TWI697348B - Stereoscopic display system and stereoscopic display method - Google Patents

Stereoscopic display system and stereoscopic display method Download PDF

Info

Publication number
TWI697348B
TWI697348B TW107123378A TW107123378A TWI697348B TW I697348 B TWI697348 B TW I697348B TW 107123378 A TW107123378 A TW 107123378A TW 107123378 A TW107123378 A TW 107123378A TW I697348 B TWI697348 B TW I697348B
Authority
TW
Taiwan
Prior art keywords
lens
motor device
head
mounted display
physiological
Prior art date
Application number
TW107123378A
Other languages
Chinese (zh)
Other versions
TW202005691A (en
Inventor
林正偉
Original Assignee
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW107123378A priority Critical patent/TWI697348B/en
Publication of TW202005691A publication Critical patent/TW202005691A/en
Application granted granted Critical
Publication of TWI697348B publication Critical patent/TWI697348B/en

Links

Images

Abstract

A stereoscopic display system is provided. The stereoscopic display system includes a head-mounted display, a motor device, a physiological detector and a processor. The head-mounted display is configured to display a stereoscopic video, and includes at least one lens configured to image the stereoscopic video. The motor device is configured to move or rotate the lens of the head-mounted display. The physiological detector is configured to acquire a physiological signal while the head-mounted display displaying the stereoscopic video. The processor is coupled to the head-mounted display, the motor device and the physiological detector, and configured to determine a dizzy status based on the physiological signal and control the motor device to move or rotate the lens based on the dizzy status. In addition, a stereoscopic display method is also provided.

Description

立體顯示系統與立體顯示方法Stereoscopic display system and stereoscopic display method

本發明是有關於一種立體顯示領域,且特別是有關於一種減緩暈眩的立體顯示系統與立體顯示方法。The present invention relates to the field of stereoscopic display, and particularly relates to a stereoscopic display system and method for reducing dizziness.

虛擬實境(Virtual Reality,VR)是利用電腦模擬產生一個三維空間的虛擬世界,提供使用者關於視覺等感官的模擬,讓使用者感覺彷彿身歷其境,可以即時、沒有限制地觀察三維空間內的事物。然而,現今的虛擬實境技術仍然有許多的問題需要克服,而使用者的暈眩反應則是其中最主要的問題之一。在過去的研究當中,許多原因都可能造成使用者在使用虛擬實境裝置時出現暈眩,且不同使用者的暈眩原因可能各不相同。Virtual Reality (VR) is the use of computer simulation to generate a virtual world in a three-dimensional space, providing users with a simulation of vision and other senses, making users feel as if they are immersed in the environment, and can observe the three-dimensional space in real time without restriction Things. However, the current virtual reality technology still has many problems to be overcome, and the user's dizziness is one of the most important problems. In past studies, many reasons may cause users to experience dizziness when using virtual reality devices, and different users may have different causes of dizziness.

舉例來說,當眼睛看到畫面正在移動但身體卻未感覺到在移動時,可能造成感官上的不一致而導致暈眩;由於畫面存在延遲(latency)現象,在擺動頭部的過程中轉動時間與畫面實際變化時間中的時間差也可能導致暈眩;每個使用者的瞳距(Interpupillary Distance,IPD)不同,因此使用者在使用虛擬實境裝置時的瞳孔中心、透鏡中心與畫面中心可能不在同一條線上,而出現重影現象導致暈眩;當虛擬實境畫面中的景深與使用者認知不同時,也可能造成暈眩。For example, when the eyes see that the picture is moving but the body does not feel it is moving, it may cause sensory inconsistency and cause dizziness; due to the latency of the picture, the rotation time during the head movement The time difference between the actual change time of the screen may also cause dizziness; the interpupillary distance (IPD) of each user is different, so the pupil center, lens center and screen center may not be available when the user uses the virtual reality device On the same line, the ghosting phenomenon causes dizziness; when the depth of field in the virtual reality screen is different from the user's perception, it may also cause dizziness.

由此可知,虛擬實境中可能造成暈眩的原因無法一以蔽之,暈眩解決的相關課題也是本領域技術人員研究的重點。It can be seen that the possible causes of dizziness in virtual reality cannot be summarized, and the related issues of dizziness resolution are also the focus of research by those skilled in the art.

有鑑於此,本發明提供一種立體顯示系統與立體顯示方法,能夠有效排除鏡片位置與角度所造成的暈眩問題。In view of this, the present invention provides a stereoscopic display system and a stereoscopic display method, which can effectively eliminate the problem of dizziness caused by the position and angle of the lens.

