TWI697111B - Image sensor and electronic device having the same - Google Patents

Image sensor and electronic device having the same Download PDF

Info

Publication number
TWI697111B
TWI697111B TW104119888A TW104119888A TWI697111B TW I697111 B TWI697111 B TW I697111B TW 104119888 A TW104119888 A TW 104119888A TW 104119888 A TW104119888 A TW 104119888A TW I697111 B TWI697111 B TW I697111B
Authority
TW
Taiwan
Prior art keywords
layer
image sensor
item
pixel lens
patent application
Prior art date
Application number
TW104119888A
Other languages
Chinese (zh)
Other versions
TW201608711A (en
Inventor
李元俊
李庚寅
Original Assignee
韓商愛思開海力士有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韓商愛思開海力士有限公司 filed Critical 韓商愛思開海力士有限公司
Publication of TW201608711A publication Critical patent/TW201608711A/en
Application granted granted Critical
Publication of TWI697111B publication Critical patent/TWI697111B/en

Links

Images

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

An image sensor may include: a substrate including a substrate comprising a photoelectric conversion element; a pixel lens formed over the substrate and comprising a plurality of light condensing layers in which a lower layer has a larger area than an upper layer; a color filter layer covering the pixel lens; and an anti-reflection structure formed over the color filter layer.

Description

影像感測器及具有該影像感測器的電子裝置 Image sensor and electronic device with the image sensor

本發明之示例性具體實施例係關於一種半導體裝置製造技術,尤其係關於一種影像感測器,其包括具備多層階梯形結構的一聚光元件,以及一種具有該影像感測器的電子裝置。 Exemplary embodiments of the present invention relate to a semiconductor device manufacturing technology, and in particular, to an image sensor, which includes a light-concentrating element having a multi-layer stepped structure, and an electronic device having the image sensor.

本發明主張的優先權為在2015年4月6日向韓國智慧財產局提出申請的申請案,其韓國申請案號為10-2015-0048436,在此併入其全部參考內容。 The priority claimed by the present invention is an application filed with the Korean Intellectual Property Office on April 6, 2015, and its Korean application number is 10-2015-0048436, which is incorporated by reference in its entirety.

一種影像感測器指稱將光學影像轉換為電訊號的裝置。近來,由於電腦工業和通訊工業的發展,對具備改進性能的影像感測器的需求在各領域(例如數位相機、攝影機、個人通訊系統(PCS,Personal Communication System)、遊戲機、安防攝影機、醫療微型攝影機、和機器人)中均已增加。 An image sensor refers to a device that converts an optical image into an electrical signal. Recently, due to the development of the computer industry and the communication industry, the demand for image sensors with improved performance is in various fields (such as digital cameras, video cameras, personal communication systems (PCS, Personal Communication System), game consoles, security cameras, medical Micro cameras, and robots) have been added.

各種具體實施例係針對一種具備改進性能的影像感測器,以及一種具有該影像感測器的電子裝置。 Various embodiments are directed to an image sensor with improved performance, and an electronic device with the image sensor.

在具體實施例中,一種影像感測器可包括:一基板,其包含一光電轉換元件;一像素透鏡,其形成於該基板上方並包含複數聚光層,其之下部層較上部層具有更大面積;一彩色濾光層,其覆蓋該像素透鏡;以及一抗反 射結構,其形成於該彩色濾光層上方。該影像感測器可更包括一聚焦層,其提供於該光電轉換元件與該像素透鏡之間。且該影像感測器可更包括一抗反射層,其形成於該像素透鏡上方。 In a specific embodiment, an image sensor may include: a substrate including a photoelectric conversion element; a pixel lens formed above the substrate and including a plurality of light-concentrating layers, the lower layer of which has more layers than the upper layer Large area; a color filter layer covering the pixel lens; and an anti-reflective The radiation structure is formed above the color filter layer. The image sensor may further include a focusing layer provided between the photoelectric conversion element and the pixel lens. And the image sensor may further include an anti-reflection layer formed above the pixel lens.

該聚焦層可較該像素透鏡具有更大折射率。該聚焦層可較該像素透鏡具有相同面積或更大面積。介於該像素透鏡與該光電轉換元件之間的焦距可與該聚焦層之厚度成反比。該像素透鏡可具有多層階梯形結構。由該上部層所露出的該下部層可較入射光之波長具有更小寬度。由該上部層所露出的該下部層可較其色彩係透過該彩色濾光層分離的入射光之波長具有更小寬度。該等複數聚光層可具有相同形狀且彼此平行安置。該上部層可較該下部層具有相同厚度或更小厚度。該上部層可較該下部層具有相同折射率或更小折射率。該彩色濾光層可覆蓋該像素透鏡之整個表面,並具有平坦頂端表面。該彩色濾光層可較該像素透鏡具有更小折射率。該抗反射結構可包括一抗反射層或一半球形透鏡。 The focusing layer may have a larger refractive index than the pixel lens. The focusing layer may have the same area or a larger area than the pixel lens. The focal length between the pixel lens and the photoelectric conversion element may be inversely proportional to the thickness of the focusing layer. The pixel lens may have a multi-layer stepped structure. The lower layer exposed by the upper layer may have a smaller width than the wavelength of incident light. The lower layer exposed by the upper layer may have a smaller width than the wavelength of incident light whose color is separated through the color filter layer. The plural light-concentrating layers may have the same shape and be arranged parallel to each other. The upper layer may have the same thickness or less than the lower layer. The upper layer may have the same refractive index or less than the lower layer. The color filter layer can cover the entire surface of the pixel lens and has a flat top surface. The color filter layer may have a smaller refractive index than the pixel lens. The anti-reflection structure may include an anti-reflection layer or a hemispherical lens.

在具體實施例中,一種電子裝置可包括:一光學系統;一影像感測器,其適用於從該光學系統接收光線並包含一像素陣列,其中複數單位像素係以矩陣形狀安置;以及一訊號處理單元,其適用於處理從該影像感測器輸出的一訊號。各該等單位像素皆可包括:一基板,其包含一光電轉換元件;一像素透鏡,其形成於該基板上方並包含複數聚光層,其中下部層較上部層具有更大面積;一彩色濾光層,其覆蓋該像素透鏡;以及一抗反射結構,其形成於該彩色濾光層上方。該電子裝置可更包括一聚焦層,其提供於該光電轉換元件與該像素透鏡之間。 In a specific embodiment, an electronic device may include: an optical system; an image sensor adapted to receive light from the optical system and including a pixel array, wherein a plurality of unit pixels are arranged in a matrix shape; and a signal The processing unit is adapted to process a signal output from the image sensor. Each of these unit pixels may include: a substrate including a photoelectric conversion element; a pixel lens formed above the substrate and including a plurality of light-concentrating layers, wherein the lower layer has a larger area than the upper layer; and a color filter An optical layer covering the pixel lens; and an anti-reflection structure formed above the color filter layer. The electronic device may further include a focusing layer provided between the photoelectric conversion element and the pixel lens.

