TWI696191B - Algorithm of qrs detection capable of reducing noise effects - Google Patents
Algorithm of qrs detection capable of reducing noise effects Download PDFInfo
- Publication number
- TWI696191B TWI696191B TW107143823A TW107143823A TWI696191B TW I696191 B TWI696191 B TW I696191B TW 107143823 A TW107143823 A TW 107143823A TW 107143823 A TW107143823 A TW 107143823A TW I696191 B TWI696191 B TW I696191B
- Authority
- TW
- Taiwan
- Prior art keywords
- value
- noise
- positive
- frequency signal
- reducing
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 29
- 230000000694 effects Effects 0.000 title abstract description 5
- 238000004364 calculation method Methods 0.000 claims abstract description 30
- 238000007781 pre-processing Methods 0.000 claims abstract description 14
- 230000009466 transformation Effects 0.000 claims abstract description 8
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 238000005070 sampling Methods 0.000 claims description 17
- 230000007717 exclusion Effects 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 238000013213 extrapolation Methods 0.000 claims 2
- 201000010099 disease Diseases 0.000 abstract description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 9
- 230000003313 weakening effect Effects 0.000 abstract 1
- 238000002565 electrocardiography Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000003745 diagnosis Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 208000019622 heart disease Diseases 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
本發明是有關於一種演算方式,特別是一種降低雜訊影響之QRS波偵測演算法。The invention relates to a calculation method, especially a QRS wave detection algorithm for reducing the influence of noise.
查,隨著國人平均壽命逐年延長,同時疾病的型態也由急性轉為慢性居多,例如癌症、心臟疾病、腦性血管疾病等的提早發現都能提供更多不同的方法作為治療的選擇,以利控制病情及提升治癒率,而心電圖的使用已廣為大眾所知,其用於量測與監控人體的心電訊號,以提供良好的訊息,使得醫療人員或研究人員得以藉由心電訊號所呈現的心臟整體的電位變化,進而清楚地瞭解患者的心臟狀況,以及檢測出有潛在危險的患者,亦或是幫助監測心臟有缺陷的患者,以便降低患者心臟疾病發作的風險,而在進行心電訊號的判斷及分類之前,醫療人員或研究人員必須要在大量的心電訊號中找出QRS波型,進而藉由P、Q、R、S、T波的位置、大小及形狀,來做為診斷心臟疾病的依據。Check, as the average life span of Chinese people increases year by year, and the type of disease also changes from acute to chronic, for example, early detection of cancer, heart disease, cerebrovascular disease, etc. can provide 更 different methods as treatment options, In order to control the disease and improve the cure rate, and the use of electrocardiogram is widely known, it is used to measure and monitor the electrocardiogram signal of the human body to provide good information, allowing medical personnel or researchers to use electrocardiography The overall potential change of the heart presented by the number, so as to clearly understand the heart condition of the patient, and detect the potentially dangerous patient, or help monitor the patient with a defective heart, so as to reduce the risk of heart attack in the patient, while Before judging and classifying ECG signals, medical staff or researchers must find the QRS waveforms among a large number of ECG signals, and then use the position, size, and shape of P, Q, R, S, and T waves 狀,來 as a basis for diagnosing heart disease.
然,心電訊號非常微小,其可能因為導電凝膠的多寡,貼片與皮膚的貼合程度,穿戴者因說話或點頭等動作所產生的肢體抖動,亦或導線被晃動而造成電氣傳導被干擾,或是傳導不完全等現象,進而於心電圖上產生雜訊,同時環境或設備的震動亦會影響心電訊號量測的準確度,因此,為求提升心電訊號分析判斷的精準性,其通常需要花費相當長的時間進行判讀,惟,大量的心電訊號不僅造成分析判讀作業需要耗費很長的時數,且其需經由專業的醫療人員或是研究人員來進行判讀,故在人力資源的消耗是相當龐大的,因此,如何降低雜訊對於判讀心電訊號中QRS波的影響,藉以快速且精準地判斷出QRS波,並讓專業的醫療人員或是研究人員快速評估及診斷病人的病症,進而有效減少人力資源的消耗,以及提升整體分析的速度,實以成為各界無法忽視的重要議題。However, the ECG signal is very small, which may be due to the amount of conductive gel, the degree of fit of the patch to the skin, the wearer's limb shaking due to speaking or nodding, or the wire is shaken to cause electrical conduction. Interference, or incomplete conduction, etc., and then generate noise on the ECG, and the vibration of the environment or equipment will also affect the accuracy of ECG signal measurement. Therefore, in order to improve the accuracy of ECG signal analysis and judgment, It usually takes a long time to interpret, but a large number of ECG signals not only cause a long time to analyze and interpret the operation, but also need to be interpreted by professional medical personnel or researchers, The consumption of resources is quite huge. Therefore, how to reduce the influence of noise on the interpretation of QRS waves in ECG signals, so as to quickly and accurately judge QRS waves, and allow professional medical staff or researchers to quickly evaluate and diagnose patients The disease, which effectively reduces the consumption of human resources and improves the speed of overall analysis, has become an important issue that cannot be ignored by all walks of life.