本發明實施例的立體顯示系統包括頭戴式顯示器、電機裝置、生理偵測器以及處理器。頭戴式顯示器用以顯示立體動態影像,並且包括用以成像立體動態影像的至少一個鏡片。電機裝置用以移動或轉動頭戴式顯示器的鏡片。生理偵測器用以在頭戴式顯示器顯示立體動態影像時取得生理訊號。處理器耦接於頭戴式顯示器、電機裝置以及生理偵測器,用以基於生理訊號決定暈眩狀態,並且基於暈眩狀態控制電機裝置移動或轉動所述鏡片。The stereoscopic display system of the embodiment of the present invention includes a head-mounted display, a motor device, a physiological detector, and a processor. The head-mounted display is used for displaying stereoscopic dynamic images, and includes at least one lens for imaging the stereoscopic dynamic images. The motor device is used to move or rotate the lens of the head-mounted display. The physiological detector is used to obtain physiological signals when the head-mounted display displays stereoscopic dynamic images. The processor is coupled to the head-mounted display, the motor device and the physiological detector for determining the dizziness state based on the physiological signal, and controls the motor device to move or rotate the lens based on the dizziness state.

本發明實施例的立體顯示方法適用於包括頭戴式顯示器的立體顯示系統。所述立體顯示方法包括以下步驟:顯示立體動態影像,並且在顯示立體動態影像時透過生理偵測器取得生理訊號;基於所取得的生理訊號決定暈眩狀態;以及基於暈眩狀態透過電機裝置移動或轉動頭戴式顯示器的至少一個鏡片。The stereoscopic display method of the embodiment of the present invention is applicable to a stereoscopic display system including a head-mounted display. The three-dimensional display method includes the following steps: displaying a three-dimensional dynamic image, and obtaining a physiological signal through a physiological detector when displaying the three-dimensional dynamic image; determining a dizziness state based on the obtained physiological signal; and moving through a motor device based on the dizziness state Or rotate at least one lens of the head-mounted display.

基於上述,本發明實施例所提出的立體顯示系統與立體顯示方法,透過即時回饋的生理訊號來控制電機裝置以調整頭戴式顯示器的鏡片與使用者雙眼之間的空間關係。據此,能夠找出確實改善使用者暈眩狀態的鏡片調整方式,有效地排除鏡片位置與角度所造成的暈眩問題以提升立體顯示裝置的使用者體驗。Based on the above, the three-dimensional display system and the three-dimensional display method proposed by the embodiments of the present invention control the motor device through the physiological signal fed back in real time to adjust the spatial relationship between the lens of the head-mounted display and the eyes of the user. Accordingly, it is possible to find a lens adjustment method that can definitely improve the dizziness state of the user, effectively eliminate the dizziness caused by the position and angle of the lens, and improve the user experience of the stereoscopic display device.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

圖1繪示本發明一實施例的立體顯示系統的概要方塊圖。請參照圖1,立體顯示系統100包括處理器110、生理偵測器120、電機裝置130以及頭戴式顯示器140,其中生理偵測器120、電機裝置130以及頭戴式顯示器140皆耦接於處理器110。在一些實施例中,立體顯示系統100例如為虛擬實境(Virtual Reality,VR)系統,用以透過頭戴式顯示器140來顯示立體動態影像。FIG. 1 is a schematic block diagram of a stereoscopic display system according to an embodiment of the invention. 1, the stereoscopic display system 100 includes a processor 110, a physiological detector 120, a motor device 130, and a head-mounted display 140. The physiological detector 120, the motor device 130, and the head-mounted display 140 are all coupled to Processor 110. In some embodiments, the stereoscopic display system 100 is, for example, a virtual reality (VR) system for displaying stereoscopic dynamic images through the head-mounted display 140.

處理器110可用以發送顯示訊號至頭戴式顯示器140,以透過頭戴式顯示器140來顯示立體動態影像。此外,處理器110更用以在使用者可能或確實發生暈眩時進行適當的操作來減緩暈眩狀態,具體方式將於以下段落詳述。在一些實施例中,處理器110例如包括中央處理單元(Central Processing Unit,CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD)或其他類似裝置或這些裝置的組合,但本發明並不限於此。The processor 110 can be used to send a display signal to the head-mounted display 140 to display a stereoscopic dynamic image through the head-mounted display 140. In addition, the processor 110 is further used to perform appropriate operations to alleviate the dizziness when the user may or does experience dizziness. In some embodiments, the processor 110 includes, for example, a central processing unit (CPU), or other programmable general-purpose or special-purpose microprocessors (Microprocessors), digital signal processors (Digital Signal Processors). DSP), programmable controllers, application specific integrated circuits (Application Specific Integrated Circuits, ASIC), programmable logic devices (Programmable Logic Device, PLD) or other similar devices or a combination of these devices, but the present invention does not Not limited to this.

