TWI696719B - Film forming apparatus and film forming method - Google Patents
Film forming apparatus and film forming method Download PDFInfo
- Publication number
- TWI696719B TWI696719B TW107142505A TW107142505A TWI696719B TW I696719 B TWI696719 B TW I696719B TW 107142505 A TW107142505 A TW 107142505A TW 107142505 A TW107142505 A TW 107142505A TW I696719 B TWI696719 B TW I696719B
- Authority
- TW
- Taiwan
- Prior art keywords
- cathode
- power supply
- frequency
- frequency power
- voltage
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45536—Use of plasma, radiation or electromagnetic fields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32211—Means for coupling power to the plasma
- H01J37/3222—Antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02266—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Plasma Technology (AREA)
Abstract
本發明可抑制因天線之污垢之影響導致之電漿阻抗上升,進行成膜速度及膜質變動較少之穩定之成膜。本發明之成膜裝置(1)具備:真空腔室(10);陰極(51),其可設置靶(512);高頻天線(52)、(53),其等配置於靶之附近;基板保持部(31),其將基板(S)對向於靶而加以保持;氣體供給部(54),其供給濺射氣體;陰極電源(571),其對陰極供給既定之陰極電力;高頻電源(572),其對高頻天線供給高頻電力而產生感應耦合電漿;及匹配器(575)、(576),其電性介插於高頻天線與高頻電源之間而進行阻抗匹配;且高頻電源基於流經陰極之電流及陰極之電壓中之至少一者之測量結果,調整對高頻天線提供之高頻電力之大小。 The invention can suppress the rise of plasma impedance caused by the influence of the dirt of the antenna, and perform stable film formation with less film formation speed and less film quality variation. The film forming device (1) of the present invention includes: a vacuum chamber (10); a cathode (51), which can be provided with a target (512); high-frequency antennas (52), (53), which are arranged near the target; A substrate holding part (31) which holds the substrate (S) against the target; a gas supply part (54) which supplies sputtering gas; a cathode power supply (571) which supplies predetermined cathode power to the cathode; high Frequency power supply (572), which supplies high-frequency power to the high-frequency antenna to generate inductive coupling plasma; and matching devices (575), (576), which are electrically interposed between the high-frequency antenna and the high-frequency power supply Impedance matching; and the high-frequency power supply adjusts the amount of high-frequency power supplied to the high-frequency antenna based on the measurement result of at least one of the current flowing through the cathode and the voltage of the cathode.
Description
本發明係關於一種使用電漿濺射技術於基板表面進行成膜之技術。 The present invention relates to a technique for forming a film on a substrate surface using plasma sputtering technology.
藉由利用電漿對靶進行濺射而於基板表面形成薄膜之技術中,包括藉由感應耦合電漿對靶進行濺射者。此技術係於與陰極電極一體化之靶之附近配置高頻天線(以下,有僅簡稱為「天線」之情形),並對天線提供高頻電力而產生感應耦合電漿者。又,亦存在併用在藉由使用永久磁鐵之磁路形成之磁場中,產生高密度之電漿之磁控陰極方式之情形(例如,參照專利文獻1、2)。此係為了產生更高密度之電漿而提高成膜速度及膜質。
The technique of forming a thin film on the surface of a substrate by sputtering a target with plasma includes sputtering the target by inductively coupled plasma. This technique is to arrange a high-frequency antenna near the target integrated with the cathode electrode (hereinafter, simply referred to as "antenna"), and provide high-frequency power to the antenna to generate inductive coupling plasma. In addition, there are also cases where a magnetron cathode system that generates a high-density plasma in a magnetic field formed by a magnetic circuit using a permanent magnet (for example, refer to
電漿濺射技術中,流經陰極之電流之大小會對成膜速度造成影響。另一方面,陰極電壓之大小會對膜質、更具體而言為基板中之膜密度造成影響。因此,對陰極供給電力之電源(陰極電源)需要構成為能夠正確地管理陰極電流及陰極電壓。 In plasma sputtering technology, the magnitude of the current flowing through the cathode will affect the film formation speed. On the other hand, the magnitude of the cathode voltage affects the film quality, more specifically the film density in the substrate. Therefore, a power supply (cathode power supply) that supplies power to the cathode needs to be configured to be able to accurately manage the cathode current and cathode voltage.
[專利文獻1]日本專利特開2009-062568號公報 [Patent Document 1] Japanese Patent Laid-Open No. 2009-062568
[專利文獻2]國際公開第2010/023878號說明書 [Patent Document 2] International Publication No. 2010/023878
持續地執行濺射時,自靶飛散之成膜材料、或成膜材料可與環境中之成分結合而形成之物質附著於天線。由此,天線之性能逐漸降低。具體而言,藉由感應耦合電漿產生之電漿之密度隨著天線之污垢變嚴重而逐漸降低。尤其,若具有導電性之物質附著於天線,則會作為對電場之遮罩發揮作用,故其影響顯著。 When the sputtering is continuously performed, the film-forming material scattered from the target, or the film-forming material can be combined with the components in the environment to form a substance attached to the antenna. As a result, the performance of the antenna gradually decreases. Specifically, the density of the plasma generated by the inductively coupled plasma gradually decreases as the dirt of the antenna becomes serious. In particular, if a conductive substance is attached to the antenna, it acts as a shield against the electric field, so its influence is significant.
因天線之污垢導致之電漿密度之變動,成為自陰極電源觀察之負載即電漿阻抗之變動之原因,結果使陰極電流及陰極電壓不穩定化。對於如此因持續濺射而天線逐漸受污染之狀況,習知之技術中殘留著無法穩定地維持成膜速度及膜質之兩者之問題。 The change in plasma density caused by the dirt of the antenna becomes the cause of the change in the load, that is, the impedance of the plasma observed from the cathode power supply, and as a result, the cathode current and the cathode voltage become unstable. For such a situation that the antenna is gradually contaminated due to continuous sputtering, the conventional technology still has a problem that it cannot stably maintain both the film formation speed and the film quality.
本發明係鑒於上述課題而完成者,其目的在於提供一種可抑制天線之污垢之影響而進行成膜速度及膜質變動較少之穩定之成膜之技術。 The present invention has been completed in view of the above-mentioned problems, and an object of the present invention is to provide a stable film-forming technology capable of suppressing the influence of the dirt of an antenna and performing a film-forming speed and a film quality with little variation.
本發明之一態樣係一種藉由電漿濺射而於基板進行成膜之成膜裝置,為達成上述目的,該裝置具備:真空腔室;陰極,其設置於上述真空腔室內,可設置靶;高頻天線,其於上述真空腔室內配置於上述靶之附近;基板保持部,其於上述真空腔室內將上述基板對向於上述靶而加以保持;氣體供給部,其對上述真空腔室內供給濺射氣體;陰極電源,其對上述陰極供給既定之陰極電力;高頻電源,其對上述高頻天線供給高頻電力而產生感應耦合電漿;及匹配器,其電性介插於上述高頻天線與上述高頻電源之間而進行 阻抗匹配;且上述高頻電源基於流經上述陰極之電流及上述陰極之電壓中之至少一者之測量結果,調整對上述高頻天線提供之上述高頻電力之大小,將上述陰極電力控制為特定值。 An aspect of the present invention is a film forming apparatus that forms a film on a substrate by plasma sputtering. To achieve the above object, the apparatus includes: a vacuum chamber; a cathode, which is provided in the vacuum chamber and can be provided A target; a high-frequency antenna, which is arranged near the target in the vacuum chamber; a substrate holding portion, which holds the substrate against the target in the vacuum chamber; and a gas supply portion, which faces the vacuum chamber Indoor supply of sputtering gas; cathode power supply, which supplies predetermined cathode power to the cathode; high-frequency power supply, which supplies high-frequency power to the high-frequency antenna to generate inductively coupled plasma; and a matcher, which is electrically interposed in Between the high-frequency antenna and the high-frequency power supply Impedance matching; and the high-frequency power supply adjusts the magnitude of the high-frequency power supplied to the high-frequency antenna based on the measurement result of at least one of the current flowing through the cathode and the voltage of the cathode to control the cathode power to Specific value.
又,本發明之一態樣係一種藉由電漿濺射而於基板進行成膜之成膜方法,為達成上述目的,其包括:於真空腔室內配置具有靶之陰極、高頻天線、及上述基板之步驟;對上述真空腔室內供給濺射氣體之步驟;及自電源部對上述陰極供給既定之陰極電力,並且經由匹配器對上述高頻天線供給高頻電力而產生感應耦合電漿之步驟;且上述電源部基於流經上述陰極之電流及上述陰極之電壓中之至少一者之測量結果,控制對上述高頻天線提供之上述高頻電力。 Furthermore, one aspect of the present invention is a film forming method for forming a film on a substrate by plasma sputtering. To achieve the above object, it includes: arranging a cathode with a target, a high-frequency antenna in a vacuum chamber, and The step of the substrate; the step of supplying the sputtering gas into the vacuum chamber; and supplying predetermined cathode power to the cathode from the power supply section, and supplying the high-frequency power to the high-frequency antenna via a matching device to generate inductively coupled plasma Step; and the power supply unit controls the high-frequency power supplied to the high-frequency antenna based on the measurement result of at least one of the current flowing through the cathode and the voltage of the cathode.