因此,本發明之目的,是在提供一種降低雜訊影響之QRS波偵測演算法,其可有效降低雜訊的影響,藉以提升判斷準確度,降低計算量及提升分析速度,以達到病症的快速評估及診斷,同時有效減少人力資源的消耗。Therefore, the purpose of the present invention is to provide a QRS wave detection algorithm that reduces the influence of noise, which can effectively reduce the influence of noise, so as to improve the accuracy of judgment, reduce the amount of calculation and increase the speed of analysis, so as to achieve the disease Quick assessment and diagnosis, while effectively reducing the consumption of human resources.
於是,本發明降低雜訊影響之QRS波偵測演算法,其包含有調整、讀取、前處理、轉換、計算及選擇步驟等;其中,於該調整步驟調整擷取窗格,並於該讀取步驟載入欲分析之原始訊號,再於該前處理步驟濾出基線飄移訊號,其進一步於該轉換步驟透過小波轉換得到所有尺度的低頻訊號、高頻訊號及正、負特徵極值點,接著於該計算步驟計算正、負門檻值,最後於該選擇步驟刪去該高頻訊號內大於該正、負門檻值兩倍的正、負特徵極值點,並透過選擇公式帶入第三尺度與第四尺度剩餘之正、負特徵極值點進行計算,當所得數值大於一,則使用第四尺度之高頻訊號進行分析,反之則使用第三尺度之高頻訊號進行分析;是以,利用小波轉換中的多重解析之特性,配合選擇公式判斷尺度中的雜訊多寡,以針對不同的情況選用不同的尺度來做偵測分析,藉以有效降低雜訊對QRS波偵測的影響,進而大幅提升判斷準確度,降低整體計算量及提升分析速度,以達到病症的快速評估及診斷,同時有效減少人力資源的消耗。Therefore, the QRS wave detection algorithm of the present invention to reduce the influence of noise includes adjustment, reading, preprocessing, conversion, calculation, and selection steps; among which, the acquisition pane is adjusted in the adjustment step, and the In the reading step, the original signal to be analyzed is loaded, and then the baseline drift signal is filtered out in the pre-processing step, which is further used in the conversion step to obtain low-frequency signals, high-frequency signals of all scales, and positive and negative characteristic extreme points through wavelet transformation Then, in the calculation step, the positive and negative threshold values are calculated, and finally in the selection step, the positive and negative characteristic extreme points that are greater than twice the positive and negative threshold values in the high-frequency signal are deleted, and brought into the first through the selection formula The remaining positive and negative characteristic extreme points of the third scale and the fourth scale are calculated. When the obtained value is greater than one, the high frequency signal of the fourth scale is used for analysis; otherwise, the high frequency signal of the third scale is used for analysis; Therefore, using the characteristics of multiple analysis in wavelet transformation and the selection formula to determine the amount of noise in the scale, different scales are used for detection and analysis according to different situations, so as to effectively reduce the impact of noise on QRS wave detection , And thus greatly improve the accuracy of judgment, reduce the overall calculation and increase the speed of analysis, in order to achieve rapid assessment and diagnosis of the disease, while effectively reducing the consumption of human resources.
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的明白。The foregoing and other technical contents, features and effects of the present invention will be clearly understood in the following detailed description with reference to the preferred embodiments of the drawings.
