第二構件可能未直接接觸之實施例。另外,本揭露可在各種實例中重複元件符號及/或字母。此重複係為簡單及清楚之目的,且本身不指定所論述之各種實施例及/或組態之間之一關係。The following disclosure provides many different embodiments or examples for implementing different features of the provided subject matter. Specific examples of components and configurations are described below to simplify the disclosure. These are only examples and are not intended to be limiting. For example, in the following description, a first member formed on or on a second member may include an embodiment in which the first member and the second member are formed in direct contact, and may also include an additional member formed on the first member. An embodiment in which the first member and the second member may not be in direct contact between the member and the second member. In addition, the present disclosure may repeat element symbols and/or letters in various examples. This repetition is for the purpose of simplicity and clarity, and does not itself specify one of the relationships between the various embodiments and/or configurations discussed.

下文詳細論述本揭露之實施例。然而,應暸解,本揭露提供可在各種各樣的特定背景內容中體現之許多適用發明概念。所論述之特定實施例僅為闡釋性的,且不限制本揭露之範疇。The embodiments of the present disclosure are discussed in detail below. However, it should be understood that this disclosure provides many applicable inventive concepts that can be embodied in a variety of specific background content. The specific embodiments discussed are only illustrative and do not limit the scope of this disclosure.

此外,為便於描述,可在本文中使用空間相對術語(諸如「底下」、「下方」、「下」、「上方」、「上」、「下」、「左」、「右」及類似者)來描述一個元件或構件與另一(些)元件或構件之關係,如圖中所繪示。除圖中所描繪之定向之外,空間相對術語亦意欲涵蓋裝置在使用或操作中之不同定向。裝置可以其他方式定向(旋轉90度或成其他定向),且因此可同樣解釋本文中使用之空間相對描述符。將暸解,當一元件被稱作「連接至」或「耦合至」另一元件時,其可直接連接或耦合至另一元件,或可存在中介元件。In addition, for ease of description, spatially relative terms (such as "bottom", "below", "down", "above", "up", "down", "left", "right" and the like can be used in this text ) To describe the relationship between one element or component and another element or component(s), as shown in the figure. In addition to the orientations depicted in the figures, spatially relative terms are also intended to cover different orientations of the device in use or operation. The device can be oriented in other ways (rotated by 90 degrees or in other orientations), and therefore the spatial relative descriptors used in this article can also be interpreted. It will be understood that when an element is referred to as being “connected to” or “coupled to” another element, it can be directly connected or coupled to the other element, or intervening elements may be present.

由於微機電系統(micro-electro mechanical system,MEMS)裝置廣泛用於各種應用中,通常需要一個MEMS裝置的結構可容納超過一種形式的MEMS功能。例如,單一MEMS架構可包含加速度計與陀螺儀。關於此等MEMS裝置,最終產物經製造成為複合晶片,並且以縮小的晶粒尺寸執行功能。Since micro-electro mechanical system (MEMS) devices are widely used in various applications, it is usually necessary for a MEMS device structure to accommodate more than one form of MEMS function. For example, a single MEMS architecture can include an accelerometer and a gyroscope. Regarding these MEMS devices, the final product is manufactured into a composite wafer and performs functions with reduced grain size.

另一方面,在MEMS裝置中所觀察到之一種可靠度問題是黏附(stiction)或由於表面力之接觸表面的黏著。一般來說,黏附是需要被克服之靜摩擦力,為了使彼此接觸之靜止物體能夠進行相動運動。例如於MEMS裝置之中,當有面積位於公釐範圍以下之兩表面接近時,該兩表面會黏在一起,因而限制了MEMS裝置之可靠度。以此尺寸而言,MEMS裝置之主要失效原因是靜電的或由電荷引起的黏附。On the other hand, one of the reliability problems observed in MEMS devices is stiction or adhesion of contact surfaces due to surface forces. Generally speaking, adhesion is the static friction that needs to be overcome in order to enable the stationary objects in contact with each other to move together. For example, in a MEMS device, when two surfaces with an area below the millimeter range are close, the two surfaces will stick together, which limits the reliability of the MEMS device. In terms of this size, the main cause of failure of MEMS devices is electrostatic or adhesion caused by charges.

本揭露提供一種MEMS裝置控制方法與測試方法可減輕上述問題。圖1及圖2係根據一些實施例之MEMS裝置100之示意圖。MEMS裝置100包含一第一電極102及一第二電極104。在一些實施例中,MEMS裝置100還可以包含一第一基板101、一第二基板103及一介電層105。第一電極102與第一基板101連接,第二電極104與第二基板103連接,介電層105設置在第二電極104之上。需注意的是,為求清楚說明,圖1僅簡單表示MEMS裝置100的一部分結構,例如第一基板101僅顯示與第一電極102連接的部分,圖示之結構並非用以限制本揭露。The present disclosure provides a MEMS device control method and test method that can alleviate the above-mentioned problems. 1 and 2 are schematic diagrams of a MEMS device 100 according to some embodiments. The MEMS device 100 includes a first electrode 102 and a second electrode 104. In some embodiments, the MEMS device 100 may further include a first substrate 101, a second substrate 103 and a dielectric layer 105. The first electrode 102 is connected to the first substrate 101, the second electrode 104 is connected to the second substrate 103, and the dielectric layer 105 is disposed on the second electrode 104. It should be noted that, for clarity, FIG. 1 simply shows a part of the structure of the MEMS device 100. For example, the first substrate 101 only shows the part connected to the first electrode 102, and the structure shown in the figure is not intended to limit the disclosure.

