TWI696147B - Method and system for rendering a panoramic image - Google Patents
Method and system for rendering a panoramic image Download PDFInfo
- Publication number
- TWI696147B TWI696147B TW107131144A TW107131144A TWI696147B TW I696147 B TWI696147 B TW I696147B TW 107131144 A TW107131144 A TW 107131144A TW 107131144 A TW107131144 A TW 107131144A TW I696147 B TWI696147 B TW I696147B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- features
- scene
- images
- panoramic image
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000009877 rendering Methods 0.000 title abstract 2
- 238000013528 artificial neural network Methods 0.000 claims abstract description 9
- 238000012545 processing Methods 0.000 claims description 14
- 238000003384 imaging method Methods 0.000 claims description 13
- 238000005070 sampling Methods 0.000 claims description 9
- 238000001514 detection method Methods 0.000 abstract description 8
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000013527 convolutional neural network Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 4
- 230000003190 augmentative effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000003708 edge detection Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Studio Devices (AREA)
- Stereoscopic And Panoramic Photography (AREA)
Abstract
Description
揭露書有關一種產生全景圖的方法,特別是一種可以針對室內與室外等不同特徵的場景形成全景圖的方法與系統。 The disclosure book relates to a method for generating a panoramic image, especially a method and system that can form a panoramic image for indoor and outdoor scenes with different characteristics.
一般照相機、手機等拍攝影像的工具根據鏡頭的設計,具有一定的視場(Field of View,FOV),一次也僅能拍攝一定視場範圍內的影像,習知技術可利用電腦輔助工具拼接多張影像以得到一張廣角照片或是全景照片。 Generally, cameras, mobile phones and other tools for shooting images have a certain Field of View (FOV) according to the design of the lens, and can only shoot images within a certain field of view at a time. The conventional technology can use computer-assisted tools to stitch together. Image to get a wide-angle photo or panoramic photo.
若以全景圖(panorama)為例,全景圖,或說環景圖,是一種影像涵蓋視野達到全景左右360度、上下180度的視野的廣角圖,一般形成的方式是先通過相機拍攝某個場景下特定視場的影像,若相機中設有陀螺儀可以得出拍攝方位的感測器,記錄連續拍攝多張影像的方位角,最後依照各張之間的方位角資訊將多張影像拼接起來,可得一全景圖。 Taking a panorama as an example, a panorama, or a panoramic view, is a wide-angle image that covers a field of view of 360 degrees to the left and right of the panorama, and 180 degrees up and down. The general way of formation is to first take a picture with a camera. For images of a specific field of view in a scene, if the camera is equipped with a gyroscope, a sensor that can obtain the shooting azimuth to record the azimuth of continuously shooting multiple images, and finally stitch the multiple images according to the azimuth information between each image Get up and get a panoramic picture.
習知技術中,為了拍攝全景圖,曾有人將多部相機設置在一個承載裝置上,並指向多個不同方向拍攝,之後通過拼接方式產生全景圖。亦有技術運用行動裝置中陀螺儀等感測器,通過運行於行動裝置中的軟體程序指引使用者手持裝置朝向某個方向進行拍攝,一次朝向一個方向拍攝一張,之後指示使用者移動拍攝角度到第二個方向拍攝一張,經多次拍攝後得到全景的影像,軟體 程序再將這些影像結合成全景圖。 In the prior art, in order to take a panoramic image, someone once set multiple cameras on a carrier device and pointed them in multiple different directions to shoot, and then generated the panoramic image by stitching. There are also technologies that use sensors such as gyroscopes in mobile devices to direct the user to hold the device in a certain direction to take a picture through a software program running on the mobile device, and then instruct the user to move the shooting angle Take a shot in the second direction, and get a panoramic image after multiple shots. The software The program then combines these images into a panorama.
揭露書公開一種全景圖形成方法,可適用產生擴增實景或虛擬實境場景的全景圖,並可使用一般照相設備執行拍攝,所述全景圖形成方法的實施例包括先以拍攝裝置取得一場景的多張影像,鏡頭較佳採用魚眼鏡頭,多張影像為不同拍攝角度所拍攝的影像。 The disclosure discloses a method for forming a panoramic image, which can be applied to generate a panoramic image of augmented real or virtual reality scenes, and can be photographed using general camera equipment. An embodiment of the method for forming a panoramic image includes first obtaining a scene with a photographing device For the multiple images of, the lens is preferably a fisheye lens, and the multiple images are images shot at different shooting angles.
接著,由照相設備或是其他電腦裝置以影像處裡的技術擷取多張影像的像素特徵,並根據像素特徵,判斷其中邊界影像特徵與角落影像特徵,或其中之一,藉此得出多張影像的重疊區域。這時,先以多張影像初步合成,並轉換為一等距柱狀投影圖,經比對圖庫中影像,執行物件偵測,可以根據偵測到的物件得出等距柱狀投影圖的屬性,例如判斷出影像為室外影像或是室內影像。接著,能根據等距柱狀投影圖的屬性,判斷以多個重疊區域的像素特徵、邊界影像特徵與角落影像特徵,或者其中之一,合成一全景圖。 Then, a camera or other computer device uses the image processing technology to capture the pixel characteristics of multiple images, and based on the pixel characteristics, determine the boundary image feature and the corner image feature, or one of them, to obtain the multiple The overlapping area of images. At this time, multiple images are preliminarily synthesized and converted into an equidistant histogram. After comparing the images in the library, object detection is performed, and the properties of the equidistant histogram can be obtained based on the detected objects. , For example, determine whether the image is an outdoor image or an indoor image. Then, according to the attributes of the equidistant columnar projection image, it can be judged to synthesize a panoramic image by using the pixel feature, the boundary image feature and the corner image feature of the multiple overlapping regions, or one of them.