參閱圖1及圖2,本發明之第一較佳實施例,一種降低雜訊影響之QRS波偵測演算法3,其包含有一調整步驟31,一讀取步驟32,一前處理步驟33,一轉換步驟34,一計算步驟35及一選擇步驟36等;參閱圖3及圖4,首先於該調整步驟31中,備有一處理器4,並藉由該處理器4透過小波轉換公式進行擷取窗格的調整作業,而該小波轉換公式如下列:1 and 2, a first preferred embodiment of the present invention, a QRS
利用母小波Ψ(t-b/a)中的係數a可以讓母小波伸縮,而係數b可以讓母小波平移,透過該係數a、b調整讓母小波按照輸入的參數伸縮與平移即可得到類似可以自由調整的擷取窗格,並使任二擷取窗格間重疊複數個取樣點,不同數量的取樣點重疊亦會影響後續偵測正確性,而本實施例中係以任二擷取窗格間重疊150個取樣點且每個擷取窗格為4096個取樣點為例加以說明,並於該讀取步驟32載入欲分析之原始訊號S,參閱圖4及圖5-1,接著於該前處理步驟33中備有濾波器5,而本實施例中係以該濾波器5為200ms中值濾波器5及600ms中值濾波器5為例加以說明,首先藉由該200ms中值濾波器5針對該原始訊號S進行初步濾波處理,藉以濾除QRS波及P波,接著藉由該600ms中值濾波器5再針對經過該200ms中值濾波器5濾波後之原始訊號S進行濾波處理,藉以濾除T波,並得到不包含QRS波、P波及T波的基線飄移訊號,再將該原始訊號S減去該基線飄移訊號,即得到修正之原始訊號S,即如圖5-2所示,而本實施例中,該前處理步驟32不包含消除高頻雜訊之動作,藉以避免該原始訊號S於消除高頻雜訊的過程中,連同頻率較高的QRS波型一起被影響而降低特徵值。The coefficient a in the mother wavelet Ψ(tb/a) can make the mother wavelet expand and contract, and the coefficient b can make the mother wavelet translate. Through the adjustment of the coefficients a and b, the mother wavelet can be scaled and translated according to the input parameters. The acquisition pane can be adjusted freely, and multiple sampling points overlap between any two acquisition panes. The overlapping of different numbers of sampling points will also affect the accuracy of subsequent detection. In this embodiment, any two acquisition windows are used. For example, 150 sampling points are overlapped between frames and 4096 sampling points for each acquisition pane. In the
仍續前述,參閱圖6及圖7,再於該轉換步驟33,採用的雙正交樣條小波的母小波為下列公式:Continuing from the foregoing, referring to FIGS. 6 and 7, and then in the
藉由上述公式得到所有尺度的高頻訊號D與低頻訊號A,轉換尺度的數量可依實際需求與情況進行調整,而本實施例中係以小波轉換得到四個尺度的高頻訊號D1、D2、D3、D4及低頻訊號A1、A2、A3、A4為例加以說明,即如圖8及圖9所示,另亦可透過小波轉換等效的高通濾波器及低通濾波器進行轉換處理,參閱圖10,該等高頻訊號D1、D2、D3、D4中之波型皆轉換為正、負特徵極值點,再將該等高頻訊號D1、D2、D3、D4之擷取窗格前50個取樣點及後50個取樣點予以去除,不納入檢測運算。The high-frequency signal D and low-frequency signal A of all scales can be obtained by the above formula. The number of conversion scales can be adjusted according to the actual needs and conditions. In this embodiment, wavelet conversion is used to obtain four scales of high-frequency signals D1 and D2. , D3, D4 and low-frequency signals A1, A2, A3, A4 as an example, that is, as shown in Figure 8 and Figure 9, you can also use wavelet conversion equivalent high-pass filter and low-pass filter for conversion processing, Referring to FIG. 10, the waveforms in the high-frequency signals D1, D2, D3, and D4 are converted into positive and negative characteristic extremum points, and then the capture panes of the high-frequency signals D1, D2, D3, and D4 are extracted. The first 50 sampling points and the last 50 sampling points are removed and not included in the detection operation.
