TWI696269B - Memory and method of manufacturing integrated circuit - Google Patents

Memory and method of manufacturing integrated circuit Download PDF

Info

Publication number
TWI696269B
TWI696269B TW108104675A TW108104675A TWI696269B TW I696269 B TWI696269 B TW I696269B TW 108104675 A TW108104675 A TW 108104675A TW 108104675 A TW108104675 A TW 108104675A TW I696269 B TWI696269 B TW I696269B
Authority
TW
Taiwan
Prior art keywords
access
access lines
memory
access line
layer
Prior art date
Application number
TW108104675A
Other languages
Chinese (zh)
Other versions
TW201947740A (en
Inventor
龍翔瀾
賴二琨
李明修
葉巧雯
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Publication of TW201947740A publication Critical patent/TW201947740A/en
Application granted granted Critical
Publication of TWI696269B publication Critical patent/TWI696269B/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • G11C13/0026Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • G11C13/0028Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/18Bit line organisation; Bit line lay-out
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/14Word line organisation; Word line lay-out
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • H10B63/24Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the Ovonic threshold switching type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/023Formation of switching materials, e.g. deposition of layers by chemical vapor deposition, e.g. MOCVD, ALD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/51Structure including a barrier layer preventing or limiting migration, diffusion of ions or charges or formation of electrolytes near an electrode
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/76Array using an access device for each cell which being not a transistor and not a diode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8825Selenides, e.g. GeSe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Switching materials based on at least one element of group IIIA, IVA or VA, e.g. elemental or compound semiconductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)

Abstract

An integrated circuit includes a three-dimensional cross-point memory having a plurality of levels of memory cells disposed in cross points of first access lines and second access lines with alternating wide and narrow regions. The manufacturing process of the three-dimensional cross-point memory includes patterning with three patterns: a first pattern to define the memory cells, a second pattern to define the first access lines, and a third pattern to define the second access lines.

Description

記憶體與積體電路的製造方法 Method for manufacturing memory and integrated circuit

本文所述之技術是有關於一種在三維交叉點結構(cross-point architecture)中的積體電路記憶體技術(integrated circuit memory technology)與製造此裝置的方法,包括使用包括相變化材料的可程式電阻記憶體材料的技術。 The technology described in this article is about an integrated circuit memory technology in a three-dimensional cross-point architecture and a method of manufacturing the device, including the use of programmable programs including phase change materials Resistive memory material technology.

許多使用相變化材料與其他可編程電阻材料(programmable resistance material)的三維交叉點記憶體(three-dimensional(3D)cross-point memory)技術已被提出。舉例而言,Li等人發表於2004年9月之IEEE Transactions on Device and Materials Reliability第4卷第3期的「Evaluation of SiO2 Antifuse in a 3D-OTP Memory」,描述了如同記憶胞排列的多晶矽二極體及抗熔絲(anti-fuse)。Sasago等人發表於2009年超大型積體電路研討會科技論文文摘(Symposium on VLSI Technology Digest of Technical Papers)第24~25頁的「Cross-Point Phase Change Memory with 4F2 Cell Size Driven by Low-Contact-Resistivity Poly-Si Diode」,描述了如同記憶胞排列的多晶矽二極體以及相變化單元。Kau等人發表於2009年國際電子元件會議(IEDM)09-617,第27.1.1~27.1.4頁的「A Stackable Cross Point Phase Change Memory」,描述一種記憶體柱(memory post),此記憶體柱包括具有相變化單元而作為存取元件(access device)的雙向定限開關(ovonic threshold switch,OTS)。亦請參照美國專利案編號第6,579,760號公告日為2003年6月17日,發明人為Lung,所描述的「SELF-ALIGNED,PROGRAMMABLE PHASE CHANGE MEMORY」。 Many three-dimensional (3D) cross-point memory technologies using phase change materials and other programmable resistance materials have been proposed. For example, Li et al. published "Evaluation of SiO 2 Antifuse in a 3D-OTP Memory" in IEEE Transactions on Device and Materials Reliability Volume 4 Issue 3 in September 2004, describing polycrystalline silicon arranged like memory cells Diode and anti-fuse. Sasago et al. published in the 2009 Symposium on VLSI Technology Digest of Technical Papers ``Cross-Point Phase Change Memory with 4F 2 Cell Size Driven by Low-Contact -Resistivity Poly-Si Diode" describes polycrystalline silicon diodes and phase change units arranged like memory cells. Kau et al. published in the 2009 International Electronic Components Conference (IEDM) 09-617, "A Stackable Cross Point Phase Change Memory" on pages 27.1.1~27.1.4, describing a memory post. This memory The body column includes a two-way ovonic threshold switch (OTS) with a phase change unit as an access device. Please also refer to "SELF-ALIGNED, PROGRAMMABLE PHASE CHANGE MEMORY" described in US Patent No. 6,579,760 on June 17, 2003, and the inventor is Lung.

一三維交叉點記憶體(3D cross-point memory)中,多個記憶胞係垂直地上下堆疊,以提升可用於儲存資料的一區域中的儲存容量(amount of storage)。記憶胞係設置在交替排列的第一存取線(access line)(例如位元線或字元線)與第二存取線(例如字元線或位元線)的交叉點上。 In a 3D cross-point memory, multiple memory cells are vertically stacked up and down to increase the amount of storage in an area that can be used to store data. The memory cells are arranged at intersections of alternately arranged first access lines (for example, bit lines or word lines) and second access lines (for example, word lines or bit lines).

然而,製造上的困難使三維交叉點記憶體的成果相當有限。每一記憶層係存在數個關鍵微影步驟(critical lithography step)。因此,製造此裝置所需的關鍵微影步驟的數目係乘以記憶胞層(layer of memory cells)的數目,並在一些方法中被實現。關鍵微影步驟的執行係昂貴的。 However, manufacturing difficulties have limited the achievements of 3D crosspoint memory. There are several critical lithography steps in each memory layer. Therefore, the number of key lithography steps required to manufacture this device is multiplied by the number of layers of memory cells, and is implemented in some methods. The execution of key lithography steps is expensive.

由於對於積體電路記憶體中的越來越高的記憶體容量的需求持續上升,需要提供一種具有低製造成本而滿足資料保存需求的三維交叉點記憶體的製造方法。 Since the demand for ever-increasing memory capacity in integrated circuit memories continues to rise, there is a need to provide a method for manufacturing a three-dimensional cross-point memory with low manufacturing costs and meeting data storage requirements.

本技術的一方面包括一種三維交叉點記憶體,具有在一第一存取線層(access line layer)中的一第一方向上延伸的複數個第一存取線與在一第二存取線層中的一第二方向上延伸的複數個第二存取線。第一存取線與第二存取線具有交替的寬區域與窄區域(alternating wide regions and narrow regions)。第二存取線層中的多個第二存取線中的寬區域與第一存取線層中的多個第一存取線中的寬區域重疊在第一存取線與第二存取線之間的交叉點。一記憶胞陣列(array of memory cells)係設置在第一存取線與第二存取線之間的交叉點上。如果必要,可有更多的記憶胞陣列的階層。記憶胞陣列的每一階層包括設置在第一方向上延伸的第一存取線與在第二方向上延伸的第二存取線的交叉點上的記憶胞,其中交叉點存在於第一存取線與第二存取線的寬區域中。一些實施例中,第一存取線包括一第一導電材料,第二存取線包括一第二導電材料,第一導電材料係相異於第二導電材料。記憶胞包括一開關單元或例如是一雙向定限開關之引導元件(steering device),串聯於包括一相變化材料的一可程式化記憶體單元(programmable memory element)。 One aspect of the technology includes a three-dimensional crosspoint memory having a plurality of first access lines extending in a first direction in a first access line layer and a second access A plurality of second access lines extending in a second direction in the line layer. The first access line and the second access line have alternating wide regions and narrow regions. The wide area in the plurality of second access lines in the second access line layer overlaps the wide area in the plurality of first access lines in the first access line layer overlapping the first access line and the second memory Take the intersection between the lines. An array of memory cells is arranged at the intersection between the first access line and the second access line. If necessary, there may be more layers of memory cell arrays. Each level of the memory cell array includes memory cells disposed at the intersection of the first access line extending in the first direction and the second access line extending in the second direction, where the intersection exists in the first memory Take the line and the second access line in a wide area. In some embodiments, the first access line includes a first conductive material, the second access line includes a second conductive material, and the first conductive material is different from the second conductive material. The memory cell includes a switching unit or a steering device such as a bidirectional fixed limit switch, which is connected in series to a programmable memory element including a phase change material.

本技術的另一方面係包括如上所述之三維交叉點記憶體的一種積體電路的製造方法。此方法包括形成一第一材料堆疊(stack of materials),包括第一導電材料的層、可程式化記憶體單元的材料層 (layer of materials)與第二導電材料的材料層。複數個第一孔洞係根據一第一圖案而被蝕刻穿過第一堆疊。可程式化記憶體單元的材料層係被橫向蝕刻穿過第一孔洞,以形成一記憶胞陣列。一第一絕緣填充(insulating fill)接著形成在第一孔洞中。藉由一第二圖案所定義的複數個第二孔洞係被蝕刻穿過第一堆疊。第一導電材料的層係被橫向蝕刻穿過第二孔洞,以形成複數個第一存取線。一第二絕緣填充係形成在第二孔洞中。接著,藉由一第三圖案所定義的第三孔洞係被蝕刻穿過第一堆疊。第二導電材料的層係被橫向蝕刻穿過第三孔洞,以形成複數個第二存取線。 Another aspect of the present technology is a method of manufacturing an integrated circuit including the three-dimensional cross-point memory as described above. The method includes forming a first stack of materials, including a layer of a first conductive material and a material layer of a programmable memory cell (layer of materials) and the material layer of the second conductive material. The plurality of first holes are etched through the first stack according to a first pattern. The material layer of the programmable memory cell is laterally etched through the first hole to form a memory cell array. A first insulating fill is then formed in the first hole. A plurality of second holes defined by a second pattern are etched through the first stack. The layer of the first conductive material is laterally etched through the second hole to form a plurality of first access lines. A second insulation filling system is formed in the second hole. Next, the third hole defined by a third pattern is etched through the first stack. The layer of the second conductive material is laterally etched through the third hole to form a plurality of second access lines.

一些實施例中,第一圖案、第二圖案與第三圖案包括孔洞陣列(arrays of holes),此些孔洞具有第一方向上的長度與第二方向上的寬度。第二圖案中的孔洞的寬度係短於第一圖案中的孔洞的寬度。一些實施例中,第三圖案中的孔洞的長度係短於第一圖案中的孔洞的長度。第二圖案與第三圖案中的孔洞可以是橢圓形或類橢圓形的,類橢圓形在某種程度上係具有長軸與短軸(包括矩形與其他的矩形多邊形(oblong polygon))。第二圖案中的孔洞的長軸係對準於第一存取線的方向,第一存取線的側面係藉由第一導電材料的橫向蝕刻的蝕刻周長來定義。第三圖案中的孔洞的長軸係對準於第二存取線的方向,第二存取線的側面係藉由第二導電材料的橫向蝕刻的蝕刻周長來定義。第一圖案中的孔洞可以是圓形、或具有其他的形狀(包括方形與其他多邊形),其具有在第一方向與第二方向上趨近相等的長度與寬度。 In some embodiments, the first pattern, the second pattern, and the third pattern include an array of holes, and the holes have a length in the first direction and a width in the second direction. The width of the holes in the second pattern is shorter than the width of the holes in the first pattern. In some embodiments, the length of the holes in the third pattern is shorter than the length of the holes in the first pattern. The holes in the second pattern and the third pattern may be oval or oval-like, and the oval-like shape has a long axis and a short axis to a certain extent (including rectangles and other oblong polygons). The long axis of the hole in the second pattern is aligned with the direction of the first access line, and the side of the first access line is defined by the etching circumference of the lateral etching of the first conductive material. The long axis of the hole in the third pattern is aligned with the direction of the second access line, and the side surface of the second access line is defined by the etching circumference of the lateral etching of the second conductive material. The holes in the first pattern may be circular or have other shapes (including squares and other polygons), which have lengths and widths that are nearly equal in the first direction and the second direction.

一些實施例中,可使用三個微影步驟來製造本文所述之三維交叉點記憶體:一第一微影步驟,定義多個孔洞以使用第一圖案在三維交叉點記憶體中的多階層而藉由橫向蝕刻來進行記憶胞的形成;一第二微影步驟,定義多個孔洞以使用第二圖案而藉由橫向蝕刻來進行第一存取線的形成;與一第三微影步驟,定義多個孔洞以使用第三圖案而藉由橫向蝕刻來進行第二存取線的形成。當在三維交叉點記憶體中的記憶胞層(memory cell layer)的數目提升,微影步驟的數目保持相同。藉由減少微影步驟的數目,可減少每一記憶胞層的平均製造成本。 In some embodiments, three lithography steps may be used to fabricate the three-dimensional cross-point memory described herein: a first lithography step, which defines multiple holes to use the first pattern in multiple layers in the three-dimensional cross-point memory The memory cell is formed by lateral etching; a second lithography step defines a plurality of holes to use the second pattern to form the first access line by lateral etching; and a third lithography step , Multiple holes are defined to form the second access line by lateral etching using the third pattern. As the number of memory cell layers in the three-dimensional cross-point memory increases, the number of lithography steps remains the same. By reducing the number of lithography steps, the average manufacturing cost of each memory cell layer can be reduced.

參照下述之圖式、詳細說明與申請專利範圍,可理解本文所述之技術的其他特徵、方面與優點。 Other features, aspects, and advantages of the technology described herein can be understood with reference to the following drawings, detailed description, and patent application scope.