進一步地,在判斷影像中是否具有邊界影像特徵與角落影像特徵的步驟中,先自多張影像中擷取特徵,例如用邊界和角點偵測法判斷當中是否具有邊界影像特徵或角落影像特徵,再以隨機取樣一致演算法(RANSAC)過濾特徵,找出重疊區域。 Further, in the step of determining whether the image has boundary image features and corner image features, first extract features from multiple images, for example, use boundary and corner detection method to determine whether there are boundary image features or corner image features , And then use random sampling consensus algorithm (RANSAC) to filter features to find overlapping areas.
再進一步地,判斷影像中物件的方式可以採用一深層迴積分式類神經網路(Convolutional Neural Network,CNN),以辨識等距柱狀投影圖內物件,據以判斷場景的屬性,例如室內或室外的分類。 Furthermore, the method of judging the objects in the image can use a deep integrative neural network (Convolutional Neural Network, CNN) to identify the objects in the isometric histogram, and then determine the attributes of the scene, such as indoor or Outdoor classification.
在一實施方式中,上述方法中,於取得場景的多張影像時,各張影像可以一高動態範圍(HDR)成像方式拍攝,得出對應各張影像的多張不同曝光值的子影像,並基於室內的深層迴積分式 類神經網路(CNN)學習資料得到全景影像的曝光值和飽和度值,將高動態範圍成像(HDR)子影像根據數值進行影像合成。 In one embodiment, in the above method, when multiple images of the scene are obtained, each image can be shot in a high dynamic range (HDR) imaging mode to obtain multiple sub-images with different exposure values corresponding to each image. And based on the indoor deep integration The CNN-like learning data obtains the exposure value and saturation value of the panoramic image, and the high dynamic range imaging (HDR) sub-image is synthesized according to the numerical value.
揭露書更公開一形成全景圖的系統,系統主要元件為拍攝裝置,拍攝裝置可裝設於一可旋轉的承載裝置上,承載裝置依照拍攝裝置的鏡頭拍攝視場(FOV)決定拍攝每張影像的旋轉角度,以通過廣角或魚眼鏡頭在多個拍攝方向拍攝一場景的多張影像,其中包括一處理單元,以執行上述全景圖形成方法。 The disclosure also discloses a system for forming a panoramic image. The main component of the system is a camera. The camera can be mounted on a rotatable carrier. The carrier decides to shoot each image according to the FOV of the camera lens. The rotation angle of, to shoot multiple images of a scene in multiple shooting directions through a wide-angle or fisheye lens, including a processing unit to perform the above-mentioned panoramic image forming method.
為了能更進一步瞭解本發明為達成既定目的所採取之技術、方法及功效,請參閱以下有關本發明之詳細說明、圖式,相信本發明之目的、特徵與特點,當可由此得以深入且具體之瞭解,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。 In order to further understand the technology, methods and effects of the present invention to achieve the established objectives, please refer to the following detailed descriptions and drawings about the present invention. I believe that the objectives, features and characteristics of the present invention can be thoroughly and concretely obtained. It is understood that, however, the accompanying drawings are only provided for reference and illustration, and are not intended to limit the present invention.
10‧‧‧網路 10‧‧‧Internet
12‧‧‧伺服系統 12‧‧‧Servo system
14‧‧‧主機 14‧‧‧Host
11‧‧‧拍攝裝置 11‧‧‧Camera
15‧‧‧鏡頭 15‧‧‧Lens
13‧‧‧承載裝置 13‧‧‧Carrier device
135‧‧‧旋轉機構 135‧‧‧Rotating mechanism
20‧‧‧承載裝置 20‧‧‧Carrier device
201‧‧‧控制器 201‧‧‧controller
203‧‧‧旋轉驅動單元 203‧‧‧Rotary drive unit
205‧‧‧承載單元 205‧‧‧Carrier Unit
22‧‧‧拍攝裝置 22‧‧‧Camera
221‧‧‧處理單元 221‧‧‧Processing unit
223‧‧‧記憶單元 223‧‧‧Memory Unit
225‧‧‧影像擷取單元 225‧‧‧Image capture unit
227‧‧‧鏡頭單元 227‧‧‧lens unit
229‧‧‧通信單元 229‧‧‧Communication Unit
301‧‧‧第一廣角影像 301‧‧‧The first wide-angle image
302‧‧‧第二廣角影像 302‧‧‧The second wide-angle image
303‧‧‧第三廣角影像 303‧‧‧The third wide-angle image
步驟S401~S407‧‧‧拍攝全景圖的預備流程 Steps S401~S407‧‧‧Preparation process for shooting panorama
步驟S501~S515‧‧‧拍攝全景圖的方法流程 Steps S501~S515‧‧‧Method flow of shooting panorama
步驟S601~S611‧‧‧拍攝全景圖的方法流程 Steps S601~S611‧‧‧Method flow of shooting panorama
圖1顯示一種拍攝全景的相關系統實施例以及設備實施例示意圖;圖2顯示為拍攝裝置與其承載裝置的電路實施例示意圖;圖3顯示合成一等距柱狀投影圖的實施例示意圖;圖4顯示為描述拍攝全景圖的預備流程實施例;圖5顯示為形成全景圖的方法實施例流程圖之一;圖6顯示為形成全景圖的方法實施例流程圖之二。 Fig. 1 shows a schematic diagram of an embodiment of a related system and equipment for shooting a panoramic view; Fig. 2 shows a schematic diagram of a circuit embodiment of a shooting device and its carrying device; Fig. 3 shows a schematic diagram of an embodiment of synthesizing an isometric columnar projection diagram; Fig. 4 Shown to describe an embodiment of the preparation process for shooting a panoramic image; Fig. 5 shows one of the flowcharts of an embodiment of the method for forming a panoramic image; Fig. 6 shows the second flowchart of an embodiment of the method for forming a panoramic image.