該聚焦層可較該像素透鏡具有更大折射率。該彩色濾光層可較 該像素透鏡具有更小折射率。介於該像素透鏡與該光電轉換元件之間的焦距可與該聚焦層之厚度成反比。由該上部層所露出的該下部層可較入射光之波長具有更小寬度。 The focusing layer may have a larger refractive index than the pixel lens. The color filter layer can be compared The pixel lens has a smaller refractive index. The focal length between the pixel lens and the photoelectric conversion element may be inversely proportional to the thickness of the focusing layer. The lower layer exposed by the upper layer may have a smaller width than the wavelength of incident light.

100:像素陣列 100: pixel array

110:單位像素 110: unit pixel

120:相關重複取樣(CDS) 120: Correlated Repeat Sampling (CDS)

130:類比-數位轉換器(ADC) 130: Analog-to-digital converter (ADC)

140:緩衝器 140: buffer

150:列驅動器 150: column driver

160:時序產生器 160: Timing generator

170:控制暫存器 170: control register

180:斜坡訊號產生器 180: ramp signal generator

210:基板 210: substrate

220:光電轉換元件 220: photoelectric conversion element

230:聚焦層 230: focus layer

240:像素透鏡 240: pixel lens

241:第一聚光層 241: the first light-gathering layer

242:第二聚光層 242: second concentrating layer

250:彩色濾光層 250: color filter layer

260:抗反射層 260: Anti-reflection layer

270:半球形透鏡 270: Hemispherical lens

281:第一抗反射層 281: The first anti-reflection layer

282:第二抗反射層 282: Second anti-reflection layer

283:第三抗反射層 283: Third anti-reflection layer

284:第四抗反射層 284: Fourth anti-reflection layer

285:第五抗反射層 285: Fifth anti-reflection layer

300:影像感測器 300: Image sensor

310:光學系統或光學透鏡 310: optical system or optical lens

311:快門單元 311: Shutter unit

312:訊號處理單元 312: Signal processing unit

313:驅動單元 313: Drive unit

T:聚焦層之厚度 T: thickness of focusing layer

W1、W2:寬度 W1, W2: width

t1:下部層之厚度 t1: Thickness of lower layer

t2:上部層之厚度 t2: Thickness of upper layer

Dout:經處理的影像訊號 D out : processed image signal

〔圖1〕為根據本發明一具體實施例示意性例示一種影像感測器的方塊圖。 [FIG. 1] is a block diagram schematically illustrating an image sensor according to an embodiment of the present invention.

〔圖2A〕為根據本發明該具體實施例例示該影像感測器之單位像素的剖面圖。 [FIG. 2A] is a cross-sectional view illustrating a unit pixel of the image sensor according to the specific embodiment of the present invention.

〔圖2B〕為例示本發明另一具體實施例的剖面圖。 [FIG. 2B] is a cross-sectional view illustrating another specific embodiment of the present invention.

〔圖3A〕至〔圖3C〕為根據本發明一具體實施例例示一聚焦層和一像素透鏡的透視圖。 [FIG. 3A] to [FIG. 3C] are perspective views illustrating a focusing layer and a pixel lens according to an embodiment of the present invention.

〔圖4A〕至〔圖4D〕為根據本發明一具體實施例在該聚焦層和該像素透鏡中的抗反射層之剖面圖。 [FIG. 4A] to [FIG. 4D] are cross-sectional views of an anti-reflection layer in the focusing layer and the pixel lens according to a specific embodiment of the present invention.

〔圖5〕為根據本發明一具體實施例簡要性例示一種包括一影像感測器的電子裝置的圖式。 [FIG. 5] is a diagram briefly illustrating an electronic device including an image sensor according to an embodiment of the present invention.

以下將參照所附圖式更詳細說明各種具體實施例。然而,本發明可以不同形式體現,且不應被理解為限於文中所闡述該等具體實施例。而是,提供這些具體實施例以使所揭示內容周密且完整,並向本領域具有通常知識者充分傳達本發明之範疇。在整個揭示內容中,同樣的元件符號在本發明整個該等各種圖式和具體實施例中指稱相似的部分。 Hereinafter, various specific embodiments will be described in more detail with reference to the accompanying drawings. However, the present invention can be embodied in different forms, and should not be construed as being limited to the specific embodiments set forth herein. Rather, these specific embodiments are provided to make the disclosed content thorough and complete, and fully convey the scope of the present invention to those having ordinary knowledge in the art. Throughout the disclosure, the same element symbols refer to similar parts throughout the various drawings and specific embodiments of the present invention.

所附圖式不必定成比例繪製,且在某些實例中,比例可經放大 以清楚例示該等具體實施例之特徵。當第一層指稱為「在」第二層「上(on)」或「在」基板「上(on)」時,不僅指稱該第一層直接形成於該第二層或該基板上的情況,而且指稱第三層存在於該第一層與該第二層或該基板之間的情況。 The drawings are not necessarily drawn to scale, and in some examples, the scale may be enlarged The features of these specific embodiments are clearly illustrated. When the first layer refers to "on" the second layer "on" or "on" the substrate, it not only refers to the case where the first layer is directly formed on the second layer or the substrate , And refers to the situation where the third layer exists between the first layer and the second layer or the substrate.

本發明該等具體實施例提供一種具備改進性能的影像感測器,以及一種具有該影像感測器的電子裝置。當在單位像素中的聚光效率改進時,該影像感測器之性能相應改進。一般來說,一種影像感測器可包括複數單位像素。各該等單位像素皆可包括一半球形微透鏡(ML,Micro lens),其安裝於一光電轉換元件上方。透過該微透鏡,入射光可凝聚並傳輸到該光電轉換元件中。該單位像素之聚光效率可依該微透鏡之品質而定。該聚光效率可根據介於該微透鏡與該光電轉換元件之間的一焦距進行控制。 The embodiments of the present invention provide an image sensor with improved performance, and an electronic device having the image sensor. As the light collection efficiency in the unit pixel improves, the performance of the image sensor improves accordingly. Generally, an image sensor may include a plurality of unit pixels. Each of these unit pixels may include a hemispherical micro lens (ML, Micro lens), which is installed above a photoelectric conversion element. Through the microlens, incident light can be condensed and transmitted to the photoelectric conversion element. The light collection efficiency of the unit pixel can be determined according to the quality of the microlens. The light collection efficiency can be controlled according to a focal length between the microlens and the photoelectric conversion element.

在習用微透鏡中,介於該微透鏡與該光電轉換元件之間的焦距可能會在變更該微透鏡之曲率的製程期間變更。因此,不容易控制該焦距。 In conventional microlenses, the focal length between the microlens and the photoelectric conversion element may be changed during the process of changing the curvature of the microlens. Therefore, it is not easy to control the focal length.