100:三維交叉點記憶體 100: 3D crosspoint memory

101、102、103、104、105、106:第一存取線 101, 102, 103, 104, 105, 106: first access line

111、112、113、114、115、116:第二存取線 111, 112, 113, 114, 115, 116: second access line

117、119、122:寬區域 117, 119, 122: wide area

118、120:窄區域 118, 120: narrow area

121:記憶胞 121: Memory Cell

131:第二存取線解碼器 131: Second access line decoder

133:第一存取線解碼器 133: The first access line decoder

208:可程式化記憶體單元 208: programmable memory unit

210:阻障層 210: barrier layer

212:開關單元 212: Switch unit

300:第一堆疊 300: first stack

302、304、306、308、310、312、314、316、318、320、322、324、326:層 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322, 324, 326: layer

402、404、406、408、410、412、414、416、418:第一孔洞420:長度 402, 404, 406, 408, 410, 412, 414, 416, 418: first hole 420: length

422:寬度 422: Width

424:第一孔洞圖案 424: first hole pattern

502、504、506、508、510、512、514、516、518:孔洞 502, 504, 506, 508, 510, 512, 514, 516, 518: holes

600:第一記憶胞階層 600: first memory cell class

602、604、606、608:記憶胞 602, 604, 606, 608: memory cells

720:第一絕緣填充 720: First insulation filling

802、804、806、808、810、812、814、816、818:第二孔洞 802, 804, 806, 808, 810, 812, 814, 816, 818: second hole

820:長度 820: Length

822:寬度 822: width

824:第二孔洞圖案 824: Second hole pattern

900:第一存取線層 900: first access line layer

902、906、911:窄區域 902, 906, 911: narrow area

904、908:寬區域 904, 908: wide area

910、912:第一存取線 910, 912: first access line

1020:第二絕緣填充 1020: Second insulation filling

1102、1104、1106、1108、1110、1112、1114、1116、1118:第三孔洞 1102, 1104, 1106, 1108, 1110, 1112, 1114, 1116, 1118: third hole

1120:長度 1120: Length

1122:寬度 1122: Width

1124:第三孔洞圖案 1124: Third hole pattern

1200:第二存取線層 1200: second access line layer

1202、1206、1211:窄區域 1202, 1206, 1211: narrow area

1204、1208:寬區域 1204, 1208: wide area

1210、1212:第二存取線 1210, 1212: second access line

1310:表面 1310: Surface

1410:介電襯墊 1410: Dielectric pad

1500:堆疊 1500: stacked

1501、1502、1503:記憶胞 1501, 1502, 1503: memory cell

1511、1513:第一存取線 1511, 1513: the first access line

1512、1514:第二存取線 1512, 1514: second access line

1521、1531、1541:可程式化記憶體單元 1521, 1531, 1541: programmable memory unit

1522、1532、1542:阻障層 1522, 1532, 1542: barrier layer

1523、1533、1543:開關單元 1523, 1533, 1543: switch unit

1602:第一記憶胞階層 1602: The first memory cell class

1604:第二記憶胞階層 1604: Second memory cell class

1606:第三記憶胞階層 1606: Third memory cell class

1702、1706:第一存取線層 1702, 1706: the first access line layer

1704、1708:寬區域 1704, 1708: wide area

1802、1806:第二存取線層 1802, 1806: second access line layer

1804、1808:寬區域 1804, 1808: wide area

1901~1909:步驟 1901~1909: steps

2000:三維交叉點記憶體陣列 2000: 3D crosspoint memory array

2001:平面與列解碼器 2001: plane and column decoder

2002:字元線 2002: character line

2003:行解碼器 2003: Line decoder

2004:位元線 2004: bit line

2005、2007:匯流排 2005, 2007: busbar

2006:方塊 2006: square

2008:偏壓安排供給電壓 2008: Supply voltage for bias arrangement

2009:控制電路 2009: control circuit

2011:資料輸入線 2011: data input line

2015:資料輸出線 2015: data output line

2050:積體電路 2050: Integrated circuit

第1圖繪示具有第一存取線與第二存取線的三維交叉點記憶體,第一存取線與第二存取線具有交替的寬區域與窄區域。 FIG. 1 illustrates a three-dimensional cross-point memory having a first access line and a second access line. The first access line and the second access line have alternating wide areas and narrow areas.

第2圖繪示一記憶胞範例。 Figure 2 shows an example of a memory cell.

第3~14圖繪示製造具有第一存取線與第二存取線的三維交叉點記憶體的製造流程範例的階段,第一存取線與第二存取線具有交替的寬區域與窄區域。 FIGS. 3-14 illustrate stages of a manufacturing process example for manufacturing a three-dimensional cross-point memory having a first access line and a second access line. The first access line and the second access line have alternating wide areas and Narrow area.

第15圖繪示使用製程範例所製造的三維交叉點記憶體的X-Z剖面圖。 FIG. 15 shows an X-Z cross-sectional view of a three-dimensional cross-point memory manufactured using a manufacturing example.

第16~18圖繪示第15圖的三維交叉點記憶體的X-Y布局。 Figures 16-18 show the X-Y layout of the three-dimensional crosspoint memory in Figure 15.

第19圖係繪示具有三維交叉點記憶體的記憶體的製造方法的流程圖,三維交叉點記憶體具有第一存取線與第二存取線,第一存取線與第二存取線具有交替的寬區域與窄區域。 FIG. 19 is a flowchart showing a method of manufacturing a memory having a three-dimensional cross-point memory. The three-dimensional cross-point memory has a first access line and a second access line, and the first access line and the second access The line has alternating wide areas and narrow areas.

第20圖係根據本發明之一實施例之積體電路的簡化方塊圖。 FIG. 20 is a simplified block diagram of an integrated circuit according to an embodiment of the present invention.

係參照第1~20圖來提供本發明之實施例的詳細說明。 Detailed descriptions of embodiments of the present invention are provided with reference to FIGS. 1-20.

第1圖繪示具有第一存取線與第二存取線的一三維交叉點記憶體100,第一存取線與第二存取線具有交替的寬區域與窄區域(alternating wide and narrow regions)。三維交叉點記憶體100包括複數個記憶胞,其包括記憶胞121。複數個記憶胞係設置在複數個第一存取線101、102、103、104、105及106與複數個第二存取線111、112、113、114、115及116的交叉點,第一存取線101、102、103、104、105及106在一第一方向(亦即列方向或第1圖的Y方向)上延伸,第二存取線111、112、113、114、115及116在一第二方向(亦即行方向或第1圖的X方向)上延伸。第一存取線與第二存取線具有交替的寬區域與窄區域。舉例而言,第二存取線116依序具有寬區域117、窄區域118、寬區域119、窄區域120與寬區域122。第一方向與第二方向係正交方向或非平行方向,以使一交叉點陣列(array of cross points)形成在第一存取線與第二存取線的重疊的寬區域之間。每一記憶胞係連接至一特定第一存取線的一寬區域與一特定第二存取線的一寬區域。舉例而言,記憶 胞121係連接至第一存取線101的一寬區域與第二存取線111的一寬區域。 FIG. 1 shows a three-dimensional cross-point memory 100 having a first access line and a second access line. The first access line and the second access line have alternating wide and narrow areas. regions). The three-dimensional cross-point memory 100 includes a plurality of memory cells, including memory cells 121. The plurality of memory cells are arranged at the intersection of the plurality of first access lines 101, 102, 103, 104, 105, and 106 and the plurality of second access lines 111, 112, 113, 114, 115, and 116. The first The access lines 101, 102, 103, 104, 105, and 106 extend in a first direction (that is, the column direction or the Y direction in FIG. 1), and the second access lines 111, 112, 113, 114, 115, and 116 extends in a second direction (ie, the row direction or the X direction in FIG. 1). The first access line and the second access line have alternating wide areas and narrow areas. For example, the second access line 116 has a wide area 117, a narrow area 118, a wide area 119, a narrow area 120, and a wide area 122 in this order. The first direction and the second direction are orthogonal directions or non-parallel directions, so that an array of cross points is formed between the overlapping wide areas of the first access line and the second access line. Each memory cell is connected to a wide area of a specific first access line and a wide area of a specific second access line. For example, memory The cell 121 is connected to a wide area of the first access line 101 and a wide area of the second access line 111.

實施於第1圖的配置中的三維交叉點記憶體可具有多個記憶胞階層(level of memory cells)以及每一階層中的多條第一存取線與多條第二存取線以進行超高密度記憶體的形成。具有多重記憶胞階層(multiple levels of memory cells)的一三維交叉點記憶體具有複數個第一存取線層與複數個第二存取線層,第二存取線層與第一存取線層係交錯配置。每一第一存取線層包括複數個第一存取線,每一第二存取線層包括複數個第二存取線。第1圖中的三維交叉點記憶體包括三個記憶胞階層、兩個第一存取線層與兩個第二存取線層。連續的記憶胞階層共用一第一存取線層或一第二存取線層。三維交叉點記憶體中的第一記憶胞階層係插入在包括第一存取線101、102及103的一第一存取線層與包括第二存取線111、112及113的一第二存取線層之間。三維交叉點記憶體中的第二記憶胞階層係插入在包括第二存取線111、112及113的一第二存取線層與包括第一存取線104、105及106的一第一存取線層之間。三維交叉點記憶體中的第三記憶胞階層係插入在包括第一存取線104、105及106的一第一存取線層與包括第二存取線114、115及116的一第二存取線層之間。其他的三維配置可以被實現。 The three-dimensional cross-point memory implemented in the configuration of FIG. 1 may have multiple levels of memory cells and multiple first access lines and multiple second access lines in each level to perform The formation of ultra-high density memory. A three-dimensional cross-point memory with multiple levels of memory cells has a plurality of first access line layers and a plurality of second access line layers, the second access line layer and the first access line The layers are staggered. Each first access line layer includes a plurality of first access lines, and each second access line layer includes a plurality of second access lines. The three-dimensional cross-point memory in FIG. 1 includes three memory cell levels, two first access line layers and two second access line layers. The successive memory cell layers share a first access line layer or a second access line layer. The first memory cell hierarchy in the three-dimensional crosspoint memory is inserted in a first access line layer including the first access lines 101, 102 and 103 and a second access line including the second access lines 111, 112 and 113 Between access line layers. The second memory cell hierarchy in the three-dimensional crosspoint memory is inserted between a second access line layer including second access lines 111, 112 and 113 and a first access line including first access lines 104, 105 and 106 Between access line layers. The third memory cell hierarchy in the three-dimensional crosspoint memory is inserted between a first access line layer including first access lines 104, 105, and 106 and a second access line including second access lines 114, 115, and 116. Between access line layers. Other three-dimensional configurations can be realized.

第一存取線101、102、103、104、105及106包括一第一導電材料,第二存取線111、112、113、114、115及116包括一第二導電材料。第一導電材料與第二導電材料可包括各種金屬、類金屬材料、摻雜半導體存取線(doped semiconductor access line)或其組 合。第一導電材料與第二導電材料的例子包括鎢(W)、鋁(Al)、銅(Cu)、氮化鈦(titanium nitride,TiN)、氮化鉭(tantalum nitride,TaN)、氮化鎢(tungsten nitride,WN)、摻雜多晶矽(doped polysilicon)、矽化鈷(cobalt silicide,CoSi)、矽化鎢(tungsten silicide,WSi)、氮化鈦/鎢/氮化鈦(TiN/W/TiN)與其他材料。 The first access lines 101, 102, 103, 104, 105, and 106 include a first conductive material, and the second access lines 111, 112, 113, 114, 115, and 116 include a second conductive material. The first conductive material and the second conductive material may include various metals, metalloid materials, doped semiconductor access lines or groups thereof Together. Examples of the first conductive material and the second conductive material include tungsten (W), aluminum (Al), copper (Cu), titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (tungsten nitride, WN), doped polysilicon (doped polysilicon), cobalt silicide (CoSi), tungsten silicide (WSi), titanium nitride/tungsten/silicon nitride (TiN/W/TiN) and other materials.

一些實施例中,第一導電材料係不同於第二導電材料以支持橫向蝕刻製程(lateral etch process),第一導電材料與第二導電材料在材料之間係可選擇的。舉例而言,第1圖的三維交叉點記憶體的一實施例中,第一存取線中的第一導電材料可以是鎢,第二存取線中的第二導電材料可以是銅。另一例示實施例中,第一存取線中的第一導電材料可以是氮化鈦,第二存取線中的第二導電材料可以是氮化鎢。 In some embodiments, the first conductive material is different from the second conductive material to support a lateral etch process, and the first conductive material and the second conductive material are selectable between the materials. For example, in an embodiment of the three-dimensional cross-point memory of FIG. 1, the first conductive material in the first access line may be tungsten, and the second conductive material in the second access line may be copper. In another exemplary embodiment, the first conductive material in the first access line may be titanium nitride, and the second conductive material in the second access line may be tungsten nitride.

三維交叉點陣列(cross-point array)包括存取線,其耦接且電氣通訊於一第一存取線解碼器133與一第二存取線解碼器131,其中第一存取線解碼器與第二存取線解碼器可包括驅動器與偏壓選擇器(bias voltage selector),以在寫入操作或讀取操作中施加偏壓至選擇的第一存取線與第二存取線、未選擇的第一存取線與第二存取線。此實施例中,複數個第一存取線係耦接至一第一存取線解碼器133,複數個第二存取線係耦接至一第二存取線解碼器131。感測放大器(未繪示於第1圖)可連接至第一存取線或第二存取線。此處所述之技術之實施例中,感測放大器係耦接至第一存取線與第二存取線的其中一者,例如是基於電流鏡的負載電路(current mirror based load circuit)之電 流源電路(current source circuit)係被連接以限制讀取操作與寫入操作的期間的電流。 The three-dimensional cross-point array includes access lines that are coupled and electrically communicated with a first access line decoder 133 and a second access line decoder 131, wherein the first access line decoder The second access line decoder may include a driver and a bias voltage selector (bias voltage selector) to apply a bias to the selected first access line and second access line during a write operation or a read operation, Unselected first access line and second access line. In this embodiment, a plurality of first access lines are coupled to a first access line decoder 133, and a plurality of second access lines are coupled to a second access line decoder 131. The sense amplifier (not shown in FIG. 1) can be connected to the first access line or the second access line. In the embodiment of the technology described herein, the sense amplifier is coupled to one of the first access line and the second access line, for example, a current mirror based load circuit Electricity The current source circuit is connected to limit the current during the read operation and the write operation.