仍續前述,於該計算步驟35中,先將於所選尺度之高頻訊號分成四段,並在該四段訊號內分別取正的最大值與負的最小值,然後將四個最大值取平均數得到平均最大值,以及將四個最小值取平均數得到平均最小值,接著取平均最大值的四分之一的數值,以得到正門檻值,另取平均最小值的四分之一的數值,以得到負門檻值。Continuing the foregoing, in the
仍續前述,於該選擇步驟36中,分別將該第三尺度之高頻訊號D3及該第四尺度之高頻訊號D4中,大於該正門檻值及該負門檻值兩倍的正、負特徵極值點予以去除,並將該高頻訊號D3剩餘之正、負特徵極值點及該高頻訊號D4剩餘之正、負特徵極值點透過一選擇公式計算,令雜訊比為SNR,比較該第三尺度之高頻訊號D3及該第四尺度之高頻訊號D4的雜訊比SNR(DP3, DP4),而該選擇公式如下列:Continuing the foregoing, in the
將該第三尺度的極值絕對值總和除以該第四尺度的極值絕對值總和,當SNR(DP3, DP4)小於一,代表雜訊較少則使用該第三尺度之高頻訊號D3進行分析,反之,當SNR(DP3, DP4)大於一,代表雜訊較多則使用該第四尺度之高頻訊號D4進行分析,參閱圖11,該高頻訊號D3相較於該高頻訊號D4雜訊多,因此選用該第四尺度之高頻訊號D4做分析,一般來說,若非雜訊多之情況,較佳為使用該第三尺度之高頻訊號D3來做分析,因該第一尺度及該第二尺度高頻訊號D1、D2的高頻成分較多,還是會有很多雜訊干擾,而該第四尺度的高頻訊號D4則是高頻成分較低,且低頻成分較明顯,會在某些T波或P波較大時的情況被干擾,所以該第三尺度是在大多數情況較適合使用的尺度。Divide the sum of the absolute values of the third scale by the sum of the absolute values of the fourth scale. When the SNR (DP3, DP4) is less than one, it means that the third scale high frequency signal D3 is used. For analysis, on the contrary, when the SNR (DP3, DP4) is greater than one, which means that there is more noise, the fourth-scale high-frequency signal D4 is used for analysis. Referring to FIG. 11, the high-frequency signal D3 is compared with the high-frequency signal D4 has a lot of noise, so the fourth-scale high-frequency signal D4 is used for analysis. Generally speaking, if there is no noise, it is better to use the third-scale high-frequency signal D3 for analysis. The first-scale and second-scale high-frequency signals D1, D2 have more high-frequency components, and there will still be a lot of noise interference, while the fourth-scale high-frequency signal D4 has lower high-frequency components and low-frequency components. Obviously, it will be disturbed when some T waves or P waves are large, so this third scale is a scale suitable for use in most cases.
仍續前述,完成前述該等調整31、讀取32、前處理33、轉換34、計算35及選擇36等步驟後,即能過濾掉大部分的雜訊,因此利用小波轉換中的多重解析之特性,並針對不同的情況使用不同的尺度來做QRS波的偵測,進而減少檢測時的干擾,增加檢測的準確度,同時僅針對該原始訊號S做消除基線飄移的處理,而不進行高頻濾波,藉以避免影響該原始訊號S中最明顯的QRS波,不僅有效降低雜訊對於QRS波判讀的影響,同時快速且準確做到QRS波的定位,藉以大大提升判斷準確度,降低整體計算量及有效提升分析速度,以達到病症的快速評估及診斷,並有效減少人力資源的消耗。Continuing the foregoing, after completing the
參閱圖12及圖13,本發明之第二較佳實施例,其仍包含有前一實施例所述之步驟及作法,而本實施例特別在於:該選擇步驟36後依序另包含有一推算步驟37、一判斷步驟38及一排除步驟39等;參閱圖14,於該推算步驟37中,首先標示出一超過該正門檻值之正特徵極值點,並標示出一與該正特徵極值點極性相反且超過該負門檻值之負特徵極值點,以形成特徵極值對,且該正、負特徵極值點間之距離不超過預設值,而本實施例中該預設值為45個取樣點,當距離超過45個取樣點則表示波型較圓滑,不太符合QRS波型高聳尖銳的特徵,配合參閱圖15,接著將正特徵極值點座標(X2, Y2)、負特徵極值點座標(X1, Y1),以及該原始訊號S做小波轉換後對時間領域超前或落後的量值𝛽帶入一推算公式,而本實施例中,該𝛽值依不同使用尺度帶入,其於該第二尺度為5,該第三尺度為10,該第四尺度為25,而該推算公式如下列:12 and 13, the second preferred embodiment of the present invention still includes the steps and practices described in the previous embodiment, and this embodiment is particularly characterized in that: after the
藉由上述推算公式推算出該原始訊號S在時間領域對應的座標P(n)。The corresponding coordinate P(n) of the original signal S in the time domain is calculated by the above calculation formula.