說明書公開一種全景圖形成方法,所述全景圖(panorama)是一種影像涵蓋視野達到全景左右360度、上下180度的視野的廣角圖,其應用之一可用於擴增實境(AR)或是虛擬實境(VR)場景,讓使用者穿戴特定虛擬實境裝置時,可以自由地在左右360度與上下180度的視野中瀏覽場景。 The specification discloses a method for forming a panoramic image. The panoramic image (panorama) is a wide-angle image covering a panoramic view of 360 degrees left and right and 180 degrees up and down. One of its applications can be used in augmented reality (AR) or Virtual reality (VR) scenes allow users to freely browse the scene in a 360-degree view of left and right and 180 degrees up and down when wearing a specific virtual reality device.
在此實施例中,終端裝置包括一拍攝影像的拍攝裝置11,拍攝裝置11可以為照相機,較佳是配備有可以拍攝超廣角影像的魚眼鏡頭;可以為手機,其中照相機可能不具備魚眼鏡頭的能力,但可以通過外掛鏡頭15的方式達成。
In this embodiment, the terminal device includes a
若為了要拍攝整個場景的全景圖,需要涵蓋左右360度與上下180度的視野,此例中,即將拍攝裝置11安裝於一可帶動旋轉拍攝整個場景的承載裝置13,通過旋轉機構135承載拍攝裝置11,其中設有可以帶動拍攝裝置11旋轉的馬達,如步進馬達。
If you want to take a panoramic view of the entire scene, you need to cover the left and right 360 degrees and the top and bottom 180 degrees of field of view. In this example, the
承載裝置13為可以程式化的裝置,可以依照拍攝裝置11的鏡頭15每次拍攝視場的涵蓋範圍決定拍攝每張影像的旋轉角度。例如,當鏡頭15為可以涵蓋上下左右180度視野的鏡頭,為了要拍攝涵蓋左右360度與上下180度視野的全景圖,至少需要在第一次拍攝後,旋轉180度後進行第二次拍攝,如此才能得到涵蓋左右360度與上下180度的全景圖。或者,可以根據鏡頭15涵蓋的視野,通過幾次旋轉後拍攝多次,每次拍攝的影像僅涵蓋特定角度的視野,多張影像之間將包括重疊的特徵,如邊界或角落等區域,作為拼接影像的依據。
The
經拍攝裝置11配合承載裝置13完成全景圖拍攝後,影像資料除了可以通過拍攝裝置11內處理能力與相關軟體程序達成拼接後形成全景圖,更可以通過網路10傳送到伺服系統12或主機14,由伺服系統12或主機14執行影像處理,完成拼接而形成全景圖。最後,可以將形成的全景圖通過伺服系統12儲存或是分享出去。伺服系統12可以實現提供虛擬實境或是擴增實境全景圖的服務,供使用者下載。
After the
需要一提的是,圖1所記載的實施例僅為拍攝全景影像的實施例之一,並非用於限制揭露書所揭示的形成全景圖的方法實施範圍。 It should be mentioned that the embodiment described in FIG. 1 is only one of the embodiments for shooting a panoramic image, and is not used to limit the implementation scope of the method for forming a panoramic image disclosed in the disclosure.
圖2接著顯示為拍攝裝置與其承載裝置的電路實施例圖,圖
中描述承載裝置20與拍攝裝置22中的電路元件,承載裝置20主要目的是能夠根據拍攝裝置22拍攝場景全景能力而調整每次拍攝的旋轉角度,能通過旋轉拍攝的方式完成攝取全景影像。
Figure 2 is then shown as a circuit embodiment diagram of the photographing device and its carrying device.