第2圖係第1圖的一例示記憶胞121的近視圖。記憶胞121具有接觸於第一存取線101的一可程式化記憶體單元208與接觸於第二存取線111的一開關單元212。一阻障層210係設置在可程式化記憶體單元208與開關單元212之間。第1A圖的三維交叉點記憶體中,記憶胞係被倒置,以使可程式化記憶體單元可接觸或鄰近於一第一存取線,且開關單元可接觸或鄰近於一第二存取線。一些實施例中,每一階層可具有自己的第一存取線與第二存取線的存取線層。一些實施例中,記憶胞係不被倒置,以使開關單元可接觸於第一存取線或第二存取線。 FIG. 2 is a close-up view of the example memory cell 121 of FIG. 1. The memory cell 121 has a programmable memory unit 208 that contacts the first access line 101 and a switch unit 212 that contacts the second access line 111. A barrier layer 210 is disposed between the programmable memory unit 208 and the switch unit 212. In the three-dimensional cross-point memory of FIG. 1A, the memory cell is inverted so that the programmable memory unit can contact or be adjacent to a first access line, and the switch unit can be contacted or adjacent to a second access line. In some embodiments, each level may have its own access line layer of the first access line and the second access line. In some embodiments, the memory cell is not inverted so that the switch unit can contact the first access line or the second access line.

可程式化記憶體單元208可包括可編程電阻材料層(layer of programmable resistance material)。可編程電阻材料可具有代表位元「0」的一第一電阻值與代表位元「1」的一第二電阻值。一些實施例中,超過兩個的電阻值可用以在每個單元儲存多位元。一實施例中,可程式化記憶體單元208包括用作可編程電阻材料的相變化記憶體材料層(layer of phase change memory material)。 The programmable memory cell 208 may include a layer of programmable resistance material. The programmable resistance material may have a first resistance value representing bit "0" and a second resistance value representing bit "1". In some embodiments, more than two resistance values can be used to store multiple bits per cell. In one embodiment, the programmable memory cell 208 includes a layer of phase change memory material used as a programmable resistive material.

藉由能量的應用,例如熱或電流,相變化材料可在一相對高電阻狀態、非晶相、一相對低電阻狀態與晶相之間轉換。可程式化記憶體單元208的相變化材料可包括硫族化合物系材料(chalcogenide-based material)與其他材料。硫族化合物合金包括硫族化合物與例如是過渡金屬之其他材料的組合。一硫族化合物合金通常 包含來自元素週期表的IVA族的一或多個元素,例如鍺(Ge)與錫(Sn)。時常地,硫族化合物合金包括一或多個的銻(Sb)、鎵(Ga)、銦(In)與銀(Ag)的組合。許多相變基記憶體材料(phase change based memory materials)已說明於技術文獻中,包括的合金有:鎵/銻(Ga/Sb)、銦/銻(In/Sb)、銦/硒(In/Se)、銻/碲(Sb/Te)、鍺/碲(Ge/Te)、鍺/銻/碲(Ge/Sb/Te)、銦/銻/碲(In/Sb/Te)、鎵/硒/碲(Ga/Se/Te)、錫/銻/碲(Sn/Sb/Te)、銦/銻/鍺(In/Sb/Ge)、銀/銦/銻/碲(Ag/In/Sb/Te)、鍺/錫/銻/碲(Ge/Sn/Sb/Te)、鍺/銻/硒/碲(Ge/Sb/Se/Te)與碲/鍺/銻/硫(Te/Ge/Sb/S)。鍺/銻/碲(Ge/Sb/Te)合金的家族中,各種的合金組成可以係可使用的。此組成可以例如是Ge2Sb2Te5、GeSb2Te4與GeSb4Te7。更一般地說,例如是鉻(Cr)、鐵(Fe)、鎳(Ni)、鈮(Nb)、鈀(Pd)、鉑(Pt)之一過渡金屬與其混和物或合金可與鍺/銻/碲(Ge/Sb/Te)或鎵/銻/碲(Ga/Sb/Te)結合,以形成具有可編程電阻性質(programmable resistive property)的一相變化合金(phase change alloy)。記憶體材料的特定例子係揭露於美國專利案編號第5,687,112號第11~13欄,發明人為Ovshinsky,其例子可藉由引用併入的方式將該文獻全文內容收錄至本文中。各種相變化記憶體係揭露於美國專利案編號第6,579,760號,標題為「SELF-ALIGNED,PROGRAMMABLE PHASE CHANGE MEMORY」,此專利案的內容可藉由引用併入的方式,將全文內容收錄至本文中。 Through the application of energy, such as heat or current, the phase change material can be switched between a relatively high resistance state, an amorphous phase, a relatively low resistance state and a crystalline phase. The phase change material of the programmable memory cell 208 may include chalcogenide-based materials and other materials. Chalcogenide alloys include combinations of chalcogenide compounds with other materials such as transition metals. A chalcogenide alloy usually contains one or more elements from group IVA of the periodic table, such as germanium (Ge) and tin (Sn). Often, chalcogenide alloys include one or more antimony (Sb), gallium (Ga), indium (In), and silver (Ag) combinations. Many phase change based memory materials have been described in the technical literature, including alloys: gallium/antimony (Ga/Sb), indium/antimony (In/Sb), indium/selenium (In/ Se), antimony/tellurium (Sb/Te), germanium/tellurium (Ge/Te), germanium/antimony/tellurium (Ge/Sb/Te), indium/antimony/tellurium (In/Sb/Te), gallium/selenium / Tellurium (Ga/Se/Te), Tin/Antimony/Tellurium (Sn/Sb/Te), Indium/Antimony/Germanium (In/Sb/Ge), Silver/Indium/Antimony/Tellurium (Ag/In/Sb/ Te), germanium/tin/antimony/tellurium (Ge/Sn/Sb/Te), germanium/antimony/selenium/tellurium (Ge/Sb/Se/Te) and tellurium/germanium/antimony/sulfur (Te/Ge/Sb /S). In the family of germanium/antimony/tellurium (Ge/Sb/Te) alloys, various alloy compositions can be used. This composition may be, for example, Ge 2 Sb 2 Te 5 , GeSb 2 Te 4 and GeSb 4 Te 7 . More generally, for example, one of chromium (Cr), iron (Fe), nickel (Ni), niobium (Nb), palladium (Pd), platinum (Pt), transition metal and its mixture or alloy can be combined with germanium/antimony / Tellurium (Ge/Sb/Te) or Gallium/Antimony/Tellurium (Ga/Sb/Te) combined to form a phase change alloy with programmable resistive properties. Specific examples of memory materials are disclosed in US Patent No. 5,687,112, columns 11 to 13, and the inventor is Ovshinsky. The examples can be incorporated by reference into the entire text of this document. Various phase change memory systems are disclosed in US Patent No. 6,579,760, titled "SELF-ALIGNED, PROGRAMMABLE PHASE CHANGE MEMORY". The contents of this patent case can be incorporated into this article by reference.

一實施例中,可程式化記憶體單元208可以係一電阻式隨機存取記憶體(resistive random access memory)或一鐵電隨機存取 記憶體(ferroelectric random access memory)。可程式化記憶體單元208中的可編程電阻材料可以係一金屬氧化物,例如氧化鉿(hafnium oxide)、氧化鎂(magnesium oxide)、氧化鎳(nickel oxide)、氧化鈮(niobium oxide)、氧化鈦(titanium oxide)、氧化鋁(aluminum oxide)、氧化釩(vanadium oxide)、氧化鎢(tungsten oxide)、氧化鋅(zinc oxide)或氧化鈷(cobalt oxide)。一些實施例中,其他的電阻式記憶體結構可以被實現,例如金屬氧化物電阻式記憶體(metal-oxide resistive memories)、磁性電阻式記憶體(magnetic resistive memories)與導電橋電阻式記憶體(conducting-bridge resistive memories)等。 In one embodiment, the programmable memory unit 208 may be a resistive random access memory (resistive random access memory) or a ferroelectric random access Memory (ferroelectric random access memory). The programmable resistance material in the programmable memory cell 208 may be a metal oxide, such as hafnium oxide, magnesium oxide, nickel oxide, niobium oxide, and oxide Titanium oxide, aluminum oxide, vanadium oxide, tungsten oxide, zinc oxide or cobalt oxide. In some embodiments, other resistive memory structures may be implemented, such as metal-oxide resistive memories, magnetic resistive memories, and conductive bridge resistive memories ( conducting-bridge resistive memories) etc.

一些實施例中,開關單元212可以係一兩端雙向定限開關(ovonic threshold switch,OTS),其包括一硫族化合物材料。包括一雙向定限開關的一實施例中,一讀取操作包括在第一存取線與第二存取線施加一電壓,其超過雙向定限開關的一臨界值(threshold)。其他實施例中,開關單元可包括其他類型的裝置,其包括定向裝置(directional devices),例如一二極體與其他的雙向裝置(bi-directional devices)。 In some embodiments, the switch unit 212 may be an ovonic threshold switch (OTS) that includes a chalcogenide material. In an embodiment including a bidirectional limit switch, a read operation includes applying a voltage across the first access line and the second access line, which exceeds a threshold of the bidirectional limit switch. In other embodiments, the switch unit may include other types of devices, including directional devices, such as a diode and other bi-directional devices.

一範例中,一雙向定限開關開關單元(OTS switch element)可包括用作一雙向定限開關的一硫族化合物層(layer of chalcogenide),例如硒化砷(As2Se3)、碲化鋅(ZnTe)與硒化鍺(GeSe)。雙向定限開關開關單元具有例如約5奈米至約25奈米的厚度。一些實施例中,開關單元可包括一硫族化合物與由碲(Te)、硒(Se)、鍺(Ge)、矽(Si)、砷(As)、鈦(Ti)、硫(S)與銻(Sb)所組成的群組的一或多個元素。 In an example, an OTS switch element may include a layer of chalcogenide used as a bidirectional fixed switch, such as arsenic selenide (As 2 Se 3 ), telluride Zinc (ZnTe) and germanium selenide (GeSe). The bidirectional fixed limit switch switching unit has a thickness of, for example, about 5 nm to about 25 nm. In some embodiments, the switching unit may include a chalcogenide compound consisting of tellurium (Te), selenium (Se), germanium (Ge), silicon (Si), arsenic (As), titanium (Ti), sulfur (S) and One or more elements of the group consisting of antimony (Sb).

阻障層210包括一材料或多個材料的結合,以在開關單 元212與可程式化記憶體單元208之間提供適合的附著力。阻障層210阻擋從可程式化記憶體單元至開關單元的雜質的移動,反之亦然。阻障層可以由具有約3奈米至約30奈米的厚度的一導電材料或一半導體材料所組成。阻障層210的合適材料可包括一金屬氮化物,例如氮化鈦(titanium nitride,TiN)、氮化鉭(tantalum nitride,TaN)、氮化鎢(tungsten nitride,WN)、氮化鉬(molybdenum nitride,MoN)、氮化矽鈦(titanium silicon nitride,TiSiN)、氮化鋁鈦(titanium aluminum nitride,TiAlN)。除了金屬氮化物,例如是碳化鈦(titanium carbide,TiC)、碳化鎢(tungsten carbide,WC)、石墨(C)、其他碳(C)形式、鈦(Ti)、鉬(Mo)、鉭(Ta)、矽化鈦(titanium silicide,TiSi)、矽化鉭(tantalum silicide,TaSi)與鎢化鈦(titanium tungsten,TiW)之導電材料可以用於阻障層210。 The barrier layer 210 includes a material or a combination of multiple materials in order to switch Suitable adhesion is provided between the cell 212 and the programmable memory unit 208. The barrier layer 210 blocks the movement of impurities from the programmable memory cell to the switch cell, and vice versa. The barrier layer may be composed of a conductive material or a semiconductor material having a thickness of about 3 nanometers to about 30 nanometers. Suitable materials for the barrier layer 210 may include a metal nitride, such as titanium nitride (TiN), tantalum nitride (TaN), tungsten nitride (WN), molybdenum nitride (molybdenum) nitride, MoN), titanium silicon nitride (TiSiN), titanium aluminum nitride (TiAlN). In addition to metal nitrides, for example, titanium carbide (titanium carbide, TiC), tungsten carbide (WC), graphite (C), other carbon (C) forms, titanium (Ti), molybdenum (Mo), tantalum (Ta ), conductive materials such as titanium silicide (TiSi), tantalum silicide (TaSi) and titanium tungsten (TiW) can be used for the barrier layer 210.

第3圖~第14圖繪示具有第一存取線與第二存取線的一三維交叉點記憶體的一製造流程範例,第一存取線與第二存取線具有類似第1圖的交替的寬區域與窄區域。製造流程包括三個圖案:一第一圖案,定義記憶胞;一第二圖案,定義第一存取線;與一第三圖案,定義第二存取線。第一圖案包括一孔洞陣列,孔洞具有在第一方向上的一長度與在第二方向上的一寬度。第一圖案中的孔洞可具有圓形、方形、矩形、橢圓形、多邊形等形狀。第一圖案中的孔洞可以是圓形的、或在第一方向與第二方向上具有趨近相等的長度與寬度的其他形狀(包括方形與其他多邊形)。 Figures 3 to 14 show an example of a manufacturing process of a three-dimensional cross-point memory having a first access line and a second access line. The first access line and the second access line have similarities as in Figure 1. Alternating wide and narrow areas. The manufacturing process includes three patterns: a first pattern defining memory cells; a second pattern defining first access lines; and a third pattern defining second access lines. The first pattern includes an array of holes having a length in the first direction and a width in the second direction. The holes in the first pattern may have a circular, square, rectangular, elliptical, polygonal, etc. shape. The holes in the first pattern may be circular, or other shapes (including squares and other polygons) having nearly equal lengths and widths in the first direction and the second direction.