本說明書中,將流經陰極之電流稱為「陰極電流」,將施加至陰極之電壓稱為「陰極電壓」。以上述方式構成之發明係應對如下問題者:由於附著因濺射產生之成膜材料等之粒子而導致高頻天線之污垢變嚴重,故僅陰極電源是無法將陰極電流及陰極電壓兩者控制為適當值。即,本發明中,藉由調整供給至高頻天線之高頻電力,可同時將該等控制為適當值。具體而言如下述。 In this specification, the current flowing through the cathode is called "cathode current", and the voltage applied to the cathode is called "cathode voltage". The invention constituted in the above-mentioned manner is to deal with the problem that the adhesion of particles such as film-forming materials generated by sputtering causes serious fouling of the high-frequency antenna, so only the cathode power supply cannot control both the cathode current and the cathode voltage Is an appropriate value. That is, in the present invention, by adjusting the high-frequency power supplied to the high-frequency antenna, these can be controlled to appropriate values at the same time. The details are as follows.
隨著濺射之進行,高頻天線因附著物而受污染,產生之電漿之密度會逐漸降低。該情況會導致與自電源側觀察之負載之大小對應之電漿阻抗之上升。關於供給至高頻天線之高頻電力,藉由經由匹配器可抑制負載變動之影響。然而,施加至陰極之電壓與電流之大小隨著負載之變動而變動,結果,成為成膜速度及膜質變動之原因。 As the sputtering progresses, the high-frequency antenna is contaminated by attachments, and the density of the generated plasma will gradually decrease. This situation causes an increase in the plasma impedance corresponding to the magnitude of the load observed from the power supply side. Regarding the high-frequency power supplied to the high-frequency antenna, the influence of load fluctuations can be suppressed through the matching device. However, the magnitudes of the voltage and current applied to the cathode vary with the load, and as a result, the film formation speed and film quality vary.
上述發明中,測量陰極電流及陰極電壓中之至少一 者,基於該測量結果,控制對高頻天線提供之高頻電力。即,一面監測陰極電力,一面基於該結果控制高頻電力。以此方式構成之發明中,可根據陰極電流或陰極電壓之測量結果來偵測伴隨因高頻天線之污垢導致之電漿密度之降低而產生之電漿阻抗之變動,並為彌補此而進行高頻電力之增減。因此,即便高頻天線受污染,亦可抑制因此導致之電漿阻抗之變動,維持陰極電流及陰極電壓穩定。 In the above invention, measuring at least one of cathode current and cathode voltage Based on this measurement result, the high-frequency power supplied to the high-frequency antenna is controlled. That is, while monitoring cathode power, high-frequency power is controlled based on this result. In the invention constituted in this way, it is possible to detect the change in plasma impedance accompanying the decrease in plasma density caused by the dirt of the high-frequency antenna based on the measurement result of the cathode current or cathode voltage, and to make up for this Increase and decrease of high frequency power. Therefore, even if the high-frequency antenna is contaminated, the resulting change in plasma impedance can be suppressed and the cathode current and cathode voltage can be kept stable.
藉此,於對陰極提供之陰極電力中,其電流值、電壓值皆可維持為適當之值。其結果,可一面維持固定之成膜速度及膜質,一面持續地執行成膜。 In this way, the current value and voltage value of the cathode power provided to the cathode can be maintained at appropriate values. As a result, the film formation can be continuously performed while maintaining a fixed film formation speed and film quality.
如上所述,根據本發明,可藉由增減向高頻天線供給之電力來抑制因向高頻天線之附著物導致之電漿密度之變動。藉此,可將供給至陰極之電流及電壓兩者維持為適當值,可使成膜速度與膜質穩定,持續地進行成膜。 As described above, according to the present invention, by increasing or decreasing the power supplied to the high-frequency antenna, it is possible to suppress the change in the plasma density caused by the attachment to the high-frequency antenna. As a result, both the current and the voltage supplied to the cathode can be maintained at appropriate values, the film formation speed and film quality can be stabilized, and the film formation can be continued.
1、1a‧‧‧成膜裝置 1. 1a‧‧‧film forming device
10‧‧‧真空腔室 10‧‧‧Vacuum chamber
11‧‧‧閘門 11‧‧‧ Gate
12‧‧‧真空泵 12‧‧‧Vacuum pump
13‧‧‧壓力感測器 13‧‧‧pressure sensor
30‧‧‧搬送機構 30‧‧‧Transport organization
31‧‧‧搬送輥(基板保持部) 31‧‧‧Transport roller (substrate holding section)
32‧‧‧搬送驅動部 32‧‧‧Transport drive
50‧‧‧濺射源 50‧‧‧Sputter source
51‧‧‧濺射陰極(陰極) 51‧‧‧Sputtering cathode (cathode)
52、53‧‧‧感應耦合天線(高頻天線) 52, 53‧‧‧ Inductively coupled antenna (high frequency antenna)
54‧‧‧氣體供給部 54‧‧‧Gas Supply Department
55‧‧‧煙囪 55‧‧‧Chimney
56‧‧‧氣體供給部 56‧‧‧Gas Supply Department
57‧‧‧電源部 57‧‧‧Power Department
58‧‧‧冷卻機構 58‧‧‧cooling mechanism
59‧‧‧光學探針 59‧‧‧Optical Probe
70‧‧‧濺射源 70‧‧‧Sputter source
71、72‧‧‧旋轉陰極 71, 72‧‧‧ Rotating cathode
73、74‧‧‧磁鐵單元 73、74‧‧‧Magnet unit
75、76‧‧‧旋轉驅動器 75、76‧‧‧rotary drive
77‧‧‧感應耦合天線 77‧‧‧Inductively coupled antenna
90‧‧‧控制單元 90‧‧‧Control unit
91‧‧‧中央處理單元(CPU) 91‧‧‧Central Processing Unit (CPU)
92‧‧‧開閉控制部 92‧‧‧Opening and closing control department
93‧‧‧氣體環境控制部 93‧‧‧ Gas Environment Control Department
94‧‧‧搬送控制部 94‧‧‧Transport Control Department
95‧‧‧成膜製程控制部 95‧‧‧Film-forming process control department
96‧‧‧記憶體及儲存器 96‧‧‧Memory and storage
97‧‧‧介面 97‧‧‧Interface
511‧‧‧支承板 511‧‧‧support plate
512‧‧‧靶 512‧‧‧ target
513‧‧‧陽極遮罩 513‧‧‧Anode mask
514‧‧‧殼體 514‧‧‧Housing
515‧‧‧磁鐵單元 515‧‧‧Magnet unit
515a‧‧‧磁軛 515a‧‧‧Yoke
515b‧‧‧中央磁鐵 515b‧‧‧Central magnet
515c‧‧‧周邊磁鐵 515c‧‧‧Peripheral magnet
521、531‧‧‧導體(線狀導體) 521, 531‧‧‧ conductor (linear conductor)
522、532‧‧‧介電質(介電層) 522, 532‧‧‧ Dielectric (dielectric layer)
571‧‧‧陰極電源 571‧‧‧ Cathode power supply
572‧‧‧高頻電源 572‧‧‧High frequency power supply
573‧‧‧電流測定部 573‧‧‧Current Measurement Department
574‧‧‧電壓測定部 574‧‧‧Voltage Measurement Department
575、576‧‧‧匹配器 575、576‧‧‧matcher
611、623、624、633、634、635‧‧‧感應耦合天線 611, 623, 624, 633, 634, 635
612、613、621、622、631、632‧‧‧濺射陰極 612, 613, 621, 622, 631, 632
711、721‧‧‧基底構件 711, 721‧‧‧ base member
712、722‧‧‧靶材 712, 722‧‧‧ target material
731、741‧‧‧磁軛 731, 741‧‧‧Yoke
732、742‧‧‧中央磁鐵 732,742‧‧‧Central magnet
733、743‧‧‧周邊磁鐵 733、743‧‧‧Peripheral magnet
734、744‧‧‧固定構件 734、744‧‧‧Fixed member
735、745‧‧‧支持構件 735、745‧‧‧Supporting member
771‧‧‧導體 771‧‧‧Conductor
772‧‧‧介電質 772‧‧‧Dielectric
Ia‧‧‧電流值 Ia‧‧‧current value
It‧‧‧電流目標值 It‧‧‧ current target value
Pa、Pb、Vb‧‧‧值 Pa, Pb, Vb‧‧‧ value
Po‧‧‧起始值 Po‧‧‧start value
△I、△V‧‧‧目標範圍 △I、△V‧‧‧Target range
PL‧‧‧電漿空間 PL‧‧‧Plasma space
S‧‧‧基板 S‧‧‧Substrate
SP‧‧‧內部空間 SP‧‧‧Internal space
S101~S108‧‧‧步驟 S101~S108‧‧‧Step
S201~S206‧‧‧步驟 S201~S206‧‧‧Step
T‧‧‧托盤 T‧‧‧Tray
Vt‧‧‧電壓目標值 Vt‧‧‧Voltage target value
Wk‧‧‧工件 Wk‧‧‧Workpiece
X、Y、Z‧‧‧座標軸 X, Y, Z ‧‧‧ coordinate axis
圖1為表示本發明之成膜裝置之一實施形態之概略構成之側視圖及俯視圖。 FIG. 1 is a side view and a plan view showing a schematic configuration of an embodiment of a film forming apparatus of the present invention.
圖2為表示成膜裝置內部之主要構成之配置之立體圖。 FIG. 2 is a perspective view showing the arrangement of main components inside the film forming apparatus.
圖3為表示成膜裝置之電性構成之方塊圖。 FIG. 3 is a block diagram showing the electrical configuration of the film forming apparatus.
圖4為表示濺射源之動作之圖。 FIG. 4 is a diagram showing the operation of the sputtering source.