生理偵測器120用以在頭戴式顯示器140顯示立體動態影像時取得與使用者暈眩相關的生理訊號,例如血氧濃度訊號或腦波訊號等,處理器110能夠藉由生理訊號來決定使用者當前的暈眩狀態,也就是判定使用者當前是否發生了暈眩。在一些實施例中,暈眩狀態更包括了使用者暈眩程度的資訊。然而,只要所取得的生理訊號能夠用以決定暈眩狀態,本發明並不在此限制生理偵測器120的類型。The physiological detector 120 is used to obtain physiological signals related to the user's dizziness when the head-mounted display 140 displays a three-dimensional dynamic image, such as a blood oxygen concentration signal or a brain wave signal, etc. The processor 110 can determine by the physiological signal The current dizziness state of the user is to determine whether the user is currently dizzy. In some embodiments, the dizziness state further includes information about the user's dizziness. However, as long as the obtained physiological signal can be used to determine the dizziness state, the present invention does not limit the type of the physiological detector 120 here.

在一些實施例中,生理偵測器120例如是用以取得血氧濃度訊號的血氧濃度偵測器。當人體出現頭暈、中暑等狀況時腦部會呈現缺氧的狀態,此時血氧濃度會明顯地下降。因此,血氧濃度訊號有助於處理器110決定使用者的暈眩狀態。In some embodiments, the physiological detector 120 is, for example, a blood oxygen concentration detector for obtaining a blood oxygen concentration signal. When the human body suffers from dizziness, heatstroke and other conditions, the brain will be hypoxic, and the blood oxygen concentration will drop significantly at this time. Therefore, the blood oxygen concentration signal helps the processor 110 determine the dizziness state of the user.

在一些實施例中,生理偵測器120例如是單通道腦波儀等腦波偵測器,用以取得使用者的腦波。當人生理產生疲勞時前額葉(frontal lobe)區域的α波(即,8至12赫茲)的能量上升,且專注度下降時β波(即,13至30赫茲)的能量會跟著下降,且疲勞與專注兩種反應與暈眩息息相關。具體來說,當使用者產生暈眩的過程中若繼續使用頭戴式顯示器140,則生理上將產生明顯的疲勞感,同時專注度也會明顯下降。因此,在此些實施例中生理偵測器120取得腦波當中α波訊號與β波訊號中的至少其中之一,便有助於處理器110決定使用者的暈眩狀態。In some embodiments, the physiological detector 120 is, for example, a brain wave detector such as a single-channel electroencephalometer to obtain the user's brain waves. When a person is physically fatigued, the energy of the alpha wave (ie, 8 to 12 Hz) in the frontal lobe area rises, and the energy of the beta wave (ie, 13 to 30 Hz) decreases when the concentration drops. And fatigue and concentration are closely related to dizziness. Specifically, if the user continues to use the head-mounted display 140 during the process of dizziness, the physical fatigue will be noticeable, and the concentration will also decrease significantly. Therefore, in these embodiments, the physiological detector 120 obtains at least one of the alpha wave signal and the beta wave signal in the brain waves, which helps the processor 110 determine the dizziness state of the user.

電機裝置130用以受處理器110的控制而移動或轉動頭戴式顯示器140中的至少一個鏡片。在一些實施例中,電機裝置130例如可用齒輪、齒條或皮帶、微型馬達等元件來在三維空間中任意移動或轉動頭戴式顯示器140中的鏡片。The motor device 130 is used to move or rotate at least one lens in the head mounted display 140 under the control of the processor 110. In some embodiments, the motor device 130 can, for example, use elements such as gears, racks or belts, and micromotors to move or rotate the lens in the head-mounted display 140 arbitrarily in a three-dimensional space.

舉例來說,電機裝置130能夠沿第一軸向D1(例如,前後)移動頭戴式顯示器140的鏡片來調整鏡片與使用者眼睛之間的距離。若頭戴式顯示器140中包括第一鏡片141以及第二鏡片143,電機裝置130也能夠沿垂直於第一軸向D1的第二軸向D2(例如,左右)移動第一鏡片141與第二鏡片143來調整第一鏡片141與第二鏡片143之間的距離,或是沿垂直於第一軸向D1與第二軸向D2的第三軸向(例如,上下)來移動第一鏡片141與第二鏡片143。再者,若第一鏡片141與第二鏡片143並非平行設置,電機裝置130還能夠旋轉第一鏡片141與第二鏡片143以調整第一鏡片141與第二鏡片143之間的夾角。在其他實施例中,電機裝置130也能夠沿其他軸向來旋轉第一鏡片141與第二鏡片143之間,本發明並不在此限。For example, the motor device 130 can move the lens of the head mounted display 140 along the first axis D1 (for example, forward and backward) to adjust the distance between the lens and the user's eyes. If the head mounted display 140 includes the first lens 141 and the second lens 143, the motor device 130 can also move the first lens 141 and the second lens 141 and the second lens along a second axis D2 (for example, left and right) perpendicular to the first axis D1. The lens 143 adjusts the distance between the first lens 141 and the second lens 143, or moves the first lens 141 along a third axis perpendicular to the first axis D1 and the second axis D2 (for example, up and down) With the second lens 143. Furthermore, if the first lens 141 and the second lens 143 are not arranged in parallel, the motor device 130 can also rotate the first lens 141 and the second lens 143 to adjust the angle between the first lens 141 and the second lens 143. In other embodiments, the motor device 130 can also rotate between the first lens 141 and the second lens 143 along other axial directions, and the invention is not limited thereto.