該微透鏡可透過回流一透鏡形成材料(例如光阻劑(resist))之製程形成。在此種製程中,很難形成具備所需曲率的半球形。再者,由於該微透鏡係形成於一彩色濾光層上方,因此適用材料有限。此外,該回流製程可能需要高成本、可能僅形成為半球形,並在形成具備對稱和均勻形狀的微透鏡上可能有困難。這可能會增加串擾(crosstalk)。 The microlens can be formed by a process of reflowing a lens forming material (such as a resist). In this process, it is difficult to form a hemisphere with the required curvature. Furthermore, since the microlens is formed above a color filter layer, the applicable materials are limited. In addition, this reflow process may require high cost, may be formed only in a hemispherical shape, and may have difficulty in forming microlenses having a symmetrical and uniform shape. This may increase crosstalk.

本發明之下列具體實施例提供一種在單位像素中具備改進聚光效率的影像感測器,以及一種具有該影像感測器的電子裝置。對本結構而言,各該等單位像素皆可包括一像素透鏡,其具有形成於一光電轉換元件上方的複數聚光層。該等複數聚光層之下部層較該等複數聚光層之上部層具有更大面積或關鍵尺寸(CD,critical dimension)。因此,該像素透鏡可具有多層階梯形結構。 具有多層階梯形結構的該像素透鏡呈現出次波長光學或次波長效應,並能如同半球形微透鏡般凝聚入射光。該像素透鏡可將光線有效凝聚於有限面積內。因此,根據具體實施例的該像素透鏡在提升該影像感測器之整合上具優勢,並能輕易改變焦距。根據該次波長光學,光學效應可在小於入射光之一半波長的空間尺度中得到。 The following specific embodiments of the present invention provide an image sensor having improved light collection efficiency in a unit pixel, and an electronic device having the image sensor. For this structure, each of these unit pixels may include a pixel lens having a plurality of light-concentrating layers formed above a photoelectric conversion element. The lower layer of the plurality of light concentrating layers has a larger area or critical dimension (CD) than the upper layer of the plurality of light concentrating layers. Therefore, the pixel lens may have a multilayer stepped structure. The pixel lens with a multi-layer stepped structure exhibits sub-wavelength optical or sub-wavelength effects, and can condense incident light like a hemispherical microlens. The pixel lens can effectively condense light in a limited area. Therefore, the pixel lens according to the specific embodiment has advantages in enhancing the integration of the image sensor, and can easily change the focal length. According to this sub-wavelength optics, the optical effect can be obtained in a spatial scale that is less than one-half wavelength of the incident light.

圖1為根據本發明具體實施例示意性例示一種影像感測器的方塊圖。 FIG. 1 is a block diagram schematically illustrating an image sensor according to a specific embodiment of the present invention.

如圖1所例示,根據本發明具體實施例的該影像感測器可包括一像素陣列100、一相關重複取樣(CDS,correlated double sampling)120、一類比-數位轉換器(ADC,analog-digital converter)130、一緩衝器140、一列驅動器150、一時序產生器160、一控制暫存器170、和一斜坡訊號產生器180。像素陣列100可包括複數單位像素110,其以一矩陣形狀安置。 As illustrated in FIG. 1, the image sensor according to an embodiment of the present invention may include a pixel array 100, a correlated double sampling (CDS) 120, and an analog-digital converter (ADC) converter) 130, a buffer 140, a column driver 150, a timing generator 160, a control register 170, and a ramp signal generator 180. The pixel array 100 may include a plurality of unit pixels 110, which are arranged in a matrix shape.

時序產生器160可產生用於控制列驅動器150、CDS 120、ADC 130、和斜坡訊號產生器180的一個或多個控制訊號。控制暫存器170可產生用於控制斜坡訊號產生器180、時序產生器160、和緩衝器140的一個或多個控制訊號。 The timing generator 160 may generate one or more control signals for controlling the column driver 150, the CDS 120, the ADC 130, and the ramp signal generator 180. The control register 170 may generate one or more control signals for controlling the ramp signal generator 180, the timing generator 160, and the buffer 140.

列驅動器150可基於列線驅動像素陣列100。舉例來說,列驅動器150可產生用於選取複數列線之任一列線的選取訊號。各單位像素110皆可感測入射光並透過行線將影像重置訊號和影像訊號輸出到CDS 120。CDS 120可對該影像重置訊號和該影像訊號進行取樣。 The column driver 150 may drive the pixel array 100 based on column lines. For example, the column driver 150 may generate a selection signal for selecting any one of the plural column lines. Each unit pixel 110 can sense the incident light and output the image reset signal and the image signal to the CDS 120 through the row line. CDS 120 can sample the image reset signal and the image signal.

ADC 130可將從斜坡訊號產生器180輸出的斜坡訊號與從CDS 120輸出的取樣訊號相較,並輸出比較訊號。根據從時序產生器160提供的時脈 訊號,ADC 130可計數該比較訊號之位準轉變時間,並將該計數值輸出到緩衝器140。斜坡訊號產生器180可在時序產生器160之控制下操作。 The ADC 130 may compare the ramp signal output from the ramp signal generator 180 with the sampling signal output from the CDS 120, and output a comparison signal. According to the clock supplied from the timing generator 160 Signal, the ADC 130 can count the level transition time of the comparison signal, and output the count value to the buffer 140. The ramp signal generator 180 can be operated under the control of the timing generator 160.

緩衝器140可儲存從ADC 130輸出的複數數位訊號,然後感測並放大該等數位訊號。因此,緩衝器140可包括一記憶體(圖未示)和一感測放大器(圖未示)。該記憶體可用於儲存計數值。該等計數值與從複數單位像素110所輸出的訊號相關。該感測放大器可用於感測並放大從該記憶體輸出的該等計數值。 The buffer 140 may store the complex digital signals output from the ADC 130, and then sense and amplify the digital signals. Therefore, the buffer 140 may include a memory (not shown) and a sense amplifier (not shown). The memory can be used to store count values. These count values are related to the signal output from the plural unit pixels 110. The sense amplifier can be used to sense and amplify the count values output from the memory.

在上述之影像感測器中,各該等單位像素皆可包括一像素透鏡,其能改進聚光效率。在下文中,將參照所附圖式詳細說明包括一像素透鏡的單位像素。 In the above-mentioned image sensor, each of these unit pixels may include a pixel lens, which can improve the light collection efficiency. Hereinafter, the unit pixel including the one-pixel lens will be explained in detail with reference to the attached drawings.

圖2A為根據本發明該具體實施例例示影像感測器之單位像素的剖面圖,而圖2B為例示本發明另一具體實施例的剖面圖。圖3A至圖3C為根據本發明該具體實施例例示一聚焦層和一像素透鏡之範例的透視圖。 2A is a cross-sectional view illustrating a unit pixel of an image sensor according to the specific embodiment of the present invention, and FIG. 2B is a cross-sectional view illustrating another specific embodiment of the present invention. 3A to 3C are perspective views illustrating an example of a focusing layer and a pixel lens according to the specific embodiment of the present invention.