圖5為表示該成膜裝置之成膜處理之流程圖。 FIG. 5 is a flowchart showing the film forming process of the film forming apparatus.
圖6為表示陰極電源之控制方式與高頻電源可採用之控制輸入之關係之圖。 6 is a diagram showing the relationship between the control method of the cathode power supply and the control input that can be used for the high-frequency power supply.
圖7為表示於高頻電源之輸出控制處理之例之流程圖。 7 is a flowchart showing an example of output control processing in a high-frequency power supply.
圖8為例示該輸出控制處理之效果之圖。 FIG. 8 is a diagram illustrating the effect of the output control process.
圖9為例示將陰極電流設為恆電流控制、將陰極電壓設為控制輸入之情形之圖。 9 is a diagram illustrating a case where the cathode current is set to constant current control and the cathode voltage is set to control input.
圖10A為表示濺射源之第1變形例之圖。 10A is a diagram showing a first modification of the sputtering source.
圖10B為表示濺射源之第2變形例之圖。 10B is a diagram showing a second modification of the sputtering source.
圖10C為表示濺射源之第3變形例之圖。 10C is a diagram showing a third modification of the sputtering source.
圖11為表示旋轉陰極方式之成膜裝置之構成例之圖。 FIG. 11 is a diagram showing a configuration example of a rotary cathode type film forming apparatus.
圖1為表示本發明之成膜裝置之一實施形態之概略構成之側視圖及俯視圖。圖2為表示成膜裝置內部之主要構成之配置之立體圖。圖3為表示成膜裝置之電性構成之方塊圖。為統一地表示以下說明中之方向,如圖1所示般設定XYZ直角座標軸。XY平面表示水平面。又,Z軸表示鉛直軸,更詳細而言,(-Z)方向表示鉛直向下方向。 FIG. 1 is a side view and a plan view showing a schematic configuration of an embodiment of a film forming apparatus of the present invention. FIG. 2 is a perspective view showing the arrangement of main components inside the film forming apparatus. FIG. 3 is a block diagram showing the electrical configuration of the film forming apparatus. In order to uniformly express the directions in the following description, the XYZ rectangular coordinate axis is set as shown in FIG. 1. The XY plane represents the horizontal plane. In addition, the Z axis represents the vertical axis, and in more detail, the (-Z) direction represents the vertical downward direction.
該成膜裝置1係藉由電漿濺射而於作為處理對象之基板S之表面形成皮膜之裝置。例如,可應用該成膜裝置1以於作為基板S之玻璃基板或樹脂製之平板、片材、薄膜等之一表面形成鈦、鉻、鎳等金屬皮膜或氧化鋁等金屬氧化物皮膜。但,基板及皮膜之材料並非限定於此,可為任意。再者,此處,以對矩形、單片狀基板S進行成膜之情形為例進行說明,但基板S可為具有任意形狀者。
The
基板S於藉由中央部具有開口之邊框狀托盤T保持其周緣部,且下表面之包括中央部之大部分向下開放之狀態下,於成
膜裝置1內搬送。如此一來,即便是較薄或大開本且易撓曲之基板S亦可於維持水平姿勢之狀態下穩定搬送。以下之說明中,將藉由托盤T支持基板S而使托盤T與基板S一體化之構造體稱為作為成膜裝置1之處理對象物之工件Wk。
The substrate S retains its peripheral edge portion by the frame-shaped tray T having an opening in the central portion, and most of the lower surface including the central portion is downwardly opened, resulting in
Transported in the
再者,基板S之搬送態樣並非限定於此,可為任意。例如,亦可為以單體搬送基板S之態樣,又,例如,亦可為於與作為被成膜面之下表面為相反側之上表面被吸附保持之狀態下搬送基板S之態樣。又,例如,托盤T亦可作為構成成膜裝置1之一部分之零件而構成,又,亦可為與成膜裝置1分開構成並且與基板S一同自外部搬入者。又,基板並非限定於水平姿勢者,例如,亦可於主表面為略垂直之狀態下搬送。於該情形時,基板之搬送方向亦可為水平方向、上下方向中之任一者。
In addition, the conveyance state of the substrate S is not limited to this, and may be arbitrary. For example, the substrate S may be transported in a single body. For example, the substrate S may be transported in a state where the upper surface is sucked and held on the opposite side to the lower surface as the film-forming surface. . In addition, for example, the tray T may be configured as a part that constitutes a part of the
成膜裝置1具備真空腔室10、搬送工件Wk之搬送機構30、濺射源50、統括控制成膜裝置1整體之控制單元90。真空腔室10係具有略長方體形狀之外形之中空箱形構件,以底板之上表面成為水平姿勢之方式配置。真空腔室10由以例如不鏽鋼、鋁等金屬為主之材料構成。然而,為能夠觀視腔室內,亦可局部地設置例如石英玻璃製之透明窗。
The
如圖3所示,於真空腔室10設置有開閉真空腔室10之內部空間SP與外部空間或其他處理腔室內之處理空間之間之閘門11。進而,設置有用以對真空腔室10內進行減壓之真空泵12與測量真空腔室10之內部空間SP之氣壓之壓力感測器13。圖1中省略了記載,但閘門11設置於真空腔室10之(-X)側端部及(+X)側端部中之一者或兩者。
As shown in FIG. 3, the
閘門11藉由設置於控制單元90之閘門開閉控制部92進行開閉控制。於閘門11之打開狀態下,可進行工件Wk之搬入及搬出,另一方面,於閘門11之關閉狀態下,真空腔室10內為氣密狀態。真空泵12及壓力感測器13連接於設置於控制單元90之氣體環境控制部93。氣體環境控制部93基於藉由壓力感測器13所得之真空腔室10內之壓力測量結果控制真空泵12,將真空腔室10之內部空間SP控制為既定之氣壓。氣體環境控制部93根據來自中央處理單元(CPU,Central Processing Unit)91之控制指令而設定下述成膜動作中之真空腔室10內之氣壓、即成膜壓力。
The
搬送機構30具有沿著略水平之搬送路徑搬送工件Wk之功能。具體而言,搬送機構30具備:藉由抵接於保持基板S之托盤T之下表面而於處理腔室10內支持工件Wk之複數個搬送輥31;及藉由使搬送輥31旋轉而使工件Wk向X方向移動之搬送驅動部32。搬送驅動部32由設置於控制單元90之搬送控制部94控制。以此方式構成之搬送機構30於真空腔室10內將基板S一面保持水平姿勢一面搬送,並使基板S於X方向移動。藉由搬送機構30所進行之基板S之移動亦可為如圖1中以虛線箭頭所示般往返移動,又,亦可為向(+X)方向或(-X)方向中之任一方向移動。
The
於藉由搬送機構30在真空腔室10內搬送之基板S之下方設置有濺射源50。濺射源50具備:濺射陰極51;以自X方向隔著濺射陰極51之方式設置之一對感應耦合天線52、53;對濺射陰極51之周圍供給濺射氣體之濺射氣體供給噴嘴54、54。又,以覆蓋濺射陰極51、感應耦合天線52、53及濺射氣體供給噴嘴54、54之周圍之方式設置有利用金屬板形成箱形之煙囪55。
A sputtering
濺射陰極51具備利用例如銅板般之導電性材料形成為板狀之支承板511。於支承板511之上表面安裝有利用向基板S之成膜材料形成為平板狀(平面狀)之靶512。靶512之周圍由陽極遮罩513包圍。陽極遮罩513呈於上表面設置有與靶512之平面大小同等之開口之邊框形狀,覆蓋靶512之周圍。經由開口,靶512之上表面面向基板S之下表面。再者,圖1之俯視圖及圖2中,為明示濺射源50之內部構造,煙囪55僅以二點鏈線示出其外形。
The sputtering
支承板511之下部由形成為箱形之殼體514覆蓋。殼體514固定於真空腔室10之底面。於支承板511之下表面與殼體514之間之空間設置有磁鐵單元515。對其周圍之空隙,自下述冷卻機構58供給作為冷媒之流體、例如冷卻水。
The lower part of the
配置於支承板511之下部之磁鐵單元515具備:磁軛515a;設置於磁軛515a上之多個磁鐵、即中央磁鐵515b、及設置成包圍中央磁鐵515b之周邊磁鐵515c。磁軛515a係由磁導鋼等磁性材料形成且延伸設置於Y方向之平板狀構件。磁軛515a藉由未圖示之固定構件固定於殼體514。
The
於磁軛515a之上表面中沿著長度方向(Y方向)之中心線上配置有於Y方向延伸之中央磁鐵515b。又,於磁軛515a之上表面之外緣部設置有包圍中央磁鐵515b之周圍之環狀(環形狀)周邊磁鐵515c。中央磁鐵515b及周邊磁鐵515c例如為永久磁鐵。與支承板511之下表面對向之側之中央磁鐵515b與周邊磁鐵515c之極性互不相同。因此,藉由磁鐵單元515於靶512之周邊形成靜磁場。安裝有靶512之支承陰極板511、磁鐵單元515、殼體514等作為一體構成磁控陰極。
A
一對感應耦合天線52、53以於真空腔室10內隔著濺射陰極51之方式自真空腔室10之底面突出設置。感應耦合天線52、53亦稱為LIA(Low Inductance Antenna),如圖2所示,形成為略U字型之導體521、531之表面具有被例如石英等介電質522、532被覆之構造。導體521、531於將U字上下顛倒之狀態下貫通真空腔室10之底面並延伸設置於Y方向。導體521、531於Y方向上位置不同並分別排列配置數個。介電質522亦可以個別地將數個導體521各自被覆之方式獨立設置,又,亦可以將數個導體521一起覆蓋之方式設置。關於介電質532亦相同。