第一基板101及/或第二基板103包含半導體材料,例如矽。在一些實施例中,第一基板101及/或第二基板103可包含其他半導體材料,例如矽鍺、碳化矽、砷化鎵、或類似物。在一些實施例中,第一基板101及/或第二基板103為p型半導體基板(受體型)或n型半導體基板(供應者型)。或者,第一基板101及/或第二基板103包含另一元素半導體,例如鍺;化合物半導體,包含碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦、與/或銻化銦;合金半導體,包含SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP與/或GaInAsP;或其組合。又或者,第一基板101及/或第二基板103為絕緣體上覆半導體。在一些實施例中,第一基板101的材料可與第二基板103的材料相同。The first substrate 101 and/or the second substrate 103 includes a semiconductor material, such as silicon. In some embodiments, the first substrate 101 and/or the second substrate 103 may include other semiconductor materials, such as silicon germanium, silicon carbide, gallium arsenide, or the like. In some embodiments, the first substrate 101 and/or the second substrate 103 is a p-type semiconductor substrate (acceptor type) or an n-type semiconductor substrate (supplier type). Alternatively, the first substrate 101 and/or the second substrate 103 includes another elemental semiconductor, such as germanium; compound semiconductors, including silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, indium arsenide, and/or antimony Indium; alloy semiconductor, including SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP and/or GaInAsP; or a combination thereof. Alternatively, the first substrate 101 and/or the second substrate 103 are semiconductor-on-insulators. In some embodiments, the material of the first substrate 101 may be the same as the material of the second substrate 103.

在一些實施例中,第一基板101可以接合至第二基板103。在某些實施例中,第一基板101是MEMS基板,而第二基板103是承載晶圓。相接合之第一基板101與第二基板103包含一可移動之MEMS區域,其係第一基板101與第二基板103之一區域,此區域上形成MEMS結構之可移動的特徵或部分,第一電極102與第二電極104的結構。In some embodiments, the first substrate 101 may be bonded to the second substrate 103. In some embodiments, the first substrate 101 is a MEMS substrate, and the second substrate 103 is a carrier wafer. The first substrate 101 and the second substrate 103 that are joined together include a movable MEMS area, which is an area of the first substrate 101 and the second substrate 103, and the movable feature or part of the MEMS structure is formed on this area. The structure of an electrode 102 and a second electrode 104.

第一電極102為可動電極(movable electrode)。在一些實施例中,第一電極102可由導體或半導體材料形成,第一電極102可包含多晶矽。在一些實施例中,第一電極102具導電性與電容性。在一些實施例中,第一電極102為可動的或可振動的元件。在另一些實施例中,第一電極102為可動膜(movable membrane)或隔膜(diaphragm)。在一些實施例中,第一電極102形成於第一基板101中。例如:可使用電漿蝕刻製程來蝕刻第一基板101,以形成第一電極102。The first electrode 102 is a movable electrode. In some embodiments, the first electrode 102 may be formed of a conductive or semiconductor material, and the first electrode 102 may include polysilicon. In some embodiments, the first electrode 102 is conductive and capacitive. In some embodiments, the first electrode 102 is a movable or vibrable element. In other embodiments, the first electrode 102 is a movable membrane or diaphragm. In some embodiments, the first electrode 102 is formed in the first substrate 101. For example, a plasma etching process can be used to etch the first substrate 101 to form the first electrode 102.

第二電極104可由導體形成。或者,第二電極104可由半導體材料形成。在一些實施例中,第二電極104可包含金屬,例如金、銀、鋁、鈦、銅、鎢、鎳、鈦、鉻、以及其合金、氧化物、或氮化物。The second electrode 104 may be formed of a conductor. Alternatively, the second electrode 104 may be formed of a semiconductor material. In some embodiments, the second electrode 104 may include metal, such as gold, silver, aluminum, titanium, copper, tungsten, nickel, titanium, chromium, and alloys, oxides, or nitrides thereof.

在某些實施例中,第一電極102相對於第二電極104的位移會造成第一電極102與第二電極104之間的電容變化。在一些實施例中,第一電極102經配置以捕捉其與第一基板101之間的凹槽中之氣體移動造成的阻抗變化。而後,電容或阻抗變化由連接第一電極102或第二電極104的電路譯為電子信號。在一些實施例中,產生的電子信號被傳送至另一裝置、另一基板、或另一電路,用於進一步處理。In some embodiments, the displacement of the first electrode 102 relative to the second electrode 104 will cause the capacitance between the first electrode 102 and the second electrode 104 to change. In some embodiments, the first electrode 102 is configured to capture impedance changes caused by gas movement in the groove between it and the first substrate 101. Then, the capacitance or impedance change is translated into an electronic signal by the circuit connected to the first electrode 102 or the second electrode 104. In some embodiments, the generated electronic signal is transmitted to another device, another substrate, or another circuit for further processing.

介電層105含有矽,或其氧化物。或者,介電層105含有氮化矽。在一些實施例中,介電層105包括介電材料,例如可為氧化物(例如Ge氧化物)、氮氧化物(例如GaP氮氧化物)、二氧化矽(SiO 2)、承氮氧化物(nitrogen-bearing oxide)(例如承氮SiO2)、摻氮氧化物(例如植入N 2的SiO 2)、矽氮氧化物(Si xO yN z)、以及類似物。 The dielectric layer 105 contains silicon, or its oxide. Alternatively, the dielectric layer 105 contains silicon nitride. In some embodiments, the dielectric layer 105 includes a dielectric material, such as oxide (such as Ge oxide), oxynitride (such as GaP oxynitride), silicon dioxide (SiO 2 ), oxynitride (nitrogen-bearing oxide) (for example, nitrogen-bearing SiO2), nitrogen-doped oxide (for example, N 2 implanted SiO 2 ), silicon oxynitride (Si x O y N z ), and the like.