類似於第一圖案,第二圖案與第三圖案包括孔洞陣列, 此些孔洞具有在第一方向上的長度與在第二方向上的寬度。第二圖案與第三圖案中的孔洞可以係橢圓形的或類橢圓形的,類橢圓形在某種程度上係具有長軸與短軸(包括矩形與其他的矩形多邊形)。第二圖案中的孔洞的長軸係對準於第一存取線的方向,第一存取線的側面係藉由第一導電材料的橫向蝕刻的蝕刻周長來定義。第三圖案中的孔洞的長軸係對準於第二存取線的方向,第二存取線的側面係藉由第二導電材料的橫向蝕刻的蝕刻周長來定義。一些實施例中,第二圖案中的孔洞的寬度可以短於第一圖案中的孔洞的寬度,第三圖案的長度可以短於第一圖案的長度。此些實施例中,第二圖案的長度可以相同於第一圖案的長度,第三圖案的寬度可以相同於第一圖案的寬度。其他實施例中,第二圖案的長度可以短於第一圖案的長度,第三圖案的寬度係短於第一圖案的寬度。此些實施例中,第二圖案的寬度可以相同於第一圖案的寬度,第二圖案的長度可以相同於第一圖案的長度。第3圖繪示在形成具有材料層302~326的一第一堆疊300之後的製程中的一階段。第一堆疊300可被形成在一積體電路基板(integrated circuit substrate)或其他類型的絕緣板(insulating base)上。一些實施例中,可以有電路位於第一堆疊300之下。形成第一堆疊300的製程包括沉積第一導電材料的一第一層302、可程式化記憶體單元的一第一材料層304、阻障層的一第一材料層306、開關單元的一第一材料層308、一第二導電材料的一第一層310、開關單元的一第二材料層312、阻障層的一第二材料層314、可程式化記憶體單元的一第二材料層316、第一導電材料的一第二層318、可程式化記憶體單元的一第三材料層320、 阻障層的一第三材料層322、開關單元的一第三材料層324與第二導電材料的一第二層326。具有三層記憶胞階層的一三維交叉點記憶胞裝置(3D cross-point memory cell device)可由第一堆疊300來形成。 Similar to the first pattern, the second pattern and the third pattern include an array of holes, The holes have a length in the first direction and a width in the second direction. The holes in the second pattern and the third pattern may be oval or oval-like, and the oval-like shape has a long axis and a short axis to a certain extent (including rectangles and other rectangular polygons). The long axis of the hole in the second pattern is aligned with the direction of the first access line, and the side of the first access line is defined by the etching circumference of the lateral etching of the first conductive material. The long axis of the hole in the third pattern is aligned with the direction of the second access line, and the side surface of the second access line is defined by the etching circumference of the lateral etching of the second conductive material. In some embodiments, the width of the holes in the second pattern may be shorter than the width of the holes in the first pattern, and the length of the third pattern may be shorter than the length of the first pattern. In these embodiments, the length of the second pattern may be the same as the length of the first pattern, and the width of the third pattern may be the same as the width of the first pattern. In other embodiments, the length of the second pattern may be shorter than the length of the first pattern, and the width of the third pattern is shorter than the width of the first pattern. In these embodiments, the width of the second pattern may be the same as the width of the first pattern, and the length of the second pattern may be the same as the length of the first pattern. FIG. 3 illustrates a stage in the process after forming a first stack 300 with material layers 302-326. The first stack 300 may be formed on an integrated circuit substrate or other type of insulating base. In some embodiments, there may be circuits below the first stack 300. The process of forming the first stack 300 includes depositing a first layer 302 of first conductive material, a first material layer 304 of the programmable memory cell, a first material layer 306 of the barrier layer, and a first layer of the switching unit A material layer 308, a first layer 310 of a second conductive material, a second material layer 312 of the switch unit, a second material layer 314 of the barrier layer, a second material layer of the programmable memory unit 316, a second layer 318 of the first conductive material, a third material layer 320 of the programmable memory cell, A third material layer 322 of the barrier layer, a third material layer 324 of the switch unit, and a second layer 326 of the second conductive material. A 3D cross-point memory cell device with three layers of memory cells can be formed by the first stack 300.

層302、310、318及326中的第一導電材料與第二導電材料可包括如上所述之氮化鈦、鎢與氮化鈦的一多層組合(multilayer combination),第一導電材料係相異於第二導電材料。其他的材料組合可被使用。此些第一導電材料與第二導電材料可使用例如是一或多個的化學氣相沉積(chemical vapor deposition,CVD)、物理氣相沉積(physical vapor deposition,PVD)與原子層沉積(atomic layer deposition,ALD)製程來進行沉積。 The first conductive material and the second conductive material in the layers 302, 310, 318, and 326 may include a multilayer combination of titanium nitride, tungsten, and titanium nitride as described above. The first conductive material is a phase Different from the second conductive material. Other material combinations can be used. For the first conductive material and the second conductive material, for example, one or more of chemical vapor deposition (CVD), physical vapor deposition (PVD), and atomic layer deposition (atomic layer deposition) can be used. deposition, ALD) process.

層308、312及324中的開關單元的材料可包括一雙向定限開關單元(ovonic threshold switch element)的材料,例如上述之材料。可程式化記憶體單元包括相變化材料之實施例中,開關單元的材料層308、312及324可藉由物理氣相沉積(PVD)、濺鍍(sputtering)或一磁控管濺鍍方法(magnetron-sputtering method)來進行沉積,磁控管濺鍍方法係例如是在1毫托(mTorr)~100毫托的壓力下使用氬(Ar)、氮氣(N2)和/或氦(He)等的源氣體(source gas)。或者,此層亦可使用化學氣相沉積(chemical vapor deposition,CVD)與原子層沉積(atomic layer deposition,ALD)來形成。 The materials of the switch units in the layers 308, 312, and 324 may include materials of an ovonic threshold switch element, such as the materials mentioned above. In an embodiment where the programmable memory cell includes a phase change material, the material layers 308, 312, and 324 of the switch unit can be formed by physical vapor deposition (PVD), sputtering, or a magnetron sputtering method ( magnetron-sputtering method), for example, magnetron sputtering method is to use argon (Ar), nitrogen (N 2 ) and/or helium (He) under a pressure of 1 mtorr (mTorr) ~ 100 mtorr Source gas. Alternatively, this layer can also be formed using chemical vapor deposition (CVD) and atomic layer deposition (ALD).

層306、314及322中的阻障層的材料可根據可編程電阻性記憶體單元(programmable resistance memory element)來選擇包括各種阻障材料(barrier material)。對於一相變化記憶體單元(phase change memory element),一合適的阻障材料可以是氮化鈦。替代實施例可包括碳種類(carbon variety),包括奈米碳管與石墨。此外,例如是碳化矽(silicon carbide)與其他的導電阻障材料之材料可被使用。阻障層的此些材料可使用例如是一或多個的化學氣相沉積(chemical vapor deposition,CVD)、物理氣相沉積(physical vapor deposition,PVD)與原子層沉積(atomic layer deposition,ALD)製程來進行沉積。 The materials of the barrier layers in the layers 306, 314, and 322 can be selected to include various barrier materials according to programmable resistance memory elements. For a phase change memory unit (phase change memory element), a suitable barrier material may be titanium nitride. Alternate embodiments may include carbon varieties, including carbon nanotubes and graphite. In addition, materials such as silicon carbide and other conductive barrier materials can be used. Such materials for the barrier layer can be, for example, one or more of chemical vapor deposition (CVD), physical vapor deposition (PVD), and atomic layer deposition (ALD) Process for deposition.

層304、316及320中的可程式化記憶體單元的材料可包括各種相變化材料。相變化材料的例子包括硫族化合物系材料,例如是鎵/銻(Ga/Sb)、銦/銻(In/Sb)、銦/硒(In/Se)、銻/碲(Sb/Te)、鍺/碲(Ge/Te)、鍺/銻/碲(Ge/Sb/Te)、銦/銻/碲(In/Sb/Te)、鎵/硒/碲(Ga/Se/Te)、錫/銻/碲(Sn/Sb/Te)、銦/銻/鍺(In/Sb/Ge)、銀/銦/銻/碲(Ag/In/Sb/Te)、鍺/錫/銻/碲(Ge/Sn/Sb/Te)、鍺/銻/硒/碲(Ge/Sb/Se/Te)與碲/鍺/銻/硫(Te/Ge/Sb/S)之合金。可程式化記憶體單元的此些材料可使用例如是一或多個的化學氣相沉積(chemical vapor deposition,CVD)、物理氣相沉積(physical vapor deposition,PVD)與原子層沉積(atomic layer deposition,ALD)製程來進行沉積。 The materials of the programmable memory cells in layers 304, 316, and 320 may include various phase change materials. Examples of phase change materials include chalcogenide-based materials, such as gallium/antimony (Ga/Sb), indium/antimony (In/Sb), indium/selenium (In/Se), antimony/tellurium (Sb/Te), Germanium/Tellurium (Ge/Te), Germanium/Antimony/Tellurium (Ge/Sb/Te), Indium/Antimony/Tellurium (In/Sb/Te), Gallium/Selenium/Tellurium (Ga/Se/Te), Tin/ Antimony/Tellurium (Sn/Sb/Te), Indium/Antimony/Germanium (In/Sb/Ge), Silver/Indium/Antimony/Tellurium (Ag/In/Sb/Te), Germanium/Tin/Antimony/Tellurium (Ge /Sn/Sb/Te), germanium/antimony/selenium/tellurium (Ge/Sb/Se/Te) and tellurium/germanium/antimony/sulfur (Te/Ge/Sb/S) alloys. These materials of the programmable memory cell can use, for example, one or more of chemical vapor deposition (CVD), physical vapor deposition (PVD) and atomic layer deposition (atomic layer deposition) , ALD) process for deposition.

第4A圖繪示在圖案化第一堆疊300之後的一製造階段,以定義穿過此實施例中的堆疊至基板的一孔洞陣列。此孔洞陣列包括複數個第一孔洞402、404、406、408、410、412、414、416及418。第4B、4C及4D圖分別繪示第一導電材料的第一層302、可程式化記憶體單元的第一材料層304與一第二導電材料的第一層310的X-Y布局。如第4B圖所繪示,孔洞陣列係使用一第一孔洞圖案(hole pattern)424來形成,以定義複數個第一孔洞402、404、406、408、410、412、414、416及418。繪示於第4B圖的第一孔洞圖案係一圓形。然而,例如是方形或多邊形之其他孔洞圖案的形狀亦可被使用。第一圖案具有在第一方向上的一長度420與在第二方向上的一寬度422。第一圖案定義了具有在第一方向上的長度420與在第二方向上的寬度422的第一孔洞。此實施例中,第一方向上的長度420與在第二方向上的寬度422係大約相等。可藉由在第一堆疊上沉積一光阻(photoresist)的一微影製程(lithography process),曝露光阻中的一第一圖案,移除曝露的光阻的區域,蝕刻未被光阻所保護的區域、且在蝕刻之後移除此光阻,來實現複數個第一孔洞的圖案化。 FIG. 4A illustrates a manufacturing stage after patterning the first stack 300 to define an array of holes through the stack to the substrate in this embodiment. The hole array includes a plurality of first holes 402, 404, 406, 408, 410, 412, 414, 416, and 418. FIGS. 4B, 4C, and 4D respectively show X-Y layouts of the first layer 302 of the first conductive material, the first material layer 304 of the programmable memory cell, and the first layer 310 of a second conductive material. As shown in FIG. 4B, the hole array uses a first hole pattern (hole pattern) 424 to define a plurality of first holes 402, 404, 406, 408, 410, 412, 414, 416 and 418. The first hole pattern shown in FIG. 4B is a circle. However, other hole patterns such as square or polygonal shapes can also be used. The first pattern has a length 420 in the first direction and a width 422 in the second direction. The first pattern defines a first hole having a length 420 in the first direction and a width 422 in the second direction. In this embodiment, the length 420 in the first direction is approximately equal to the width 422 in the second direction. A lithography process of depositing a photoresist on the first stack can expose a first pattern in the photoresist to remove the exposed photoresist area and the etching is not affected by the photoresist The protected area, and the photoresist is removed after etching to achieve patterning of the plurality of first holes.

在穿過複數個第一孔洞的橫向蝕刻的製程的期間(在完成之前),第5A、5B及5C圖繪示分別繪示第一導電材料的第一層302、可程式化記憶體單元的第一材料層304與一第二導電材料的第一層310的X-Y布局。此橫向蝕刻係選擇用於可程式化記憶體單元的第一材料層304、非用於可程式化記憶體單元的第二材料層316、且非用於可程式化記憶體單元的第三材料層320。選擇性蝕刻製程(selective etching process)並非蝕刻(至少非實質上)第一導電材料的層或第二導電材料的層。如第5圖所繪示,相較於第一孔洞402、404、406、408、410、412、414、416及418,此蝕刻製程在可程式化記憶體單元的第一材料層304中產生更大的孔洞502、504、506、508、510、512、514、516及518。一反應離子蝕刻製程(reactive-ion etching process)可用以蝕刻可程式化記憶體單元的材料層。 During the process of lateral etching through the plurality of first holes (before completion), FIGS. 5A, 5B, and 5C show the first layer 302 of the first conductive material and the programmable memory cell, respectively. The XY layout of the first material layer 304 and a first layer 310 of a second conductive material. This lateral etching selects the first material layer 304 for the programmable memory cell, the second material layer 316 not for the programmable memory cell, and the third material not for the programmable memory cell层320。 Layer 320. The selective etching process does not etch (at least not substantially) the layer of the first conductive material or the layer of the second conductive material. As shown in FIG. 5, compared to the first holes 402, 404, 406, 408, 410, 412, 414, 416, and 418, this etching process is generated in the first material layer 304 of the programmable memory cell Larger holes 502, 504, 506, 508, 510, 512, 514, 516 and 518. A reactive-ion etching process can be used to etch the material layer of the programmable memory cell.

阻障層的第一材料層306、開關單元的第一材料層308、開關單元的第二材料層312、阻障層的第二材料層314、阻障層的第三材料層322、開關單元的第三材料層324與可程式化記憶體單元的材料層304、316及320亦被橫向蝕刻。一些實施例中,可程式化記憶體單元的材料層、阻障層的材料層與開關單元的材料層以相同的速率進行蝕刻。一些實施例中,可程式化記憶體單元的材料層、阻障層的材料層與開關單元的材料層以不同的速率進行蝕刻,例如是藉由使用多重蝕刻化學(multiple etch chemistries)以進行橫向蝕刻來修改此製程,此橫向蝕刻係選擇用於可程式化記憶體單元的材料以確保記憶胞具有或多或少的平坦的側表面(even side surface)。 Barrier layer first material layer 306, switch unit first material layer 308, switch unit second material layer 312, barrier layer second material layer 314, barrier layer third material layer 322, switch unit The third material layer 324 and the material layers 304, 316, and 320 of the programmable memory cell are also laterally etched. In some embodiments, the material layer of the programmable memory cell, the material layer of the barrier layer, and the material layer of the switch unit are etched at the same rate. In some embodiments, the material layer of the programmable memory cell, the material layer of the barrier layer, and the material layer of the switch unit are etched at different rates, for example, by using multiple etch chemistries for lateral Etching is used to modify this process. This lateral etching selects the material for the programmable memory cell to ensure that the memory cell has a more or less even side surface.