The circuit elements in the carrying device 20 and the photographing
承載裝置20設有管理其運作的控制器201,旋轉驅動單元203通過承載單元205帶動拍攝裝置22,承載裝置20將依照拍攝裝置22的鏡頭拍攝視場(Field of View,FOV)決定拍攝每張影像的旋轉角度。控制器201取得控制旋轉驅動單元203的指令,用以設定旋轉驅動單元203每次拍攝旋轉的角度。
The carrying device 20 is provided with a
拍攝裝置22如手機、平板電腦、照相機等電子裝置,通過一鏡頭在多個拍攝方向拍攝一場景的多張影像,其中設有處理影像訊號與指令的處理單元221、儲存影像訊號與其他訊息的記憶單元223、用以執行拍攝與影像處理的影像擷取單元225與鏡頭單元227,並包括對外傳遞訊息的通信單元229,通信單元229執行WiFiTM、BluetoothTM等通訊協定。
The
在一實施例中,承載裝置20與拍攝裝置22可以進行通訊。舉例來說,當設定承載裝置20每次旋轉角度時,當從旋轉驅動單元203得到旋轉到設定的角度時,控制器201可以產生拍攝指令後,通過拍攝裝置22的通信單元229傳送到其中處理單元221,指示拍攝時機;並於完成拍攝後,處理單元221產生拍攝完畢的指令,經通信單元229傳送到承載裝置20的控制器201,由控制器201控制旋轉驅動單元203旋轉至下一個拍攝角度,或是於拍攝完成後停止轉動。當拍攝裝置22接收到拍攝指令後,經處理單元221處理,控制影像擷取單元225執行拍攝,將取得的影像訊號可先儲存至記憶單元223,並可通過通信單元229傳送出去。
In an embodiment, the carrier device 20 and the
通過以上拍攝的方式可得到多張廣角影像,若為魚眼鏡頭,所拍攝的影像一般為週邊變形的圓形影像,示意圖如圖3所示實施例示意圖,這些圓形影像可合成一等距柱狀投影圖(Equirectangular Projection)。 Through the above shooting method, multiple wide-angle images can be obtained. If it is a fisheye lens, the image shot is generally a circular image with a deformed periphery. A schematic diagram of the embodiment is shown in Figure 3. These circular images can be combined into an equidistant Equirectangular Projection.
在此示意圖中,通過拍攝裝置拍攝某個場景的全景圖需要拼接多張廣角影像,例如圖示的第一廣角影像301、第二廣角影像302與第三廣角影像303,這三張廣角影像分別涵蓋某個場景的三個拍攝角度的影像,之後,通過影像處理技術執行拼接,包括校正,可形成適合人眼觀看的照片,如此例形成由第一廣角影像301、第二廣角影像302與第三廣角影像303經校正與拼接得到涵蓋左右360度與上下180度視野的等距柱狀投影圖。
In this schematic diagram, it is necessary to stitch multiple wide-angle images to take a panoramic view of a certain scene with a camera, such as the first wide-
根據揭露書提出的全景圖形成方法,在形成全景圖之前,可先執行圖4所示拍攝全景圖的預備流程實施例。 According to the panoramic image forming method proposed in the disclosure, before the panoramic image is formed, the embodiment of the preparation process for shooting the panoramic image shown in FIG. 4 may be performed first.
在此預備程序中,系統通過拍攝裝置內軟體程序,或是伺服器端的軟體程序,取得拍攝裝置的照相視場(FOV)(步驟S401),取得全景拍攝範圍(步驟S403),藉此決定每次拍攝的方向,若以上述實施例承載裝置帶動拍攝裝置拍攝時,視場決定了每次拍攝的旋轉角度(步驟S405),之後依照系統決定每次拍攝的方向或是旋轉角度執行拍攝,並因系統已知每次拍攝的方向與鏡頭的視場,因此系統可以準確地得出每張影像重疊的資訊(步驟S407)。 In this preparation process, the system obtains the camera field of view (FOV) of the camera (step S401) and the panoramic shooting range (step S403) through the software program in the camera or the software program on the server side, thereby determining each For the direction of the second shooting, if the carrying device of the above embodiment drives the shooting device to shoot, the field of view determines the rotation angle of each shooting (step S405), and then the system determines the direction or rotation angle of each shooting to perform shooting, and Since the system knows the direction of each shooting and the field of view of the lens, the system can accurately obtain information about the overlap of each image (step S407).
在拍攝程序中,拍攝裝置除了單張拍攝外,可以高動態範圍成像(High Dynamic Range Imaging,HDRI或HDR)輔助得到高品質影像,高動態範圍成像在數位影像領域中是用來得到比一般單張拍攝的點陣圖像技術更大曝光動態範圍的技術,目的之一就是要正確地表示影像。在揭露書提出的全景圖形成方法中,高動態範圍成像所拍攝的多張影像可以個別處理,最終再結合為單一全景圖。 In the shooting process, in addition to single-frame shooting, the shooting device can assist in obtaining high-quality images with High Dynamic Range Imaging (HDRI or HDR). In the field of digital imaging, high dynamic range imaging is used to obtain more One of the purposes of the bit-matrix image technology shot by Zhang is to increase the dynamic range of exposure. One of the purposes is to correctly represent the image. In the panoramic image forming method proposed in the disclosure, multiple images taken by high dynamic range imaging can be processed individually, and finally combined into a single panoramic image.
形成全景圖的方法實施例主要步驟可參考圖5所示流程。 For the main steps of the method embodiment of forming a panoramic image, refer to the flow shown in FIG. 5.
在此全景圖形成方法中,一開始如步驟S501,通過拍攝裝置拍攝某場景,其中方法可以採用圖1所示裝置,或是通過裝置內軟體輔助指引使用者拍攝場景的全景影像。 In this panoramic image forming method, at the beginning, as in step S501, a certain scene is photographed by a photographing device, wherein the method can use the device shown in FIG.