在某些實施例中,響應控制訊號,可移動之第一電極102會與第二電極104彼此接近(如圖2所示),第一電極102再回復至其原始的結構(如圖1所示)。在一些實施例中,在第一電極102與第二電極104彼此接近之後,第一電極102可能附接至介電層105,並且靜止一段期間。In some embodiments, in response to the control signal, the movable first electrode 102 and the second electrode 104 are close to each other (as shown in FIG. 2), and the first electrode 102 returns to its original structure (as shown in FIG. 1). Show). In some embodiments, after the first electrode 102 and the second electrode 104 are close to each other, the first electrode 102 may be attached to the dielectric layer 105 and remain stationary for a period of time.

在一些現有的控制方法中,於第一電極102的靜止期間,由於控制訊號為定電壓的訊號,會使得電荷由第一電極102注入介電層105,進而引起黏附的問題。為了解決上述問題,在本揭露的一些實施例中,提供一種MEMS裝置的控制方法。In some existing control methods, during the static period of the first electrode 102, since the control signal is a signal of a constant voltage, charges will be injected from the first electrode 102 into the dielectric layer 105, thereby causing adhesion problems. In order to solve the above-mentioned problems, in some embodiments of the present disclosure, a control method of a MEMS device is provided.

圖3係根據一些實施例之MEMS裝置的控制訊號序列200之示意圖。控制訊號序列200具有開啟訊號300及關閉訊號400。在某些實施例中,開啟訊號300具有上升區段302及下降區段304。上升區段302及下降區段304例如是交替地產生,且上升區段302及下降區段304的數量並非限制性。FIG. 3 is a schematic diagram of a control signal sequence 200 of a MEMS device according to some embodiments. The control signal sequence 200 has an opening signal 300 and a closing signal 400. In some embodiments, the turn-on signal 300 has a rising section 302 and a falling section 304. The rising section 302 and the falling section 304 are alternately generated, for example, and the number of the rising section 302 and the falling section 304 is not limited.

在一些實施例中,上升區段302例如為正電流,在第一時間間隔T1,施加上升區段302至MEMS裝置100會使第一電極102移動以與第二電極104形成開啟狀態(如圖2所示)。於此,開啟狀態係指第一電極102與第二電極104彼此接近至第一位置以形成電性連接。在一些實施例中,可移動的第一電極102會附接至介電層105,並與第二電極104接近形成電性連接。由於第一電極102與第二電極104電性連接,因此第一電極102與第二電極104形成開啟狀態。In some embodiments, the rising section 302 is, for example, a positive current. In the first time interval T1, applying the rising section 302 to the MEMS device 100 causes the first electrode 102 to move to form an open state with the second electrode 104 (as shown in FIG. 2 shown). Here, the open state means that the first electrode 102 and the second electrode 104 are close to each other to the first position to form an electrical connection. In some embodiments, the movable first electrode 102 is attached to the dielectric layer 105 and is close to the second electrode 104 to form an electrical connection. Since the first electrode 102 and the second electrode 104 are electrically connected, the first electrode 102 and the second electrode 104 are in an open state.

在一些實施例中,下降區段304例如為負電流,在第二時間間隔T2,施加下降區段304至MEMS裝置100。由於第一電極102與第二電極104之間的靜電作用力是與電壓的平方成正比,在固定電阻的情況下,電壓亦會與電流成正比,因此第一電極102與第二電極104之間的靜電作用力亦會與電流的平方成正比。換言之,即使下降區段304為負電流,第一電極102與第二電極104仍會彼此接近形成電性連接。因此,第一電極102仍會附接於介電層105,並與第二電極104形成電性連接,維持開啟狀態。In some embodiments, the falling section 304 is, for example, a negative current, and the falling section 304 is applied to the MEMS device 100 during the second time interval T2. Since the electrostatic force between the first electrode 102 and the second electrode 104 is proportional to the square of the voltage, in the case of a fixed resistance, the voltage will also be proportional to the current, so the first electrode 102 and the second electrode 104 The electrostatic force between them will also be proportional to the square of the current. In other words, even if the falling section 304 has a negative current, the first electrode 102 and the second electrode 104 will still approach each other to form an electrical connection. Therefore, the first electrode 102 is still attached to the dielectric layer 105 and is electrically connected to the second electrode 104 to maintain the on state.

值得一提的是,上升區段302及下降區段304的數量並非限制性,例如於本實施例中,以三個上升區段302及三個下降區段304做說明,但其非限制性。其中,正電流(上升區段302)與負電流(下降區段304)可以是依序地產生。換言之,正電流之後產生負電流,負電流之後產生正電流。It is worth mentioning that the number of ascending sections 302 and descending sections 304 is not limited. For example, in this embodiment, three ascending sections 302 and three descending sections 304 are used for illustration, but they are not limiting. . Among them, the positive current (rising section 302) and negative current (falling section 304) can be generated sequentially. In other words, a negative current is generated after a positive current, and a positive current is generated after a negative current.

因此,藉由在開啟訊號300中調變改變電流的正負流向,可以避免如固定電壓的訊號會促使電荷由第一電極102注入介電層105,進而產生黏附的問題。Therefore, by adjusting the positive and negative flow direction of the current in the turn-on signal 300, it is possible to avoid the problem of adhesion caused by the signal of a fixed voltage that will cause charges to be injected from the first electrode 102 into the dielectric layer 105.

在一些實施例中,在開啟訊號300之後,可以提供關閉訊號400。在第三時間間隔T3,關閉訊號400施加至MEMS裝置100,使第一電極102與第二電極104由開啟狀態變為關閉狀態(如圖1所示)。於此,關閉狀態係指第一電極102與第二電極104彼此遠離至第二位置以形成電性不連接。在一些實施例中,可移動的第一電極102會遠離介電層105,並與第二電極104形成電性不連接。換言之,第一電極102會回復至其原始的平直結構。In some embodiments, after the turn-on signal 300, the turn-off signal 400 may be provided. In the third time interval T3, the turn-off signal 400 is applied to the MEMS device 100, which causes the first electrode 102 and the second electrode 104 to change from the on state to the off state (as shown in FIG. 1). Here, the closed state means that the first electrode 102 and the second electrode 104 are far away from each other to a second position to form an electrical disconnection. In some embodiments, the movable first electrode 102 is far away from the dielectric layer 105 and is electrically disconnected from the second electrode 104. In other words, the first electrode 102 will return to its original straight structure.