在完成穿過可程式化記憶體單元的第一材料層304的複數個第一孔洞的選擇性橫向蝕刻(selective lateral etching)之後,非移除可程式化記憶體單元的第二材料層316,且非移除可程式化記憶體單元的第三材料層320,第6A、6B及6C圖分別繪示第一導電材料的第一層302、第一記憶胞階層600與一第二導電材料的第一層310的X-Y布局。一旦完成此階段中的橫向蝕刻,彼此分離的記憶胞柱(memory cell pillar)係留下橫向蝕刻的周長。記憶胞柱提供包括記憶胞602、604、606及608的一第一記憶胞階層600,係由於蝕刻製程所形成。類似地,一第二記憶胞階層與一第三記憶胞階層係分別形成在可程式化記憶體單元的第二材料層316與可程式化記憶體單元的第三材料層320。 After the selective lateral etching of the plurality of first holes through the first material layer 304 of the programmable memory cell is completed, the second material layer 316 of the programmable memory cell is not removed, And the third material layer 320 of the non-removable programmable memory cell, FIGS. 6A, 6B, and 6C respectively show the first layer 302 of the first conductive material, the first memory cell layer 600, and a second conductive material. The XY layout of the first layer 310. Once the lateral etching in this stage is completed, the memory cell pillars separated from each other leave the perimeter of the lateral etching. The memory cell column provides a first memory cell hierarchy 600 including memory cells 602, 604, 606, and 608, which is formed by an etching process. Similarly, a second memory cell hierarchy and a third memory cell hierarchy are formed on the second material layer 316 of the programmable memory cell and the third material layer 320 of the programmable memory cell, respectively.

在形成一第一絕緣填充720於第一孔洞中與記憶胞周 圍的蝕刻區域(etched region)中之後,第7A、7B及7C圖分別繪示第一導電材料的第一層302、第一記憶胞階層600與一第二導電材料的第一層310的X-Y布局。可藉由氧化矽或其他適合用於交叉點結構的絕緣填充材料的沉積來形成絕緣填充。亦可使用其他的低介電常數(low-κ)的介電質。第一絕緣填充的形成可使用例如是一旋轉式製程(spin-on process)、化學氣相沉積(CVD)、原子層沉積(ALD)、物理氣相沉積(PVD)、低壓化學氣相沉積(LPCVD)與高密度電漿化學氣相沉積(HDPCVD)來實現。 Forming a first insulating fill 720 in the first hole and surrounding the memory cell After the surrounding etched region (etched region), FIGS. 7A, 7B, and 7C respectively show the XY of the first layer 302 of the first conductive material, the first memory cell layer 600, and the first layer 310 of a second conductive material. layout. The insulating fill can be formed by the deposition of silicon oxide or other insulating filling materials suitable for the cross-point structure. Other low-k dielectrics can also be used. The formation of the first insulating fill can be performed by, for example, a spin-on process, chemical vapor deposition (CVD), atomic layer deposition (ALD), physical vapor deposition (PVD), low-pressure chemical vapor deposition ( LPCVD) and high density plasma chemical vapor deposition (HDPCVD).

第8A、8B及8C圖繪示在進行圖案化以形成一第二孔洞陣列之後的一製造階段,此第二孔洞陣列包括對準於第一孔洞陣列的複數個第二孔洞802、804、806、808、810、812、814、816及818。第8A、8B及8C圖分別繪示第一導電材料的第一層302、第一記憶胞階層600與一第二導電材料的第一層310的X-Y布局。如第8A圖所繪示,第二孔洞陣列可使用一第二孔洞圖案824以定義具有一橢圓形或長橢圓形的形狀的複數個第二孔洞802、804、806、808、810、812、814、816及818。第二孔洞圖案824具有在第一方向上的一長度820(長軸)與在第二方向上的一寬度822(短軸),長度820係趨近相等於第一孔洞圖案424的長度,寬度822係短於第一孔洞圖案424的寬度。第二孔洞圖案824的長度820係長於第二孔洞圖案824的寬度822。第二圖案定義了具有在第一方向上的長度820(長軸)與在第二方向上的寬度822(短軸)的第二孔洞,第二孔洞的長度係長於第二孔洞的寬度。複數個第二孔洞的圖案化可藉由一微影製程來完成。如第8B圖所繪示, 第二孔洞係在多個記憶胞之間被圖案化。 FIGS. 8A, 8B, and 8C illustrate a manufacturing stage after patterning to form a second hole array, the second hole array includes a plurality of second holes 802, 804, 806 aligned with the first hole array , 808, 810, 812, 814, 816 and 818. 8A, 8B, and 8C respectively show the X-Y layout of the first layer 302 of the first conductive material, the first memory cell layer 600, and the first layer 310 of a second conductive material. As shown in FIG. 8A, the second hole array may use a second hole pattern 824 to define a plurality of second holes 802, 804, 806, 808, 810, 812 having an elliptical or oblong shape 814, 816 and 818. The second hole pattern 824 has a length 820 (long axis) in the first direction and a width 822 (short axis) in the second direction. The length 820 is approximately equal to the length and width of the first hole pattern 424 822 is shorter than the width of the first hole pattern 424. The length 820 of the second hole pattern 824 is longer than the width 822 of the second hole pattern 824. The second pattern defines a second hole having a length 820 (long axis) in the first direction and a width 822 (short axis) in the second direction, the length of the second hole being longer than the width of the second hole. The patterning of the plurality of second holes can be completed by a lithography process. As shown in Figure 8B, The second hole is patterned between multiple memory cells.

第9A、9B及9C圖繪示在穿過第二孔洞802、804、806、808、810、812、814、816及818的第一導電材料的層302的選擇性橫向蝕刻以形成複數個第一存取線(例如第一存取線910、912)之後的一製造階段。第9A、9B及9C圖繪示一第一存取線層900、第一記憶胞階層600與一第二導電材料的第一層310的X-Y布局,第一存取線層900係由包括第一存取線的第一導電材料的層302所形成,第一存取線所具有的側面係藉由選擇性橫向蝕刻的周長來定義。由於第二導電材料與記憶胞中的材料係相異於第一導電材料,選擇性蝕刻製程並非蝕刻記憶胞或第二導電材料的層。一反應離子蝕刻製程可用以蝕刻第一導電材料的材料層302。 9A, 9B, and 9C illustrate the selective lateral etching of the layer 302 of the first conductive material passing through the second holes 802, 804, 806, 808, 810, 812, 814, 816, and 818 to form a plurality of first A manufacturing stage after an access line (eg, the first access line 910, 912). 9A, 9B, and 9C illustrate an XY layout of a first access line layer 900, a first memory cell layer 600, and a first layer 310 of a second conductive material. The first access line layer 900 includes A first conductive material layer 302 of an access line is formed. The side surface of the first access line is defined by the perimeter of the selective lateral etching. Since the second conductive material and the material in the memory cell are different from the first conductive material, the selective etching process does not etch the memory cell or the layer of the second conductive material. A reactive ion etching process can be used to etch the material layer 302 of the first conductive material.

如第9A圖所繪示,當蝕刻製程通過第二孔洞來進行且第二孔洞在第一方向上的長度係長於在第二方向上的寬度,由於此蝕刻製程,具有交替的寬區域與窄區域的複數個第一存取線係被形成。舉例而言,第一存取線層900包括第一存取線910、912。第一存取線910依序具有一窄區域902、一寬區域904、一窄區域906、一寬區域908與一窄區域911。 As shown in FIG. 9A, when the etching process is performed through the second hole and the length of the second hole in the first direction is longer than the width in the second direction, due to this etching process, it has alternating wide areas and narrow A plurality of first access lines of the area are formed. For example, the first access line layer 900 includes first access lines 910 and 912. The first access line 910 has a narrow area 902, a wide area 904, a narrow area 906, a wide area 908, and a narrow area 911 in sequence.

第10A、10B及10C圖繪示在形成一第二絕緣填充1020於第二孔洞中之後的一製造階段。在形成第二絕緣填充1020於第二孔洞中與第一存取線周圍的蝕刻區域中之後,第10A、10B及10C圖分別繪示第一存取線層900、第一記憶胞階層600與一第二導電材料的第一層310的X-Y布局。可藉由氧化矽或其他適合用於交叉點結構的 絕緣填充材料的沉積來形成第二絕緣填充。亦可使用其他低介電常數(low-κ)的介電質。第二絕緣填充的形成可使用例如是一旋轉式製程(spin-on process)、化學氣相沉積(CVD)、原子層沉積(ALD)、物理氣相沉積(PVD)、低壓化學氣相沉積(LPCVD)與高密度電漿化學氣相沉積(HDPCVD)來實現。 10A, 10B and 10C illustrate a manufacturing stage after forming a second insulating fill 1020 in the second hole. After forming the second insulating fill 1020 in the second hole and the etched area around the first access line, FIGS. 10A, 10B, and 10C show the first access line layer 900, the first memory cell layer 600, and XY layout of a first layer 310 of a second conductive material. Can be made of silicon oxide or other suitable for cross-point structure The deposition of the insulating filler material forms the second insulating filler. Other low-k dielectrics can also be used. The formation of the second insulating filling can be performed by, for example, a spin-on process, chemical vapor deposition (CVD), atomic layer deposition (ALD), physical vapor deposition (PVD), low-pressure chemical vapor deposition ( LPCVD) and high density plasma chemical vapor deposition (HDPCVD).

第11A、11B及11C圖繪示在圖案化對準於第一孔洞陣列的一第三孔洞陣列之後的一製造階段,第三孔洞陣列包括複數個第三孔洞1102、1104、1106、1108、1110、1112、1114、1116、1118。第11A、11B及11C圖分別繪示第一存取線層900、第一記憶胞階層600與一第二導電材料的第一層310的X-Y布局。如第11A圖所繪示,一第三孔洞圖案1124可用以定義複數個第三孔洞1102、1104、1106、1108、1110、1112、1114、1116、1118。第三孔洞圖案1124具有在第一方向上的一長度1120(短軸)與在第二方向上的一寬度1122(長軸),長度1120係短於第一孔洞圖案的長度,寬度1122係趨近相等於第一孔洞圖案424的寬度。第三孔洞圖案1124的長度1120係短於第三孔洞圖案1124的寬度1122。第三孔洞圖案定義了具有在第一方向上的長度1120與在第二方向上的寬度1122的第三孔洞,第二孔洞的長度(亦即長度維度(length dimension)的短軸)係短於第二孔洞的寬度(亦即寬度維度(width dimension)的長軸)。複數個第三孔洞的圖案化可藉由一微影製程來實現。如第11B圖所繪示,第三孔洞係在多個記憶胞之間被圖案化。 FIGS. 11A, 11B, and 11C illustrate a manufacturing stage after patterning a third hole array aligned with the first hole array. The third hole array includes a plurality of third holes 1102, 1104, 1106, 1108, 1110 , 1112, 1114, 1116, 1118. FIGS. 11A, 11B, and 11C respectively show X-Y layouts of the first access line layer 900, the first memory cell layer 600, and a first layer 310 of a second conductive material. As shown in FIG. 11A, a third hole pattern 1124 can be used to define a plurality of third holes 1102, 1104, 1106, 1108, 1110, 1112, 1114, 1116, 1118. The third hole pattern 1124 has a length 1120 (short axis) in the first direction and a width 1122 (long axis) in the second direction. The length 1120 is shorter than the length of the first hole pattern, and the width 1122 is It is approximately equal to the width of the first hole pattern 424. The length 1120 of the third hole pattern 1124 is shorter than the width 1122 of the third hole pattern 1124. The third hole pattern defines a third hole having a length 1120 in the first direction and a width 1122 in the second direction. The length of the second hole (that is, the short axis of the length dimension) is shorter than The width of the second hole (that is, the long axis of the width dimension). The patterning of the plurality of third holes can be achieved by a lithography process. As shown in FIG. 11B, the third hole is patterned between multiple memory cells.

第12A、12B及12C圖繪示在穿過第三孔洞1102、1104、 1106、1108、1110、1112、1114、1116、1118的第二導電材料的選擇性橫向蝕刻以形成包括多個第二存取線的複數個第二存取線之後的一製造階段,此些第二存取線所具有的側面係藉由選擇性橫向蝕刻的周長來定義。第12A、12B及12C圖繪示一第一存取線層900、第一記憶胞階層600與一第二存取線層1200的X-Y布局,第二存取線層1200係由第二導電材料的第一層310所形成。由於第一導電材料與記憶胞中的材料係相異於第二導電材料,選擇性蝕刻製程並非蝕刻記憶胞或第一存取線。一反應離子蝕刻製程可用以蝕刻第二導電材料的層。 Figures 12A, 12B and 12C show the passing through the third holes 1102, 1104, 1106, 1108, 1110, 1112, 1114, 1116, 1118. Selective lateral etching of the second conductive material to form a plurality of second access lines including a plurality of second access lines. The sides of the two access lines are defined by the perimeter of selective lateral etching. FIGS. 12A, 12B, and 12C illustrate an XY layout of a first access line layer 900, a first memory cell layer 600, and a second access line layer 1200. The second access line layer 1200 is made of a second conductive material The first layer 310 is formed. Since the first conductive material and the material in the memory cell are different from the second conductive material, the selective etching process does not etch the memory cell or the first access line. A reactive ion etching process can be used to etch the layer of the second conductive material.

如第12C圖所繪示,當蝕刻製程通過一第三孔洞陣列來進行且此些孔洞在第一方向上的長度係短於在第二方向上的寬度,由於此蝕刻製程,具有交替的寬區域與窄區域的複數個第二存取線係被形成。舉例而言,第二存取線層1200包括第二存取線1210、1212。第二存取線1210依序具有一窄區域1202、一寬區域1204、一窄區域1206、一寬區域1208與一窄區域1211。 As shown in FIG. 12C, when the etching process is performed by a third array of holes and the length of these holes in the first direction is shorter than the width in the second direction, due to this etching process, it has alternating widths A plurality of second access lines of the area and the narrow area are formed. For example, the second access line layer 1200 includes second access lines 1210 and 1212. The second access line 1210 has a narrow area 1202, a wide area 1204, a narrow area 1206, a wide area 1208, and a narrow area 1211 in sequence.