在步驟S503中,由於系統已知拍攝裝置鏡頭取得影像的視 場,也就是已知每張影像的拍攝範圍,根據全景圖的需求,系統中軟體程序(執行於伺服器端或是拍攝裝置中)可以取得相鄰影像之間的特定影像特徵判斷重疊區域。例如,初步如色階、紋理等特徵判斷其中物件。其中採用影像處理方法係針對各張影像,或是通過前述高動態範圍成像(HDR)得出的每張影像,例如得出某個拍攝方向影像-1、0、+1曝光值的多張影像,對各張影像進行分析、加工和處理,使其滿足全景圖在視覺上的需求,並暫存至系統的記憶體(如拍攝裝置內記憶體)。 In step S503, since the system knows the camera lens to obtain the view of the image Field, that is, the shooting range of each image is known. According to the requirements of the panorama, the software program in the system (executed on the server or in the shooting device) can obtain specific image characteristics between adjacent images to determine the overlap area. For example, preliminary judgment of the objects in the features such as color scale and texture. The image processing method is used for each image, or each image obtained through the aforementioned high dynamic range imaging (HDR), for example, multiple images with a certain shooting direction image -1, 0, +1 exposure value , Analyze, process and process each image to meet the visual needs of the panorama and temporarily store it in the system's memory (such as the memory in the shooting device).
接著,根據實施例,如步驟S505,經特徵擷取後,可以應用一種邊界和角點偵測法(edge and corner detection)判斷當中的邊界影像特徵(edge image feature)與角落影像特徵(corner image feature),或其中之一,再如步驟S507,以特定演算法對各張影像隨機取樣。這些邊界與角落特徵主要是用以判斷出場景內(特別是室內)的牆與地板位置。另外的情況是,或是判斷影像中並沒有邊界影像特徵或角落影像特徵,這一般可判斷為室外場景。 Then, according to an embodiment, in step S505, after feature extraction, an edge and corner detection method can be applied to determine the edge image feature and corner image feature. feature), or one of them, and then in step S507, each image is randomly sampled using a specific algorithm. These boundary and corner features are mainly used to determine the location of walls and floors in the scene (especially indoors). In other cases, it may be judged that there is no boundary image feature or corner image feature in the image, which can generally be judged as an outdoor scene.
值得一提的是,當得出影像中具有的邊界影像特徵與角落影像特徵時,所述隨機取樣為自多張影像中以一種隨機取樣一致演算法(random sample consensus,RANSAC)執行取樣,此種隨機取樣一致演算法主要是利用疊代法(iterative method)從一組包含離群值(outliers)等不適合模型化的數據中估算出數學模型的參數,並運算直到離群值不會影響估算值為止。所述離群值可指雜訊,因此隨機取樣一致演算法可得出不被雜訊干擾而能用以描述特定數學模型的參數。因此,在揭露書所提出的全景拍攝的方法中,隨機取樣步驟採用所述隨機取樣一致演算法,可以得到不被雜訊干擾而能用以描述全景圖的特徵。 It is worth mentioning that when the boundary image features and corner image features in the image are obtained, the random sampling is performed by a random sample consensus (RANSAC) algorithm from multiple images. This random sampling consensus algorithm mainly uses the iterative method to estimate the parameters of the mathematical model from a set of data that contains outliers and other data that is not suitable for modeling, and calculates until the outliers do not affect the estimation Value. The outliers can refer to noise, so the random sampling uniform algorithm can obtain parameters that are not interfered by noise and can be used to describe a specific mathematical model. Therefore, in the panoramic shooting method proposed in the disclosure book, the random sampling step adopts the random sampling consensus algorithm to obtain features that can be used to describe the panoramic image without being disturbed by noise.
根據實施例之一,根據影像特徵得出角落(corner)與邊界(edge)的方法如下。對於角落偵測的方法(corner detection),可以採用幾種習知技術,例如,在一種Moravec角檢測演算法中, 先定義影像中的「角」,就是影像中彼此相似程度低的點,可以通過檢查影像中所有的像素,比對每個像素與其周圍像素的相似度,相似度為兩個範圍的影像對應的像素的誤差平方和(sum of squared difference),誤差平方和愈小,表示相似度愈高。如此,沒有角的某個範圍中的像素與其周圍像素的相似度高;反之,某個範圍中像素與其周圍像素的相似度低,表示範圍內像素不相似。當演算過整個影像,當中有部分為最不相似的區域,可視為是「角」。 According to one of the embodiments, the method of deriving corners and edges according to image features is as follows. For the corner detection method (corner detection), several conventional techniques can be used. For example, in a Moravec corner detection algorithm, First define the "corner" in the image, which is the point in the image with low degree of similarity to each other. You can check all the pixels in the image and compare the similarity between each pixel and its surrounding pixels. The similarity is corresponding to the two ranges of images The sum of squared differences of pixels, the smaller the sum of squared differences, the higher the similarity. In this way, a pixel in a certain range without corners has a high similarity to its surrounding pixels; conversely, a pixel in a certain range has a low similarity to its surrounding pixels, indicating that the pixels in the range are not similar. When the whole image has been calculated, some of the most dissimilar areas can be regarded as "corners."
另有找尋角落的演算法如一種Harris & Stephens方法,此方法包括先取得場景內的一張影像,尋求影像中沿著特定方向的像素梯度變化,套用一種視窗函數(window function),如一種高斯視窗函數(Gaussian window function),針對影像中心附近的梯度,並計算出每筆影像數據的誤差平方和,經計算兩個方向的梯度,若兩個值都足夠大,表示梯度們有兩個主要方向,就表示有兩條較直的邊緣,判斷有一個角。 Another algorithm for finding corners is a Harris & Stephens method. This method includes first obtaining an image in the scene, seeking the pixel gradient change along a specific direction in the image, and applying a window function, such as a Gaussian Gaussian window function, for the gradient near the center of the image, and calculates the sum of squared errors of each image data. After calculating the gradients in both directions, if the two values are large enough, it means that the gradients have two main The direction means that there are two straighter edges, and it is judged that there is a corner.