如圖2A、圖2B、和圖3A至圖3C所例示,各單位像素110皆可包括一基板210、一聚焦層230、一像素透鏡240、一彩色濾光層250、和一抗反射結構。基板210可包括一光電轉換元件220。聚焦層230可形成於基板210上方。像素透鏡240可形成於聚焦層230上方並包括複數聚光層。在該等複數聚光層中之下部層較上部層具有更大面積或關鍵尺寸(CD)。彩色濾光層250可形成於聚焦層230上方以覆蓋像素透鏡240。抗反射結構可形成於彩色濾光層250上方。 As illustrated in FIGS. 2A, 2B, and 3A to 3C, each unit pixel 110 may include a substrate 210, a focusing layer 230, a pixel lens 240, a color filter layer 250, and an anti-reflection structure. The substrate 210 may include a photoelectric conversion element 220. The focusing layer 230 may be formed above the substrate 210. The pixel lens 240 may be formed above the focusing layer 230 and include a plurality of light-concentrating layers. In these complex light-concentrating layers, the lower layer has a larger area or critical dimension (CD) than the upper layer. The color filter layer 250 may be formed above the focusing layer 230 to cover the pixel lens 240. The anti-reflection structure may be formed above the color filter layer 250.

在本具體實施例中,像素透鏡240可包括一第一聚光層241,其形成於聚焦層230上方,以及一第二聚光層242,其形成於第一聚光層241上方, 並較第一聚光層241具有更小面積。第一聚光層241可形成該下部層,而第二聚光層242可形成該上部層。因此,該第一聚光層和該下部層可由同一元件符號241來表示,而該第二聚光層和該上部層可由同一元件符號242來表示。 In this embodiment, the pixel lens 240 may include a first light-concentrating layer 241 formed above the focusing layer 230, and a second light-concentrating layer 242 formed above the first light-concentrating layer 241, It has a smaller area than the first light-concentrating layer 241. The first light-concentrating layer 241 may form the lower layer, and the second light-concentrating layer 242 may form the upper layer. Therefore, the first light concentrating layer and the lower layer may be represented by the same element symbol 241, and the second light concentrating layer and the upper layer may be represented by the same element symbol 242.

基板210可包括一半導體基板。該半導體基板可具有單晶態,並包括一含矽材料。亦即,基板210可包括一單晶含矽材料。 The substrate 210 may include a semiconductor substrate. The semiconductor substrate may have a single crystal state and include a silicon-containing material. That is, the substrate 210 may include a single crystal silicon-containing material.

光電轉換元件220可包括光電二極體。舉例來說,形成於基板210上方的光電轉換元件220可包括垂直堆疊的複數光電轉換層(圖未示)。各該等光電轉換層皆可用作包括一N型雜質區和一P型雜質區的光電二極體。 The photoelectric conversion element 220 may include a photodiode. For example, the photoelectric conversion element 220 formed above the substrate 210 may include a plurality of vertically stacked photoelectric conversion layers (not shown). Each of these photoelectric conversion layers can be used as a photodiode including an N-type impurity region and a P-type impurity region.

聚焦層230可用於調整透過像素透鏡240所凝聚的入射光到達光電轉換元件220的距離,亦即焦距。由於聚焦層230,因此該焦距無需一變化曲率即可進行調整,不同於該焦距係使用具備給定曲率的半球形微透鏡加以調整的習用裝置。再者,更短的焦距可設定於有限空間內。該焦距可與聚焦層230之厚度T成反比。舉例來說,該焦距可隨著聚焦層230之厚度T增加而縮短,並隨著聚焦層230之厚度T減少而延長。 The focusing layer 230 can be used to adjust the distance that the incident light condensed through the pixel lens 240 reaches the photoelectric conversion element 220, that is, the focal length. Due to the focusing layer 230, the focal length can be adjusted without changing the curvature, which is different from the conventional device in which the focal length is adjusted using a hemispherical microlens with a given curvature. Furthermore, a shorter focal length can be set in a limited space. The focal length may be inversely proportional to the thickness T of the focusing layer 230. For example, the focal length may be shortened as the thickness T of the focusing layer 230 increases, and extend as the thickness T of the focusing layer 230 decreases.

為將透過像素透鏡240所凝聚的該入射光有效率地傳輸到光電轉換元件220,聚焦層230可較像素透鏡240具有相同面積或更大面積。聚焦層230可具有對應於各單位像素110的形狀。因此,介於相鄰單位像素110之間,聚焦層230可彼此接觸。舉例來說,聚焦層230可具有矩形形狀。 In order to efficiently transmit the incident light condensed through the pixel lens 240 to the photoelectric conversion element 220, the focusing layer 230 may have the same area or a larger area than the pixel lens 240. The focusing layer 230 may have a shape corresponding to each unit pixel 110. Therefore, between adjacent unit pixels 110, the focusing layer 230 may be in contact with each other. For example, the focusing layer 230 may have a rectangular shape.

為將透過像素透鏡240所凝聚的該入射光更有效率地傳輸到光電轉換元件220,聚焦層230可較像素透鏡240具有更大折射率。至於聚焦層230,具有較像素透鏡240更大折射率的任何材料均可適用。 In order to transmit the incident light condensed through the pixel lens 240 to the photoelectric conversion element 220 more efficiently, the focusing layer 230 may have a larger refractive index than the pixel lens 240. As for the focusing layer 230, any material having a larger refractive index than the pixel lens 240 may be suitable.

由於聚焦層230定位於彩色濾光層250之底部,因此在一般半 導體製程中所使用的各種材料均可適用。舉例來說,可適用作為聚焦層230的透明材料可包括無機材料(例如氧化矽、氮化矽、和氮化鈦)。聚焦層230可具有單層結構或多層結構,其中堆疊具有不同折射率的透明材料。當聚焦層230具有多層結構時,聚焦層230之折射率可依位置而變化。位於較低層級的層之折射率可較位於較高層級的層具有更高折射率。 Since the focusing layer 230 is positioned at the bottom of the color filter layer 250, Various materials used in the conductor manufacturing process are applicable. For example, the transparent material applicable as the focusing layer 230 may include inorganic materials (such as silicon oxide, silicon nitride, and titanium nitride). The focusing layer 230 may have a single-layer structure or a multi-layer structure in which transparent materials having different refractive indexes are stacked. When the focusing layer 230 has a multi-layer structure, the refractive index of the focusing layer 230 may vary according to the position. The refractive index of the layer at a lower level may have a higher refractive index than the layer at a higher level.