第13A、13B及13C圖繪示在藉由一蝕刻製程來移除第一絕緣填充與第二絕緣填充之後的一製造階段。第13A、13B及13C圖繪示第一存取線層900、第一記憶胞階層600與第二存取線層1200的X-Y布局。此移除製程曝露了記憶胞、第一存取線與第二存取線的多個表面1310。 13A, 13B, and 13C illustrate a manufacturing stage after removing the first insulating filling and the second insulating filling by an etching process. 13A, 13B, and 13C illustrate the X-Y layout of the first access line layer 900, the first memory cell layer 600, and the second access line layer 1200. This removal process exposes multiple surfaces 1310 of the memory cell, the first access line, and the second access line.

在使用一介電材料來內襯(lining)曝露表面(exposed surface)1310以形成介電襯墊(dielectric liner)1410之後,第14A、14B 及14C圖繪示第一存取線層900、第一記憶胞階層600與第二存取線層1200的X-Y布局。介電襯墊1410可包括介電材料,具有例如是一介電質,例如SiOx、SiNx、氧化鋁(Al2O3)、二氧化鉿(HfO2)、二氧化鋯(ZrO2)、氧化鑭(La2O3)、AlSiO、HfSiO、與ZrSiO等,其中例如是SiNx與二氧化鉿(HfO2)之高介電常數(high-κ)的介電質於一些實施例中係較佳的。高介電常數的介電質具有高於二氧化矽(SiO2)的介電常數之介電常數。一些實施例中,高介電常數的介電襯墊的厚度可在0.1奈米至20奈米的範圍內。一些實施例中,在1奈米至3奈米的範圍內的厚度係較佳的。一介電襯墊可使用高度相容化學氣相沉積(highly conforming chemical vapor deposition)或原子層沉積來進行沉積。多個空隙可在多個存取線之間的結構中的多個記憶胞之間來形成。 After a dielectric material is used to line the exposed surface 1310 to form a dielectric liner 1410, FIGS. 14A, 14B, and 14C illustrate the first access line layer 900, the first An XY layout of a memory cell hierarchy 600 and a second access line layer 1200. The dielectric liner 1410 may include a dielectric material having, for example, a dielectric substance, such as SiO x , SiN x , aluminum oxide (Al 2 O 3 ), hafnium dioxide (HfO 2 ), zirconium dioxide (ZrO 2 ) , Lanthanum oxide (La 2 O 3 ), AlSiO, HfSiO, and ZrSiO, etc., among which are high dielectric constant (high-κ) dielectrics such as SiN x and hafnium dioxide (HfO 2 ) in some embodiments It is better. The high dielectric constant dielectric substance has a dielectric constant higher than that of silicon dioxide (SiO 2 ). In some embodiments, the thickness of the high dielectric constant dielectric liner may be in the range of 0.1 nm to 20 nm. In some embodiments, the thickness in the range of 1 nm to 3 nm is preferred. A dielectric liner can be deposited using highly conforming chemical vapor deposition or atomic layer deposition. Multiple voids may be formed between multiple memory cells in the structure between multiple access lines.

一些實施例中,一介電材料層(layer of dielectric material)可被沉積在三維交叉點記憶體的頂部上以在隨後的製造步驟(fabrication step)的期間保護記憶體,例如後段製程(back end of line,BEOL)製造步驟。一些實施例中,可合併頂端的存取線層的頂部上的介電襯墊以在三維交叉點記憶體的頂部上形成一介電質層(dielectric layer)。 In some embodiments, a layer of dielectric material may be deposited on top of the three-dimensional cross-point memory to protect the memory during subsequent fabrication steps, such as a back end process of line, BEOL) manufacturing steps. In some embodiments, the dielectric pads on top of the top access line layer may be incorporated to form a dielectric layer on top of the three-dimensional cross-point memory.

一些實施例中,在使用一介電材料來內襯曝露表面以形成介電襯墊之後,一非高介電常數的介電材料可用以填充多個空隙。氣隙(air gap)可形成在多個記憶體柱(memory pillar)之間的介電材料的內部。 In some embodiments, after a dielectric material is used to line the exposed surface to form a dielectric liner, a non-high dielectric constant dielectric material may be used to fill multiple voids. An air gap can be formed inside the dielectric material between multiple memory pillars.

一些實施例中,在穿過第三孔洞的第二導電材料的選擇 性橫向蝕刻之後,一高介電常數的介電材料可用以填充在橫向蝕刻製程的期間所產生的空隙與第三孔洞。 In some embodiments, the selection of the second conductive material through the third hole After the lateral etching, a high dielectric constant dielectric material can be used to fill the voids and third holes generated during the lateral etching process.

第15圖繪示三維交叉點記憶體中的一記憶胞堆疊(stack of memory cell)的X-Z剖面圖,此記憶胞堆疊係使用第3~14圖所述之製造流程範例來進行製造。例如是堆疊1500之一M階層三維交叉點記憶體陣列(3D cross-point memory array)中的一記憶胞「堆疊」包括彼此上下直接堆疊的M數目的記憶胞。堆疊1500包括彼此上下堆疊的在第一階層的記憶胞1501、在第二階層的記憶胞1502與在第三階層的記憶胞1503。記憶胞1501包括一可程式化記憶體單元1521、一阻障層1522與一開關單元1523。第15圖的記憶胞1502包括一可程式化記憶體單元1531、一阻障層1532與一開關單元1533。第15圖的記憶胞1503包括一可程式化記憶體單元1541、一阻障層1542與一開關單元1543。 Figure 15 shows an X-Z cross-sectional view of a stack of memory cells in a three-dimensional cross-point memory. This memory cell stack is manufactured using the manufacturing process examples described in Figures 3-14. For example, a "stack" of memory cells in a 3D cross-point memory array of a stack of 1500 M layers includes M number of memory cells stacked directly on top of each other. The stack 1500 includes memory cells 1501 at the first level and memory cells 1502 at the second level and memory cells 1503 at the third level stacked on top of each other. The memory cell 1501 includes a programmable memory unit 1521, a barrier layer 1522, and a switching unit 1523. The memory cell 1502 of FIG. 15 includes a programmable memory unit 1531, a barrier layer 1532, and a switch unit 1533. The memory cell 1503 in FIG. 15 includes a programmable memory unit 1541, a barrier layer 1542, and a switching unit 1543.

第16A、16B及16C圖分別繪示第15圖的記憶胞堆疊1500的第一記憶胞階層1602、第二記憶胞階層1604與第三記憶胞階層1606的X-Y布局。第16A圖的第一記憶胞階層1602包括來自第15圖的記憶胞1501。第16B圖的第二記憶胞階層1604包括來自第15圖的記憶胞1502。第16C圖的第三記憶胞階層1606包括來自第15圖的記憶胞1503。為了清楚起見,只有記憶胞的可程式化記憶體單元的X-Y布局係顯示於第16A、16B及16C圖。 16A, 16B, and 16C show X-Y layouts of the first memory cell hierarchy 1602, the second memory cell hierarchy 1604, and the third memory cell hierarchy 1606 of the memory cell stack 1500 of FIG. 15 respectively. The first memory cell hierarchy 1602 in FIG. 16A includes memory cells 1501 from FIG. 15. The second memory cell hierarchy 1604 of FIG. 16B includes memory cells 1502 from FIG. 15. The third memory cell hierarchy 1606 in FIG. 16C includes the memory cell 1503 from FIG. 15. For clarity, the X-Y layout of the programmable memory cells with only memory cells is shown in Figures 16A, 16B, and 16C.

請參照第15圖,記憶胞1501、1502、1503係位於兩個第一存取線層(第17A圖的第一存取線層1702與第17B圖的第一存 取線層1706)與兩個第二存取線層(第18A圖的第二存取線層1802與第18B圖的第二存取線層1806)之間的交叉點。位於第一階層的記憶胞1501係插入在第17A圖的第一存取線層1702的第一存取線1511的寬區域(第17A圖的寬區域1704)與第18A圖的第二存取線層1802的第二存取線1512的寬區域(第18A圖的寬區域1804)之間。位於第二階層的記憶胞1502係插入在第18A圖的第二存取線層1802的第二存取線1512的寬區域(第18A圖的寬區域1804)與第17B圖的第一存取線層1706的第一存取線1513的寬區域(第17B圖的寬區域1708)之間。位於第三階層的記憶胞1503係插入在第17B圖的第一存取線層1706的第一存取線1513的寬區域(第17B圖的寬區域1708)與第18B圖的第二存取線層1806的第二存取線1514的寬區域(第18B圖的寬區域1808)之間。 Please refer to FIG. 15, memory cells 1501, 1502, 1503 are located in two first access line layers (the first access line layer 1702 in FIG. 17A and the first memory in FIG. 17B Line crossing layer 1706) and two second access line layers (second access line layer 1802 in FIG. 18A and second access line layer 1806 in FIG. 18B). The memory cell 1501 at the first level is inserted in the wide area of the first access line 1511 (the wide area 1704 in FIG. 17A) of the first access line layer 1702 in FIG. 17A and the second access in FIG. 18A Between the wide areas of the second access lines 1512 (the wide area 1804 in FIG. 18A) of the line layer 1802. The memory cell 1502 at the second level is inserted in the wide area of the second access line 1512 (the wide area 1804 in FIG. 18A) of the second access line layer 1802 in FIG. 18A and the first access in FIG. 17B Between the wide area of the first access line 1513 (the wide area 1708 in FIG. 17B) of the line layer 1706. The memory cell 1503 at the third level is inserted in the wide area of the first access line 1513 (the wide area 1708 in FIG. 17B) of the first access line layer 1706 in FIG. 17B and the second access in FIG. 18B Between the wide areas of the second access lines 1514 (the wide area 1808 in FIG. 18B) of the line layer 1806.

第19圖係繪示製造具有第一存取線與第二存取線的一三維交叉點記憶體的製造方法的流程圖,第一存取線與第二存取線具有交替的寬區域與窄區域。此方法包括在步驟1901形成一第一材料堆疊,包括一第一導電材料的層、可程式化記憶體單元的材料層、阻障層的材料層、開關單元的材料層、一第二導電材料的材料層(例如第3圖的第一堆疊300)。在步驟1902,包括複數個第一孔洞(例如第4A圖的第一孔洞402、404、406、408、410、412、414、416、418)的一第一孔洞陣列係根據一第一孔洞圖案(例如第4B圖的第一孔洞圖案424)而被蝕刻穿過第一堆疊。在步驟1903,可程式化記憶體單元的材料層、阻障層的材料層、開關單元的材料層係被選擇性橫向蝕刻穿過 第一孔洞,以形成一記憶胞陣列(例如第6B圖的記憶胞602、604、606、608)。在步驟1904,一第一絕緣填充(例如第7A圖的第一絕緣填充720)係形成在第一孔洞中。在步驟1905,藉由一第二孔洞圖案(例如第8A圖的第二孔洞圖案824)所定義的包括複數個第二孔洞(例如第8A圖的第二孔洞802、804、806、808、810、812、814、816、818)的一第二孔洞陣列係被蝕刻穿過第一堆疊。在步驟1906,第一導電材料的層係被選擇性橫向蝕刻穿過第二孔洞,以形成複數個第一存取線(例如第9A圖的第一存取線910、912)。在步驟1907,一第二絕緣填充(例如第10A圖的第二絕緣填充1020)係形成在第二孔洞中。在步驟1908,藉由一第三孔洞圖案(例如第11A圖的第三孔洞圖案1124)所定義的包括複數個第三孔洞(例如第11A圖的第三孔洞1102、1104、1106、1108、1110、1112、1114、1116、1118)的一第三孔洞陣列係被蝕刻穿過第一堆疊。在步驟1909,第二導電材料的層係被選擇性橫向蝕刻穿過第三孔洞以形成複數個第二存取線(例如第12C圖的第二存取線1210、1212)。 FIG. 19 is a flowchart showing a method of manufacturing a three-dimensional cross-point memory having a first access line and a second access line. The first access line and the second access line have alternating wide areas and Narrow area. The method includes forming a first material stack in step 1901, including a layer of a first conductive material, a material layer of a programmable memory cell, a material layer of a barrier layer, a material layer of a switching unit, and a second conductive material Material layer (for example, the first stack 300 in FIG. 3). In step 1902, a first hole array including a plurality of first holes (eg, first holes 402, 404, 406, 408, 410, 412, 414, 416, 418 in FIG. 4A) is based on a first hole pattern (Eg, the first hole pattern 424 in FIG. 4B) is etched through the first stack. In step 1903, the material layer of the programmable memory cell, the material layer of the barrier layer, and the material layer of the switch unit are selectively laterally etched through The first hole forms an array of memory cells (e.g., memory cells 602, 604, 606, 608 in FIG. 6B). In step 1904, a first insulating fill (eg, the first insulating fill 720 of FIG. 7A) is formed in the first hole. In step 1905, a plurality of second holes (eg, second holes 802, 804, 806, 808, 810 defined in FIG. 8A) defined by a second hole pattern (eg, second hole pattern 824 in FIG. 8A) are defined , 812, 814, 816, 818) a second hole array is etched through the first stack. In step 1906, the layer of the first conductive material is selectively etched laterally through the second hole to form a plurality of first access lines (such as the first access lines 910 and 912 in FIG. 9A). In step 1907, a second insulating filler (for example, the second insulating filler 1020 in FIG. 10A) is formed in the second hole. In step 1908, a plurality of third holes (such as the third holes 1102, 1104, 1106, 1108, 1110 defined in FIG. 11A) defined by a third hole pattern (such as the third hole pattern 1124 in FIG. 11A) , 1112, 1114, 1116, 1118) a third hole array is etched through the first stack. In step 1909, the layer of the second conductive material is selectively laterally etched through the third hole to form a plurality of second access lines (eg, second access lines 1210, 1212 in FIG. 12C).

此方法包括形成在一第一方向上延伸的複數個第一存取線,此些第一存取線(例如第9A圖的第一存取線910、912)具有交替的寬區域與窄區域。 The method includes forming a plurality of first access lines extending in a first direction, the first access lines (such as the first access lines 910, 912 of FIG. 9A) have alternating wide areas and narrow areas .