值得一提的是,本發明並不在此限制用來移動或轉動頭戴式顯示器140的電機裝置130的具體實作方式,所屬領域具備通常知識者當可依據其所使用的頭戴式顯示器140的實際設計來實作電機裝置130,以移動或轉動頭戴式顯示器140中的至少一個鏡片。It is worth mentioning that the present invention does not limit the specific implementation of the motor device 130 used to move or rotate the head-mounted display 140. Those with ordinary knowledge in the field can rely on the head-mounted display 140 used. The actual design is to implement the motor device 130 to move or rotate at least one lens in the head mounted display 140.

頭戴式顯示器140耦接於處理器110,其可接收來自處理器110的顯示訊號以顯示立體動態影像。頭戴式顯示器140包括有用以成像立體動態影像的至少一個鏡片。在一些實施例中,頭戴式顯示器140例如是僅包括一個鏡片,使用者的雙眼皆可透過此鏡片來觀看到立體動態影像。在一些實施例中,頭戴式顯示器140例如包括第一鏡片141以及第二鏡片143,分別用以對使用者的左眼和右眼成像以讓使用者能夠看到頭戴式顯示器140所顯示的立體動態影像。然而,本發明並不在此限,所屬領域具備通常知識者當可依其立體顯示的知識來實作頭戴式顯示器140。The head mounted display 140 is coupled to the processor 110, and can receive the display signal from the processor 110 to display a stereoscopic dynamic image. The head-mounted display 140 includes at least one lens for imaging a stereoscopic dynamic image. In some embodiments, the head-mounted display 140 includes only one lens, and both eyes of the user can view the three-dimensional dynamic image through the lens. In some embodiments, the head-mounted display 140 includes, for example, a first lens 141 and a second lens 143, which are respectively used to image the left eye and right eye of the user so that the user can see the display on the head-mounted display 140 The three-dimensional dynamic image. However, the present invention is not limited to this, and those skilled in the art can implement the head-mounted display 140 according to their knowledge of stereoscopic display.

圖2繪示本發明一實施例的立體顯示方法的流程圖。請參照圖2,在步驟S110中,處理器110會發送顯示訊號至頭戴式顯示器140,而頭戴式顯示器150會根據所接收的顯示訊號來顯示立體動態影像。與此同時,在步驟S120中,處理器110會透過生理偵測器120會同步地取得使用者的生理訊號。在步驟S130中,處理器110會基於所取得的生理訊號來決定暈眩狀態,也就是判斷使用者是否發生暈眩。FIG. 2 shows a flowchart of a stereoscopic display method according to an embodiment of the invention. Referring to FIG. 2, in step S110, the processor 110 sends a display signal to the head-mounted display 140, and the head-mounted display 150 displays a stereoscopic dynamic image according to the received display signal. At the same time, in step S120, the processor 110 will synchronously obtain the physiological signal of the user through the physiological detector 120. In step S130, the processor 110 determines the dizziness state based on the acquired physiological signal, that is, determines whether the user is dizzy.

舉例而言,當生理偵測器120為腦波偵測器時,α波訊號中所指示的α波能量大小例如是正相關於使用者的暈眩程度,而β波訊號中所指示的β波能量例如是負相關於使用者的暈眩程度。處理器110可例如對應α波能量設定第一閥值,或對應β波能量設定第二閥值,當生理偵測器120偵測到的α波能量大於第一閥值,或β波能量小於第二閥值時則表示使用者發生暈眩。For example, when the physiological detector 120 is a brain wave detector, the alpha wave energy indicated in the alpha wave signal is, for example, positively correlated with the user’s dizziness, and the beta wave indicated in the beta wave signal The energy is, for example, negatively related to the user's dizziness. The processor 110 may, for example, set a first threshold corresponding to the alpha wave energy, or set a second threshold corresponding to the beta wave energy, when the alpha wave energy detected by the physiological detector 120 is greater than the first threshold, or the beta wave energy is less than The second threshold indicates that the user is dizzy.