像素透鏡240可用作聚光元件以凝聚入射光。為改進聚光效率,像素透鏡240可具有多層結構,其中堆疊兩層或多層聚光層241和242。上部層242可較下部層241具有更小面積或關鍵尺寸(CD)。因此,像素透鏡240可具有多層階梯形結構。當像素透鏡240具有多層階梯形結構時,在寬度上的不同,亦即,寬度W1和W2可小於入射光之波長。亦即,在該像素透鏡中,由該上部層所露出的該下部層較入射光之波長具有更小寬度。更具體而言,在寬度上的不同,亦即,介於上部層242與下部層241之間的寬度W1和W2可小於其色彩係透過彩色濾光層250來分離的該入射光之波長。透過此結構,具有多層階梯形結構的像素透鏡240能如同習用半球形透鏡般凝聚光線。此係基於該次波長光學。寬度W1和W2分別在兩端介於上部層242與下部層241之間形成階梯寬度,並可彼此相等(W1=W2)或彼此不同(W1≠W2)。 The pixel lens 240 may serve as a light-condensing element to condense incident light. In order to improve the light collection efficiency, the pixel lens 240 may have a multi-layer structure in which two or more light collection layers 241 and 242 are stacked. The upper layer 242 may have a smaller area or critical dimension (CD) than the lower layer 241. Therefore, the pixel lens 240 may have a multi-layer stepped structure. When the pixel lens 240 has a multi-layer stepped structure, the difference in width, that is, the widths W1 and W2 may be smaller than the wavelength of incident light. That is, in the pixel lens, the lower layer exposed by the upper layer has a smaller width than the wavelength of incident light. More specifically, the difference in width, that is, the widths W1 and W2 between the upper layer 242 and the lower layer 241 may be smaller than the wavelength of the incident light whose color is separated by the color filter layer 250. Through this structure, the pixel lens 240 having a multi-layered stepped structure can condense light like a conventional hemispherical lens. This is based on this sub-wavelength optics. The widths W1 and W2 form step widths between the upper layer 242 and the lower layer 241 at both ends, and may be equal to each other (W1=W2) or different from each other (W1≠W2).

複數聚光層241和242可具有相同形狀,且彼此平行安置。具體而言,複數聚光層241和242可具有圓形形狀、包括四邊形的多邊形形狀、或其類似物。 The plurality of light-concentrating layers 241 and 242 may have the same shape and be arranged parallel to each other. Specifically, the complex light-concentrating layers 241 and 242 may have a circular shape, a polygonal shape including a quadrangle, or the like.

為進一步改進聚光效率,上部層242之厚度t2可等同於下部層241之厚度t1(t1=t2),或是小於下部層241之厚度t1(t1>t2)。再者,為進一步改進聚光效率,上部層242可較下部層241具有相同折射率或更小折射率。複數 聚光層241和242可包括一透明材料。當上部層242和下部層241具有相同折射率時,上部層242和下部層241可由相同材料形成。 To further improve the light collection efficiency, the thickness t2 of the upper layer 242 may be equal to the thickness t1 of the lower layer 241 (t1=t2), or smaller than the thickness t1 of the lower layer 241 (t1>t2). Furthermore, in order to further improve the light collection efficiency, the upper layer 242 may have the same refractive index or a lower refractive index than the lower layer 241. plural The light-concentrating layers 241 and 242 may include a transparent material. When the upper layer 242 and the lower layer 241 have the same refractive index, the upper layer 242 and the lower layer 241 may be formed of the same material.

由於複數聚光層241和242,亦即,像素透鏡240定位於彩色濾光層250之底部,因此在一般半導體製程中所使用的各種材料均可適用。舉例來說,可適用作為複數聚光層241和242的透明材料可包括無機材料(例如氧化矽、氮化矽、和氮化鈦)。聚光層241和242可具有單層結構或多層結構,其中堆疊具有不同折射率的透明材料。當提供該等複數聚光層時,該等聚光層之該等折射率可依位置而變化。位於較高層級的聚光層之折射率可小於位於較低層級的聚光層。亦即,該等聚光層之該等折射率可隨著該等聚光層相鄰於光電轉換元件220或聚焦層230而增加。 Since the plurality of light-concentrating layers 241 and 242, that is, the pixel lens 240 is positioned at the bottom of the color filter layer 250, various materials used in general semiconductor manufacturing processes are applicable. For example, the transparent materials applicable as the plurality of light-concentrating layers 241 and 242 may include inorganic materials (such as silicon oxide, silicon nitride, and titanium nitride). The light-concentrating layers 241 and 242 may have a single-layer structure or a multi-layer structure in which transparent materials having different refractive indexes are stacked. When the plural light-concentrating layers are provided, the refractive indexes of the light-concentrating layers may vary according to positions. The refractive index of the light concentrating layer at a higher level may be smaller than that of the light concentrating layer at a lower level. That is, the refractive indexes of the light-concentrating layers may increase as the light-concentrating layers are adjacent to the photoelectric conversion element 220 or the focusing layer 230.

用於色彩分離的彩色濾光層250可形成於聚焦層230上方以覆蓋像素透鏡240,並具有平坦表面。由於彩色濾光層250與像素透鏡240接觸並覆蓋像素透鏡240,因此能改進介於彩色濾光層250與像素透鏡240之間的光傳輸。亦即,能改進聚光效率。彩色濾光層250可包括一紅色濾光片、一綠色濾光片、一藍色濾光片、一青色濾光片、一黃色濾光片、一洋紅色濾光片、一紅外線濾通器(infrared pass filter)、一紅外線濾止器(infrared cutoff filter)、一白色濾光片、或其組合。為進一步改進該聚光效率,彩色濾光層250可較像素透鏡240具有更小折射率。 The color filter layer 250 for color separation may be formed over the focusing layer 230 to cover the pixel lens 240 and have a flat surface. Since the color filter layer 250 contacts the pixel lens 240 and covers the pixel lens 240, the light transmission between the color filter layer 250 and the pixel lens 240 can be improved. That is, the light collection efficiency can be improved. The color filter layer 250 may include a red filter, a green filter, a blue filter, a cyan filter, a yellow filter, a magenta filter, and an infrared filter (infrared pass filter), an infrared cutoff filter, a white filter, or a combination thereof. To further improve the light collection efficiency, the color filter layer 250 may have a smaller refractive index than the pixel lens 240.

抗反射結構可形成於彩色濾光層250上方,並包括一抗反射層260或一半球形透鏡270。抗反射層260可包括兩層或多層材料層,其具有不同折射率並交替堆疊一次或多次。半球形透鏡270不僅可防止入射光之反射,而且可凝聚入射於像素透鏡240上的光線。 The anti-reflection structure may be formed above the color filter layer 250, and includes an anti-reflection layer 260 or a hemispherical lens 270. The anti-reflection layer 260 may include two or more material layers, which have different refractive indexes and are alternately stacked one or more times. The hemispherical lens 270 not only prevents reflection of incident light, but also condenses light incident on the pixel lens 240.