此方法包括形成在一第二方向上延伸的複數個第二存取線(例如第12C圖的第二存取線1210、1212)。第二存取線具有交替的寬區域與窄區域。複數個第二存取線的多個第二存取線中的寬區域與複數個第一存取線的多個第一存取線中的寬區域重疊在第一存取線 與第二存取線之間的交叉點。 This method includes forming a plurality of second access lines (eg, second access lines 1210, 1212 in FIG. 12C) extending in a second direction. The second access line has alternating wide areas and narrow areas. The wide area in the plurality of second access lines of the plurality of second access lines and the wide area in the plurality of first access lines of the plurality of first access lines overlap on the first access line The intersection with the second access line.

此方法包括形成設置在第一存取線與第二存取線之間的交叉點(第15圖)上的一記憶胞陣列(例如第6B圖的記憶胞602、604、606、608)。 This method includes forming a memory cell array (e.g., memory cells 602, 604, 606, 608 in FIG. 6B) disposed at the intersection (FIG. 15) between the first access line and the second access line.

此方法包括形成一第一導電材料的第一存取線與形成一第二導電材料的第二存取線,第一導電材料係相異於第二導電材料。 The method includes forming a first access line of a first conductive material and forming a second access line of a second conductive material. The first conductive material is different from the second conductive material.

此方法包括移除第一絕緣填充與第二絕緣填充,曝露記憶胞、複數個第一存取線與複數個第二存取線的表面,用一介電材料來內襯至少其中一個曝露表面以形成介電襯墊(例如第14A圖的介電襯墊1410)。 The method includes removing the first insulation filling and the second insulation filling, exposing the surfaces of the memory cell, the plurality of first access lines and the plurality of second access lines, and lining at least one of the exposed surfaces with a dielectric material To form a dielectric pad (for example, the dielectric pad 1410 of FIG. 14A).

一些實施例中,三維交叉點記憶體裝置(3D cross-point memory device)包括沿著第一方向與第二方向所堆疊的複數個導電層,其中每一導電層包括導線。複數個記憶體單元(memory element)係位於多個導電層之間。在一第一方向上延伸的每一導線包括在所述導線的側壁上的至少兩個轉折點(inflection point)或凸出部(protrusion portion),所述導線沿著正交於第一方向的一第二方向延伸。三維交叉點記憶體裝置中的記憶體單元係彼此分離。一些實施例中,記憶體單元係相變化記憶體材料(phase change memory material)。一些實施例中,每一記憶體單元包括一鑽石形(diamond shape)。一些實施例中,每一記憶體單元係具有四個側壁的一柱體(pillar)。四個轉折點係位於記憶體單元柱(memory element pillar)中的四個側壁之間。轉折點的形 狀係藉由穿過第一孔洞的可程式化記憶體單元的材料層、阻障層的材料層與開關單元的材料層的選擇性橫向蝕刻(selectively laterally etching)來定義。 In some embodiments, the 3D cross-point memory device includes a plurality of conductive layers stacked along the first direction and the second direction, where each conductive layer includes a wire. A plurality of memory elements are located between multiple conductive layers. Each wire extending in a first direction includes at least two inflection points or protrusion portions on the side walls of the wire, the wires along a line orthogonal to the first direction The second direction extends. The memory cells in the three-dimensional cross-point memory device are separated from each other. In some embodiments, the memory unit is a phase change memory material. In some embodiments, each memory cell includes a diamond shape. In some embodiments, each memory cell is a pillar with four side walls. The four turning points are located between the four side walls in the memory element pillar. Turning point shape The shape is defined by the selective laterally etching of the material layer of the programmable memory cell, the material layer of the barrier layer and the material layer of the switch unit passing through the first hole.

另一製造方法範例包括形成一第一暫置層(dummy layer)的一堆疊、一記憶層與一第二暫置層;形成穿過此堆疊的孔洞;選擇性蝕刻以移除記憶層的部分區域與形成複數個記憶體單元;填充一介電材料;形成多個第一各向異性貫穿開口(anisotropic through-hole),每一第一各向異性貫穿開口在一第一方向上延伸;選擇性蝕刻以移除第一暫置層的部分區域,以連結相同的行中的第一各向異性貫穿開口,且形成複數個第一導線;填充介電材料;形成多個第二各向異性貫穿開口,每一第二各向異性貫穿開口在一第二方向上延伸;且選擇性蝕刻以移除第二暫置層的部分區域以連結在相同的列中的第二各向異性貫穿開口,並形成複數個第二導線。 Another example of a manufacturing method includes forming a stack of a first dummy layer, a memory layer, and a second temporary layer; forming holes through the stack; and selectively etching to remove portions of the memory layer Region and forming a plurality of memory cells; filling a dielectric material; forming a plurality of first anisotropic through-holes (anisotropic through-hole), each first anisotropic through-hole extending in a first direction; selection Etching to remove part of the first temporary layer to connect the first anisotropic through-openings in the same row and form a plurality of first wires; fill with dielectric material; and form a plurality of second anisotropies Through openings, each second anisotropic through opening extends in a second direction; and selectively etch to remove a portion of the second temporary layer to connect the second anisotropic through openings in the same column , And form a plurality of second wires.

第20圖顯示包括一三維交叉點記憶體陣列2000的一積體電路2050,三維交叉點記憶體陣列2000包括記憶胞和具有交替的寬區域與窄區域第一存取線與第二存取線,係藉由如本文所述之三孔洞蝕刻製程所形成。一平面與列解碼器(plane and row decoder)2001係耦接且電氣通訊於複數個字元線2002,沿著三維交叉點記憶體陣列2000中的列來排列。一行解碼器2003係耦接且電氣通訊於複數個位元線2004,沿著三維交叉點記憶體陣列2000中的行來排列,以讀取來自三維交叉點記憶體陣列2000中的記憶胞的資料與寫入資料至三維交叉點記憶體陣列2000中的記憶胞。位址係從匯流排(bus)2005上 供應至平面與列解碼器2001與行解碼器2003。感測放大器、例如是預充電路(pre-charge circuit)等之其他支持電路(supporting circuitry)與方塊2006中的資料輸入結構(data-in structure)係通過匯流排2007耦接至行解碼器2003。資料通過資料輸入線(data-in line)2011從積體電路2050上的輸入/輸出埠(input/output ports)或其他資料源,供應至方塊2006中的資料輸入結構。資料通過資料輸出線(data-out line)2015從方塊2006中的感測放大器,供應至積體電路2050上的輸入/輸出埠或積體電路2050的內部或外部的其他資料目的地(data destination)。一偏壓安排狀態機(bias arrangement state machine)係位於控制電路(control circuitry)2009中,控制偏壓安排供給電壓(biasing arrangement supply voltage)2008和方塊2006中的感測電路(sense circuitry)與資料輸入結構,以進行讀取操作與寫入操作。用以執行讀取操作、寫入操作與抹除操作的控制電路2009可使用特殊目的邏輯電路(special purpose logic)、一般用途處理器(general purpose processor)或其組合來實現。 FIG. 20 shows an integrated circuit 2050 including a three-dimensional cross-point memory array 2000. The three-dimensional cross-point memory array 2000 includes memory cells and first and second access lines with alternating wide and narrow areas , Is formed by the three-hole etching process as described herein. A plane and row decoder 2001 is coupled and electrically communicated with a plurality of character lines 2002, and is arranged along the rows in the three-dimensional intersection memory array 2000. A row of decoders 2003 is coupled and electrically communicated on a plurality of bit lines 2004, arranged along the rows in the three-dimensional cross-point memory array 2000 to read data from the memory cells in the three-dimensional cross-point memory array 2000 And write data to the memory cells in the three-dimensional cross-point memory array 2000. The address is from the bus 2005 Supply to plane and column decoder 2001 and row decoder 2003. The sense amplifier, such as pre-charge circuit and other supporting circuits, and the data-in structure in block 2006 are coupled to the row decoder 2003 through the bus 2007 . The data is supplied from the input/output ports on the integrated circuit 2050 or other data sources through the data-in line 2011 to the data input structure in block 2006. Data is supplied from the sense amplifier in block 2006 through the data-out line 2015 to the input/output port on the integrated circuit 2050 or other data destinations inside or outside the integrated circuit 2050 (data destination ). A bias arrangement state machine (bias arrangement state machine) is located in the control circuit (control circuitry) 2009, controls the bias arrangement supply voltage (biasing arrangement supply voltage) 2008 and the sensing circuit (sense circuitry) and data in block 2006 Input structure for reading and writing operations. The control circuit 2009 for performing a read operation, a write operation, and an erase operation can be implemented using a special purpose logic circuit, a general purpose processor, or a combination thereof.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs can make various modifications and retouching without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be deemed as defined by the scope of the attached patent application.

100:三維交叉點記憶體 100: 3D crosspoint memory

101、102、103、104、105、106:第一存取線 101, 102, 103, 104, 105, 106: first access line

111、112、113、114、115、116:第二存取線 111, 112, 113, 114, 115, 116: second access line

117、119、122:寬區域 117, 119, 122: wide area

118、120:窄區域 118, 120: narrow area

121:記憶胞 121: Memory Cell

131:第二存取線解碼器 131: Second access line decoder

133:第一存取線解碼器 133: The first access line decoder

Claims (10)

一種記憶體,包括:複數個第一存取線(access line),在一第一存取線層(access line layer)中的一第一方向上延伸,該些第一存取線具有交替的多個寬區域與多個窄區域(alternating wide regions and narrow regions);複數個第二存取線,在一第二存取線層中的一第二方向上延伸,該些第二存取線具有交替的多個寬區域與多個窄區域,該複數個第二存取線的該些第二存取線中的該些寬區域與該複數個第一存取線的該些第一存取線中的該些寬區域重疊在該些第一存取線與該些第二存取線之間的多個交叉點上;以及一記憶胞陣列(array of memory cells),設置在該些第一存取線與該些第二存取線之間的該些交叉點上。 A memory including: a plurality of first access lines extending in a first direction in a first access line layer, the first access lines having alternating A plurality of wide regions and a plurality of narrow regions (alternating wide regions and narrow regions); a plurality of second access lines extending in a second direction in a second access line layer, the second access lines Having a plurality of wide areas and a plurality of narrow areas, the wide areas in the second access lines of the plurality of second access lines and the first stores of the first access lines The wide regions in the fetched lines overlap on the intersections between the first access lines and the second access lines; and an array of memory cells are provided in the At the intersections between the first access line and the second access lines. 如申請專利範圍第1項所述之記憶體,其中該複數個第一存取線包括一第一導電材料,該複數個第二存取線包括一第二導電材料,該第一導電材料係相異於該第二導電材料。 The memory as recited in item 1 of the patent application range, wherein the plurality of first access lines includes a first conductive material, the plurality of second access lines includes a second conductive material, and the first conductive material is Different from the second conductive material. 如申請專利範圍第1項所述之記憶體,其中該記憶胞陣列中的每一記憶胞依序包括一開關單元、一阻障層與一可程式化記憶體單元。 The memory according to item 1 of the patent application range, wherein each memory cell in the memory cell array includes a switching unit, a barrier layer, and a programmable memory unit in sequence. 如申請專利範圍第3項所述之記憶體,其中該可程式化記憶體單元包括一相變化材料。 The memory according to item 3 of the patent application scope, wherein the programmable memory unit includes a phase change material. 如申請專利範圍第1項所述之記憶體,包括:複數個第三存取線,在一第三存取線層中的該第一方向上延伸,該複數個第三存取線具有交替的多個寬區域與多個窄區域,該第三存取線層中的該複數個第三存取線的該些第三存取線中的該些寬區域與該第二存取線層中的該複數個第二存取線的該些第二存取線中的該些寬區域重疊在多個交叉點上,該些交叉點位於該第三存取線層中的該複數個第三存取線的該些第三存取線與該第二存取線層中的該複數個第二存取線的該些第二存取線之間;以及一記憶胞陣列,設置在該第三存取線層中的該些第三存取線與該第二存取線層中的該些第二存取線之間的該些交叉點上。 The memory as described in item 1 of the patent application scope includes: a plurality of third access lines extending in the first direction in a third access line layer, the plurality of third access lines having alternating Wide areas and narrow areas, the wide areas and the second access line layer of the third access lines of the plurality of third access lines in the third access line layer The wide areas in the second access lines of the plurality of second access lines overlap in a plurality of intersections, the intersections are located in the plurality of first access lines in the third access line layer Between the third access lines of the three access lines and the second access lines of the plurality of second access lines in the second access line layer; and a memory cell array disposed on the At the intersections between the third access lines in the third access line layer and the second access lines in the second access line layer. 如申請專利範圍第1項所述之記憶體,其中係使用一介電材料來內襯該記憶胞陣列中的多個記憶胞。 The memory as described in item 1 of the patent application, wherein a plurality of memory cells in the memory cell array are lined with a dielectric material. 如申請專利範圍第6項所述之記憶體,其中該介電材料係一高介電常數(high-κ)的材料。 The memory according to item 6 of the patent application scope, wherein the dielectric material is a high-k material. 如申請專利範圍第1項所述之記憶體,更包括在該記憶胞陣列中的環繞多個記憶胞的多個空隙。 The memory as described in item 1 of the patent application scope further includes a plurality of voids surrounding the plurality of memory cells in the memory cell array. 如申請專利範圍第1項所述之記憶體,其中該記憶胞陣列中的多個記憶胞係具有四個側壁的柱體(pillar)。 The memory as described in item 1 of the patent application range, wherein the plurality of memory cells in the memory cell array have four side walls of the pillar. 一種積體電路的製造方法,包括:形成複數個第一存取線在一第一存取線層中的一第一方向上延伸,該些第一存取線具有交替的多個寬區域與多個窄區域;形成複數個第二存取線在一第二存取線層中的一第二方向上延伸,該些第二存取線具有交替的多個寬區域與多個窄區域,該複數個第二存取線的該些第二存取線中的該些寬區域與該複數個第一存取線的該些第一存取線中的該些寬區域重疊在該些第一存取線與該些第二存取線之間的多個交叉點上;以及形成一記憶胞陣列,設置在該些第一存取線與該些第二存取線之間的該些交叉點上。 A method for manufacturing an integrated circuit includes: forming a plurality of first access lines extending in a first direction in a first access line layer, the first access lines having alternating wide areas and A plurality of narrow regions; forming a plurality of second access lines extending in a second direction in a second access line layer, the second access lines having alternating multiple wide regions and multiple narrow regions, The wide areas in the second access lines of the plurality of second access lines overlap the wide areas in the first access lines of the first access lines in the first A plurality of intersections between an access line and the second access lines; and forming a memory cell array disposed between the first access lines and the second access lines At the intersection.
TW108104675A 2018-05-17 2019-02-12 Memory and method of manufacturing integrated circuit TWI696269B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862672599P 2018-05-17 2018-05-17
US62/672,599 2018-05-17
US16/233,524 2018-12-27
US16/233,524 US10818729B2 (en) 2018-05-17 2018-12-27 Bit cost scalable 3D phase change cross-point memory