參閱圖14,接著於該判斷步驟38中,其將前述座標P(n)與前一特徵極值對所推算出之座標P(n-1)間的距離做比較,因年紀、性別、生活習慣等不同因素的影響,該距離的判斷標準值亦會有所不同,不應以此為限,當該距離小於第一數值,而本實施例中該第一數值係為100取樣點,取該座標P(n)與P(n-1)波型較尖銳者,亦即將該P(n)與P(n-1)個別的正特徵極值點座標(X2, Y2)及負特徵極值點座標(X1, Y1)帶入一判斷公式,該判斷公式如下列:Referring to FIG. 14, then in the
透過該判斷公式計算後取結果值(α)較大者(即為R波波峰)加入紀錄,配合參閱圖16,框起處出現兩對特徵極值對,透過該判斷公式進行計算並取結果值較大者,亦即R波波峰,應加入紀錄;當該距離小於第二數值且大於該第一數值,代表受測者心率較快,亦或該心電圖訊號中含有較陡峭的T波或P波,必須進一步判斷,而本實施例中該第二數值係為130個取樣點,是以,加入第二尺度之高頻訊號D2協助判斷,當該第三尺度之該特徵極值對亦出現在該第二尺度之高頻訊號D2內且位置相同,則將該P(n)座標位置加入紀錄,當座標P(n-1)與P(n)皆出現在該第三尺度與該第二尺度的高頻訊號D3、D2當中,則代表該二座標P(n-1)、P(n)皆為R波波峰,因此該二座標P(n-1)、P(n)皆須加入紀錄,反之,未同時出現在該第三尺度與該第二尺度高頻訊號D3、D2中的座標代表不是R波波峰,則不予以記錄,配合參閱圖17,該第三尺度高頻訊號D3框起處之特徵極值對亦出現在該第二尺度高頻訊號D2中,即加入紀錄,另外參閱圖18,圖18所示之框起處在該第三尺度的高頻訊號D3出現特徵極值對,然而在該第二尺度的高頻訊號D2並沒有該特徵極值對,則不加入紀錄;當該距離大於該第二數值,亦即大於130個取樣點,則直接紀錄座標P(n)位置,最後於該排除步驟39藉由前述判斷公式計算該每一特徵極值對之結果值(α),當該結果值小於所有結果值之平均值的五分之一,即將該點由紀錄中刪除。After calculating through the judgment formula, the result value (α) which is larger (that is, R wave peak) is added to the record. With reference to FIG. 16, two pairs of characteristic extreme value pairs appear at the frame, and the calculation formula is used to obtain the result The larger value, that is, the peak of the R wave, should be added to the record; when the distance is less than the second value and greater than the first value, it means that the subject's heart rate is faster, or the ECG signal contains a steeper T wave or The P wave must be judged further. In this embodiment, the second value is 130 sampling points. Therefore, the second-scale high-frequency signal D2 is added to assist the judgment. When the characteristic extremum pair of the third scale is also Appears in the high frequency signal D2 of the second scale and the position is the same, then add the P(n) coordinate position to the record, when the coordinates P(n-1) and P(n) both appear in the third scale and the In the second-scale high-frequency signals D3 and D2, it means that the two coordinates P(n-1) and P(n) are both R wave peaks, so the two coordinates P(n-1) and P(n) are both Records must be added. On the contrary, the coordinates that do not appear in the third-scale and second-scale high-frequency signals D3 and D2 at the same time are not R-wave peaks, and will not be recorded. Refer to FIG. 17 for the third-scale high-frequency The characteristic extreme value pair where the signal D3 is framed also appears in the second-scale high-frequency signal D2, which is added to the record. Also refer to FIG. 18, which shows the third-scale high-frequency signal D3 framed in FIG. 18 Feature extreme value pairs appear, but there is no such feature extreme value pair in the second-scale high-frequency signal D2, and no record is added; when the distance is greater than the second value, that is, greater than 130 sampling points, the record is directly recorded The position of the coordinate P(n), and finally at the
因此,配合該推算37、判斷38及排除39等步驟,進一步增加判讀的準確度,同時交互運用第二、三、四尺度的高頻訊號D2、D3、D4來做分析,進而快速且準確做到QRS波的定位,大大提升判斷準確度,降低整體計算量及有效提升分析速度,以達到病症的快速評估及診斷,更能減少人力資源的消耗。Therefore, in conjunction with the steps of