承上所述,藉由在開啟訊號300中調變電流的正負流向,例如使用交流電訊號,可以減少電荷由第一電極102注入介電層105,進而減少黏附的問題。再者,開啟訊號300中上升區段302與下降區段304的時間間隔(例如,第一時間間隔T1或第二時間間隔T2)皆小於第一電極102回復至原始狀態所需時間間隔(例如,第三時間間隔T3),因此開啟訊號300中的調變並不會使第一電極102與第二電極104由開啟狀態變為關閉狀態。也就是說,開啟訊號300中調變的電性延遲(electrical delay)係小於第一電極102改變狀態的機械性延遲(mechanical delay),因此開啟訊號300中的調變不會對MEMS裝置的控制產生影響,且可減輕第一電極102與第二電極104黏附的問題。As mentioned above, by modulating the positive and negative flow direction of the current in the turn-on signal 300, for example, using an alternating current signal, the injection of charges from the first electrode 102 into the dielectric layer 105 can be reduced, thereby reducing adhesion problems. Furthermore, the time interval between the rising section 302 and the falling section 304 in the turn-on signal 300 (for example, the first time interval T1 or the second time interval T2) is less than the time interval required for the first electrode 102 to return to the original state (for example , The third time interval T3), therefore, the modulation in the turn-on signal 300 does not cause the first electrode 102 and the second electrode 104 to change from the on state to the off state. In other words, the electrical delay of the modulation in the turn-on signal 300 is less than the mechanical delay of the first electrode 102 changing state, so the modulation in the turn-on signal 300 will not control the MEMS device This has an impact and can alleviate the problem of adhesion between the first electrode 102 and the second electrode 104.

圖4及圖5係根據另一些實施例之MEMS裝置400之示意圖。MEMS裝置400包含第一電極402及第二電極404。MEMS裝置400與圖1、圖2之MEMS裝置100的差異在於:MEMS裝置400包含第一基板401及第二基板403,但不包含介電層。第一電極402與第二電極404之間例如為間隙405。關於第一電極402、第二電極404、第一基板401及第二基板403的組成已於圖1、圖2中詳述,於此不再贅述。4 and 5 are schematic diagrams of a MEMS device 400 according to other embodiments. The MEMS device 400 includes a first electrode 402 and a second electrode 404. The difference between the MEMS device 400 and the MEMS device 100 of FIGS. 1 and 2 is that the MEMS device 400 includes a first substrate 401 and a second substrate 403, but does not include a dielectric layer. A gap 405 is formed between the first electrode 402 and the second electrode 404, for example. The composition of the first electrode 402, the second electrode 404, the first substrate 401, and the second substrate 403 has been described in detail in FIGS. 1 and 2 and will not be repeated here.

如上所述,響應控制訊號,可移動之第一電極402會與第二電極404彼此接近至第一位置(如圖5所示),第一電極402再回復至其原始的結構(如圖4所示)。在一些實施例中,在第一電極402與第二電極404彼此接近之後,第一電極402與第二電極404之間仍具有間隙405,第一電極402可能會靜止一段期間。As described above, in response to the control signal, the movable first electrode 402 and the second electrode 404 will approach each other to the first position (as shown in FIG. 5), and the first electrode 402 will return to its original structure (as shown in FIG. 4). Shown). In some embodiments, after the first electrode 402 and the second electrode 404 approach each other, there is still a gap 405 between the first electrode 402 and the second electrode 404, and the first electrode 402 may be stationary for a period of time.

在一些現有的控制方法中,於第一電極402的靜止期間,由於控制訊號為固定電壓的訊號,會使得電荷游離產生靜電作用力,進而引起黏附的問題。因此,本揭露如圖3所述的實施例同樣可解決上述問題。In some existing control methods, during the static period of the first electrode 402, since the control signal is a signal of a fixed voltage, the charge will dissociate and generate electrostatic force, which will cause adhesion problems. Therefore, the embodiment shown in FIG. 3 can also solve the above-mentioned problems.

同上於圖3所述,藉由在開啟訊號300中調變改變電流的正負流向,可以避免如固定電壓的訊號會促使電荷由第一電極402游離,進而產生黏附的問題。As described above in FIG. 3, by modulating the positive and negative flow direction of the current in the turn-on signal 300, it is possible to avoid the problem of adhesion caused by the signal of a fixed voltage causing the charge to dissociate from the first electrode 402.

承上所述,藉由在開啟訊號300中調變電流的正負流向,例如使用交流電訊號,可以減少電荷由第一電極402游離產生靜電作用力,進而減少黏附的問題。再者,開啟訊號300中上升區段302與下降區段304的時間間隔(例如,第一時間間隔T1或第二時間間隔T2)皆小於第一電極402回復至原始狀態所需時間間隔(例如,第三時間間隔T3),因此開啟訊號300中的調變並不會使第一電極402與第二電極404由開啟狀態變為關閉狀態。換言之,開啟訊號300中調變的電性延遲係小於第一電極402改變狀態的機械性延遲,因此開啟訊號300中的調變不會對MEMS裝置的控制產生影響,且可減輕第一電極402與第二電極404黏附的問題。As mentioned above, by modulating the positive and negative flow direction of the current in the turn-on signal 300, such as using an alternating current signal, the electrostatic force generated by the dissociation of the charge from the first electrode 402 can be reduced, thereby reducing the problem of adhesion. Furthermore, the time interval between the rising section 302 and the falling section 304 in the turn-on signal 300 (for example, the first time interval T1 or the second time interval T2) is less than the time interval required for the first electrode 402 to return to the original state (for example , The third time interval T3), so the modulation in the turn-on signal 300 does not cause the first electrode 402 and the second electrode 404 to change from the on state to the off state. In other words, the electrical delay of the modulation in the turn-on signal 300 is smaller than the mechanical delay of the first electrode 402 changing state. Therefore, the modulation in the turn-on signal 300 does not affect the control of the MEMS device, and can reduce the first electrode 402. The problem of adhesion to the second electrode 404.