A pair of inductively coupled
導體521、531之表面設為由介電質522、532被覆之構造,藉此,可防止導體521、531曝露於電漿。由此,避免導體521、531之構成元素混入基板S上之膜。又,如下所述般,藉由施加至導體521、531之高頻電流而產生感應耦合電漿,可抑制電弧放電等異常放電而產生穩定之電漿。
The surfaces of the
感應耦合天線52、53之各導體521、531可視作以X方向為捲繞軸方向且捲繞數未滿1之環形天線。因此,為低電感。藉由將數個此種小型天線排列配置於與捲繞軸方向正交之方向,可一面抑制電感之增大,一面使下述用以產生電漿之感應磁場形成於較廣範圍。又,將包括分別排列於Y方向之數個天線之一對天線列於X方向分離平行配置,藉此,可於兩天線列之間所夾設空間產生強烈且均勻之感應磁場。
The
於夾設於感應耦合天線52、53之間之濺射陰極51之周圍空間,自氣體供給部56導入濺射氣體(例如惰性氣體)。具體而言,一對噴嘴54、54以自X方向隔著濺射陰極51之方式設置於真
空腔室10之底面。噴嘴54、54分別連接於氣體供給部56。氣體供給部56根據來自成膜製程控制部95之控制指令對噴嘴54、54供給作為濺射氣體之惰性氣體、例如氬氣或氙氣。濺射氣體自噴嘴54、54向濺射陰極51之周圍噴出。氣體供給部56較佳為具有自動控制濺射氣體之流量之流量調整功能,可設為具備例如質量流量控制器者。
In the surrounding space of the sputtering
於煙囪55內面向靶512之表面之位置配置有包括例如光纖之光學探針59。於煙囪55內之空間產生之電漿發光之一部分入射至光學探針59。光學探針59連接於未圖示之分光器,該分光器之輸出信號輸入至控制單元90。
At a position in the
控制單元90基於分光器之輸出信號,藉由質子電解質膜法(PEM)測定電漿空間中之電漿發光強度。具體而言,針對藉由濺射自靶512飛出之成膜粒子、於電漿中被激發之原子或分子、或者離子等(例如氬氣原子)測定物質固有之光譜成分之光強度,藉此,檢測電漿空間中之該物質之濃度。由此,可求出電漿空間中之電漿密度。
The
圖4為表示濺射源之動作之圖。於濺射陰極51與感應耦合天線52、53之間,自電源部57施加適當之電壓。具體而言,濺射陰極51之支承板511連接於設置於電源部57之陰極電源571。而且,將相對於接地電位為適當之負電位自陰極電源571提供給支承板511。作為陰極電源571輸出之電壓,可使用直流、直流脈衝、正弦波交流、矩形波交流、矩形波交流脈衝及重疊該等之數個而成者等。但,於以下說明中,言及「陰極電壓」時,指自陰極電源571輸出之各種波形負直流或負交流成分中之電壓者。另一
方面,設置於電源部57之高頻電源572分別經由匹配器575、576連接於感應耦合天線52、53,自高頻電源572施加適當之高頻電力。
FIG. 4 is a diagram showing the operation of the sputtering source. An appropriate voltage is applied from the
匹配器575、576係用於藉由使相對於高頻電源572之負載之阻抗與電源阻抗匹配來使自高頻電源572向負載之電力傳達效率最大化而設置。由於此種目的之匹配器之原理及構造為公知,故省略詳細說明,但可使用例如根據負載之阻抗變化而使內置電容器之容量變化之形式者。
The
分別自陰極電源571及高頻電源572輸出之電壓波形藉由來自控制單元90之成膜製程控制部95之控制指令設定。又,於自陰極電源571至支承板511之配線之中途介插有電流測定部573。電流測定部573測定流經該配線之電流即陰極電流。電流測定部573之檢測輸出輸入至陰極電源571及高頻電源572。又,於該配線與裝置接地之間設置有電壓測定部574,測定陰極電壓,更具體而言為支承板511相對於接地電位之直流電壓。電壓測定部574之檢測輸出亦輸入至陰極電源571及高頻電源572。
The voltage waveforms respectively output from the
陰極電源571基於藉由電流測定部573所測定之陰極電流之值、及藉由電壓測定部574所測定之陰極電壓之值而控制輸出電力。作為控制方式,可選擇維持陰極電流之值為固定之恆電流控制、維持陰極電壓之值為固定之恆電壓控制、及維持陰極電流與陰極電壓之乘積為固定之恆電力控制。
The
另一方面,於高頻電源572,除來自電流測定部573、電壓測定部574之輸出以外,亦輸入來自測定電漿發光強度之光學探針59之檢測輸出。再者,圖4中,為說明原理,記載為光學探針59與高頻電源572直接連接。然而,實際上,基於自光學探針
59經由分光器提供之信號,與控制單元90所檢測之電漿密度之大小對應之值自控制單元90提供給高頻電源572。下文對高頻電源572之輸出控制之態樣進行敍述。
On the other hand, to the high-
自高頻電源572經由匹配器575、576對感應耦合天線52、53供給高頻電力(例如頻率13.56MHz之高頻電力),藉此,於感應耦合天線52、53之周圍空間產生高頻感應磁場,產生濺射氣體之電漿。更具體而言,產生磁控電漿與感應耦合電漿(Inductivity Coupled Plasma;ICP)之混合電漿。包含靶512及磁鐵單元515之濺射陰極51與感應耦合天線52、53皆沿著垂直於圖1紙面之Y方向延長。因此,產生電漿之電漿空間PL亦成為具有沿著濺射陰極51之表面於Y方向長長地延伸之形狀之空間區域。
High-frequency power is supplied from the high-
以此方式於電漿空間PL產生之電漿中所含之陽離子(圖4中以空心圓標記表示)與被提供負電位之濺射陰極51碰撞。藉此,靶512之表面被濺射,自靶512飛出之微細之靶材料之粒子作為成膜粒子(圖4中以實心圓標記表示)附著於基板S之下表面。其結果,於基板S之表面(下表面)進行成膜。具體而言,於基板S下表面中沿Y方向之帶狀區域進行利用電漿濺射之成膜。藉由於平行於基板S之主表面且與Y方向正交之方向即X方向上掃描移動基板S,而於成膜對象區域之整體二維地進行成膜。
The cations contained in the plasma generated in the plasma space PL in this way (indicated by open circles in FIG. 4) collide with the sputtering
以覆蓋電漿空間PL之方式設置煙囪55。藉此,抑制於電漿空間PL產生之電漿粒子及被其濺射而產生之成膜粒子於真空腔室10內飛散。其結果,自靶512表面藉由濺射飛出之成膜粒子之飛出方向限制為朝向基板S之方向。因此,可使靶材料高效地有助於成膜。藉由自冷卻機構58對濺射陰極51供給冷卻水,抑制
暴露於電漿中之靶512之溫度上升。
The
如圖3所示,控制單元90除上述以外,還具備進行各種運算處理之CPU(Central Processing Unit)91、記憶CPU91所執行之程式或各種資料之記憶體及儲存器96、負責與外部裝置及用戶之間的資訊之交換之介面97等。例如可使用通用之電腦裝置作為控制單元90。再者,關於設置於控制單元90之閘門開閉控制部92、氣體環境控制部93、搬送控制部94及成膜製程控制部95等各功能區塊,亦可為藉由專用之硬體得以實現者。又,亦可為在藉由CPU91執行之軟體上實現者。
As shown in FIG. 3, in addition to the above, the
圖5為表示該成膜裝置之成膜處理之流程圖。該處理係藉由控制單元90基於預先準備之控制程式使成膜裝置1之各部分進行既定之動作而實現。於包括作為成膜對象之基板S之工件Wk被搬入至成膜裝置1之前,開始真空腔室10內之排氣(步驟S101)。
FIG. 5 is a flowchart showing the film forming process of the film forming apparatus. This processing is realized by the
於真空腔室10內控制在既定之氣壓之狀態下,開始電漿之點亮(步驟S102)。具體而言,濺射氣體自噴嘴54以既定流量向真空腔室10內噴出。繼而,電源部57分別對濺射陰極51及感應耦合天線52、53施加既定之電壓,藉此,於真空腔室10內產生磁控電漿與感應耦合電漿之混合電漿。
In a state where the predetermined pressure is controlled in the
於以此方式預先在真空腔室10內使電漿點亮之狀態下,打開閘門11,工件Wk被收進真空腔室10(步驟S103)。為使電漿之點亮狀態穩定,期望工件Wk自保持與真空腔室10相同程度之真空狀態之其他真空腔室(圖示省略)搬入。關於成膜處理後之工件搬出時亦相同。再者,用以接收成膜處理前之工件Wk之閘門
與用以送出成膜處理後之工件Wk之閘門亦可互不相同。
With the plasma lighted in the
當工件Wk搬入至真空腔室10時,搬送機構30使工件Wk於X方向掃描移動(步驟S104)。藉此,於工件Wk中之基板S之下表面形成包含靶材料之組成之皮膜。再者,亦可進而對電漿空間PL供給反應性氣體(例如氧氣),形成包含靶512之成分與反應性氣體之成分之皮膜(例如金屬氧化物皮膜)。
When the work Wk is carried into the
搬送機構30使工件Wk掃描移動,藉此,可使基板S下表面中之成膜粒子之濺附位置變化而對基板S整體進行成膜。藉由持續既定時間之此種工件Wk之掃描移動(步驟S105)。於基板S之表面(下表面)形成既定厚度之皮膜。於基板S形成有皮膜之成膜後之工件Wk向外部送出(步驟S106)。繼而,若有接下來應處理之工件Wk(於步驟S107中,為YES),則返回至步驟S103接收新的工件Wk,執行與上述相同之成膜處理。若無應處理之工件(於步驟S107中,為NO),則執行使裝置各部分向可結束動作之狀態移行之結束處理(步驟S108),結束一系列之動作。
The
以下,對高頻電源572之輸出控制進行說明。該成膜裝置1中,於靶512之附近產生磁控電漿與感應耦合電漿之混合電漿。藉此,靶表面被濺射,進行向基板S之成膜。此時,成膜粒子之一部分亦附著於裝置內之各部分。於感應耦合天線52、53之介電質522、532之表面亦存在產生此種附著物之情況,該情況成為使感應耦合天線52、53之性能降低之原因。具體而言,感應耦合天線52、53所產生之感應耦合電漿之密度降低。尤其於產生具有導電性之附著物之情形時,由於作為相對於天線所產生之電磁界之遮罩發揮作用,故其影響顯著。
Hereinafter, the output control of the high-
於藉由感應耦合天線52、53產生感應耦合電漿之情形時,相對於高頻電源572之負載之阻抗係感應耦合天線52、53本身具有之阻抗與電漿阻抗之合成阻抗。由於電漿阻抗根據電漿密度發生變化,故負載阻抗隨著向感應耦合天線52、53之附著物增加而會發生變化。但,藉由匹配器575、576之作用,自高頻電源572觀察之負載阻抗不會變化。
In the case where the inductive coupling plasma is generated by the
另一方面,電漿阻抗亦成為相對於陰極電源571之負載之一部分。因向感應耦合天線52、53之附著物導致之電漿密度之降低與自陰極電源571觀察之負載阻抗之上升有關。該情況使陰極電流及陰極電壓之穩定性下降。陰極電流主要為對成膜速度造成影響之因素,又,陰極電壓為對膜質造成影響之因素。因此,為於持續之成膜中一面穩定地維持成膜速度及膜質,一面進行成膜,成膜製程中要求陰極電流及陰極電壓兩者之變動較少。