Publications (2)

Publication Number Publication Date
TW201947740A TW201947740A (en) 2019-12-16
TWI696269B true TWI696269B (en) 2020-06-11

Family

ID=68533426

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108104675A TWI696269B (en) 2018-05-17 2019-02-12 Memory and method of manufacturing integrated circuit

Country Status (3)

Country Link
US (1) US10818729B2 (en)
CN (1) CN110504271B (en)
TW (1) TWI696269B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289540B2 (en) 2019-10-15 2022-03-29 Macronix International Co., Ltd. Semiconductor device and memory cell
US11158787B2 (en) 2019-12-17 2021-10-26 Macronix International Co., Ltd. C—As—Se—Ge ovonic materials for selector devices and memory devices using same
US11362276B2 (en) 2020-03-27 2022-06-14 Macronix International Co., Ltd. High thermal stability SiOx doped GeSbTe materials suitable for embedded PCM application
CN114188320A (en) * 2020-09-14 2022-03-15 长鑫存储技术有限公司 Semiconductor structure and method for manufacturing semiconductor structure
WO2022168220A1 (en) * 2021-02-04 2022-08-11 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Memory device using semiconductor element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7176512B2 (en) * 2003-08-16 2007-02-13 Samsung Electronics Co., Ltd. Semiconductor memory device having high electrical performance and mask and photolithography friendliness
TWI284413B (en) * 2002-04-02 2007-07-21 Hewlett Packard Co Cubic memory array
US8697570B2 (en) * 2010-02-17 2014-04-15 Samsung Electronics Co., Ltd. Semiconductor device including contact plug and method of manufacturing the same
CN105051875A (en) * 2013-05-22 2015-11-11 美光科技公司 Memory cell structures
TWI530953B (en) * 2012-11-15 2016-04-21 旺宏電子股份有限公司 3d memory and decoding technologies
US9735151B1 (en) * 2016-03-24 2017-08-15 Western Digital Technologies, Inc. 3D cross-point memory device

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214601A (en) * 1986-12-11 1993-05-25 Mitsubishi Denki Kabushiki Kaisha Bit line structure for semiconductor memory device including cross-points and multiple interconnect layers
US5194752A (en) * 1989-05-23 1993-03-16 Kabushiki Kaisha Toshiba Semiconductor memory device
JP2792211B2 (en) * 1990-07-06 1998-09-03 日本電気株式会社 Semiconductor storage device
DE4115909C1 (en) * 1991-05-15 1992-11-12 Siemens Ag, 8000 Muenchen, De
DE4139719C1 (en) * 1991-12-02 1993-04-08 Siemens Ag, 8000 Muenchen, De
JP2638487B2 (en) * 1994-06-30 1997-08-06 日本電気株式会社 Semiconductor storage device
JP3411129B2 (en) * 1995-07-03 2003-05-26 沖電気工業株式会社 Semiconductor memory
US6043562A (en) * 1996-01-26 2000-03-28 Micron Technology, Inc. Digit line architecture for dynamic memory
KR100239404B1 (en) * 1996-07-31 2000-01-15 김영환 Dram and dram cell array method
US5864496A (en) * 1997-09-29 1999-01-26 Siemens Aktiengesellschaft High density semiconductor memory having diagonal bit lines and dual word lines
JP3137185B2 (en) * 1998-04-09 2001-02-19 日本電気株式会社 Semiconductor storage device
JP4339938B2 (en) * 1998-06-10 2009-10-07 株式会社ルネサステクノロジ Semiconductor memory device
US6282113B1 (en) * 1999-09-29 2001-08-28 International Business Machines Corporation Four F-squared gapless dual layer bitline DRAM array architecture
JP2001168212A (en) * 1999-12-07 2001-06-22 Mitsubishi Electric Corp Semiconductor storage device
JP3910047B2 (en) * 2001-11-20 2007-04-25 松下電器産業株式会社 Semiconductor memory device
US6579760B1 (en) 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
KR100502410B1 (en) * 2002-07-08 2005-07-19 삼성전자주식회사 DRAM cells
JP2005038884A (en) * 2003-07-15 2005-02-10 Toshiba Corp Nonvolatile semiconductor memory device and its manufacturing method
KR100564578B1 (en) * 2003-09-29 2006-03-28 삼성전자주식회사 Forming method for self-aligned contact pads of non-vertical semiconductor memory device
US7476945B2 (en) * 2004-03-17 2009-01-13 Sanyo Electric Co., Ltd. Memory having reduced memory cell size
JP2005302850A (en) * 2004-04-08 2005-10-27 Renesas Technology Corp Semiconductor memory device
EP1755165A4 (en) * 2004-05-25 2010-11-03 Renesas Electronics Corp Semiconductor device
JP4591821B2 (en) * 2005-02-09 2010-12-01 エルピーダメモリ株式会社 Semiconductor device
KR100594326B1 (en) * 2005-03-22 2006-06-30 삼성전자주식회사 Non volatile memory device for 2 bit operation and manufacturing method therefor
US7120046B1 (en) * 2005-05-13 2006-10-10 Micron Technology, Inc. Memory array with surrounding gate access transistors and capacitors with global and staggered local bit lines
KR100693879B1 (en) * 2005-06-16 2007-03-12 삼성전자주식회사 Semiconductor device having asymmetric bit lines and method of manufacturing the same
US7352033B2 (en) * 2005-08-30 2008-04-01 Halo Lsi Inc. Twin MONOS array for high speed application
US7420242B2 (en) 2005-08-31 2008-09-02 Macronix International Co., Ltd. Stacked bit line dual word line nonvolatile memory
JP4800017B2 (en) * 2005-11-25 2011-10-26 エルピーダメモリ株式会社 Semiconductor memory device
US20070132049A1 (en) * 2005-12-12 2007-06-14 Stipe Barry C Unipolar resistance random access memory (RRAM) device and vertically stacked architecture
US7265041B2 (en) * 2005-12-19 2007-09-04 Micrel, Inc. Gate layouts for transistors
US7773412B2 (en) * 2006-05-22 2010-08-10 Micron Technology, Inc. Method and apparatus for providing a non-volatile memory with reduced cell capacitive coupling
US7537994B2 (en) * 2006-08-28 2009-05-26 Micron Technology, Inc. Methods of forming semiconductor devices, assemblies and constructions
KR100834739B1 (en) * 2006-09-14 2008-06-05 삼성전자주식회사 Semiconductor device and method for fabricating the same
US7817454B2 (en) * 2007-04-03 2010-10-19 Micron Technology, Inc. Variable resistance memory with lattice array using enclosing transistors
JP4967176B2 (en) * 2007-05-10 2012-07-04 シャープ株式会社 Variable resistance element, method of manufacturing the same, and nonvolatile semiconductor memory device
JP5253872B2 (en) * 2008-04-17 2013-07-31 株式会社東芝 Semiconductor integrated circuit device
JP2010225227A (en) * 2009-03-23 2010-10-07 Toshiba Corp Nonvolatile semiconductor memory device
KR101102715B1 (en) * 2009-04-08 2012-01-05 주식회사 하이닉스반도체 Semiconductor device and method for forming it
US8173987B2 (en) 2009-04-27 2012-05-08 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method
KR101567976B1 (en) * 2009-07-23 2015-11-11 삼성전자주식회사 Semiconductor device
KR101102764B1 (en) * 2009-07-31 2012-01-03 주식회사 하이닉스반도체 Layout of semiconductor device and method of fabricating the semiconductor device
TW201207852A (en) * 2010-04-05 2012-02-16 Mosaid Technologies Inc Semiconductor memory device having a three-dimensional structure
US20130094273A1 (en) 2010-04-06 2013-04-18 Wei-Chih Chien 3d memory and decoding technologies
JP5589577B2 (en) * 2010-06-10 2014-09-17 ソニー株式会社 Resistance change memory device
JP2012033828A (en) * 2010-08-02 2012-02-16 Toshiba Corp Semiconductor storage device and manufacturing method of the same
US8841648B2 (en) * 2010-10-14 2014-09-23 Sandisk 3D Llc Multi-level memory arrays with memory cells that employ bipolar storage elements and methods of forming the same
CN102640287B (en) * 2010-11-24 2014-09-17 松下电器产业株式会社 Resistance-changing non-volatile storage device
US8513773B2 (en) * 2011-02-02 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Capacitor and semiconductor device including dielectric and N-type semiconductor
TWI478181B (en) * 2011-08-31 2015-03-21 Shih Hua Technology Ltd Transparent conductive film and touch panel using the same
KR101962585B1 (en) * 2011-11-09 2019-03-26 스카이워크스 솔루션즈, 인코포레이티드 Field-effect transistor structures and related radio-frequency switches
US8848424B2 (en) * 2011-11-22 2014-09-30 Panasonic Corporation Variable resistance nonvolatile memory device, and accessing method for variable resistance nonvolatile memory device
US8951862B2 (en) * 2012-01-10 2015-02-10 Macronix International Co., Ltd. Damascene word line
JP5738786B2 (en) * 2012-02-22 2015-06-24 株式会社東芝 Semiconductor device and manufacturing method of semiconductor device
US8987098B2 (en) * 2012-06-19 2015-03-24 Macronix International Co., Ltd. Damascene word line
US8729523B2 (en) * 2012-08-31 2014-05-20 Micron Technology, Inc. Three dimensional memory array architecture
KR102021801B1 (en) * 2012-12-10 2019-09-17 삼성전자주식회사 Three-Dimensional Semiconductor Devices
US8964442B2 (en) 2013-01-14 2015-02-24 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method
KR20140094353A (en) * 2013-01-22 2014-07-30 삼성전자주식회사 Method of Semiconductor device
US8977988B2 (en) * 2013-04-09 2015-03-10 United Microelectronics Corp. Method of optical proximity correction for modifying line patterns and integrated circuits with line patterns modified by the same
KR102076060B1 (en) * 2013-06-10 2020-02-11 삼성전자주식회사 Semiconductor device including capacitors and method for manufacturing the same
US9245603B2 (en) * 2013-10-21 2016-01-26 Macronix International Co., Ltd. Integrated circuit and operating method for the same
US9397110B2 (en) 2014-05-21 2016-07-19 Macronix International Co., Ltd. 3D independent double gate flash memory
KR102171258B1 (en) * 2014-05-21 2020-10-28 삼성전자 주식회사 Semiconductor device
US9218864B1 (en) * 2014-10-04 2015-12-22 Ge Yi Magnetoresistive random access memory cell and 3D memory cell array
US9589979B2 (en) 2014-11-19 2017-03-07 Macronix International Co., Ltd. Vertical and 3D memory devices and methods of manufacturing the same
WO2016099580A2 (en) * 2014-12-23 2016-06-23 Lupino James John Three dimensional integrated circuits employing thin film transistors
US9721961B2 (en) * 2015-05-29 2017-08-01 Kabushiki Kaisha Toshiba Semiconductor memory device
US9825052B2 (en) * 2015-07-09 2017-11-21 Macronix International Co., Ltd. Memory device and method of forming the same
US9911693B2 (en) * 2015-08-28 2018-03-06 Micron Technology, Inc. Semiconductor devices including conductive lines and methods of forming the semiconductor devices
WO2017208653A1 (en) * 2016-05-31 2017-12-07 ソニー株式会社 Nonvolatile memory cell, memory cell unit, information writing method, and electronic apparatus
KR102450577B1 (en) * 2016-08-12 2022-10-11 삼성전자주식회사 Semiconductor devices
KR102543181B1 (en) * 2016-11-04 2023-06-15 삼성전자주식회사 Semiconductor devices
JP2019054206A (en) * 2017-09-19 2019-04-04 東芝メモリ株式会社 Memory device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI284413B (en) * 2002-04-02 2007-07-21 Hewlett Packard Co Cubic memory array
US7176512B2 (en) * 2003-08-16 2007-02-13 Samsung Electronics Co., Ltd. Semiconductor memory device having high electrical performance and mask and photolithography friendliness
US8697570B2 (en) * 2010-02-17 2014-04-15 Samsung Electronics Co., Ltd. Semiconductor device including contact plug and method of manufacturing the same
TWI530953B (en) * 2012-11-15 2016-04-21 旺宏電子股份有限公司 3d memory and decoding technologies
CN105051875A (en) * 2013-05-22 2015-11-11 美光科技公司 Memory cell structures
US9735151B1 (en) * 2016-03-24 2017-08-15 Western Digital Technologies, Inc. 3D cross-point memory device

Also Published As

Publication number Publication date
US10818729B2 (en) 2020-10-27
TW201947740A (en) 2019-12-16
CN110504271B (en) 2021-08-13
US20190355790A1 (en) 2019-11-21
CN110504271A (en) 2019-11-26

Similar Documents

Publication Publication Date Title
TWI695482B (en) Memory device and a method of manufacturing an integrated circuit applying the same
TWI696269B (en) Memory and method of manufacturing integrated circuit
CN110914907B (en) Three-dimensional phase change memory device
US9659998B1 (en) Memory having an interlayer insulating structure with different thermal resistance
US10971683B2 (en) Methods for forming narrow vertical pillars and integrated circuit devices having the same
CN110914994B (en) Method for forming three-dimensional phase change memory device
US11751407B2 (en) 3D memory with confined cell
US9972660B2 (en) 3D phase change memory with high endurance
US7655941B2 (en) Phase change memory device and method for fabricating the same
TWI676269B (en) Self-aligned 3d memory with confined cell and method of manufacturing integrated circuit
JP2004031948A (en) Memory storage device
KR102329578B1 (en) Line-shaped memory and method forming same
US20240040938A1 (en) Memory device and fabrication method thereof
US20220216402A1 (en) Semiconductor memory devices and methods for fabricating the same
TW202333156A (en) Memory device and method of forming the same and integrated circuit