圖6係繪示根據本揭露之一些實施例之MEMS裝置的控制方法600之一流程圖。如圖6中所示,控制方法600具有操作602、操作604、操作606及操作610。操作602係提供一開啟訊號,其中開啟訊號具有一上升區段及一下降區段。操作604係施加上升區段至微機電系統裝置,使第一電極移動以與第二電極形成一開啟狀態。操作606係施加下降區段至微機電系統裝置,第一電極與第二電極維持在開啟狀態。操作608係提供一關閉訊號。操作610係施加關閉訊號至微機電系統裝置,使第一電極與第二電極由開啟狀態變為一關閉狀態。由於MEMS裝置的控制方法600已於圖1、圖2、圖3、圖4及圖5中詳述,於此不再贅述。需注意的是,本實施例可於方法600之前、期間和之後增加額外之操作。FIG. 6 shows a flowchart of a control method 600 of a MEMS device according to some embodiments of the disclosure. As shown in FIG. 6, the control method 600 has an operation 602, an operation 604, an operation 606, and an operation 610. Operation 602 provides an opening signal, wherein the opening signal has a rising section and a falling section. Operation 604 is to apply the rising section to the MEMS device to move the first electrode to form an open state with the second electrode. Operation 606 is to apply the descending section to the MEMS device, and the first electrode and the second electrode are maintained in an on state. Operation 608 provides a shutdown signal. Operation 610 is to apply an off signal to the MEMS device, so that the first electrode and the second electrode change from an open state to a closed state. Since the control method 600 of the MEMS device has been described in detail in FIGS. 1, 2, 3, 4, and 5, it will not be repeated here. It should be noted that this embodiment can add additional operations before, during, and after the method 600.

圖7係繪示根據本揭露之另一些實施例之MEMS裝置的控制方法700之一流程圖。如圖7中所示,控制方法700具有操作702、操作704及操作706。操作702係在一第一時間間隔,施加一正電流,使第一電極移動以與第二電極形成一開啟狀態。操作704係在一第二時間間隔,施加一負電流,使第一電極與第二電極維持在開啟狀態。操作706係在一第三時間間隔,施加一關閉訊號,使第一電極與第二電極由開啟狀態變為一關閉狀態。由於MEMS裝置的控制方法700已於圖1、圖2、圖3、圖4及圖5中詳述,於此不再贅述。需注意的是,本實施例可於方法700之前、期間和之後增加額外之操作。FIG. 7 shows a flowchart of a control method 700 of a MEMS device according to other embodiments of the present disclosure. As shown in FIG. 7, the control method 700 has an operation 702, an operation 704, and an operation 706. Operation 702 is to apply a positive current at a first time interval to move the first electrode to form an open state with the second electrode. Operation 704 is to apply a negative current at a second time interval to maintain the first electrode and the second electrode in the on state. Operation 706 is to apply an off signal at a third time interval to change the first electrode and the second electrode from an on state to an off state. Since the control method 700 of the MEMS device has been described in detail in FIGS. 1, 2, 3, 4, and 5, it will not be repeated here. It should be noted that this embodiment can add additional operations before, during, and after the method 700.

圖8係繪示根據本揭露之一些實施例之MEMS裝置的測試方法800之一流程圖。如圖8中所示,測試方法800具有操作802、操作804、操作806及操作810。操作802係提供微機電系統裝置,其包含一第一電極及一第二電極。操作804係係在一第一時間間隔,施加一正電流,使第一電極移動以與第二電極形成一開啟狀態。操作806係在一第二時間間隔,施加一負電流,使第一電極與第二電極維持在開啟狀態。操作808係在一第三時間間隔,施加一關閉訊號,使第一電極與第二電極由開啟狀態變為一關閉狀態。MEMS裝置的測試方法800可以藉由類似於上述控制方法600、700的方式,對MEMS裝置進行測試,以判斷第一電極及第二電極是否有黏附的問題。由於控制方法600、700已於圖1、圖2、圖3、圖4及圖5中詳述,於此不再贅述。需注意的是,本實施例可於方法800之前、期間和之後增加額外之操作。FIG. 8 is a flowchart of a method 800 for testing a MEMS device according to some embodiments of the disclosure. As shown in FIG. 8, the testing method 800 has operations 802, 804, 806, and 810. Operation 802 is to provide a MEMS device, which includes a first electrode and a second electrode. Operation 804 is to apply a positive current at a first time interval to move the first electrode to form an open state with the second electrode. Operation 806 is to apply a negative current at a second time interval to maintain the first electrode and the second electrode in the on state. Operation 808 is to apply an off signal at a third time interval to change the first electrode and the second electrode from an on state to an off state. The MEMS device testing method 800 can test the MEMS device in a manner similar to the above-mentioned control methods 600 and 700 to determine whether the first electrode and the second electrode have adhesion problems. Since the control methods 600 and 700 have been described in detail in FIGS. 1, 2, 3, 4, and 5, they will not be repeated here. It should be noted that this embodiment can add additional operations before, during, and after the method 800.