對於邊界偵測方法(edge detection),一般來說是要找到影像中灰階像素有劇烈變化的部分,以二維影像為例,計算影像的灰階變化梯度,當得出某處像素在某個方向有高梯度變化時(比對一門檻),將判斷為邊界。常見的邊界偵測演算法有Sobel、Prewitt、Laplacian等。列舉一例,運算中可以先行經雜訊消除後(如採用Laplace Filter),之後可利用索伯算子(Sobel operator)進行邊緣檢測,得出橫向及縱向的亮度差分近似值後,判斷橫向或縱向的邊界。 For the edge detection method, generally speaking, it is to find the part of the image where the gray-scale pixels have drastic changes. Take a two-dimensional image as an example, calculate the gray-scale change gradient of the image, and when it is found that a certain pixel is in a certain When there is a high gradient change in each direction (compared to a threshold), it will be judged as a boundary. Common boundary detection algorithms include Sobel, Prewitt, Laplacian, etc. To cite an example, in the operation, the noise can be eliminated first (such as using Laplace Filter), and then the Sobel operator can be used for edge detection, and after obtaining the approximate value of the horizontal and vertical brightness difference, determine the horizontal or vertical boundary.
經偵測出邊界與角落特徵後,因為可以得出各張影像之間的重疊區域以及配合特徵擷取得到重疊影像的特徵,如步驟S509,執行初步合成,例如可由圖3所示的廣角影像轉換為等距柱狀投影圖(Equirectangular Projection),若以高動態範圍成像拍攝,則須逐張轉換高動態範圍成像的影像(步驟S511)。這時,合成影像 的視野已經涵蓋地平線+/-各180°,垂直+/-各90°的範圍。 After detecting the boundary and corner features, because the overlap area between each image can be obtained and the features of the overlapped image can be obtained with the feature extraction, in step S509, a preliminary synthesis is performed, for example, the wide-angle image shown in FIG. 3 Convert into equidistant histogram (Equirectangular Projection), if shooting with high dynamic range imaging, it is necessary to convert the high dynamic range imaging images one by one (step S511). At this time, the composite image The field of view has covered the horizon +/- 180° each, and the vertical +/- 90° each.
舉例來說,若使用一種全周魚眼鏡頭(Circular Fisheye Lens)拍攝場景,先向前平視拍攝一次,可得出一張視場(FOV)達180度的單張影像,接著拍攝2到3張即可透過軟體程序合成為一張等距柱狀投影圖類型的全景影像,以多張影像拼接合成的方式可以避免拍攝裝置與鏡頭缺陷造成的週邊光影和影像融合缺陷問題,中間涉及光學鏡頭與影像處理能力的變數並不在此贅述。 For example, if you use a circular fisheye lens to shoot a scene, first look forward and shoot once to get a single image with a field of view (FOV) of 180 degrees, and then shoot 2 to Three images can be synthesized into a panoramic image of the isometric columnar projection type through the software program. The splicing and synthesis of multiple images can avoid the problems of peripheral light and shadow and image fusion defects caused by the defects of the shooting device and the lens, which involves optics. The variables of lens and image processing capabilities will not be repeated here.
在步驟S513中,將初步合成影像比對一圖庫中影像,為的是得出上述等距柱狀投影圖的屬性,這也是初步合成的目的之一。之後,根據等距柱狀投影圖的屬性,系統將可判斷以多個重疊區域的像素特徵、邊界影像特徵與角落影像特徵,或者其中之一,合成一全景圖,如步驟S515。 In step S513, the preliminary synthesized image is compared with the images in a gallery in order to obtain the attributes of the aforementioned equidistant histogram, which is also one of the purposes of preliminary synthesis. After that, according to the attributes of the equidistant columnar projection image, the system can determine the pixel feature, the boundary image feature and the corner image feature of the multiple overlapping regions, or one of them, to synthesize a panoramic image, as in step S515.
根據實施例之一,於比對圖庫中影像以得出等距柱狀投影圖屬性的步驟中,可以一深層迴積分式類神經網路(Convolutional Neural Network,CNN)辨識等距柱狀投影圖內物件,據以判斷等距柱狀投影圖的屬性,例如判斷出場景為一室內場景,或一室外場景,並包括修正影像。在此一提的是,所述深層迴積分式類神經網路(CNN)是一種影像深度學習技術,通過建構影像的深度學習模型,能用於影像辨識,因此在揭露書提出形成全景圖的方法中,深層迴積分式類神經網路可用於圖中優化角落與邊界影像,並能優化曝光值和飽和度值。 According to one of the embodiments, in the step of comparing the images in the library to obtain the attributes of the equidistant histogram, a deep gyro-integral neural network (Convolutional Neural Network, CNN) may be used to identify the equidistant histogram. The inner object is used to determine the attributes of the isometric columnar projection map, for example, it is determined that the scene is an indoor scene or an outdoor scene, and includes the corrected image. It is mentioned here that the deep-back integral neural network (CNN) is an image deep learning technology, which can be used for image recognition by constructing an image deep learning model. Therefore, the disclosure book proposes to form a panoramic image In the method, the deep integration-like neural network can be used to optimize the corner and boundary images in the figure, and can optimize the exposure value and saturation value.