若在步驟S130中處理器110判斷使用者並未發生暈眩,則回到步驟120持續在顯示立體動態影像的同時取得使用者的生理訊號。反之,若在步驟S130中處理器110判斷使用者發生暈眩,則進入步驟S140,基於暈眩狀態來透過電機裝置130移動或轉動頭戴式顯示器140的鏡片,以嘗試減輕使用者的暈眩。If the processor 110 determines that the user is not dizzy in step S130, it returns to step 120 to continue to obtain the physiological signal of the user while displaying the three-dimensional dynamic image. Conversely, if the processor 110 determines that the user is dizzy in step S130, then it proceeds to step S140, and moves or rotates the lens of the head mounted display 140 through the motor device 130 based on the dizziness state to try to reduce the user's dizziness .

在一些實施例中,如圖3所示,處理器110例如會透過電機裝置130來沿第一軸向D1調整頭戴式顯示器140的第一鏡片141與第二鏡片143距離使用者雙眼的距離。據此,能夠藉由調整適眼距(eye relief)來嘗試改善使用者的暈眩狀態(即,減少暈眩程度)。In some embodiments, as shown in FIG. 3, the processor 110 adjusts the distance between the first lens 141 and the second lens 143 of the head mounted display 140 along the first axis D1 through the motor device 130, for example. distance. Accordingly, it is possible to try to improve the user's dizziness (ie, reduce the degree of dizziness) by adjusting the eye relief.

在一些實施例中,如圖4所示,頭戴式顯示器140的第一鏡片141與第二鏡片143之間的預設距離例如為63公釐。然而,基於不同使用者的瞳距(Interpupillary Distance,IPD)不同,處理器110例如會透過電機裝置130來沿第二軸向D2調整頭戴式顯示器140的第一鏡片141與第二鏡片143之間的距離(例如,逐步縮短為60公釐)。據此,能夠改善重影現象所導致的暈眩。In some embodiments, as shown in FIG. 4, the predetermined distance between the first lens 141 and the second lens 143 of the head-mounted display 140 is, for example, 63 mm. However, based on the interpupillary distance (IPD) of different users, the processor 110 adjusts the first lens 141 and the second lens 143 of the head-mounted display 140 along the second axis D2 through the motor device 130, for example. (For example, gradually shorten to 60 mm). Accordingly, the dizziness caused by the ghost phenomenon can be improved.

在一些實施例中,如圖5所示,為了將頭戴式顯示器140左眼影像面板P2與右眼影像面板P1上的畫面分別成像至使用者的左眼與右眼,第一鏡片141或第二鏡片143與使用者戴上頭戴式顯示器140時的雙眼連線的夾角預設為23∘,也就是第一鏡片141與第二鏡片143之間的夾角為134∘。處理器110例如會透過電機裝置130來調整第一鏡片141與第二鏡片143之間的夾角(例如,縮小為129∘),如此能夠改變使用者所看到的清晰畫面的範圍,進而改善使用者的暈眩狀態。In some embodiments, as shown in FIG. 5, in order to image the images on the left-eye image panel P2 and the right-eye image panel P1 of the head-mounted display 140 to the left and right eyes of the user, the first lens 141 or The angle between the second lens 143 and the connection between the eyes when the user wears the head-mounted display 140 is preset to 23∘, that is, the angle between the first lens 141 and the second lens 143 is 134∘. For example, the processor 110 adjusts the angle between the first lens 141 and the second lens 143 through the motor device 130 (for example, reduced to 129∘), which can change the range of the clear picture that the user sees, thereby improving the use The dizziness of the person.

特別是,處理器110在步驟S140調整後會回到步驟S120繼續取得生理訊號。因此,在一些實施例中,處理器110會在調整頭戴式顯示器140的鏡片之前記錄下暈眩狀態(例如,記錄α波能量或β波能量)以及鏡片調整方式(例如,軸向)。如此一來,當流程再次進入步驟S140時,處理器110就能夠基於當前的暈眩狀態來與其所記錄的暈眩狀態作比較,以判斷前次在步驟S140中的鏡片調整方式是否有助於改善使用者的暈眩狀態,並且據以進一步控制電機裝置130轉動或移動頭戴式顯示器140的鏡片。In particular, the processor 110 will return to step S120 after adjusting in step S140 to continue to obtain the physiological signal. Therefore, in some embodiments, the processor 110 records the dizziness state (for example, recording alpha wave energy or beta wave energy) and the lens adjustment method (for example, axial direction) before adjusting the lens of the head mounted display 140. In this way, when the process enters step S140 again, the processor 110 can compare with the recorded dizziness state based on the current dizziness state to determine whether the previous lens adjustment method in step S140 is helpful The dizziness of the user is improved, and accordingly, the motor device 130 is further controlled to rotate or move the lens of the head mounted display 140.