綜上所述,藉由在開啟訊號中調變電流的正負流向,例如使用交流電訊號,可以減少電荷由第一電極注入介電層或者由第一電極游離產生靜電作用力,進而減少黏附的問題。再者,開啟訊號中上升區段與下降區段的時間間隔(例如,第一時間間隔或第二時間間隔)皆小於第一電極回復至原始狀態所需時間間隔(例如,第三時間間隔),因此開啟訊號中的調變並不會使第一電極與第二電極由開啟狀態變為關閉狀態。換言之,開啟訊號中調變的電性延遲係小於第一電極改變狀態的機械性延遲,因此開啟訊號中的調變不會對MEMS裝置的控制產生影響,且可減輕第一電極與第二電極黏附的問題。再者,於測試階段亦可先行判斷第一電極及第二電極是否有黏附的問題。In summary, by modulating the positive and negative current flow in the turn-on signal, such as using an AC signal, the charge injected from the first electrode into the dielectric layer or the electrostatic force generated by the first electrode can be reduced, thereby reducing adhesion problems . Furthermore, the time interval between the rising section and the falling section in the turn-on signal (for example, the first time interval or the second time interval) is less than the time interval required for the first electrode to return to the original state (for example, the third time interval) Therefore, the modulation in the turn-on signal does not cause the first electrode and the second electrode to change from the on state to the off state. In other words, the electrical delay of the modulation in the turn-on signal is less than the mechanical delay of the first electrode changing state, so the modulation in the turn-on signal will not affect the control of the MEMS device, and can reduce the first electrode and the second electrode The problem of adhesion. Furthermore, during the testing phase, it is also possible to determine whether the first electrode and the second electrode have adhesion problems.

在一些實施例中,提供一種微機電系統裝置的控制方法。微機電系統裝置包含一第一電極及一第二電極,控制方法包括以下操作。提供一開啟訊號,其中開啟訊號具有一上升區段及一下降區段。施加上升區段至微機電系統裝置,使第一電極移動以與第二電極形成一開啟狀態。施加下降區段至微機電系統裝置,第一電極與第二電極維持在開啟狀態。提供一關閉訊號。施加關閉訊號至微機電系統裝置,使第一電極與第二電極由開啟狀態變為一關閉狀態。In some embodiments, a method for controlling a MEMS device is provided. The MEMS device includes a first electrode and a second electrode, and the control method includes the following operations. An opening signal is provided, wherein the opening signal has a rising section and a falling section. Applying the rising section to the MEMS device to move the first electrode to form an open state with the second electrode. The descending section is applied to the MEMS device, and the first electrode and the second electrode are maintained in an on state. Provide a close signal. The off signal is applied to the micro-electromechanical system device to make the first electrode and the second electrode change from an open state to a closed state.

在另一些實施例中,提供一種微機電系統裝置的控制方法。微機電系統裝置包含一第一電極及一第二電極,控制方法包括以下操作。在一第一時間間隔,施加一正電流,使第一電極移動以與第二電極形成一開啟狀態。在一第二時間間隔,施加一負電流,使第一電極與第二電極維持在開啟狀態。在一第三時間間隔,施加一關閉訊號,使第一電極與第二電極由開啟狀態變為一關閉狀態。In some other embodiments, a method for controlling a MEMS device is provided. The MEMS device includes a first electrode and a second electrode, and the control method includes the following operations. In a first time interval, a positive current is applied to move the first electrode to form an open state with the second electrode. In a second time interval, a negative current is applied to maintain the first electrode and the second electrode in an on state. In a third time interval, an off signal is applied to make the first electrode and the second electrode change from an on state to an off state.

在另一些實施例中,提供一種微機電系統裝置的測試方法。測試方法包括以下操作。提供微機電系統裝置,其包含一第一電極及一第二電極。在一第一時間間隔,施加一正電流至微機電系統裝置,使第一電極移動以與第二電極形成一開啟狀態。在一第二時間間隔,施加一負電流至微機電系統裝置,使第一電極與第二電極維持在開啟狀態。在一第三時間間隔,施加一關閉訊號至微機電系統裝置,使第一電極與第二電極由開啟狀態變為一關閉狀態。In some other embodiments, a method for testing a MEMS device is provided. The test method includes the following operations. A MEMS device is provided, which includes a first electrode and a second electrode. In a first time interval, a positive current is applied to the MEMS device to move the first electrode to form an open state with the second electrode. During a second time interval, a negative current is applied to the MEMS device to maintain the first electrode and the second electrode in an on state. In a third time interval, an off signal is applied to the MEMS device, so that the first electrode and the second electrode change from an on state to an off state.

上文概括數個實施例之特徵,使得熟習此項技術者可更佳理解本揭露之態樣。熟習此項技術者應暸解,其等可容易使用本揭露作為設計或修改其他程序及結構之一基礎以實行本文中介紹之實施例之相同目的及/或達成相同優點。熟習此項技術者亦應認識到,此等等效構造不脫離本揭露之精神及範疇,且其等可在本文中作出各種改變、替換及更改而不脫離本揭露之精神及範疇。The features of several embodiments are summarized above, so that those familiar with the art can better understand the aspect of the disclosure. Those familiar with the technology should understand that they can easily use the present disclosure as a basis for designing or modifying other programs and structures to perform the same purpose and/or achieve the same advantages of the embodiments described herein. Those familiar with the technology should also realize that these equivalent structures do not depart from the spirit and scope of this disclosure, and various changes, substitutions and alterations can be made in this article without departing from the spirit and scope of this disclosure.