本發明採用MIT-BIH心律不整資料庫的48筆心電圖紀錄,總共109,488個QRS波,進一步測試本案所提出的演算法3,並採用下列算式計算本案所提之演算法3的靈敏度(Se)、陽性預測值(+P)及錯誤率(Der)等數值:The present invention uses 48 electrocardiogram records of the MIT-BIH arrhythmia database, a total of 109,488 QRS waves, and further tests the
TP:正確的QRS波總數TP: Total number of correct QRS waves
FP:非QRS波卻被偵測到的總數FP: Total number of non-QRS waves detected
FN:是QRS波卻沒被偵測到的總數FN: the total number of QRS waves that were not detected
FP+FN:總錯誤數量FP+FN: total number of errors
參下列表1,實驗結果顯示QRS波的偵測正確性可達到99.84%的靈敏度和99.91%的陽性預測值,錯誤率僅為0.2471%,因此,本案所提出之演算法3具有相當的準確度且也有實際應用的價值。Referring to Table 1 below, the experimental results show that the detection accuracy of QRS waves can reach 99.84% sensitivity and 99.91% positive predictive value, and the error rate is only 0.2471%. Therefore, the
表1
歸納前述,本發明降低雜訊影響之QRS波偵測演算法,其包含有調整、讀取、前處理、轉換、計算及選擇等步驟;於該調整步驟中藉由該處理器調整擷取窗格,並於該讀取步驟中載入該原始訊號後,進一步於該前處理步驟中透過該濾波器消除基線飄移,以得到修正之原始訊號,接著於該轉換步驟中轉換修正之原始訊號以得到所有尺度的高頻訊號及低頻訊號,再於該計算步驟中計算出正、負門檻值,最後於該選擇步驟中透過該選擇公式選擇合用的分析尺度,因此,利用小波轉換中的多重解析之特性,同時配合選擇公式判斷尺度中的雜訊多寡,以於高頻雜訊準位較大時使用較低頻的尺度成份,而在低頻的P波或T波振幅較大時使用較高頻的尺度成份,藉以降低雜訊以及大振幅的P波與T波所造成的誤判,以及降低雜訊對於QRS波偵測的影響,進而大幅提升判斷準確度及提升分析速度,以達到病症的快速評估及診斷,同時有效減少人力資源的消耗。In summary, the QRS wave detection algorithm of the present invention to reduce the influence of noise includes adjustment, reading, pre-processing, conversion, calculation and selection steps; in this adjustment step, the acquisition window is adjusted by the processor Frame, and after loading the original signal in the reading step, further remove the baseline drift through the filter in the pre-processing step to obtain the corrected original signal, and then convert the corrected original signal in the conversion step to Obtain high-frequency and low-frequency signals of all scales, then calculate the positive and negative thresholds in this calculation step, and finally select the appropriate analysis scale through the selection formula in the selection step. Therefore, multiple analysis in wavelet transform is used The characteristics, together with the selection formula to determine the amount of noise in the scale, so that when the high-frequency noise level is large, the lower-frequency scale component is used, and when the low-frequency P-wave or T-wave amplitude is large, the higher Frequency scale components, in order to reduce the misjudgment caused by noise and large amplitude P-wave and T-wave, and reduce the influence of noise on QRS wave detection, thereby greatly improving the accuracy of judgment and the speed of analysis to achieve the disease Quick assessment and diagnosis, while effectively reducing the consumption of human resources.
惟以上所述者,僅為說明本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。However, the above are only for explaining the preferred embodiments of the present invention, but the scope of the implementation of the present invention cannot be limited by this, that is, simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the description of the invention , Should still fall within the scope of this invention patent.