舉例來說,處理器110記錄當前的α波能量為第一能量並且沿第一軸向D1來拉長頭戴式顯示器140的適眼距。接著,處理器110會繼續透過腦波偵測器取得α波訊號,其中指示的α波能量例如為第二能量。處理器110會比較第一能量與第二能量,以判斷在視眼距拉長後α波能量是否有下降。若第二能量小於第一能量,表示拉長視眼距有助於改善使用者的暈眩狀態,因此處理器110可繼續控制電機裝置130來繼續沿第一軸向D1來拉長頭戴式顯示器140的適眼距。若第二能量大於第一能量,表示拉長視眼距反而加強了使用者的暈眩,因此處理器110可控制電機裝置130沿第一軸向D1來反向地縮短頭戴式顯示器140的適眼距。若第一能量與第二能量相等,表示視眼距可能並非造成使用者暈眩的主因,因此處理器110可控制電機裝置130改用其他方式來移動或轉動(例如,沿另一軸向移動或旋轉)頭戴式顯示器140的鏡片。以此類推,立體顯示系統100便能夠有效地減輕頭戴式顯示器140的鏡片的位置與角度所造成的使用者暈眩。For example, the processor 110 records the current alpha wave energy as the first energy and extends the eye-fitting distance of the head-mounted display 140 along the first axis D1. Then, the processor 110 will continue to obtain the alpha wave signal through the brain wave detector, where the indicated alpha wave energy is, for example, the second energy. The processor 110 compares the first energy with the second energy to determine whether the alpha wave energy decreases after the eye distance is elongated. If the second energy is less than the first energy, it means that lengthening the eye distance helps to improve the dizziness of the user. Therefore, the processor 110 can continue to control the motor device 130 to continue to lengthen the headwear along the first axis D1. Eye distance of the display 140. If the second energy is greater than the first energy, it means that the eye-distance is lengthened and the user's dizziness is strengthened. Therefore, the processor 110 can control the motor device 130 along the first axis D1 to reversely shorten the head-mounted display 140 Suitable for eye distance. If the first energy is equal to the second energy, it means that the eye distance may not be the main cause of the user's dizziness. Therefore, the processor 110 can control the motor device 130 to move or rotate in other ways (for example, move along another axis). Or rotate) the lens of the head mounted display 140. By analogy, the stereoscopic display system 100 can effectively reduce the user's dizziness caused by the position and angle of the lens of the head-mounted display 140.

綜上所述,本發明實施例所提出的立體顯示系統與立體顯示方法,透過即時回饋的生理訊號來控制電機裝置以調整頭戴式顯示器的鏡片與使用者雙眼之間的空間關係。據此,能夠找出確實改善使用者暈眩狀態的鏡片調整方式,有效地排除鏡片位置與角度所造成的暈眩問題以提升立體顯示裝置的使用者體驗。To sum up, the three-dimensional display system and the three-dimensional display method proposed by the embodiments of the present invention control the motor device through the physiological signals fed back in real time to adjust the spatial relationship between the lens of the head-mounted display and the eyes of the user. Accordingly, it is possible to find a lens adjustment method that can definitely improve the dizziness state of the user, effectively eliminate the dizziness caused by the position and angle of the lens, and improve the user experience of the stereoscopic display device.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make slight changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to those defined by the attached patent scope.

100‧‧‧立體顯示系統110‧‧‧處理器120‧‧‧生理偵測器130‧‧‧電機裝置140‧‧‧頭戴式顯示器141‧‧‧第一鏡片143‧‧‧第二鏡片D1‧‧‧第一軸向D2‧‧‧第二軸向P1‧‧‧右眼影像面板P2‧‧‧左眼影像面板S110、S120、S130、S140‧‧‧立體顯示方法的步驟100‧‧‧Three-dimensional display system 110‧‧‧Processor 120‧‧‧Physiological detector 130‧‧‧Motor device 140‧‧‧Head-mounted display 141‧‧‧First lens 143‧‧‧Second lens D1 ‧‧‧First axis D2‧‧‧Second axis P1‧‧‧Right eye image panel P2‧‧‧Left eye image panel S110, S120, S130, S140‧‧‧Steps of the stereoscopic display method

圖1繪示本發明一實施例的立體顯示系統的概要方塊圖。 圖2繪示本發明一實施例的立體顯示方法的流程圖。 圖3與圖4繪示本發明一實施例中移動頭戴式顯示器的鏡片的示意圖。 圖5繪示本發明一實施例中轉動頭戴式顯示器140的鏡片的示意圖。FIG. 1 is a schematic block diagram of a stereoscopic display system according to an embodiment of the invention. FIG. 2 shows a flowchart of a stereoscopic display method according to an embodiment of the invention. 3 and 4 are schematic diagrams of moving the lens of the head-mounted display in an embodiment of the present invention. FIG. 5 is a schematic diagram of rotating the lens of the head mounted display 140 in an embodiment of the present invention.