100、400:MEMS裝置100, 400: MEMS device

101、401:第一基板101, 401: first substrate

102、402:第一電極102, 402: first electrode

103、403:第二基板103, 403: second substrate

104、404:第二電極104, 404: second electrode

105:介電層105: Dielectric layer

200:控制訊號序列200: Control signal sequence

300:開啟訊號300: Turn on the signal

302:上升區段302: Ascending section

304:下降區段304: descending section

400:關閉訊號400: Turn off the signal

T1:第一時間間隔T1: the first time interval

T2:第二時間間隔T2: second time interval

T3:第三時間間隔T3: third time interval

600、700:控制方法600, 700: control method

602、604、606、608、610、702、704、706、802、804、806、808:操作602, 604, 606, 608, 610, 702, 704, 706, 802, 804, 806, 808: Operation

800:測試方法800: test method

在結合附圖閱讀時,自以下[實施方式]最佳理解本揭露之態樣。應注意,根據產業中之標準實踐,各種構件未按比例繪製。事實上,為清楚論述,各個構件之尺寸可任意增大或減小。 圖1及圖2係根據一些實施例之MEMS裝置之示意圖。 圖3係根據一些實施例之MEMS裝置的控制訊號序列之示意圖。 圖4及圖5係根據另一些實施例之MEMS裝置之示意圖。 圖6係繪示根據本揭露之一些實施例之MEMS裝置的控制方法之一流程圖。 圖7係繪示根據本揭露之另一些實施例之MEMS裝置的控制方法之一流程圖。 圖8係繪示根據本揭露之一些實施例之MEMS裝置的測試方法之一流程圖。 When reading in conjunction with the drawings, the aspect of this disclosure is best understood from the following [Embodiments]. It should be noted that according to standard practice in the industry, various components are not drawn to scale. In fact, for clear discussion, the size of each component can be increased or decreased arbitrarily. 1 and 2 are schematic diagrams of MEMS devices according to some embodiments. FIG. 3 is a schematic diagram of a control signal sequence of a MEMS device according to some embodiments. 4 and 5 are schematic diagrams of MEMS devices according to other embodiments. FIG. 6 is a flowchart showing a control method of a MEMS device according to some embodiments of the disclosure. FIG. 7 shows a flowchart of a control method of a MEMS device according to other embodiments of the disclosure. FIG. 8 shows a flowchart of a testing method of a MEMS device according to some embodiments of the disclosure.

600:控制方法 600: control method

602、604、606、608、610:操作 602, 604, 606, 608, 610: Operation

Claims (10)

一種微機電系統裝置的控制方法,該微機電系統裝置包含一第一電極及一第二電極,該方法包括:提供一開啟(ON)訊號,其中該開啟訊號具有一上升區段及一下降區段;施加該上升區段至該微機電系統裝置,使該第一電極移動以與該第二電極形成一開啟狀態;施加該下降區段至該微機電系統裝置,該第一電極與該第二電極維持在該開啟狀態;提供一關閉(OFF)訊號;以及施加該關閉訊號至該微機電系統裝置,使該第一電極與該第二電極由該開啟狀態變為一關閉狀態。 A control method of a microelectromechanical system device, the microelectromechanical system device comprising a first electrode and a second electrode, the method comprising: providing an ON signal, wherein the ON signal has a rising section and a falling section Section; applying the rising section to the MEMS device, so that the first electrode moves to form an open state with the second electrode; applying the falling section to the MEMS device, the first electrode and the first electrode The two electrodes are maintained in the open state; an OFF signal is provided; and the close signal is applied to the MEMS device, so that the first electrode and the second electrode change from the open state to an off state. 如請求項1所述之控制方法,其中該開啟訊號中從該上升區段調變至該下降區段的電性延遲(electrical delay)係小於該第一電極從該開啟狀態改變至該關閉狀態的機械性延遲(mechanical delay)。 The control method according to claim 1, wherein the electrical delay of the turn-on signal from the rising section to the falling section is less than the change of the first electrode from the on state to the off state The mechanical delay (mechanical delay). 如請求項2所述之控制方法,其中該開啟訊號包括複數個上升區段及複數個下降區段,該等上升區段及該等下降區段交替地產生。 The control method according to claim 2, wherein the turn-on signal includes a plurality of rising sections and a plurality of falling sections, and the rising sections and the falling sections are generated alternately. 如請求項1所述之控制方法,其中該上升區段或該下降區段的一時間間隔小於該關閉訊號的一時間間隔。 The control method according to claim 1, wherein a time interval of the rising section or the falling section is smaller than a time interval of the closing signal. 一種微機電系統裝置的控制方法,該微機電系統裝置包含一第一電極及一第二電極,該方法包括:在一第一時間間隔,施加一正電流,使該第一電極移動以與該第二電極形成一開啟(ON)狀態;在一第二時間間隔,施加一負電流,使該第一電極與該第二電極維持在該開啟狀態;以及在一第三時間間隔,施加一關閉訊號,使該第一電極與該第二電極由該開啟狀態變為一關閉(OFF)狀態。 A method for controlling a micro-electro-mechanical system device, the micro-electro-mechanical system device includes a first electrode and a second electrode. The method includes: applying a positive current at a first time interval to move the first electrode to The second electrode forms an ON state; in a second time interval, a negative current is applied to maintain the first electrode and the second electrode in the ON state; and in a third time interval, an off state is applied The signal causes the first electrode and the second electrode to change from the open state to an OFF state. 如請求項5所述之控制方法,其中該開啟訊號中從該正電流調變至該負電流的電性延遲(electrical delay)係小於該第一電極從該開啟狀態改變至該關閉狀態的機械性延遲(mechanical delay)。 The control method according to claim 5, wherein the electrical delay of the turn-on signal from the positive current to the negative current is less than the mechanical delay of the first electrode changing from the on state to the off state Mechanical delay. 如請求項6所述之控制方法,其中該正電流及該負電流依序地產生。 The control method according to claim 6, wherein the positive current and the negative current are generated sequentially. 如請求項5所述之控制方法,其中該第一時間間隔或該第二時間間隔小於該第三時間間隔。 The control method according to claim 5, wherein the first time interval or the second time interval is smaller than the third time interval. 一種微機電系統裝置的測試方法,該方法包括:提供該微機電系統裝置,其包含一第一電極及一第二電極;在一第一時間間隔,施加一正電流至該微機電系統裝置,使該第一電極移動以與該第二電極形成一開啟(ON)狀態; 在一第二時間間隔,施加一負電流至該微機電系統裝置,使該第一電極與該第二電極維持在該開啟狀態;在一第三時間間隔,施加一關閉訊號至該微機電系統裝置,使該第一電極與該第二電極由該開啟狀態變為一關閉(OFF)狀態。 A method for testing a microelectromechanical system device, the method comprising: providing the microelectromechanical system device, which includes a first electrode and a second electrode; applying a positive current to the microelectromechanical system device at a first time interval, Moving the first electrode to form an ON state with the second electrode; In a second time interval, a negative current is applied to the MEMS device to maintain the first electrode and the second electrode in the on state; in a third time interval, an off signal is applied to the MEMS device The device causes the first electrode and the second electrode to change from the open state to an OFF state. 如請求項9所述之測試方法,更包括:判斷該第一電極及該第二電極是否有黏附(stiction)。 The test method according to claim 9, further comprising: judging whether the first electrode and the second electrode have stiction.
TW108101511A 2019-01-15 2019-01-15 Control method and testing method for micro-electro-mechanical systems device TWI697747B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108101511A TWI697747B (en) 2019-01-15 2019-01-15 Control method and testing method for micro-electro-mechanical systems device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108101511A TWI697747B (en) 2019-01-15 2019-01-15 Control method and testing method for micro-electro-mechanical systems device