此時,實施例如圖6所示為形成全景圖的方法實施例流程,可以根據判斷出的場景屬性執行合成,如步驟S601,在此軟體程序中,取得等距柱狀投影圖,如步驟S603,比對圖庫後判斷等距柱狀投影圖為室內或是室外(步驟S605)。 At this time, the implementation example shown in FIG. 6 is the process of the embodiment of the method for forming a panoramic image. The synthesis can be performed according to the determined scene attributes, such as step S601. In this software program, an isometric histogram is obtained, such as step S603. After comparing the image library, it is determined whether the isometric histogram is indoor or outdoor (step S605).
若判斷等距柱狀投影圖為室內,通過上述偵測各廣角影像角落與邊界的判斷結果合成影像,如步驟S607,可以基於室內的深層迴積分式類神經網路(CNN)學習資料優化合成的影像;再於 步驟S611,使用深層迴積分式類神經網路(CNN)學習資料得到全景影像的曝光值和飽和度值,修正高動態範圍成像(HDR)子影像合成的影像的曝光值與飽和度值。 If it is judged that the equidistant histogram is indoor, the image is synthesized by the above-mentioned judgment result of detecting the corners and boundaries of each wide-angle image, as in step S607, it can be optimized and synthesized based on the indoor deep-integrated neural network (CNN) learning data Image of In step S611, the exposure value and the saturation value of the panoramic image are obtained using the CNN learning data, and the exposure value and the saturation value of the image synthesized by the high dynamic range imaging (HDR) sub-image are corrected.
反之,若判斷等距柱狀投影圖為室外,即執行步驟S609,根據多個重疊區域中的像素特徵(如判斷出的物件,以及影像中色階、紋理等特徵)合成全景圖像。 Conversely, if it is determined that the equidistant columnar projection image is outdoor, step S609 is executed to synthesize the panoramic image according to the pixel features in the multiple overlapping regions (such as the determined object, and the features such as color scale and texture in the image).
其中,值得一提的是,若各張影像以高動態範圍成像方式拍攝,得出對應各張影像的多張不同曝光值的子影像,在合成步驟中,皆對這些子影像分別擷取重疊區域的像素特徵、判斷邊界影像特徵或角落影像特徵、轉換為等距柱狀投影圖與判斷屬性,以及最後全景圖由多張不同曝光值的子影像合成。 Among them, it is worth mentioning that if each image is shot with high dynamic range imaging, multiple sub-images with different exposure values corresponding to each image are obtained. In the synthesis step, these sub-images are captured and overlapped respectively. The pixel features of the area, the boundary image features or corner image features are converted into equidistant columnar projection images and the judgment attributes, and the final panorama image is synthesized from multiple sub-images with different exposure values.
綜上所述,揭露書所公開的全景圖形成方法係先取得某場景的多張影像,在拼接這些影像時,需要擷取多張影像之間多個重疊區域中的像素特徵,再根據像素特徵,判斷其中的邊界影像特徵與角落影像特徵,接著可判斷出場景的屬性,因此在合成過程中,更能針對其中色階、紋理等特徵得出較佳的合成影像。 To sum up, the panoramic image formation method disclosed in the disclosure book first obtains multiple images of a certain scene. When stitching these images, it is necessary to capture the pixel features in multiple overlapping areas between multiple images, and then according to the pixels Features, the boundary image features and corner image features are judged, and then the attributes of the scene can be judged. Therefore, in the synthesis process, a better synthetic image can be obtained for the features such as color scale and texture.
惟以上所述僅為本發明之較佳可行實施例,非因此即侷限本發明之專利範圍,故舉凡運用本發明說明書及圖示內容所為之等效結構變化,均同理包含於本發明之範圍內,合予陳明。 However, the above descriptions are only the preferred and feasible embodiments of the present invention. Therefore, the patent scope of the present invention is not limited. Therefore, all equivalent structural changes made by using the description of the present invention and the contents of the diagrams are included in the present invention in the same way. Within the scope, together to Chen Ming.