S110、S120、S130、S140‧‧‧立體顯示方法的步驟 Steps of S110, S120, S130, S140‧‧‧3D Display Method

Claims (8)

一種立體顯示系統,包括:一頭戴式顯示器,用以顯示一立體動態影像,其中該頭戴式顯示器包括用以成像該立體動態影像的至少一鏡片;一電機裝置,用以移動或轉動該至少一鏡片;一生理偵測器,用以在顯示該立體動態影像時取得一生理訊號;以及一處理器,耦接於該頭戴式顯示器、該電機裝置以及該生理偵測器,用以基於該生理訊號決定一暈眩狀態,並且基於該暈眩狀態控制該電機裝置移動或轉動該至少一鏡片;其中該至少一鏡片包括一第一鏡片以及一第二鏡片,其中該處理器控制該電機裝置移動或轉動該至少一鏡片包括:控制該電機裝置調整該第一鏡片與該第二鏡片之間的夾角。 A three-dimensional display system includes: a head-mounted display for displaying a three-dimensional dynamic image, wherein the head-mounted display includes at least one lens for imaging the three-dimensional dynamic image; and a motor device for moving or rotating the At least one lens; a physiological detector for obtaining a physiological signal when displaying the three-dimensional dynamic image; and a processor coupled to the head-mounted display, the motor device and the physiological detector for Determine a dizziness state based on the physiological signal, and control the motor device to move or rotate the at least one lens based on the dizziness state; wherein the at least one lens includes a first lens and a second lens, and the processor controls the Moving or rotating the at least one lens by the motor device includes: controlling the motor device to adjust the angle between the first lens and the second lens. 如申請專利範圍第1項所述的立體顯示系統,其中該生理偵測器為腦波偵測器,並且該生理訊號為α波訊號或β波訊號。 In the stereoscopic display system described in the first item of the scope of patent application, the physiological detector is a brain wave detector, and the physiological signal is an alpha wave signal or a beta wave signal. 如申請專利範圍第1項所述的立體顯示系統,其中該處理器控制該電機裝置移動或轉動該至少一鏡片包括:控制該電機裝置移動該至少一鏡片以調整一適眼距。 The stereoscopic display system according to claim 1, wherein the processor controlling the motor device to move or rotate the at least one lens includes: controlling the motor device to move the at least one lens to adjust an eye distance. 如申請專利範圍第1項所述的立體顯示系統,其中該至少一鏡片包括一第一鏡片以及一第二鏡片,其中該處理器控制該電機裝置移動或轉動該至少一鏡片包括: 控制該電機裝置調整該第一鏡片與該第二鏡片之間的距離。 The stereoscopic display system according to claim 1, wherein the at least one lens includes a first lens and a second lens, and wherein the processor controlling the motor device to move or rotate the at least one lens includes: The motor device is controlled to adjust the distance between the first lens and the second lens. 一種立體顯示方法,適用於包括一頭戴式顯示器的立體顯示系統,包括:顯示一立體動態影像,並且在顯示該立體動態影像時透過一生理偵測器取得一生理訊號;基於該生理訊號決定一暈眩狀態;以及基於該暈眩狀態透過一電機裝置移動或轉動該頭戴式顯示器的至少一鏡片;其中基於該暈眩狀態透過該電機裝置移動或轉動該頭戴式顯示器的該至少一鏡片的步驟包括:控制該電機裝置調整該第一鏡片與該第二鏡片之間的夾角。 A three-dimensional display method, suitable for a three-dimensional display system including a head-mounted display, includes: displaying a three-dimensional dynamic image, and obtaining a physiological signal through a physiological detector when the three-dimensional dynamic image is displayed; determining based on the physiological signal A dizziness state; and moving or rotating at least one lens of the head-mounted display through a motor device based on the dizziness state; wherein the at least one lens of the head-mounted display is moved or rotated based on the dizziness state through the motor device The lens step includes: controlling the motor device to adjust the angle between the first lens and the second lens. 如申請專利範圍第5項所述的立體顯示方法,其中該生理偵測器為腦波偵測器,並且該生理訊號為α波訊號或β波訊號。 The stereoscopic display method according to item 5 of the scope of patent application, wherein the physiological detector is a brain wave detector, and the physiological signal is an alpha wave signal or a beta wave signal. 如申請專利範圍第5項所述的立體顯示方法,其中基於該暈眩狀態透過該電機裝置移動或轉動該頭戴式顯示器的該至少一鏡片的步驟包括:控制該電機裝置移動該至少一鏡片以調整一適眼距。 The stereoscopic display method according to claim 5, wherein the step of moving or rotating the at least one lens of the head-mounted display through the motor device based on the dizziness state includes: controlling the motor device to move the at least one lens To adjust a suitable eye distance. 如申請專利範圍第5項所述的立體顯示方法,其中基於該暈眩狀態透過該電機裝置移動或轉動該頭戴式顯示器的該至少一鏡片的步驟包括:控制該電機裝置調整該第一鏡片與該第二鏡片之間的距離。 The stereoscopic display method according to claim 5, wherein the step of moving or rotating the at least one lens of the head-mounted display through the motor device based on the dizziness state includes: controlling the motor device to adjust the first lens The distance from the second lens.
TW107123378A 2018-07-05 2018-07-05 Stereoscopic display system and stereoscopic display method TWI697348B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107123378A TWI697348B (en) 2018-07-05 2018-07-05 Stereoscopic display system and stereoscopic display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107123378A TWI697348B (en) 2018-07-05 2018-07-05 Stereoscopic display system and stereoscopic display method