Publications (2)

Publication Number Publication Date
TWI697747B true TWI697747B (en) 2020-07-01
TW202028896A TW202028896A (en) 2020-08-01

Family

ID=72601966

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108101511A TWI697747B (en) 2019-01-15 2019-01-15 Control method and testing method for micro-electro-mechanical systems device

Country Status (1)

Country Link
TW (1) TWI697747B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1500063A (en) * 2001-04-02 2004-05-26 艾利森电话股份有限公司 Micro electromechanical switches
WO2011148698A1 (en) * 2010-05-28 2011-12-01 太陽誘電株式会社 Mems switch
US20130234263A1 (en) * 2011-11-11 2013-09-12 Tamio Ikehashi Mems element
CN103369441A (en) * 2012-04-04 2013-10-23 英飞凌科技股份有限公司 MEMS device, MEMS structure and method of making MEMS device
TW201425205A (en) * 2012-12-20 2014-07-01 Ind Tech Res Inst MEMS device with multiple electrodes and fabricating method thereof
US20150212109A1 (en) * 2014-01-29 2015-07-30 Samsung Electro-Mechanics Co., Ltd. Mems sensor
JP2015174154A (en) * 2014-03-13 2015-10-05 株式会社東芝 Mems device and manufacturing method thereof
TWI516135B (en) * 2013-08-29 2016-01-01 鑫創科技股份有限公司 Micro electro-mechanical system microphone device with multi-sensitivity outputs and circuit thereof
US20180273372A1 (en) * 2017-03-24 2018-09-27 Cirrus Logic International Semiconductor Ltd. Mems devices and processes

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1500063A (en) * 2001-04-02 2004-05-26 艾利森电话股份有限公司 Micro electromechanical switches
WO2011148698A1 (en) * 2010-05-28 2011-12-01 太陽誘電株式会社 Mems switch
US20130234263A1 (en) * 2011-11-11 2013-09-12 Tamio Ikehashi Mems element
CN103369441A (en) * 2012-04-04 2013-10-23 英飞凌科技股份有限公司 MEMS device, MEMS structure and method of making MEMS device
TW201425205A (en) * 2012-12-20 2014-07-01 Ind Tech Res Inst MEMS device with multiple electrodes and fabricating method thereof
TWI516135B (en) * 2013-08-29 2016-01-01 鑫創科技股份有限公司 Micro electro-mechanical system microphone device with multi-sensitivity outputs and circuit thereof
US20150212109A1 (en) * 2014-01-29 2015-07-30 Samsung Electro-Mechanics Co., Ltd. Mems sensor
JP2015174154A (en) * 2014-03-13 2015-10-05 株式会社東芝 Mems device and manufacturing method thereof
US20180273372A1 (en) * 2017-03-24 2018-09-27 Cirrus Logic International Semiconductor Ltd. Mems devices and processes

Also Published As

Publication number Publication date
TW202028896A (en) 2020-08-01

Similar Documents

Publication Publication Date Title
US8030690B2 (en) Device sensitive to a movement comprising at least one transistor
CN107337175B (en) Semiconductor structure and manufacturing method thereof
US10745273B2 (en) Method of manufacturing a switch
US8338207B2 (en) Bulk silicon moving member with dimple
US20190062153A1 (en) Fence structure to prevent stiction in a mems motion sensor
JP5193639B2 (en) Micromachine device and method of manufacturing micromachine device
US10266395B2 (en) Semiconductive structure and manufacturing method thereof
EP1829074A2 (en) Liquid metal switch employing micro-electromechanical system (mems) structures for actuation
US9776852B2 (en) Method for controlling surface roughness in MEMS structure
US7999201B2 (en) MEMS G-switch device
KR20190003284A (en) Method of stiction prevention by patterned anti-stiction layer
TWI697747B (en) Control method and testing method for micro-electro-mechanical systems device
TW201623137A (en) MEMS chip
US8570122B1 (en) Thermally compensating dieletric anchors for microstructure devices
CN111434605B (en) Control method and test method for micro-electromechanical system device
Xiong et al. A Low-g MEMS inertial switch based on direct contact sensing method
US11661333B2 (en) Semiconductor structure and manufacturing method thereof
US20180111822A1 (en) Contact point structure, electronic device, and electronic apparatus
US20230331544A1 (en) Micromechanical sensor structure with damping structure
Mizuno A Novel MEMS Actuator Driven with a Low DC Voltage.
CN112744779A (en) Micro-electro-mechanical system and method of manufacturing the same
JP2009226498A (en) Micromechanical apparatus and manufacturing method of micromechanical apparatus
JP2009178816A (en) Micromachine apparatus and method for manufacturing the same