隨著具有該上述結構的該影像感測器包括具有多層階梯形結構的像素透鏡240,能改進在單位像素110中的聚光效率。再者,隨著彩色濾光層250具有可覆蓋像素透鏡240的形狀,能進一步改進在單位像素110中的聚光效率。隨著在單位像素110中的聚光效率改進,在光電轉換元件220中的量子效率亦能改進。結果,能改進該影像感測器之性能。 As the image sensor having the above-described structure includes the pixel lens 240 having a multilayer stepped structure, the light collection efficiency in the unit pixel 110 can be improved. Furthermore, as the color filter layer 250 has a shape that can cover the pixel lens 240, the light collection efficiency in the unit pixel 110 can be further improved. As the light collection efficiency in the unit pixel 110 is improved, the quantum efficiency in the photoelectric conversion element 220 can also be improved. As a result, the performance of the image sensor can be improved.

在根據本發明一具體實施例的該影像感測器中,該聚焦層和該像素透鏡可具有其中堆疊複數材料層的結構。因此,抗反射層可輕易安裝於該等各層之間。該抗反射層可防止入射光從該表面反射,從而防止由於在光強度上的降低而在聚光效率上的降低。然而,在包括一半球形微透鏡的該影像感測器中,可限制該等抗反射層之形成位置。在下文中,將參照圖4A至圖4D詳細說明該等抗反射層。圖4A至圖4D所例示的第一至第五抗反射層,可分別指示具有不同折射率的兩層或多層材料層為交替堆疊一次或多次。 In the image sensor according to a specific embodiment of the present invention, the focusing layer and the pixel lens may have a structure in which a plurality of material layers are stacked. Therefore, the anti-reflection layer can be easily installed between these layers. The anti-reflection layer can prevent incident light from being reflected from the surface, thereby preventing a decrease in light collection efficiency due to a decrease in light intensity. However, in the image sensor including hemispherical microlenses, the formation positions of the anti-reflection layers can be limited. Hereinafter, the anti-reflection layers will be described in detail with reference to FIGS. 4A to 4D. The first to fifth anti-reflection layers illustrated in FIGS. 4A to 4D may respectively indicate that two or more material layers with different refractive indexes are alternately stacked one or more times.

圖4A至圖4D為根據本發明一具體實施例例示該等抗反射層的剖面圖。 4A to 4D are cross-sectional views illustrating the anti-reflection layers according to an embodiment of the invention.

首先,如圖4A所例示,第一抗反射層281可形成於聚焦層230下方。具體而言,第一抗反射層281可形成於聚焦層230與包括該光電轉換元件的該基板之間。再者,第二抗反射層282可形成於聚焦層230與像素透鏡240之間。第一抗反射層281和第二抗反射層282可在聚焦層230形成之前和之後透過沉積製程形成。 First, as illustrated in FIG. 4A, the first anti-reflection layer 281 may be formed under the focusing layer 230. Specifically, the first anti-reflection layer 281 may be formed between the focusing layer 230 and the substrate including the photoelectric conversion element. Furthermore, the second anti-reflection layer 282 may be formed between the focusing layer 230 and the pixel lens 240. The first anti-reflection layer 281 and the second anti-reflection layer 282 may be formed through a deposition process before and after the focusing layer 230 is formed.

如圖4B所例示,第三抗反射層283可形成於像素透鏡240上方。具體而言,第三抗反射層283可形成於像素透鏡240與該彩色濾光層之間。第三抗反射層283可在像素透鏡240形成之後透過沉積製程形成。該沉積製程可 以第三抗反射層283沿著該結構表面具有不變厚度的方式進行。 As illustrated in FIG. 4B, the third anti-reflection layer 283 may be formed above the pixel lens 240. Specifically, the third anti-reflection layer 283 may be formed between the pixel lens 240 and the color filter layer. The third anti-reflective layer 283 may be formed through a deposition process after the pixel lens 240 is formed. The deposition process can The third anti-reflection layer 283 has a constant thickness along the surface of the structure.

如圖4C所例示,第四抗反射層284可形成於第一聚光層241上方。第五抗反射層285可形成於第二聚光層242上方。第四抗反射層284和第五抗反射層285可隨著第一聚光層241和第二聚光層242分別形成而同時形成。當第一聚光層241和第二聚光層242彼此具有不同折射率時,第四抗反射層284可在介於第一聚光層241與第二聚光層242之間的該邊界表面防止表面反射。 As illustrated in FIG. 4C, the fourth anti-reflection layer 284 may be formed above the first light-concentrating layer 241. The fifth anti-reflection layer 285 may be formed above the second light-concentrating layer 242. The fourth anti-reflection layer 284 and the fifth anti-reflection layer 285 may be simultaneously formed as the first and second light-concentrating layers 241 and 242 are formed, respectively. When the first light-concentrating layer 241 and the second light-concentrating layer 242 have different refractive indexes from each other, the fourth anti-reflection layer 284 may be on the boundary surface between the first light-concentrating layer 241 and the second light-concentrating layer 242 Prevent surface reflections.

如圖4D所例示,所有第一抗反射層281至第五抗反射層285均可形成。在根據本發明一具體實施例的該影像感測器中,聚焦層230和像素透鏡240可具有其中堆疊複數材料層的結構。因此,抗反射層可輕易安裝於該等各層之間。此種結構能進一步改進該聚光效率。 As illustrated in FIG. 4D, all of the first anti-reflection layer 281 to the fifth anti-reflection layer 285 may be formed. In the image sensor according to a specific embodiment of the present invention, the focusing layer 230 and the pixel lens 240 may have a structure in which a plurality of material layers are stacked. Therefore, the anti-reflection layer can be easily installed between these layers. Such a structure can further improve the light collection efficiency.

根據本發明一具體實施例的該影像感測器可在各種電子裝置或系統中使用。在下文中,將參照圖5說明根據適用於相機的本發明具體實施例的該影像感測器。 The image sensor according to an embodiment of the invention can be used in various electronic devices or systems. Hereinafter, the image sensor according to a specific embodiment of the present invention applicable to a camera will be explained with reference to FIG. 5.

圖5為根據本發明具體實施例簡要例示一種包括一影像感測器的電子裝置的圖式。參照圖5,包括根據本發明具體實施例的該影像感測器的該電子裝置可包括能拍攝靜態影像或動態影像的一相機。該電子裝置可包括一光學系統或光學透鏡310、一快門單元311、用於控制/驅動影像感測器300及快門單元311的一驅動單元313、和一訊號處理單元312。 FIG. 5 is a diagram briefly illustrating an electronic device including an image sensor according to an embodiment of the present invention. Referring to FIG. 5, the electronic device including the image sensor according to an embodiment of the present invention may include a camera capable of shooting still images or moving images. The electronic device may include an optical system or optical lens 310, a shutter unit 311, a driving unit 313 for controlling/driving the image sensor 300 and the shutter unit 311, and a signal processing unit 312.