S501‧‧‧拍攝某場景 S501‧‧‧Shooting a scene
S503‧‧‧擷取像素特徵 S503‧‧‧Capturing pixel features
S505‧‧‧偵測角落及邊界 S505‧‧‧Detect corners and borders
S507‧‧‧隨機取樣 S507‧‧‧random sampling
S509‧‧‧初步合成 S509‧‧‧Preliminary synthesis
S511‧‧‧轉換為等距柱狀投影圖 S511‧‧‧Converted to equidistant columnar projection
S513‧‧‧判斷屬性 S513‧‧‧Judging attributes
S515‧‧‧合成全景圖 S515‧‧‧Composite panorama
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW107131144A TWI696147B (en) | 2018-09-05 | 2018-09-05 | Method and system for rendering a panoramic image |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW107131144A TWI696147B (en) | 2018-09-05 | 2018-09-05 | Method and system for rendering a panoramic image |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202011349A TW202011349A (en) | 2020-03-16 |
| TWI696147B true TWI696147B (en) | 2020-06-11 |
Family
ID=70766789
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW107131144A TWI696147B (en) | 2018-09-05 | 2018-09-05 | Method and system for rendering a panoramic image |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI696147B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11623150B2 (en) | 2021-06-24 | 2023-04-11 | Compal Electronics, Inc | Rendering method for drone game |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI784605B (en) * | 2021-06-29 | 2022-11-21 | 倍利科技股份有限公司 | Image stitching method |
| TWI788967B (en) * | 2021-08-24 | 2023-01-01 | 瑞昱半導體股份有限公司 | Image processing method and image processing circuit |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150271453A1 (en) * | 2010-12-16 | 2015-09-24 | Massachusetts Institute Of Technology | Imaging systems and methods for immersive surveillance |
| CN104992408A (en) * | 2015-06-30 | 2015-10-21 | 百度在线网络技术(北京)有限公司 | Panorama image generation method and apparatus for user terminal |
| CN105659592A (en) * | 2014-09-22 | 2016-06-08 | 三星电子株式会社 | Camera system for three-dimensional video |
| US9582731B1 (en) * | 2014-04-15 | 2017-02-28 | Google Inc. | Detecting spherical images |
| US20180012336A1 (en) * | 2015-03-10 | 2018-01-11 | SZ DJI Technology Co., Ltd. | System and method for adaptive panoramic image generation |
| US9961260B2 (en) * | 2015-01-19 | 2018-05-01 | Ricoh Company, Ltd. | Preview image acquisition user interface for linear panoramic image stitching |
| TW201816722A (en) * | 2016-10-25 | 2018-05-01 | 信驊科技股份有限公司 | Panoramic image generation method and device with rotation, displacement and torsion functions |
| US20180199025A1 (en) * | 2015-07-15 | 2018-07-12 | Fyusion, Inc. | Drone based capture of a multi-view interactive digital media |
| US10068373B2 (en) * | 2014-07-01 | 2018-09-04 | Samsung Electronics Co., Ltd. | Electronic device for providing map information |
-
2018
- 2018-09-05 TW TW107131144A patent/TWI696147B/en active
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150271453A1 (en) * | 2010-12-16 | 2015-09-24 | Massachusetts Institute Of Technology | Imaging systems and methods for immersive surveillance |
| US9582731B1 (en) * | 2014-04-15 | 2017-02-28 | Google Inc. | Detecting spherical images |
| US10068373B2 (en) * | 2014-07-01 | 2018-09-04 | Samsung Electronics Co., Ltd. | Electronic device for providing map information |
| CN105659592A (en) * | 2014-09-22 | 2016-06-08 | 三星电子株式会社 | Camera system for three-dimensional video |
| US9961260B2 (en) * | 2015-01-19 | 2018-05-01 | Ricoh Company, Ltd. | Preview image acquisition user interface for linear panoramic image stitching |
| US20180012336A1 (en) * | 2015-03-10 | 2018-01-11 | SZ DJI Technology Co., Ltd. | System and method for adaptive panoramic image generation |
| CN104992408A (en) * | 2015-06-30 | 2015-10-21 | 百度在线网络技术(北京)有限公司 | Panorama image generation method and apparatus for user terminal |
| CN104992408B (en) | 2015-06-30 | 2018-06-05 | 百度在线网络技术(北京)有限公司 | For the panorama image generation method and device of user terminal |
| US20180199025A1 (en) * | 2015-07-15 | 2018-07-12 | Fyusion, Inc. | Drone based capture of a multi-view interactive digital media |
| TW201816722A (en) * | 2016-10-25 | 2018-05-01 | 信驊科技股份有限公司 | Panoramic image generation method and device with rotation, displacement and torsion functions |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11623150B2 (en) | 2021-06-24 | 2023-04-11 | Compal Electronics, Inc | Rendering method for drone game |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202011349A (en) | 2020-03-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI539809B (en) | Position sensor-assisted image alignment method for panoramic photography and program storage device and electronic device therefor | |
| US10489885B2 (en) | System and method for stitching images | |
| CN105659287B (en) | Image processing device, image processing method and imaging system | |
| CN110730296B (en) | Image processing apparatus, image processing method, and computer-readable medium | |
| EP2993894B1 (en) | Image capturing method and electronic apparatus | |
| CN101010942A (en) | capture image sequence | |
| CN110799921A (en) | Filming method, device and drone | |
| CN114095662A (en) | Shooting guide method and electronic equipment | |
| WO2017088678A1 (en) | Long-exposure panoramic image shooting apparatus and method | |
| WO2014023231A1 (en) | Wide-view-field ultrahigh-resolution optical imaging system and method | |
| US10951879B2 (en) | Method, system and apparatus for capture of image data for free viewpoint video | |
| EP3991132B1 (en) | Imaging system, image processing apparatus, imaging device, and recording medium | |
| WO2017113504A1 (en) | Image displaying method and device | |
| US12206997B2 (en) | Generation of enhanced panoramic visual content | |
| CN110689476A (en) | Panoramic image splicing method and device, readable storage medium and electronic equipment | |
| CN110278366B (en) | A panoramic image blurring method, terminal and computer-readable storage medium | |
| KR102155895B1 (en) | Device and method to receive image by tracking object | |
| CN110944101A (en) | Camera and image recording method | |
| TWI696147B (en) | Method and system for rendering a panoramic image | |
| CN113240615B (en) | Image processing method, image processing device, electronic equipment and computer readable storage medium | |
| CN111105351B (en) | Video sequence image splicing method and device | |
| WO2021168804A1 (en) | Image processing method, image processing apparatus and image processing system | |
| WO2021258249A1 (en) | Image acquisition method, and electronic device, and mobile device | |
| WO2020257999A1 (en) | Method, apparatus and platform for image processing, and storage medium | |
| CN105049719A (en) | Panoramic shooting method and mobile terminal |