(本發明) 3:降低雜訊影響之QRS波偵測演算法 31:調整步驟 32:讀取步驟 33:前處理步驟 34:轉換步驟 35:計算步驟 36:選擇步驟 37:推算步驟 38:判斷步驟 39:排除步驟 4:處理器 5:濾波器 S:原始訊號 A1:第一尺度之低頻訊號 A2:第二尺度之低頻訊號 A3:第三尺度之低頻訊號 A4:第四尺度之低頻訊號 D1:第一尺度之高頻訊號 D2:第二尺度之高頻訊號 D3:第三尺度之高頻訊號 D4:第四尺度之高頻訊號(this invention) 3: QRS wave detection algorithm to reduce the influence of noise 31: Adjustment steps 32: Reading steps 33: Pre-processing steps 34: Conversion steps 35: Calculation steps 36: Selection steps 37: Estimation steps 38: Judgment step 39: Exclusion steps 4: processor 5: filter S: original signal A1: The first-scale low-frequency signal A2: Second-scale low-frequency signal A3: The third-scale low-frequency signal A4: Fourth-scale low-frequency signal D1: The first-scale high-frequency signal D2: High frequency signal of the second scale D3: Third-scale high-frequency signal D4: Fourth-scale high-frequency signal
圖1是本發明第一較佳實施例之流程方塊示意圖。 圖2是該第一較佳實施例之另一流程方塊示意圖。 圖3是調整擷取窗格之示意圖 圖4是該第一較佳實施例之局部流程方塊示意圖。 圖5-1是基線飄移之原始訊號。 圖5-2是修正基線飄移之原始訊號。 圖6是小波多重分解示意圖。 圖7是小波一階轉換波型圖。 圖8是原始訊號經四階小波轉換後的低頻訊號。 圖9是原始訊號經四階小波轉換後的高頻訊號。 圖10是高頻訊號呈現正、負特徵極值點。 圖11是去除較大的特徵極值點後剩下的極值點。 圖12是本發明第二較佳實施例之流程方塊示意圖。 圖13是該第二較佳實施例之另一流程方塊示意圖。 圖14是該第二較佳實施例之局部流程方塊示意圖。 圖15是特徵極值對示意圖。 圖16是出現兩對特徵極值對則取波型較尖銳者。 圖17-18是加入第二尺度的高頻成分判斷。FIG. 1 is a schematic flowchart of a first preferred embodiment of the present invention. FIG. 2 is another schematic block diagram of the first preferred embodiment. FIG. 3 is a schematic diagram of adjusting the capture pane. FIG. 4 is a partial flow block diagram of the first preferred embodiment. Figure 5-1 is the original signal with baseline drift. Figure 5-2 is the original signal to modify the baseline drift. Figure 6 is a schematic diagram of wavelet multiple decomposition. Fig. 7 is a wavelet first-order converted waveform diagram. Fig. 8 is the low-frequency signal after the original signal is transformed by the fourth-order wavelet. Fig. 9 is the high-frequency signal after the original signal is transformed by the fourth-order wavelet. Fig. 10 shows the extreme point of positive and negative characteristic of high frequency signal. FIG. 11 is the extreme point remaining after removing the large characteristic extreme point. FIG. 12 is a schematic flowchart of a second preferred embodiment of the present invention. FIG. 13 is another schematic block diagram of the second preferred embodiment. FIG. 14 is a partial flow block diagram of the second preferred embodiment. 15 is a schematic diagram of characteristic extreme value pairs. Figure 16 shows the sharper waveforms when two pairs of characteristic extreme values appear. Figure 17-18 is the judgment of adding high-frequency components of the second scale.
3:降低雜訊影響之QRS波偵測演算法 3: QRS wave detection algorithm to reduce the influence of noise
31:調整步驟 31: Adjustment steps
32:讀取步驟 32: Reading steps
33:前處理步驟 33: Pre-processing steps
34:轉換步驟 34: Conversion steps
35:計算步驟 35: Calculation steps
36:選擇步驟 36: Selection steps
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107143823A TWI696191B (en) | 2018-12-06 | 2018-12-06 | Algorithm of qrs detection capable of reducing noise effects |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107143823A TWI696191B (en) | 2018-12-06 | 2018-12-06 | Algorithm of qrs detection capable of reducing noise effects |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI696191B true TWI696191B (en) | 2020-06-11 |
TW202022889A TW202022889A (en) | 2020-06-16 |
Family
ID=72175660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107143823A TWI696191B (en) | 2018-12-06 | 2018-12-06 | Algorithm of qrs detection capable of reducing noise effects |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI696191B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI742844B (en) * | 2020-09-10 | 2021-10-11 | 廣達電腦股份有限公司 | Ecg noise filtering device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102247143A (en) * | 2011-06-03 | 2011-11-23 | 吉林大学珠海学院 | Integratable fast algorithm for denoising electrocardiosignal and identifying QRS waves |
WO2013043157A2 (en) * | 2011-09-20 | 2013-03-28 | Vivaquant Llc | Physiological signal denoising |
CN103083013A (en) * | 2013-01-18 | 2013-05-08 | 哈尔滨工业大学深圳研究生院 | Electrocardio signal QRS complex wave detection method based on morphology and wavelet transform |