光學系統310可從物體到影像感測器300之像素陣列100(參照圖1)引導影像光線,亦即入射光。光學系統310可包括複數光學透鏡。快門單元311可為影像感測器300控制光照射期間和遮光期間。驅動單元313可控制影像感測器300之傳輸操作和快門單元311之快門操作。訊號處理單元312可 以各種方式處理從影像感測器300輸出的訊號。該等經處理的影像訊號Dout可儲存於儲存媒體(例如記憶體,或是輸出到監視器或其類似物)中。 The optical system 310 can guide image light, that is, incident light, from the object to the pixel array 100 of the image sensor 300 (refer to FIG. 1 ). The optical system 310 may include a plurality of optical lenses. The shutter unit 311 may control the light irradiation period and the light blocking period for the image sensor 300. The driving unit 313 can control the transmission operation of the image sensor 300 and the shutter operation of the shutter unit 311. The signal processing unit 312 can process the signal output from the image sensor 300 in various ways. The processed image signals D out can be stored in a storage medium (such as a memory, or output to a monitor or the like).

根據本發明具體實施例,一種影像感測器可包括一像素透鏡,以改進在該單位像素中的聚光效率。再者,隨著該彩色濾光層具有可覆蓋該像素透鏡的形狀,能進一步改進在該單位像素中的聚光效率。 According to a specific embodiment of the present invention, an image sensor may include a pixel lens to improve the light collection efficiency in the unit pixel. Furthermore, as the color filter layer has a shape that can cover the pixel lens, the light collection efficiency in the unit pixel can be further improved.

根據具體實施例,改進在該單位像素中的聚光效率並改進在該光電轉換元件中的量子效率。結果,能改進該影像感測器之性能。 According to a specific embodiment, the light collection efficiency in the unit pixel is improved and the quantum efficiency in the photoelectric conversion element is improved. As a result, the performance of the image sensor can be improved.

雖然已為例示性目的說明各種具體實施例,但熟習此項技術者應顯而易見可做到各種變化例和修飾例,而不脫離如在下列申請專利範圍中所界定出的本發明之精神與範疇。 Although various specific embodiments have been described for illustrative purposes, it should be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the present invention as defined in the following patent applications .

110:單位像素 110: unit pixel

210:基板 210: substrate

220:光電轉換元件 220: photoelectric conversion element

230:聚焦層 230: focus layer

240:像素透鏡 240: pixel lens

241:第一聚光層 241: the first light-gathering layer

242:第二聚光層 242: second concentrating layer

250:彩色濾光層 250: color filter layer

260:抗反射層 260: Anti-reflection layer

W1、W2:寬度 W1, W2: width

T:聚焦層之厚度 T: thickness of focusing layer

t1:下部層之厚度 t1: Thickness of lower layer

t2:上部層之厚度 t2: Thickness of upper layer

Claims (18)

一種影像感測器,包含:一基板,其包含一光電轉換元件;一像素透鏡,其形成於該基板上方並包含複數聚光層,其之一下部層較一上部層具有一更大面積;一彩色濾光層,其覆蓋該像素透鏡;以及一抗反射結構,其形成於該彩色濾光層上方;其中該等聚光層的每一者具有一平坦表面,以及由該上部層所露出的該下部層較入射光之波長具有一更小寬度,且該上部層較該下部層具有一更小折射率,該上部層及該下部層由相同材料形成。 An image sensor includes: a substrate including a photoelectric conversion element; a pixel lens formed above the substrate and including a plurality of light-concentrating layers, a lower layer of which has a larger area than an upper layer; A color filter layer covering the pixel lens; and an anti-reflection structure formed above the color filter layer; wherein each of the light-concentrating layers has a flat surface and is exposed by the upper layer The lower layer has a smaller width than the wavelength of incident light, and the upper layer has a smaller refractive index than the lower layer, and the upper layer and the lower layer are formed of the same material. 如申請專利範圍第1項所述之影像感測器,更包含:一聚焦層,其提供於該光電轉換元件與該像素透鏡之間。 The image sensor as described in item 1 of the patent application scope further includes: a focusing layer provided between the photoelectric conversion element and the pixel lens. 如申請專利範圍第2項所述之影像感測器,其中該聚焦層較該像素透鏡具有一更大折射率。 The image sensor as described in item 2 of the patent application scope, wherein the focusing layer has a larger refractive index than the pixel lens. 如申請專利範圍第2項所述之影像感測器,其中該聚焦層較該像素透鏡具有相同面積或一更大面積。 The image sensor as described in item 2 of the patent application range, wherein the focusing layer has the same area or a larger area than the pixel lens. 如申請專利範圍第2項所述之影像感測器,其中介於該像素透鏡與該光電轉換元件之間的一焦距與該聚焦層之厚度成反比。 The image sensor as described in item 2 of the patent application scope, wherein a focal length between the pixel lens and the photoelectric conversion element is inversely proportional to the thickness of the focusing layer. 如申請專利範圍第1項所述之影像感測器,其中該像素透鏡具有一多層階梯形結構。 The image sensor as described in item 1 of the patent application scope, wherein the pixel lens has a multi-layer stepped structure. 如申請專利範圍第1項所述之影像感測器,其中由該上部層所露出的該下部層較其色彩係透過該彩色濾光層分離的入射光之波長具有一更小寬度。 An image sensor as described in item 1 of the patent application range, wherein the lower layer exposed by the upper layer has a smaller width than the wavelength of incident light whose color is separated by the color filter layer. 如申請專利範圍第1項所述之影像感測器,其中該等複數聚光層具有相同形狀且彼此平行安置。 The image sensor as described in item 1 of the patent application, wherein the plurality of light-concentrating layers have the same shape and are arranged parallel to each other. 如申請專利範圍第1項所述之影像感測器,其中該上部層較該下部層具有相同厚度或一更小厚度。 An image sensor as described in item 1 of the patent application range, wherein the upper layer has the same thickness or a smaller thickness than the lower layer. 如申請專利範圍第1項所述之影像感測器,其中該上部層較該下部層具有相同折射率或一更小折射率。 The image sensor as described in item 1 of the patent application, wherein the upper layer has the same refractive index or a smaller refractive index than the lower layer. 如申請專利範圍第1項所述之影像感測器,更包含:一抗反射層,其形成於該像素透鏡上方。 The image sensor as described in item 1 of the patent application scope further includes: an anti-reflection layer formed above the pixel lens. 如申請專利範圍第1項所述之影像感測器,其中該彩色濾光層覆蓋該像素透鏡之整個表面,並具有一平坦頂端表面。 The image sensor as described in item 1 of the patent application range, wherein the color filter layer covers the entire surface of the pixel lens and has a flat top surface. 如申請專利範圍第1項所述之影像感測器,其中該彩色濾光層較該像素透鏡具有一更小折射率。 The image sensor as described in item 1 of the patent application range, wherein the color filter layer has a smaller refractive index than the pixel lens. 如申請專利範圍第1項所述之影像感測器,其中該抗反射結構包含一抗反射層或一半球形透鏡。 The image sensor as described in item 1 of the patent application scope, wherein the anti-reflection structure includes an anti-reflection layer or a hemispherical lens. 一種電子裝置,包含:一光學系統;一影像感測器,其適用於從該光學系統接收光線並包含一像素陣列,其中複數單位像素係以一矩陣形狀安置;以及一訊號處理單元,其適用於處理從該影像感測器輸出的一訊號,其中各該等單位像素皆包含:一基板,其包含一光電轉換元件; 一像素透鏡,其形成於該基板上方並包含複數聚光層,其之一下部層較一上部層具有一更大面積;一彩色濾光層,其覆蓋該像素透鏡;以及一抗反射結構,其形成於該彩色濾光層上方;其中該等聚光層的每一者具有一平坦表面,以及由該上部層所露出的該下部層較入射光之波長具有一更小寬度,且該上部層較該下部層具有一更小折射率,該上部層及該下部層由相同材料形成。 An electronic device includes: an optical system; an image sensor, which is suitable for receiving light from the optical system and includes a pixel array, wherein a plurality of unit pixels are arranged in a matrix shape; and a signal processing unit, which is suitable For processing a signal output from the image sensor, each of the unit pixels includes: a substrate including a photoelectric conversion element; A pixel lens formed above the substrate and including a plurality of light-concentrating layers, a lower layer of which has a larger area than an upper layer; a color filter layer covering the pixel lens; and an anti-reflection structure, It is formed above the color filter layer; wherein each of the light-concentrating layers has a flat surface, and the lower layer exposed by the upper layer has a smaller width than the wavelength of incident light, and the upper part The layer has a smaller refractive index than the lower layer, and the upper layer and the lower layer are formed of the same material. 如申請專利範圍第15項所述之電子裝置,更包含:一聚焦層,其提供於該光電轉換元件與該像素透鏡之間。 The electronic device as described in item 15 of the patent application scope further includes: a focusing layer provided between the photoelectric conversion element and the pixel lens. 如申請專利範圍第16項所述之電子裝置,其中該聚焦層較該像素透鏡具有一更大折射率,且其中該彩色濾光層較該像素透鏡具有一更小折射率。 The electronic device as described in item 16 of the patent application range, wherein the focusing layer has a larger refractive index than the pixel lens, and wherein the color filter layer has a smaller refractive index than the pixel lens. 如申請專利範圍第16項所述之電子裝置,其中介於該像素透鏡與該光電轉換元件之間的一焦距與該聚焦層之厚度成反比。 An electronic device as described in item 16 of the patent application range, wherein a focal length between the pixel lens and the photoelectric conversion element is inversely proportional to the thickness of the focusing layer.
TW104119888A 2014-08-22 2015-06-18 Image sensor and electronic device having the same TWI697111B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140109587 2014-08-22
KR10-2014-0109587 2014-08-22
KR10-2015-0048436 2015-04-06
KR1020150048436A KR102394277B1 (en) 2014-08-22 2015-04-06 Image sensor and electronic device having the same