On the other hand, the plasma impedance also becomes part of the load relative to the
如上所述,作為陰極電源571,可採用恆電力控制、恆電流控制及恆電壓控制之各種控制方式。然而,任一者均無法穩定地維持陰極電流與陰極電壓兩者。其理由如下:陰極電流與陰極電壓經由負載阻抗而相互關聯。因此,對應於伴隨電漿密度之變化之電漿阻抗之變動,若欲藉由在陰極電源571之控制使陰極電流與陰極電壓中之一者為適當值,則另一者會遠離適當值。
As described above, as the
因此,該實施形態中,藉由使提供至感應耦合天線52、53之高頻電力變化,謀求電漿密度之穩定化。具體而言,根據標明陰極電力之大小之陰極電流及陰極電壓中之至少一者之測量結果間接地偵測電漿阻抗之變動,基於該結果,高頻電源572控制所要輸出之高頻電力之大小。
Therefore, in this embodiment, the plasma density is stabilized by changing the high-frequency power supplied to the inductively coupled
若電漿密度變高,則靶512之濺射量增加,因此,陰極電流亦增加。相反地,若密度降低,則陰極電流減少。即,恆電壓控制或恆電力控制陰極電源571之狀況下之陰極電流之減少係指電漿密度降低。又,若因電漿密度之降低導致電漿阻抗上升,則陰極電壓亦上升。即,恆電流控制或恆電力控制陰極電源571之狀況下之陰極電壓之上升表示電漿密度之降低。
If the plasma density becomes higher, the sputtering amount of the
於本實施形態中,藉由調節供給至感應耦合天線52、53之電力,使由於附著物導致之感應耦合天線52、53之污垢而可能變動之感應耦合電漿之密度穩定化。藉此,即便於感應耦合天線52、53之污垢變嚴重之情形時,亦可維持自陰極電源571觀察之負載固定。藉由此種控制,陰極電流、陰極電壓及以該等之乘積之形式表示之陰極電力分別保持固定。其結果,陰極電流及陰極電壓兩者穩定,可於使成膜速度及膜質穩定之狀態下持續進行成膜。
In the present embodiment, by adjusting the power supplied to the inductively coupled
感應耦合天線52、53之污垢程度會隨時間不可逆地增大。因此,若供給電力固定,則電漿密度會逐漸減少,由此,電漿阻抗會隨時間上升。因此,認為於通常之使用中,供給至感應耦合天線52、53之高頻電力會隨時間增加。換言之,若高頻電力隨時間增加以彌補伴隨感應耦合天線52、53之污垢之變嚴重之電漿密度之降低,則可維持自陰極電源571觀察之負載固定,使陰極電流及陰極電壓兩者穩定。
The degree of dirt of the inductively coupled
再者,如上所述,亦可根據靶512之表面附近之電漿發光強度之測定結果推測電漿密度。然而,就測量精度及結果之穩定性之觀點而言,認為更佳為將陰極電流或陰極電壓之測量結果設為控制輸入。可較佳地使用電漿發光強度之測定結果,以偵測於感
應耦合天線52、53之污垢嚴重之情形、或由於裝置之任一零件之故障等而無法產生穩定之電漿之狀況。
Furthermore, as described above, the plasma density can also be estimated from the measurement results of the plasma luminous intensity near the surface of the
該實施形態中,將陰極電流或陰極電壓設為控制輸入,高頻電源572進行輸出電力之控制。更具體而言,控制高頻電源572之輸出電力以補充預先規定有設為控制輸入之測定值之目標值或目標範圍。於陰極電流或陰極電壓設為控制輸入之情形時,高頻電源572之輸出電力係基於檢測自陰極電源571向濺射陰極51之電力供給之狀況之結果來決定。
In this embodiment, the cathode current or the cathode voltage is used as the control input, and the high-
圖6為表示陰極電源之控制方式與高頻電源可採用之控制輸入之關係之圖。圖中,「○」標記表示該物理量用作高頻電源572之控制輸入與陰極電源571之輸出控制匹配。此處所言之「匹配」係指可適當地用作對應於控制方式之控制輸入者。另一方面,「-」標記表示將該物理量作為控制輸入之高頻電源572之控制與陰極電源571之輸出控制不匹配。
6 is a diagram showing the relationship between the control method of the cathode power supply and the control input that can be used for the high-frequency power supply. In the figure, the "○" mark indicates that the physical quantity is used as the control input of the high-
如A欄所示,於控制輸出以使陰極電源571成為恆電流控制、即陰極電流固定之情形時,高頻電源572可以陰極電壓為控制輸入決定高頻輸出。於此情形時,控制高頻電源572之輸出以使陰極電壓之測定值成為目標值(或目標範圍內,以下相同)。由於陰極電流藉由陰極電源571被進行恆電流控制,結果,陰極電流及陰極電壓兩者被維持在目標值。
As shown in column A, when the output is controlled so that the
由於陰極電源571之輸出被進行恆電流控制,故陰極電流及電漿密度管理為適當值。因此,即便該等物理量用作高頻電源572之控制輸入,亦無法維持適當之陰極電壓。
Since the output of the
如B欄所示,於控制輸出以使陰極電源571成為恆電
壓控制、即陰極電壓固定之情形時,高頻電源572可以陰極電流為控制輸入決定高頻輸出。於此情形時,控制高頻電源572之輸出以使陰極電流之測定值成為目標值。由於陰極電壓藉由陰極電源571被進行恆電壓控制,結果,陰極電壓及陰極電流兩者被維持在目標值。
As shown in column B, the output is controlled to make the
如C欄所示,由於陰極電源571之輸出被進行恆電壓控制,故陰極電壓及電漿密度管理為適當值。因此,即便該等物理量之測量值用作高頻電源572之控制輸入,亦無法維持適當之陰極電流。
As shown in column C, since the output of the
於控制輸出以使陰極電源571成為恆電力控制、即陰極電流與陰極電壓之乘積固定之情形時,陰極電流及陰極電壓之各值可能變得不穩定。然而,藉由高頻電源572之高頻輸出調整使任一者穩定化,藉此,另一者亦可成為穩定者。即,陰極電流及陰極電壓中之任一測定值亦可用作高頻電源572之控制輸入。
When the output is controlled so that the
圖7為表示於高頻電源之輸出控制處理之例之流程圖。此處,例示陰極電源571進行恆電壓控制,高頻電源572以陰極電流為控制輸入之情形時之控制動作。然而,針對陰極電源571之控制方式及高頻電源572於成為控制輸入之物理量與此不同之情形,亦可以相同之想法製作處理流程。該處理亦可由例如內置於高頻電源572之未圖示之控制器執行。又,亦可藉由設置於成膜裝置1之控制單元90之CPU91或成膜製程控制部95執行該處理並對高頻電源572提供輸出指示而實現。
7 is a flowchart showing an example of output control processing in a high-frequency power supply. Here, the control operation when the
自高頻電源572輸出預先設定之高頻電壓及電流,並開始向感應耦合天線52、53施加(步驟S201)。繼而,藉由介插於
陰極電源571與濺射陰極51之間之電流測定部573測定,獲取陰極電流之值(步驟S202)。於電流值超過預先規定之目標值之情形時(於步驟S203中,為YES),施加至感應耦合天線52、53之電壓及電流以對應於超過量之大小降低(步驟S204)。另一方面,於電流值不滿足目標值之情形時(於步驟S205中,為YES),施加至感應耦合天線52、53之電壓及電流以對應於不足量之大小增大(步驟S206)。若陰極電流與目標值一致(於步驟S203、S205中,皆為NO),則維持當前之高頻輸出。以後,持續地執行陰極電流值之獲取及伴隨其之高頻電力輸出之調整。
The high-frequency voltage and current set in advance are output from the high-
藉由此種處理,自陰極電源571流入至濺射陰極51之陰極電流維持固定值。陰極電壓藉由陰極電源571被進行恆電壓控制。因此,作為結果,陰極電流及陰極電壓兩者維持固定,注入至濺射陰極51之電力成為固定。藉此,成膜速度及成膜之皮膜之膜質成為穩定者。
By this processing, the cathode current flowing from the
圖8為例示該輸出控制處理之效果之圖。如圖8上側之曲線所示,於以陰極電壓成為目標值Vt之方式進行恆電壓控制之狀態下,考慮陰極電流自目標值It變成電流值Ia之情形。如圖8下側之曲線所示,高頻電源572以如下方式構成:陰極電流越大,高頻電力輸出越小。若檢測出陰極電流自目標值It向電流值Ia減少,則高頻電源572使高頻電力輸出自初始之值Po上升至值Pa。藉此,電漿空間PL中之電漿密度增大,電漿阻抗降低,陰極電流朝著增加之方向變化。以此方式,陰極電流會維持在目標值It。
FIG. 8 is a diagram illustrating the effect of the output control process. As shown in the graph on the upper side of FIG. 8, in a state where constant voltage control is performed such that the cathode voltage becomes the target value Vt, the case where the cathode current changes from the target value It to the current value Ia is considered. As shown in the lower curve of FIG. 8, the high-
圖9為例示對陰極電流進行恆電流控制,且將陰極電壓設為控制輸入之情形之圖。於該情形時,如圖9下側之曲線所示,
高頻電源572以如下方式構成:陰極電壓越高,高頻電力輸出越大。因此,如圖9上側之曲線所示,當陰極電壓自目標值Vt上升至值Vb時,高頻電源572使高頻電力輸出自初始值Po上升至值Pb。於恆電流控制下之陰極電壓之上升係由因電漿密度之降低導致之電漿阻抗之上升引起。因此,藉由使高頻電力增大而使電漿密度增加來使電漿阻抗降低,可使陰極電壓恢復。以此方式,陰極電壓會維持在目標值Vt。
FIG. 9 is a diagram illustrating a case where a constant current control is performed on a cathode current, and the cathode voltage is used as a control input. In this case, as shown by the curve on the lower side of Figure 9,