Publications (2)

Publication Number Publication Date
TW202005691A TW202005691A (en) 2020-02-01
TWI697348B true TWI697348B (en) 2020-07-01

Family

ID=70412821

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107123378A TWI697348B (en) 2018-07-05 2018-07-05 Stereoscopic display system and stereoscopic display method

Country Status (1)

Country Link
TW (1) TWI697348B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9380287B2 (en) * 2012-09-03 2016-06-28 Sensomotoric Instruments Gesellschaft Fur Innovative Sensorik Mbh Head mounted system and method to compute and render a stream of digital images using a head mounted display
CN106388811A (en) * 2016-09-18 2017-02-15 惠州Tcl移动通信有限公司 Method, system and device for reminding VR user of dizziness
CN107037588A (en) * 2017-03-24 2017-08-11 华勤通讯技术有限公司 A kind of virtual reality device and its display image method of adjustment
US9994228B2 (en) * 2010-05-14 2018-06-12 Iarmourholdings, Inc. Systems and methods for controlling a vehicle or device in response to a measured human response to a provocative environment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9994228B2 (en) * 2010-05-14 2018-06-12 Iarmourholdings, Inc. Systems and methods for controlling a vehicle or device in response to a measured human response to a provocative environment
US9380287B2 (en) * 2012-09-03 2016-06-28 Sensomotoric Instruments Gesellschaft Fur Innovative Sensorik Mbh Head mounted system and method to compute and render a stream of digital images using a head mounted display
CN106388811A (en) * 2016-09-18 2017-02-15 惠州Tcl移动通信有限公司 Method, system and device for reminding VR user of dizziness
CN107037588A (en) * 2017-03-24 2017-08-11 华勤通讯技术有限公司 A kind of virtual reality device and its display image method of adjustment

Also Published As

Publication number Publication date
TW202005691A (en) 2020-02-01

Similar Documents

Publication Publication Date Title
US11132056B2 (en) Predictive eye tracking systems and methods for foveated rendering for electronic displays
JP7094266B2 (en) Single-depth tracking-accommodation-binocular accommodation solution
US10871825B1 (en) Predictive eye tracking systems and methods for variable focus electronic displays
JP6870080B2 (en) Image generator, image display system, and image generation method
JP2023500234A (en) Brightfield displays incorporating eye trackers and methods for using eye-tracking information to generate views for brightfield displays
US20140375531A1 (en) Method of roviding to the user an image from the screen of the smartphome or tablet at a wide angle of view, and a method of providing to the user 3d sound in virtual reality
JP6909286B2 (en) Image generator, image display system, and image generation method
US8692870B2 (en) Adaptive adjustment of depth cues in a stereo telepresence system
WO2020042638A1 (en) Head-mounted display apparatus
CN107515474B (en) Automatic stereo display method and device and stereo display equipment
CN102540467A (en) Head-mounted display
EP3923122B1 (en) Gaze tracking apparatus and systems
EP3916464B1 (en) Gaze tracking apparatus and systems
WO2020024593A1 (en) Method and device for image processing
WO2019109323A1 (en) Image display method, wearable smart device and storage medium
Fulvio et al. Head jitter enhances three-dimensional motion perception
TWI697348B (en) Stereoscopic display system and stereoscopic display method
CN110192142B (en) Display device, display method thereof and display system
WO2015034453A1 (en) Providing a wide angle view image
CN110794590A (en) Virtual reality display system and display method thereof
EP3961572A1 (en) Image rendering system and method
CN211786414U (en) Virtual reality display system
TWI612335B (en) Head-mounted display device and binocular vision image calibrating method of the same
EP3910403B1 (en) Gaze tracking apparatus and systems
TWI692241B (en) Stereoscopic display device and stereoscopic display method