Publications (2)

Publication Number Publication Date
TW201608711A TW201608711A (en) 2016-03-01
TWI697111B true TWI697111B (en) 2020-06-21

Family

ID=55536000

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104119888A TWI697111B (en) 2014-08-22 2015-06-18 Image sensor and electronic device having the same

Country Status (2)

Country Link
KR (1) KR102394277B1 (en)
TW (1) TWI697111B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101724086B1 (en) * 2016-07-08 2017-04-06 군산대학교 산학협력단 Three-Dimensionally Stacked Image Sensor
EP3980830A4 (en) 2019-06-06 2023-06-07 Applied Materials, Inc. Imaging system and method of creating composite images

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070035847A1 (en) * 2005-08-11 2007-02-15 Micron Technology, Inc. Method and apparatus providing graded-index microlenses
US20100208368A1 (en) * 2006-07-26 2010-08-19 Huaxiang Yin Microlens, an image sensor including a microlens, method of forming a microlens and method for manufacturing an image sensor
US20120273907A1 (en) * 2011-04-27 2012-11-01 Youn-Sub Lim Image sensor and method for fabricating the same
WO2014122804A1 (en) * 2013-02-05 2014-08-14 富士フイルム株式会社 Image processing device, image capture device, image processing method, and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5188107B2 (en) 2007-06-21 2013-04-24 株式会社東芝 Array type photo detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070035847A1 (en) * 2005-08-11 2007-02-15 Micron Technology, Inc. Method and apparatus providing graded-index microlenses
US20100208368A1 (en) * 2006-07-26 2010-08-19 Huaxiang Yin Microlens, an image sensor including a microlens, method of forming a microlens and method for manufacturing an image sensor
US20120273907A1 (en) * 2011-04-27 2012-11-01 Youn-Sub Lim Image sensor and method for fabricating the same
WO2014122804A1 (en) * 2013-02-05 2014-08-14 富士フイルム株式会社 Image processing device, image capture device, image processing method, and program

Also Published As

Publication number Publication date
KR102394277B1 (en) 2022-05-06
TW201608711A (en) 2016-03-01
KR20160024345A (en) 2016-03-04

Similar Documents

Publication Publication Date Title
KR102499585B1 (en) Solid-state imaging device, manufacturing method thereof, and electronic apparatus
US20200335536A1 (en) Image sensor
KR102383190B1 (en) Solid-state image-capturing device and production method thereof, and electronic appliance
KR102431210B1 (en) Image sensor having phase difference detection pixel
JP6060851B2 (en) Method for manufacturing solid-state imaging device
CN105390512B (en) Image sensor and electronic device having the same
US8669134B2 (en) Method of manufacturing solid-state imaging device, solid-state imaging device, and electronic apparatus
KR102372745B1 (en) Image sensor and electronic device having the same
US9583522B2 (en) Image sensor and electronic device including the same
KR102312964B1 (en) Image sensor and method for fabricating the same
US9780132B2 (en) Image sensor and electronic device including the same
CN102881699A (en) Solid-state imaging device, manufacturing method of solid-state imaging device and electronic apparatus
US20170127024A1 (en) Optical filter, solid state imaging device, and electronic apparatus
US9837454B2 (en) Image sensor
US20220181372A1 (en) Image sensor including auto-focus pixels
US9723188B2 (en) Image sensor, method of manufacturing the image sensor, and electronic device including the image sensor
US9595551B2 (en) Solid-state imaging device and electronic apparatus
TWI697111B (en) Image sensor and electronic device having the same
US20210183929A1 (en) Image sensing device
US8610815B2 (en) Imaging device having microlens array adhered to wafer-level lens
KR102160237B1 (en) image sensor having micro lens
US20220293659A1 (en) Image sensing device
KR101016898B1 (en) Spherical shape image sensor
KR102318758B1 (en) Image sensor and electronic device having the same
KR102396031B1 (en) Image sensor and electronic device having the same