The high-
再者,於圖8及圖9中,為說明原理,以高頻電力相對於控制輸入呈線性變化之方式進行描繪,但該等亦可具有非線性之關係。又,於陰極電源571恆電力控制輸出之情形時,圖8及圖9各自之上側之曲線中之電流與電壓之關係成為藉由拋物線表示之關係。即便於該情形,以與圖8或圖9相同之原理調整高頻電力之輸出而使陰極電流及陰極電壓中之一者穩定化,藉此,另一者亦被唯一地決定。
In addition, in FIG. 8 and FIG. 9, in order to explain the principle, high-frequency power is depicted linearly with respect to the control input, but these may also have a non-linear relationship. In addition, in the case where the output of the
又,於圖8及圖9中,分別將陰極電壓及陰極電流之目標值It、Vt設為唯一之值。然而,如於圖中附加符號△I、△V所示,亦可規定為具有固定寬度之目標範圍。 In addition, in FIGS. 8 and 9, the target values It and Vt of the cathode voltage and the cathode current are set to unique values, respectively. However, as indicated by the additional symbols ΔI and ΔV in the figure, it can also be specified as a target range with a fixed width.
又,此處,以於恆電壓控制中陰極電流朝著減少之方向變化之實例(圖8)、及於恆電流控制中陰極電壓朝著上升之方向變化之實例(圖9)為例進行了說明。於該等之情形時,皆係使高頻電力朝著增大之方向變更。列舉此種例子之理由如上所述。即,因向感應耦合天線52、53之附著物導致之電漿密度之變化一般產生於隨時間降低之方向。因此,由於伴隨此之電漿阻抗之上升,陰極電流朝著減少之方向變化,又,陰極電壓朝著上升之方向變化。
Here, the example of the cathode current changing in the direction of decrease in constant voltage control (FIG. 8) and the example of changing the cathode voltage in the direction of rising in constant current control (FIG. 9) were taken as examples Instructions. In these cases, the high-frequency power is changed in the direction of increase. The reasons for listing such examples are as described above. That is, changes in plasma density due to attachments to the inductively coupled
若著眼於應對因附著物導致之感應耦合天線52、53之污垢方面,則換言之,可如下所述。只要控制來自高頻電源572之輸出以使於污垢較少之初始階段,供給至感應耦合天線52、53之高頻電力比較小,隨著污垢變嚴重,供給電力逐漸變大即可。因此,亦可考慮例如不根據電壓及電流之測定值而是基於預先設定之排程使高頻電力輸出逐漸增大般之構成。然而,就控制之穩定性之觀點而言,如上所述般以陰極電流或陰極電壓之測量值為控制輸入之輸出控制較為有效。
If the focus is on dealing with the contamination of the inductively coupled
又,圖7所例示之本實施形態之輸出控制處理成為可應對用作控制輸入之物理量之增加及減少兩者之處理內容。因此,亦可應對因與感應耦合天線52、53之污垢不同之各種原因導致之電漿密度之變動。藉此,可持續地進行成膜速度及膜質穩定之成膜。
In addition, the output control processing of the present embodiment illustrated in FIG. 7 is a processing content that can cope with both the increase and decrease of the physical quantity used as the control input. Therefore, it is possible to cope with changes in plasma density caused by various reasons different from the dirt of the
如上所述,該實施形態係具備作為感應耦合電漿之產生源之感應耦合天線52、53之電漿濺射成膜裝置1。於該成膜裝置1中,對感應耦合天線52、53提供之高頻電力之大小係基於自陰極電源571一對濺射陰極51供給之陰極電流或陰極電壓之測量結果來控制。因此,由於天線之污垢而產生之電漿密度之降低藉由高頻電力之調整得以抑制。因此,可一面同時將自陰極電源571一對濺射陰極51供給之陰極電流與陰極電壓維持於適當值,一面進行成膜。
As described above, this embodiment is a plasma sputtering
陰極電流係對成膜速度造成影響之因素。又,陰極電壓係對成膜之膜之膜質(更具體而言,為膜密度)造成影響之因素。藉由在適當控制該等之狀態下進行成膜,可抑制成膜速度及膜質之變動從而持續地進行穩定之成膜。因此,可穩定獲得膜質良好之皮膜。 The cathode current is a factor that affects the film formation speed. In addition, the cathode voltage is a factor that affects the film quality (more specifically, the film density) of the film formed. By performing film formation under appropriate control of these conditions, it is possible to suppress variations in film formation speed and film quality to continuously perform stable film formation. Therefore, a film with good film quality can be stably obtained.
再者,若天線之污垢變得嚴重,則即便藉由上述之控制亦可能無法產生穩定之電漿。於此種狀態下,有因使高頻電力持續增大而對裝置造成損壞之虞。例如,匹配器575、576可能因過流而損傷。為避免此種問題,更佳為併用直接地偵測電漿空間PL中之電漿產生之有無之手段。例如,可如上所述般利用測量電漿發光強度之技術。
Furthermore, if the dirt of the antenna becomes serious, even by the above control, it may not be possible to generate stable plasma. In this state, the device may be damaged by continuously increasing the high-frequency power. For example, the
如以上所說明,於上述實施形態中,濺射陰極51作為本發明之「陰極」發揮功能。又,搬送機構30,特別是搬送輥31作為本發明之「基板保持部」發揮功能。又,感應耦合天線52、53皆作為本發明之「高頻天線」發揮功能。又,於感應耦合天線52、53中,導體521、531相當於本發明之「線狀導體」,又,介電質522、532相當於本發明之「介電層」。
As described above, in the above embodiment, the sputtering
再者,本發明並不限定於上述實施形態,只要不脫離其宗旨,即可進行除上述者以外之各種變更。例如,於上述實施形態中,於真空腔室10內隔著1組濺射陰極51配置2組感應耦合天線52、53。然而,濺射源之濺射陰極及感應耦合天線之配置並不限定於此,例如,亦可如以下般配置。
In addition, the present invention is not limited to the above-mentioned embodiment, and various changes other than those described above can be made as long as they do not deviate from the purpose. For example, in the above embodiment, two sets of inductively coupled
圖10A至圖10C為表示濺射源之變形例之圖。此處,僅表示構成成膜裝置之各部分中之濺射陰極及感應耦合天線之配置,但上述實施形態所具備之其他各構成亦被適當配置。圖10A所示之變形例中,以隔著1組感應耦合天線611之方式配置2組濺射陰極612、613。又,圖10B所示之變形例中,隔著2組排列配置之濺射陰極621、622配置2組感應耦合天線623、624。進而,圖10C所示之變形例中,2組濺射陰極631、632與3組感應耦合天線
633、634、635交替配置。
10A to 10C are diagrams showing modified examples of the sputtering source. Here, only the arrangement of the sputtering cathode and the inductively coupled antenna in each part constituting the film forming apparatus is shown, but the other constitutions provided in the above embodiments are also appropriately arranged. In the modification shown in FIG. 10A, two sets of sputtering
根據該等之構成,藉由向感應耦合天線之高頻電力供給及向濺射陰極之陰極電力供給,而於濺射陰極之周圍產生感應耦合電漿。藉此,實現靶之濺射及向基板之成膜。 According to these configurations, inductive coupling plasma is generated around the sputtering cathode by supplying high-frequency power to the inductive coupling antenna and cathode power to the sputtering cathode. By this, sputtering of the target and film formation on the substrate are realized.
又,即便對於具有自上述各構成中去掉磁路之構成之電漿濺射成膜裝置,亦可應用本發明。具體而言,本發明亦可應用於藉由不使用磁控而於高頻天線與陰極電極之間形成高頻電場來產生感應耦合電漿之形式之裝置。此種裝置中,因天線之污垢導致之電漿密度變動對成膜造成之影響更顯著。因此,如上所述般藉由基於陰極電流或陰極電壓之測量結果而控制高頻電力所獲得之效果較大。 In addition, the present invention can be applied even to a plasma sputtering film forming apparatus having a configuration in which the magnetic circuit is removed from the above-mentioned configurations. Specifically, the present invention can also be applied to a device in the form of generating an inductively coupled plasma by forming a high-frequency electric field between a high-frequency antenna and a cathode electrode without using magnetron. In this type of device, the plasma density variation caused by the dirt of the antenna has a more significant effect on the film formation. Therefore, the effect obtained by controlling the high-frequency power based on the measurement result of the cathode current or the cathode voltage as described above is greater.
又,上述實施形態中,使用靶形成為平板狀之平面陰極作為濺射陰極,且靶固定於真空腔室內。另一方面,為消除因靶之局部消耗導致之靶之利用效率之惡化,亦可使用使靶形成為圓筒形狀並旋轉之旋轉陰極方式。即便於此種旋轉陰極方式之成膜裝置中,依然殘留因高頻天線之污垢導致之電漿密度降低問題。因此,藉由應用與上述實施形態相同之高頻電力控制,可進行更穩定且膜質優異之成膜。 Furthermore, in the above-described embodiment, a flat cathode formed with a target in a flat plate shape is used as a sputtering cathode, and the target is fixed in a vacuum chamber. On the other hand, in order to eliminate the deterioration of the utilization efficiency of the target due to the local consumption of the target, a rotating cathode method in which the target is formed into a cylindrical shape and rotates may also be used. That is to say, in the film-forming device which is convenient for this rotating cathode method, the problem of lowering the plasma density caused by the dirt of the high-frequency antenna still remains. Therefore, by applying the same high-frequency power control as in the above embodiment, more stable film formation with excellent film quality can be performed.
圖11為表示旋轉陰極方式之成膜裝置之構成例之圖。於圖11中,針對與圖1所示之成膜裝置1之構成相同或相當之構成附加相同符號,省略說明。又,針對控制系統之構成亦省略說明。該成膜裝置1a代替圖1所示之成膜裝置1之濺射源50,具備具有旋轉陰極方式之陰極之濺射源70。
FIG. 11 is a diagram showing a configuration example of a rotary cathode type film forming apparatus. In FIG. 11, the same symbols as those of the
濺射源70具備:一對旋轉陰極71、72;分別設置於
旋轉陰極71、72之內部之磁鐵單元73、74;一面分別保持旋轉陰極71、72一面使該等旋轉之旋轉驅動部75、76;及用以於真空腔室10內產生高頻電場之感應耦合天線77。其中,感應耦合天線77與上述感應耦合天線52相同,具有以介電質772覆蓋導體771表面之構造,且其功能亦同等。
The sputtering
旋轉陰極71與磁鐵單元73一體構成磁控型旋轉陰極。相同地,旋轉陰極72與磁鐵單元74一體構成磁控型旋轉陰極。如此,該成膜裝置1a具有於X方向上配置於不同位置之一對磁控型旋轉陰極。一對磁控型旋轉陰極於YZ平面具有彼此對稱之形狀,但基本構造相同。
The rotating
旋轉陰極71(72)具備:以正交於圖11紙面之Y方向為軸方向及長度方向之圓筒狀基底構件711(721);被覆基底構件711(721)之外周之靶材712(722)。基底構件711(721)藉由對應於Y方向之兩端部而設置於旋轉驅動部75(76)之軸承部(圖示省略),繞中心軸旋轉自如地被支持。基底構件711(721)為導電體,自未圖示之陰極電源供給適當之陰極電力。 The rotating cathode 71 (72) includes: a cylindrical base member 711 (721) with the Y direction orthogonal to the paper surface of FIG. 11 as the axial direction and the longitudinal direction; a target 712 (722) covering the outer periphery of the base member 711 (721) ). The base member 711 (721) is rotatably supported around the central axis by a bearing portion (not shown) provided in the rotation driving portion 75 (76) corresponding to both end portions in the Y direction. The base member 711 (721) is a conductor and supplies appropriate cathode power from a cathode power source (not shown).
配置於旋轉陰極71(72)之內部之磁鐵單元73(74)具備:由磁導鋼等磁性材料形成之磁軛731(741);設置於磁軛731(741)上之數個磁鐵、即中央磁鐵732(742);及設置成包圍中央磁鐵之周邊磁鐵733(743)。磁軛731為於Y方向延伸設置之平板狀構件,與旋轉陰極71之內周面對向配置。
The magnet unit 73 (74) disposed inside the rotating cathode 71 (72) is provided with: a yoke 731 (741) formed of magnetic material such as permeable steel; a plurality of magnets provided on the yoke 731 (741), namely Central magnet 732 (742); and peripheral magnet 733 (743) arranged to surround the central magnet. The
於磁軛731之上表面中沿長度方向(Y方向)之中心線上配置有於Y方向延伸之中央磁鐵732。又,於磁軛731之上表面之外緣部設置有包圍中央磁鐵732之周圍之環狀(環形狀)周邊磁鐵
733。中央磁鐵732及周邊磁鐵733為例如永久磁鐵。與旋轉陰極71之內周面對向之側之中央磁鐵732及周邊磁鐵733之極性互不相同。
On the upper surface of the
固定構件734(744)之一端固定於磁軛731(741)之下表面,固定構件734(744)之另一端安裝於在旋轉陰極71(72)之中心部沿Y方向延伸設置之棒狀支持構件735(745)。支持構件735(745)不藉由旋轉陰極71(72)之旋轉而旋轉,因此,固定構件734(744)之位置亦被固定。設置於旋轉陰極71之固定構件734自支持構件735向上,但向另一個旋轉陰極72側傾斜配置。另一方面,設置於旋轉陰極72之固定構件744自支持構件745向上,且向另一個旋轉陰極71側傾斜配置。因此,藉由磁鐵單元73、74於電漿空間PL集中地形成靜磁場。
One end of the fixing member 734 (744) is fixed to the lower surface of the yoke 731 (741), and the other end of the fixing member 734 (744) is mounted on a rod-shaped support extending in the Y direction at the center of the rotating cathode 71 (72) Member 735 (745). The supporting member 735 (745) does not rotate by the rotation of the rotating cathode 71 (72), so the position of the fixing member 734 (744) is also fixed. The fixing
於真空腔室10之底面,以朝向隔於一對旋轉陰極71、72之間之空間突出之方式設置有感應耦合天線77。對於感應耦合天線77,自未圖示之高頻電源經由匹配器供給高頻電力。藉此,於電漿空間PL產生感應耦合電漿。旋轉陰極71、72、磁鐵單元73、74及感應耦合天線77皆沿著垂直於圖11紙面之Y方向延長。因此,電漿空間PL亦成為具有沿著旋轉陰極71、72之表面於Y方向長長地延伸之形狀之空間區域。
An
即便於此種構成之成膜裝置1a中,於電漿空間PL亦會產生磁控電漿與感應耦合電漿重疊而成之高密度電漿。藉此,靶712、722之表面被濺射而進行成膜。此時,若於感應耦合天線77附著成膜粒子等而表面受污染,則感應耦合電漿之密度會降低,產生電漿空間PL中之電漿阻抗之上升。為抑制由此導致之陰極電流
及陰極電壓之變動,可應用上述高頻電力之控制。關於不具備磁控之構成亦相同。
That is, in the
又,於上述實施形態中,用以測定陰極電流及陰極電壓之電流測定部573及電壓測定部574設置於電源部57。然而,若陰極電源571將該等測定功能內置以進行輸出控制,並能夠將其測定結果向外部取出,則亦可將該測定功能用作電流及電壓測定部。
In addition, in the above embodiment, the
又,上述說明中,關於高頻電力之上限雖未特別提及,但高頻電源572、感應耦合天線52、53及匹配器575、576能夠處理之電力之大小有限。因此,針對高頻電源572之輸出電力,可預先規定上限值,禁止超過該上限值之輸出。藉此,即便於天線之污垢嚴重之情形時,亦能夠預先防止為彌補其而輸入過量之電力以致對裝置造成損壞。
In the above description, although the upper limit of high-frequency power is not specifically mentioned, the amount of power that the high-
以上,如例示說明具體之實施形態般,於本發明中,高頻天線可為具有以介電層被覆捲繞數未滿1圈之線狀導體之構造者。此種構造之高頻天線為低電感,可注入較大之高頻電力。因此,可穩定地產生高密度之感應耦合電漿。 As described above, as a specific embodiment is explained as an example, in the present invention, the high-frequency antenna may be a structure having a linear conductor covered with a dielectric layer and wound less than one turn. The high-frequency antenna of this structure has low inductance and can inject large high-frequency power. Therefore, high-density inductively coupled plasma can be stably generated.
又,例如,作為本發明中之陰極,可應用磁控陰極。即便於磁控陰極所產生之磁控電漿與高頻天線所產生之感應耦合電漿重疊之情形時,因高頻天線之污垢導致之感應耦合電漿密度之降低亦成為使陰極電力不穩定化之原因。即便於此種裝置中,藉由應用本發明,可不受天線之污垢之影響而使陰極電流與陰極電壓穩定化。 Also, for example, as the cathode in the present invention, a magnetron cathode can be applied. That is, when the magnetron plasma generated by the magnetron cathode overlaps with the inductive coupling plasma generated by the high-frequency antenna, the decrease in the density of the inductive coupling plasma caused by the dirt of the high-frequency antenna also makes the cathode power unstable Reason. That is, it is convenient for such a device. By applying the present invention, the cathode current and the cathode voltage can be stabilized without being affected by the dirt of the antenna.
又,例如,本發明可為以下之構成:對陰極提供之電壓被進行恆電壓控制,或對陰極提供之電力被進行恆電力控制,基 於流經陰極之電流之測量值控制高頻電力。根據此種構成,藉由使流經陰極之電流穩定化,結果,陰極之電流、電壓雙方維持在適當值。 Also, for example, the present invention may be configured as follows: constant voltage control is applied to the voltage provided by the cathode, or constant power control is applied to the power provided by the cathode. The measured value of the current flowing through the cathode controls the high frequency power. According to this configuration, by stabilizing the current flowing through the cathode, as a result, both the current and voltage of the cathode are maintained at appropriate values.
或者,可設為如下構成,即,流經陰極之電流被進行恆電流控制,或對陰極提供之電力被進行恆電力控制,且基於陰極之電壓之測量值控制高頻電力。根據此種構成,藉由使施加至陰極之電壓穩定化,結果,陰極之電流、電壓雙方維持在適當值。 Alternatively, a configuration may be adopted in which the current flowing through the cathode is subjected to constant current control, or the power supplied to the cathode is subjected to constant power control, and the high-frequency power is controlled based on the measured value of the voltage of the cathode. According to this configuration, by stabilizing the voltage applied to the cathode, as a result, both the current and voltage of the cathode are maintained at appropriate values.
又,例如,若為以陰極之電流或電壓之測量值成為既定之適當範圍內之方式控制高頻電力之構成,則作為上述控制之結果,可將陰極之電流及電壓兩者維持在適當範圍。 Also, for example, if the configuration of controlling the high-frequency power in such a way that the measured value of the current or voltage of the cathode is within a predetermined appropriate range, as a result of the above control, both the current and voltage of the cathode can be maintained in the appropriate range .
又,例如,亦可構成為如使對高頻天線提供之高頻電力隨時間增大之控制。因向高頻天線之附著物導致之污垢以使電漿密度降低之方式作用,作為結果,導致電漿阻抗之上升。為維持電漿阻抗固定,期望藉由使對高頻天線提供之高頻電力隨時間增大而彌補電漿密度之降低。 In addition, for example, it may be configured to increase the high-frequency power supplied to the high-frequency antenna with time. The dirt caused by the attachment to the high-frequency antenna acts in a manner that reduces the density of the plasma, and as a result, the impedance of the plasma increases. In order to maintain a fixed plasma impedance, it is desirable to compensate for the decrease in plasma density by increasing the high-frequency power supplied to the high-frequency antenna with time.
本發明可較佳地應用於藉由使用高頻天線產生之感應耦合電漿之電漿濺射而於基板進行成膜之技術全體。 The present invention can be preferably applied to the entire technique of forming a film on a substrate by plasma sputtering using inductively coupled plasma generated by a high-frequency antenna.
1‧‧‧成膜裝置 1‧‧‧film forming device
10‧‧‧真空腔室 10‧‧‧Vacuum chamber
31‧‧‧搬送輥 31‧‧‧Conveying roller
51‧‧‧濺射陰極 51‧‧‧Sputtering cathode
52、53‧‧‧感應耦合天線 52, 53‧‧‧ Inductively coupled antenna
54‧‧‧濺射氣體供給噴嘴 54‧‧‧Sputtering gas supply nozzle
55‧‧‧煙囪 55‧‧‧Chimney
56‧‧‧氣體供給部 56‧‧‧Gas Supply Department
57‧‧‧電源部 57‧‧‧Power Department
58‧‧‧冷卻機構 58‧‧‧cooling mechanism
59‧‧‧光學探針 59‧‧‧Optical Probe
511‧‧‧支承板 511‧‧‧support plate
514‧‧‧殼體 514‧‧‧Housing
571‧‧‧陰極電源 571‧‧‧ Cathode power supply
572‧‧‧高頻電源 572‧‧‧High frequency power supply
573‧‧‧電流測定部 573‧‧‧Current Measurement Department
574‧‧‧電壓測定部 574‧‧‧Voltage Measurement Department
575、576‧‧‧匹配器 575、576‧‧‧matcher
PL‧‧‧電漿空間 PL‧‧‧Plasma space
S‧‧‧基板 S‧‧‧Substrate
T‧‧‧托盤 T‧‧‧Tray
SP‧‧‧內部空間 SP‧‧‧Internal space
Wk‧‧‧工件 Wk‧‧‧Workpiece
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-010281 | 2018-01-25 | ||
JP2018010281A JP7034737B2 (en) | 2018-01-25 | 2018-01-25 | Film forming equipment and film forming method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201940719A TW201940719A (en) | 2019-10-16 |
TWI696719B true TWI696719B (en) | 2020-06-21 |
Family
ID=67471894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107142505A TWI696719B (en) | 2018-01-25 | 2018-11-28 | Film forming apparatus and film forming method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7034737B2 (en) |
KR (1) | KR102196274B1 (en) |
TW (1) | TWI696719B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201437407A (en) * | 2013-03-27 | 2014-10-01 | Dainippon Screen Mfg | Film formation method for aluminum oxide and sputtering device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3122421B2 (en) * | 1999-01-19 | 2001-01-09 | 株式会社東芝 | Magnetron sputtering film forming apparatus and method |
JP2009062568A (en) | 2007-09-05 | 2009-03-26 | Tsuru Gakuen | Magnetron sputtering film deposition system |
US8133360B2 (en) * | 2007-12-20 | 2012-03-13 | Applied Materials, Inc. | Prediction and compensation of erosion in a magnetron sputtering target |
KR20160087391A (en) | 2008-08-28 | 2016-07-21 | 가부시키가이샤 이엠디 | Thin film-forming sputtering device |
JP5475506B2 (en) * | 2010-02-26 | 2014-04-16 | 株式会社イー・エム・ディー | Sputtering thin film forming equipment |
JP2012175001A (en) * | 2011-02-23 | 2012-09-10 | Toshiba Corp | Controller, plasma processing apparatus, and control method |
-
2018
- 2018-01-25 JP JP2018010281A patent/JP7034737B2/en active Active
- 2018-11-28 TW TW107142505A patent/TWI696719B/en active
- 2018-12-19 KR KR1020180164834A patent/KR102196274B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201437407A (en) * | 2013-03-27 | 2014-10-01 | Dainippon Screen Mfg | Film formation method for aluminum oxide and sputtering device |
Also Published As
Publication number | Publication date |
---|---|
JP7034737B2 (en) | 2022-03-14 |
JP2019127621A (en) | 2019-08-01 |
TW201940719A (en) | 2019-10-16 |
KR102196274B1 (en) | 2020-12-29 |
KR20190090689A (en) | 2019-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6942015B2 (en) | Film formation equipment and film formation method | |
US8303785B2 (en) | Plasma processing apparatus and electronic device manufacturing method | |
JP6373708B2 (en) | Plasma processing apparatus and plasma processing method | |
US20080245657A1 (en) | Sputtering device and film forming method | |
WO2011111712A1 (en) | Sputtering device | |
JP2014037555A (en) | Sputtering apparatus | |
JP6916699B2 (en) | Film formation method and film deposition equipment | |
JP7277565B2 (en) | Apparatus and method for uniform coating in a coating system with a horizontally rotating substrate guide | |
JP6600519B2 (en) | Film forming apparatus and data creation method | |
TWI696719B (en) | Film forming apparatus and film forming method | |
JP6600214B2 (en) | Deposition equipment | |
JP2018053272A (en) | Film deposition apparatus | |
JP6957270B2 (en) | Film formation equipment and film formation method | |
US20090205950A1 (en) | Film deposition apparatus and film deposition method | |
JP4726704B2 (en) | Sputtering apparatus and sputtering method | |
WO2018055878A1 (en) | Film formation method and film formation apparatus | |
JP2018053297A (en) | Control method for plasma generation device, plasma generation device and film deposition device | |
US20130213798A1 (en) | Magnetron sputtering device, method for controlling magnetron sputtering device, and film forming method | |
JP2019218604A (en) | Film deposition apparatus and sputtering target mechanism | |
US11600475B2 (en) | Plasma processing apparatus and control method | |
TWI850569B (en) | Plasma processing apparatus | |
TW202111139A (en) | Film deposition apparatus and film deposition method | |
JP2009176991A (en) | Plasma processing device | |
KR20150141469A (en) | Apparatus for chemical vapor deposition | |
JP2010126749A (en) | Ion plating apparatus |