TWI519276B (en) * | 2013-08-07 | 2016-02-01 | 國立成功大學 | Electrocardiography signal extraction method |
-
2018
- 2018-12-06 TW TW107143823A patent/TWI696191B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102247143A (en) * | 2011-06-03 | 2011-11-23 | 吉林大学珠海学院 | Integratable fast algorithm for denoising electrocardiosignal and identifying QRS waves |
WO2013043157A2 (en) * | 2011-09-20 | 2013-03-28 | Vivaquant Llc | Physiological signal denoising |
CN103083013A (en) * | 2013-01-18 | 2013-05-08 | 哈尔滨工业大学深圳研究生院 | Electrocardio signal QRS complex wave detection method based on morphology and wavelet transform |
TWI519276B (en) * | 2013-08-07 | 2016-02-01 | 國立成功大學 | Electrocardiography signal extraction method |
Non-Patent Citations (9)
Title |
---|
http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search-c/getfile?URN=etd-0706104-023754&filename=etd-0706104-023754.pdf 纪震,郑秀玉,罗军,李蓁(2008年4月) * |
https://journal.szu.edu.cn/Upload/PaperUpLoad/e069076f-d07c-426c-8a9b-70af0cded4df.pdf * |
以小波轉換為基礎的QRS波偵測 * |
國立中山大學機械與機電工程研究所(碩士論文),高雄市 * |
基于双正交样条小波的QRS波检测 * |
楊正榮(2004) * |
楊正榮(2004)。以小波轉換為基礎的QRS波偵測。國立中山大學機械與機電工程研究所(碩士論文),高雄市。http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search-c/getfile?URN=etd-0706104-023754&filename=etd-0706104-023754.pdf |
深圳大学学报理工版,第25卷第2期 * |
纪震,郑秀玉,罗军,李蓁(2008年4月)。基于双正交样条小波的QRS波检测。深圳大学学报理工版,第25卷第2期。https://journal.szu.edu.cn/Upload/PaperUpLoad/e069076f-d07c-426c-8a9b-70af0cded4df.pdf |
Also Published As
Publication number | Publication date |
---|---|
TW202022889A (en) | 2020-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2016230825B2 (en) | Systems, apparatus and methods for sensing fetal activity | |
Chawla | PCA and ICA processing methods for removal of artifacts and noise in electrocardiograms: A survey and comparison | |
CN110327036B (en) | Method for extracting respiratory signal and respiratory frequency from wearable electrocardiogram | |
Nagendra et al. | Application of wavelet techniques in ECG signal processing: an overview | |
Alshebly et al. | Isolation of fetal ECG signals from abdominal ECG using wavelet analysis | |
US10912479B2 (en) | Method for accurately extracting abnormal potential within QRS | |
TWI519276B (en) | Electrocardiography signal extraction method | |
Egambaram et al. | FastEMD–CCA algorithm for unsupervised and fast removal of eyeblink artifacts from electroencephalogram | |
TW201717845A (en) | Devices, systems, and methods for determining heart rate of a subject from noisy electrocardiogram data | |
Jaswal et al. | QRS detection using wavelet transform | |
Kaur et al. | On the detection of cardiac arrhythmia with principal component analysis | |
KR20220150901A (en) | Fusion signal processing for detection of maternal uterine activity | |
Tan et al. | EMD-based electrocardiogram delineation for a wearable low-power ECG monitoring device | |
Fotiadou et al. | Deep convolutional encoder-decoder framework for fetal ECG signal denoising | |
TWI696191B (en) | Algorithm of qrs detection capable of reducing noise effects | |
Dessì et al. | Identification of fetal QRS complexes in low density non-invasive biopotential recordings | |
CN111685759B (en) | P, T characteristic wave detection method of electrocardiosignals | |
Luengo et al. | Blind analysis of atrial fibrillation electrograms: a sparsity-aware formulation | |
TWI672127B (en) | Algorithm of qrs detection based on wavelet transformation | |
Gholinezhadasnefestani et al. | Assessment of quality of ECG for accurate estimation of Heart Rate Variability in newborns | |
Li et al. | A High-Efficiency and Real-Time Method for Quality Evaluation of PPG Signals | |
Nitzken et al. | Local wavelet-based filtering of electromyographic signals to eliminate the electrocardiographic-induced artifacts in patients with spinal cord injury | |
TWM574469U (en) | QRS wave instant detection device | |
Arvinti et al. | Adaptive thresholding algorithm for noisy electrocardiograms using reverse biorthogonal mother wavelets | |
do Vale Madeiro et al. | Delineation of QRS complex: challenges for the development of widely applicable algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |