TWI695479B - Diode with high esd protection capability and method for forming the same - Google Patents

Diode with high esd protection capability and method for forming the same Download PDF

Info

Publication number
TWI695479B
TWI695479B TW108123320A TW108123320A TWI695479B TW I695479 B TWI695479 B TW I695479B TW 108123320 A TW108123320 A TW 108123320A TW 108123320 A TW108123320 A TW 108123320A TW I695479 B TWI695479 B TW I695479B
Authority
TW
Taiwan
Prior art keywords
diode
trenches
conductivity type
protection capability
electrostatic protection
Prior art date
Application number
TW108123320A
Other languages
Chinese (zh)
Other versions
TW202103287A (en
Inventor
王黎
Original Assignee
大陸商彩優微電子(昆山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商彩優微電子(昆山)有限公司 filed Critical 大陸商彩優微電子(昆山)有限公司
Priority to TW108123320A priority Critical patent/TWI695479B/en
Application granted granted Critical
Publication of TWI695479B publication Critical patent/TWI695479B/en
Publication of TW202103287A publication Critical patent/TW202103287A/en

Links

Images

Abstract

A diode with high ESD protection capability is provided. The diode includes a silicon substrate layer of a first conductivity type, plural first trenches and plural second trenches formed in the silicon substrate layer, plural shallow trench isolation structures, and a polysilicon layer of a second conductivity type. The shallow trench isolation structures are respectively disposed within the first trenches, thereby filling the first trenches. The polysilicon layer is conformally formed on a surface of the second trenches.

Description

具有高靜電防護能力之二極體及其 形成方法 Diode with high electrostatic protection capability and its Forming method

本揭露實施例是有關於一種二極體,且特別是有關於一種具有高靜電防護能力之二極體及其形成方法。 The disclosed embodiments relate to a diode, and particularly to a diode with high electrostatic protection capability and a method of forming the same.

靜電對於電子產品的傷害一直是不易解決的問題,尤其是在高頻電路的應用中。為了不影響產品的正常工作性能,電路的輸入輸出接口通常需要靜電保護元件以具有較強的電流洩放能力。現今較為常見的高頻電路,其輸入輸出接口的靜電保護元件多為二極體。當有靜電放電發生時,N型二極體用於洩放從接地端到輸入輸出接口的正向電流,P型二極體用於洩放輸入輸出接口到電源端的正向電流。為了提高二極體自身的電流耐受能力從而提高靜電防護能力,通常需要增大二極體的面積,然而這種作法對於產品的微小化是不利的。 The damage of static electricity to electronic products has always been a problem that is not easy to solve, especially in the application of high-frequency circuits. In order not to affect the normal working performance of the product, the input and output interfaces of the circuit usually require electrostatic protection components to have a strong current discharge capability. Most of the common high-frequency circuits nowadays, the electrostatic protection components of the input and output interfaces are mostly diodes. When electrostatic discharge occurs, the N-type diode is used to discharge the forward current from the ground terminal to the input and output interface, and the P-type diode is used to discharge the forward current from the input and output interface to the power supply terminal. In order to improve the current withstand capability of the diode itself and thus improve the electrostatic protection capability, it is usually necessary to increase the area of the diode, however, this method is disadvantageous for the miniaturization of the product.

本揭露之目的在於提出一種具有高靜電防護能 力之二極體,透過使用溝槽結構,並在溝槽結構上形成多晶矽層來做為二極體的電極,以增加P/N界面的接觸面積,從而提高二極體自身的電流耐受能力。本揭露能夠在不須增加二極體的面積的前提下,即能使二極體具有高靜電防護能力。 The purpose of this disclosure is to propose a high electrostatic protection By using a trench structure and forming a polysilicon layer on the trench structure as the electrode of the diode, Li diode can increase the contact area of the P/N interface, thereby improving the current tolerance of the diode itself ability. The disclosure can enable the diode to have a high electrostatic protection capability without increasing the area of the diode.

根據本揭露之上述目的,提出一種具有高靜電防護能力之二極體包含:具有第一導電類型的矽基底層、形成於矽基底層中的多個第一溝槽與多個第二溝槽、多個淺溝槽隔離(Shallow Trench Isolation,STI)結構與具有第二導電類型的多晶矽層。淺溝槽隔離結構分別設置於第一溝槽中以填滿第一溝槽。多晶矽層共形地形成於第二溝槽的表面上。 According to the above object of the present disclosure, a diode with high electrostatic protection capability is proposed including: a silicon base layer having a first conductivity type, a plurality of first trenches and a plurality of second trenches formed in the silicon base layer 3. A plurality of shallow trench isolation (STI) structures and polysilicon layers with a second conductivity type. The shallow trench isolation structures are respectively disposed in the first trench to fill the first trench. The polysilicon layer is conformally formed on the surface of the second trench.

在一些實施例中,上述矽基底層更包含具有該第一導電類型的高摻雜區,其中,高摻雜區係夾設於兩相鄰的淺溝槽隔離結構之間。 In some embodiments, the silicon base layer further includes a highly doped region with the first conductivity type, wherein the highly doped region is sandwiched between two adjacent shallow trench isolation structures.

在一些實施例中,上述第一溝槽係環繞上述第二溝槽。 In some embodiments, the first trench surrounds the second trench.

在一些實施例中,上述淺溝槽隔離結構用以隔離具有第一導電類型的高摻雜區與具有第二導電類型的多晶矽層。 In some embodiments, the above shallow trench isolation structure is used to isolate the highly doped region with the first conductivity type from the polysilicon layer with the second conductivity type.

在一些實施例中,上述第二溝槽於矽基底層的表面上呈矩陣排列。 In some embodiments, the second trenches are arranged in a matrix on the surface of the silicon base layer.

在一些實施例中,上述第二溝槽於矽基底層的表面上呈環形且共心地排列。 In some embodiments, the second trenches are arranged in a ring and concentrically on the surface of the silicon base layer.

根據本揭露之上述目的,另提出一種具有高靜電防護能力之二極體的形成方法,包含:蝕刻具有第一導電類型的矽基底層,以形成多個第一溝槽與多個第二溝槽於具有第一導電類型的矽基底層中;以介電材料填充第一溝槽,以於第一溝槽中分別形成多個淺溝槽隔離結構;以及沉積多晶矽材料於第二溝槽的表面上,以於第二溝槽的表面上共形地形成多晶矽層。 According to the above purpose of the present disclosure, another method for forming a diode with high electrostatic protection capability is provided, which includes: etching a silicon base layer having a first conductivity type to form a plurality of first trenches and a plurality of second trenches The trench is in a silicon base layer having a first conductivity type; the first trench is filled with a dielectric material to form a plurality of shallow trench isolation structures in the first trench; and a polysilicon material is deposited on the second trench On the surface, a polysilicon layer is conformally formed on the surface of the second trench.

在一些實施例中,上述多晶矽材料為具有第二導電類型的多晶矽材料,以使得多晶矽層成為具有第二導電類型的多晶矽層。 In some embodiments, the polysilicon material is a polysilicon material with a second conductivity type, so that the polysilicon layer becomes a polysilicon layer with a second conductivity type.

在一些實施例中,上述具有高靜電防護能力之二極體的形成方法,更包含:對多晶矽層進行離子佈植(Ion Implantation)處理,來對多晶矽層進行摻雜,以使得多晶矽層成為具有第二導電類型的多晶矽層。 In some embodiments, the method for forming a diode with high electrostatic protection capability further includes: performing an ion implantation process on the polysilicon layer to dope the polysilicon layer so that the polysilicon layer becomes A polysilicon layer of the second conductivity type.

在一些實施例中,上述具有高靜電防護能力之二極體的形成方法,更包含:對該矽基底層進行離子佈植處理,以於兩相鄰的淺溝槽隔離結構之間形成具有第一導電類型的高摻雜區。 In some embodiments, the method for forming a diode with high electrostatic protection capability further includes: performing ion implantation treatment on the silicon base layer to form a A highly doped region of conductivity type.

在一些實施例中,上述第一溝槽係環繞上述第二溝槽。 In some embodiments, the first trench surrounds the second trench.

在一些實施例中,上述淺溝槽隔離結構用以隔離具有第一導電類型的高摻雜區與多晶矽層。 In some embodiments, the above shallow trench isolation structure is used to isolate the highly doped region having the first conductivity type from the polysilicon layer.

在一些實施例中,上述第二溝槽於矽基底層的表面上呈矩陣排列。 In some embodiments, the second trenches are arranged in a matrix on the surface of the silicon base layer.

在一些實施例中,上述第二溝槽於矽基底層的表面上呈環形且共心地排列。 In some embodiments, the second trenches are arranged in a ring and concentrically on the surface of the silicon base layer.

為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present disclosure more comprehensible, the embodiments are specifically described below and described in detail in conjunction with the accompanying drawings.

100、200‧‧‧二極體 100, 200‧‧‧ diode

110、210‧‧‧矽基底層 110、210‧‧‧Si base layer

120、220‧‧‧淺溝槽隔離結構 120、220‧‧‧Shallow trench isolation structure

130‧‧‧矽層 130‧‧‧Si layer

140、240‧‧‧高摻雜區 140, 240‧‧‧Highly doped area

210a‧‧‧第一溝槽 210a‧‧‧The first groove

210b‧‧‧第二溝槽 210b‧‧‧Second groove

230、250‧‧‧多晶矽層 230, 250‧‧‧polysilicon layer

230a‧‧‧上部 230a‧‧‧Upper

230b‧‧‧溝槽區域 230b‧‧‧Trench area

260‧‧‧光阻 260‧‧‧Photoresist

270‧‧‧導體柱 270‧‧‧Conductor column

280‧‧‧電極層 280‧‧‧electrode layer

290‧‧‧間隙物 290‧‧‧gap

300‧‧‧形成方法 300‧‧‧Formation method

310、320、330、340‧‧‧步驟 310, 320, 330, 340‧‧‧ steps

從以下結合所附圖式所做的詳細描述,可對本揭露之態樣有更佳的了解。需注意的是,根據業界的標準實務,各特徵並未依比例繪示。事實上,為了使討論更為清楚,各特徵的尺寸都可任意地增加或減少。 From the following detailed description made in conjunction with the attached drawings, we can have a better understanding of the present disclosure. It should be noted that according to industry standard practices, the features are not drawn to scale. In fact, in order to make the discussion clearer, the size of each feature can be arbitrarily increased or decreased.

[圖1A]係繪示其中一種習知二極體的結構剖視示意圖。 [FIG. 1A] A schematic cross-sectional view showing the structure of one of the conventional diodes.

[圖1B]係繪示其中一種習知二極體的結構上視示意圖。 [Fig. 1B] is a schematic top view showing the structure of one of the conventional diodes.

[圖2]係根據本揭露的實施例之二極體的結構剖視示意圖。 [FIG. 2] A schematic cross-sectional view of a structure of a diode according to an embodiment of the present disclosure.

[圖3]係根據本揭露的實施例之二極體的形成方法的流程圖。 [FIG. 3] A flowchart of a method of forming a diode according to an embodiment of the present disclosure.

[圖4A]-[圖4E]係根據本揭露的實施例之二極體的形成方法的步驟示意圖。 [FIG. 4A]-[FIG. 4E] are schematic diagrams of steps of a method of forming a diode according to an embodiment of the present disclosure.

[圖5]係根據本揭露的第一實施例之二極體的結構上視示意圖。 5 is a schematic top view of the structure of the diode according to the first embodiment of the present disclosure.

[圖6]係根據本揭露的第二實施例之二極體的結構上視示意圖。 6 is a schematic top view of the structure of the diode according to the second embodiment of the present disclosure.

[圖7]係根據本揭露的實施例之二極體的完整器件之結構剖視示意圖。 7 is a schematic cross-sectional view of the structure of a complete device of a diode according to an embodiment of the present disclosure.

以下仔細討論本發明的實施例。然而,可以理解的是,實施例提供許多可應用的概念,其可實施於各式各樣的特定內容中。所討論、揭示之實施例僅供說明,並非用以限定本發明之範圍。另外,關於本文中所使用之『第一』、『第二』、...等,並非特別指次序或順位的意思,其僅為了區別以相同技術用語描述的元件或操作。 The embodiments of the present invention are discussed in detail below. However, it can be understood that the embodiments provide many applicable concepts that can be implemented in a variety of specific contents. The discussed and disclosed embodiments are for illustration only and are not intended to limit the scope of the present invention. In addition, with regard to the "first", "second", ... etc. used in this article, it does not specifically mean the order or order, but only distinguishes the elements or operations described in the same technical terms.

圖1A係繪示其中一種習知二極體100的結構剖視示意圖,圖1B係繪示其中一種習知二極體100的結構上視示意圖。習知二極體100包含:矽基底層110、多個淺溝槽隔離(Shallow Trench Isolation,STI)結構120、矽層130與高摻雜區140。矽基底層110具有第一導電類型,第一導電類型例如為P型,亦即矽基底層110為P型矽基底層。多個淺溝槽隔離(Shallow Trench Isolation,STI)結構120形成於矽基底層110之上,且如圖1B所示,淺溝槽隔離結構120於矽基底層110之上呈環形且共心地排列。矽層130形成於矽基底層110之上且設置於最內環的淺溝槽隔離結構120內,如圖1B所示。矽層130具有第二導電類型,第二導電類型例如為N型,亦即矽層130為N型矽層。高摻雜區140形成於矽基底層110之上且設置於兩相鄰的淺溝槽隔離結構120之間而同樣呈現環形設置,如圖1B所示。高摻雜區 140具有第一導電類型且摻雜濃度高於矽基底層110,亦即高摻雜區140為P型高摻雜區(P+ doped region)。 FIG. 1A is a schematic cross-sectional view of one of the conventional diodes 100, and FIG. 1B is a schematic top view of the structure of one of the conventional diodes 100. FIG. The conventional diode 100 includes a silicon base layer 110, a plurality of shallow trench isolation (STI) structures 120, a silicon layer 130, and a highly doped region 140. The silicon base layer 110 has a first conductivity type. The first conductivity type is, for example, P-type, that is, the silicon base layer 110 is a P-type silicon base layer. A plurality of shallow trench isolation (STI) structures 120 are formed on the silicon base layer 110, and as shown in FIG. 1B, the shallow trench isolation structures 120 are annularly and concentrically arranged on the silicon base layer 110 . The silicon layer 130 is formed on the silicon base layer 110 and is disposed in the innermost shallow trench isolation structure 120, as shown in FIG. 1B. The silicon layer 130 has a second conductivity type. The second conductivity type is, for example, N-type, that is, the silicon layer 130 is an N-type silicon layer. The highly doped region 140 is formed on the silicon base layer 110 and is disposed between two adjacent shallow trench isolation structures 120 and also presents an annular configuration, as shown in FIG. 1B. Highly doped region 140 has the first conductivity type and the doping concentration is higher than that of the silicon base layer 110, that is, the highly doped region 140 is a P-type highly doped region (P+ doped region).

對於習知二極體100而言,P/N界面的接觸面積相當於矽層130與矽基底層110的交界處的面積,因此,為了提高習知二極體100自身的電流耐受能力從而提高靜電防護能力,通常需要增大習知二極體100的面積,然而這種作法對於產品的微小化是不利的。本揭露之目的在於提出一種具有高靜電防護能力之二極體200,用以改善上述習知二極體100的不足之處。 For the conventional diode 100, the contact area of the P/N interface is equivalent to the area at the junction of the silicon layer 130 and the silicon base layer 110. Therefore, in order to improve the current withstand capability of the conventional diode 100 itself To improve the electrostatic protection capability, it is usually necessary to increase the area of the conventional diode 100. However, this method is disadvantageous for the miniaturization of products. The purpose of this disclosure is to propose a diode 200 with high electrostatic protection capability to improve the disadvantages of the above-mentioned conventional diode 100.

圖2係根據本揭露的實施例之二極體200的結構剖視示意圖。二極體200包含:矽基底層210、多個淺溝槽隔離結構220、多晶矽層230與高摻雜區240。矽基底層210具有第一導電類型,在本揭露的實施例中,第一導電類型例如為P型,亦即矽基底層210為P型矽基底層,然而本揭露不限於此,第一導電類型也可以例如為N型,亦即矽基底層210為N型矽基底層。多晶矽層230具有第二導電類型,且第二導電類型相異於第一導電類型,換言之,當第一導電類型為P型,則第二導電類型為N型,亦即多晶矽層230為N型多晶矽層;當第一導電類型為N型,則第二導電類型為P型,亦即多晶矽層230為P型多晶矽層。高摻雜區240具有第一導電類型且摻雜濃度高於矽基底層210,當第一導電類型為P型,則高摻雜區240為P型高摻雜區(P+ doped region);當第一導電類型為N型,則高摻雜區240為N型高摻雜區(N+ doped region)。值得一提的是,圖2中所示的 淺溝槽隔離結構220與高摻雜區240的數量僅為例示,本揭露不限於此。關於二極體200的結構細節將於以下進一步說明。 2 is a schematic cross-sectional view of a structure of a diode 200 according to an embodiment of the present disclosure. The diode 200 includes: a silicon base layer 210, a plurality of shallow trench isolation structures 220, a polysilicon layer 230, and a highly doped region 240. The silicon base layer 210 has a first conductivity type. In the embodiment of the present disclosure, the first conductivity type is, for example, P-type, that is, the silicon base layer 210 is a P-type silicon base layer. However, the present disclosure is not limited to this, the first conductivity The type may also be, for example, N-type, that is, the silicon base layer 210 is an N-type silicon base layer. The polysilicon layer 230 has a second conductivity type, and the second conductivity type is different from the first conductivity type. In other words, when the first conductivity type is P type, the second conductivity type is N type, that is, the polysilicon layer 230 is N type Polysilicon layer; when the first conductivity type is N-type, the second conductivity type is P-type, that is, the polysilicon layer 230 is a P-type polysilicon layer. The highly doped region 240 has a first conductivity type and a doping concentration higher than that of the silicon base layer 210. When the first conductivity type is a P type, the highly doped region 240 is a P type doped region (P+ doped region); when If the first conductivity type is N-type, the highly doped region 240 is an N-type highly doped region (N+ doped region). It is worth mentioning that what is shown in Figure 2 The number of shallow trench isolation structures 220 and highly doped regions 240 are only examples, and the disclosure is not limited thereto. The structural details of the diode 200 will be further described below.

應注意的是,如圖2所示,二極體200之P/N界面的接觸面積相當於多晶矽層230與矽基底層210的交界處的面積,相對於習知二極體100,二極體200之P/N界面的接觸面積明顯增加,因此二極體200自身的電流耐受能力係優於習知二極體100,換言之,對於相同面積的習知二極體100與二極體200而言,二極體200的靜電防護能力係優於習知二極體100。就另一角度而言,由於二極體200具有較佳的靜電防護能力,因此在保證靜電防護能力不變的條件下,二極體200的面積能夠小於習知二極體100,從而能夠縮小包含二極體200的產品的面積。 It should be noted that, as shown in FIG. 2, the contact area of the P/N interface of the diode 200 is equivalent to the area at the junction of the polysilicon layer 230 and the silicon base layer 210. Compared with the conventional diode 100, the diode The contact area of the P/N interface of the body 200 is significantly increased, so the current withstand capability of the diode 200 is better than that of the conventional diode 100. In other words, for the same area of the conventional diode 100 and the diode In terms of 200, the electrostatic protection capability of the diode 200 is better than that of the conventional diode 100. From another perspective, since the diode 200 has better electrostatic protection capability, the area of the diode 200 can be smaller than that of the conventional diode 100 under the condition of ensuring the static protection capability unchanged, so that it can be reduced The area of the product containing diode 200.

圖3係根據本揭露的實施例之二極體200的形成方法300的流程圖。圖4A至圖4E係根據本揭露的實施例之二極體200的形成方法的步驟示意圖。二極體200的形成方法300包含步驟310:於矽基底層210之上設置圖案化之硬式罩幕層(圖未示)作為罩幕,透過蝕刻製程來蝕刻具有第一導電類型的矽基底層210,以於具有第一導電類型的矽基底層210中形成多個第一溝槽210a與多個第二溝槽210b,如圖4A所示。在本揭露的實施例中,第一溝槽210a與第二溝槽210b的深度約為0.7微米(μm),但本揭露不限於此。值得一提的是,圖4A中所示的第一溝槽210a與第二溝槽210b的數量僅為例示,本揭露不限於此。 FIG. 3 is a flowchart of a method 300 for forming a diode 200 according to an embodiment of the present disclosure. 4A to 4E are schematic diagrams of steps of a method for forming a diode 200 according to an embodiment of the present disclosure. The method 300 for forming the diode 200 includes step 310: setting a patterned hard mask layer (not shown) on the silicon base layer 210 as a mask, and etching the silicon base layer having the first conductivity type through an etching process 210. A plurality of first trenches 210a and a plurality of second trenches 210b are formed in the silicon base layer 210 having the first conductivity type, as shown in FIG. 4A. In the embodiment of the present disclosure, the depths of the first trench 210a and the second trench 210b are about 0.7 micrometers (μm), but the present disclosure is not limited thereto. It is worth mentioning that the numbers of the first trench 210a and the second trench 210b shown in FIG. 4A are only examples, and the disclosure is not limited thereto.

在步驟310之後,進行步驟320:以介電材料填充第一溝槽210a,以於第一溝槽210a中分別形成多個淺溝槽隔離結構220,如圖4B所示,淺溝槽隔離結構220係填滿第一溝槽210a。在本揭露的實施例中,介電材料的形成方法可為可流動式化學氣相沉積法(Flowable Chemical Vapor Deposition,FCVD)、旋轉塗佈法(spin-on coating)、化學氣相沉積法(Chemical Vapor Deposition,CVD)、原子層沉積法(Atomic Layer Deposition,ALD)、高密度電漿化學氣相沉積法(High-Density Plasma Chemical Vapor Deposition,HDPCVD)、低壓化學氣相沉積法(Low-Pressure Chemical Vapor Deposition,LPCVD)及其他相似之方法。應注意的是,在實際製作過程中,會先以介電材料填充第一溝槽210a與第二溝槽210b,再接著透過蝕刻製程來移除形成於第二溝槽210b中的介電材料。 After step 310, proceed to step 320: fill the first trench 210a with a dielectric material to form a plurality of shallow trench isolation structures 220 in the first trench 210a, as shown in FIG. 4B, the shallow trench isolation structure The 220 series fills the first trench 210a. In the embodiments of the present disclosure, the method for forming the dielectric material may be Flowable Chemical Vapor Deposition (FCVD), spin-on coating, or chemical vapor deposition ( Chemical Vapor Deposition (CVD), Atomic Layer Deposition (ALD), High-Density Plasma Chemical Vapor Deposition (HDPCVD), Low-pressure Chemical Vapor Deposition (Low-Pressure Chemical Vapor Deposition (LPCVD) and other similar methods. It should be noted that in the actual manufacturing process, the first trench 210a and the second trench 210b are filled with dielectric material first, and then the dielectric material formed in the second trench 210b is removed through the etching process .

在步驟320之後,進行步驟330:沉積多晶矽材料於第二溝槽210b的表面上,以於第二溝槽210b的表面上共形地形成多晶矽層250,如圖4C所示。值得一提的是,多晶矽層250還形成於淺溝槽隔離結構220與矽基底層210的表面上。在本揭露的實施例中,沉積多晶矽材料的方法可例如為化學氣相沉積法(CVD)。 After step 320, step 330 is performed: depositing polysilicon material on the surface of the second trench 210b to conformally form a polysilicon layer 250 on the surface of the second trench 210b, as shown in FIG. 4C. It is worth mentioning that the polysilicon layer 250 is also formed on the surface of the shallow trench isolation structure 220 and the silicon base layer 210. In the embodiments of the present disclosure, the method for depositing polysilicon material may be, for example, chemical vapor deposition (CVD).

在步驟330之後,藉由蝕刻製程來移除形成於淺溝槽隔離結構220與矽基底層210的表面上的多晶矽層250,來實現多晶矽層230,如圖4D所示。換言之,多晶矽 層230共形地形成於第二溝槽210b的表面上。 After step 330, the polysilicon layer 250 formed on the surface of the shallow trench isolation structure 220 and the silicon base layer 210 is removed by an etching process to implement the polysilicon layer 230, as shown in FIG. 4D. In other words, polysilicon The layer 230 is conformally formed on the surface of the second trench 210b.

如先前所述,多晶矽層230具有第二導電類型。在本揭露的一些實施例中,可使得步驟330的多晶矽材料為具有第二導電類型的多晶矽材料,如此一來,經由前述步驟,則多晶矽層230即會因此具有第二導電類型。在本揭露的其他實施例中,若步驟330的多晶矽材料為未被摻雜,則可再進一步地對多晶矽層230進行離子佈植(Ion Implantation)處理,來對多晶矽層230進行摻雜,以使得多晶矽層230成為具有第二導電類型的多晶矽層230。在進行所述的離子佈植處理時,如圖4E所示,還會先於淺溝槽隔離結構220與矽基底層210的表面上形成光阻260,再接著進行離子佈植處理,以確保淺溝槽隔離結構220與矽基底層210不會被摻雜。值得一提的是,若第二導電類型為N型,則離子佈植處理係佈植五價離子;若第二導電類型為P型,則離子佈植處理係佈植三價離子。 As previously mentioned, the polysilicon layer 230 has the second conductivity type. In some embodiments of the present disclosure, the polysilicon material of step 330 may be a polysilicon material with a second conductivity type. In this way, through the foregoing steps, the polysilicon layer 230 will therefore have the second conductivity type. In other embodiments of the present disclosure, if the polysilicon material in step 330 is undoped, the polysilicon layer 230 may be further ion-implanted to dope the polysilicon layer 230 to The polysilicon layer 230 becomes the polysilicon layer 230 with the second conductivity type. When performing the ion implantation process, as shown in FIG. 4E, a photoresist 260 is formed on the surface of the shallow trench isolation structure 220 and the silicon base layer 210, and then the ion implantation process is performed to ensure The shallow trench isolation structure 220 and the silicon base layer 210 are not doped. It is worth mentioning that if the second conductivity type is N type, the ion implantation treatment system implants pentavalent ions; if the second conductivity type is P type, the ion implantation treatment system implants trivalent ions.

在多晶矽層230形成之後,進行步驟340:對夾設於兩相鄰的淺溝槽隔離結構220之間的矽基底層210的部分進行離子佈植處理,以於兩相鄰的淺溝槽隔離結構220之間形成具有第一導電類型的高摻雜區240,如圖2所示。 After the polysilicon layer 230 is formed, step 340 is performed: the portion of the silicon base layer 210 interposed between the two adjacent shallow trench isolation structures 220 is ion implanted to isolate the two adjacent shallow trenches Highly doped regions 240 having the first conductivity type are formed between the structures 220, as shown in FIG.

值得一提的是,上述之二極體200的形成方法300的步驟皆能對應至已知之二極體的形成方法的步驟。換言之,本揭露的二極體200的形成方法300不需要增加其他的工藝步驟。進一步而言,在正常的積體電路(integrated circuit,IC)製造流程中有淺溝槽隔離(STI)步驟的都可以 用以實現第一溝槽210a與第二溝槽210b。此外,多晶矽層230也不需要增加其他的工藝步驟,可藉助正常的IC製造流程中的多晶閘極(POLY GATE)步驟來沉積多晶材料,多晶矽層230的摻雜方式可根據具體的製程來確定,如果製程兼容N型多晶矽沉積或P型多晶矽沉積,則不用增加新的摻雜步驟,若製程不兼容N型多晶矽沉積或P型多晶矽沉積,則可在後續的步驟中藉由離子佈植處理,來對多晶矽層230進行摻雜,以使得多晶矽層230成為具有第二導電類型的多晶矽層230。 It is worth mentioning that all the steps of the above-mentioned method 200 for forming the diode 200 can correspond to the steps of the known method for forming the diode. In other words, the method 300 for forming the diode 200 of the present disclosure does not require additional process steps. Further, in the normal integrated circuit (IC) manufacturing process, there are shallow trench isolation (STI) steps can be It is used to realize the first trench 210a and the second trench 210b. In addition, the polysilicon layer 230 does not need to add other process steps. The polysilicon material can be deposited through the poly gate in the normal IC manufacturing process. The doping method of the polysilicon layer 230 can be based on the specific process Make sure that if the process is compatible with N-type polycrystalline silicon deposition or P-type polycrystalline silicon deposition, no new doping step is required. If the process is not compatible with N-type polycrystalline silicon deposition or P-type polycrystalline silicon deposition, ion distribution can be used in subsequent steps In the implantation process, the polysilicon layer 230 is doped so that the polysilicon layer 230 becomes the polysilicon layer 230 with the second conductivity type.

圖5係根據本揭露的第一實施例之二極體200的結構上視示意圖。由圖5可知,相應於淺溝槽隔離結構220的第一溝槽210a係環繞相應於多晶矽層230的第二溝槽210b,且淺溝槽隔離結構220係用以隔離具有第一導電類型的高摻雜區240與具有第二導電類型的多晶矽層230。請一併參照圖2與圖5,多晶矽層230包含上部230a與溝槽區域230b,上部230a相應於第二溝槽210b的頂面,溝槽區域230b相應於第二溝槽210b的底面與側壁。由圖5可知,相應於第二溝槽210b的多晶矽層230的溝槽區域230b於矽基底層210的表面上呈矩陣排列。值得一提的是,圖5中所示的矩陣排列方式僅為例示,本揭露不限於此。 FIG. 5 is a schematic top view of the structure of the diode 200 according to the first embodiment of the present disclosure. As can be seen from FIG. 5, the first trench 210 a corresponding to the shallow trench isolation structure 220 surrounds the second trench 210 b corresponding to the polysilicon layer 230, and the shallow trench isolation structure 220 is used to isolate the first conductivity type The highly doped region 240 and the polysilicon layer 230 having the second conductivity type. 2 and 5 together, the polysilicon layer 230 includes an upper part 230a and a trench region 230b, the upper part 230a corresponds to the top surface of the second trench 210b, and the trench region 230b corresponds to the bottom surface and the side wall of the second trench 210b . As can be seen from FIG. 5, the trench regions 230 b of the polysilicon layer 230 corresponding to the second trench 210 b are arranged in a matrix on the surface of the silicon base layer 210. It is worth mentioning that the matrix arrangement shown in FIG. 5 is only an example, and the disclosure is not limited thereto.

圖6係根據本揭露的第二實施例之二極體200的結構上視示意圖。由圖6可知,相應於淺溝槽隔離結構220的第一溝槽210a係環繞相應於多晶矽層230的第二溝槽210b,且淺溝槽隔離結構220係用以隔離具有第一導電類型 的高摻雜區240與具有第二導電類型的多晶矽層230。由圖6可知,相應於第二溝槽210b的多晶矽層230的溝槽區域230b於矽基底層210的表面上呈環形且共心地排列。 FIG. 6 is a schematic top view of the structure of the diode 200 according to the second embodiment of the present disclosure. 6 that the first trench 210a corresponding to the shallow trench isolation structure 220 surrounds the second trench 210b corresponding to the polysilicon layer 230, and the shallow trench isolation structure 220 is used to isolate the first conductivity type The highly doped region 240 and the polysilicon layer 230 having the second conductivity type. As can be seen from FIG. 6, the trench regions 230 b of the polysilicon layer 230 corresponding to the second trench 210 b are arranged in a ring and concentrically on the surface of the silicon base layer 210.

圖7係根據本揭露的實施例之二極體200的完整器件之結構剖視示意圖。二極體200的完整器件包含導體柱270、電極層280與間隙物290,導體柱270形成於高摻雜區240與多晶矽層230之上,電極層280形成於導體柱270之上,間隙物290形成於導體柱270的兩側。其中,導體柱270用以電性連接高摻雜區240與電極層280和/或用以電性連接多晶矽層230與電極層280。在本揭露的實施例中,間隙物290係以四乙氧基矽烷(tetraethoxysilane,TEOS)和/或高密度電漿(High density plasma,HDP)填充而成,但本揭露不限於此。 7 is a schematic cross-sectional view of a structure of a complete device of a diode 200 according to an embodiment of the present disclosure. The complete device of the diode 200 includes a conductor post 270, an electrode layer 280 and a spacer 290, the conductor post 270 is formed on the highly doped region 240 and the polysilicon layer 230, the electrode layer 280 is formed on the conductor post 270, the spacer 290 is formed on both sides of the conductor post 270. The conductive post 270 is used to electrically connect the highly doped region 240 and the electrode layer 280 and/or to electrically connect the polysilicon layer 230 and the electrode layer 280. In the embodiment of the present disclosure, the spacer 290 is filled with tetraethoxysilane (TEOS) and/or high density plasma (HDP), but the present disclosure is not limited thereto.

綜合上述,本揭露提出一種具有高靜電防護能力之二極體200,透過使用溝槽結構(第二溝槽210b),並在溝槽結構上形成多晶矽層230來做為二極體的電極,以增加P/N界面的接觸面積,從而提高二極體200自身的電流耐受能力。本揭露能夠在不須增加二極體的面積的前提下,即能使二極體具有高靜電防護能力。 In summary, the present disclosure proposes a diode 200 with high electrostatic protection capability. By using a trench structure (second trench 210b) and forming a polysilicon layer 230 on the trench structure as an electrode of the diode, In order to increase the contact area of the P/N interface, the current withstand capability of the diode 200 itself is improved. The disclosure can enable the diode to have a high electrostatic protection capability without increasing the area of the diode.

以上概述了數個實施例的特徵,因此熟習此技藝者可以更了解本揭露的態樣。熟習此技藝者應了解到,其可輕易地把本揭露當作基礎來設計或修改其他的製程與結構,藉此實現和在此所介紹的這些實施例相同的目標及/或達到相同的優點。熟習此技藝者也應可明白,這些等效的建 構並未脫離本揭露的精神與範圍,並且他們可以在不脫離本揭露精神與範圍的前提下做各種的改變、替換與變動。 The above outlines the features of several embodiments, so those skilled in the art can better understand the aspect of the present disclosure. Those skilled in the art should understand that they can easily use the present disclosure as a basis to design or modify other processes and structures, thereby achieving the same goals and/or achieving the same advantages as the embodiments described herein . Those skilled in this art should also understand that these equivalent The structure does not deviate from the spirit and scope of this disclosure, and they can make various changes, replacements, and changes without departing from the spirit and scope of this disclosure.

200‧‧‧二極體 200‧‧‧ Diode

210‧‧‧矽基底層 210‧‧‧Si base layer

220‧‧‧淺溝槽隔離結構 220‧‧‧Shallow trench isolation structure

230‧‧‧多晶矽層 230‧‧‧polysilicon layer

230a‧‧‧上部 230a‧‧‧Upper

230b‧‧‧溝槽區域 230b‧‧‧Trench area

240‧‧‧高摻雜區 240‧‧‧Highly doped area

Claims (14)

一種具有高靜電防護能力之二極體,包含:具有一第一導電類型的一矽基底層;複數個第一溝槽與複數個第二溝槽,形成於該矽基底層中;複數個淺溝槽隔離(Shallow Trench Isolation,STI)結構,分別設置於該些第一溝槽中以填滿該些第一溝槽;以及具有一第二導電類型的一多晶矽層,共形地形成於該些第二溝槽的一表面上。 A diode with high electrostatic protection capability, comprising: a silicon base layer with a first conductivity type; a plurality of first trenches and a plurality of second trenches formed in the silicon base layer; a plurality of shallow A trench isolation (STI) structure is respectively disposed in the first trenches to fill the first trenches; and a polysilicon layer with a second conductivity type is conformally formed in the On a surface of the second trenches. 如申請專利範圍第1項所述之具有高靜電防護能力之二極體,其中該矽基底層更包含具有該第一導電類型的一高摻雜區,其中該高摻雜區係夾設於兩相鄰的該些淺溝槽隔離結構之間。 The diode with high electrostatic protection capability as described in item 1 of the patent scope, wherein the silicon base layer further includes a highly doped region having the first conductivity type, wherein the highly doped region is interposed between Between two adjacent shallow trench isolation structures. 如申請專利範圍第1項所述之具有高靜電防護能力之二極體,其中該些第一溝槽係環繞該些第二溝槽。 The diode with high electrostatic protection capability as described in item 1 of the patent application scope, wherein the first trenches surround the second trenches. 如申請專利範圍第2項所述之具有高靜電防護能力之二極體,其中該些淺溝槽隔離結構用以隔離具有該第一導電類型的該高摻雜區與具有該第二導電類型的該多晶矽層。 The diode with high electrostatic protection capability as described in item 2 of the patent application scope, wherein the shallow trench isolation structures are used to isolate the highly doped region having the first conductivity type from the second conductivity type The polysilicon layer. 如申請專利範圍第1項所述之具有高靜電防護能力之二極體,其中該些第二溝槽於該矽基底層的表面上呈矩陣排列。 The diode with high electrostatic protection capability as described in item 1 of the patent application scope, wherein the second trenches are arranged in a matrix on the surface of the silicon base layer. 如申請專利範圍第1項所述之具有高靜電防護能力之二極體,其中該些第二溝槽於該矽基底層的表面上呈環形且共心地排列。 The diode with high electrostatic protection capability as described in item 1 of the patent application scope, wherein the second trenches are arranged in a ring and concentrically on the surface of the silicon base layer. 一種具有高靜電防護能力之二極體的形成方法,包含:蝕刻具有一第一導電類型的一矽基底層,以形成複數個第一溝槽與複數個第二溝槽於具有該第一導電類型的該矽基底層中;以一介電材料填充該些第一溝槽,以於該些第一溝槽中分別形成複數個淺溝槽隔離結構;以及沉積一多晶矽材料於該些第二溝槽的一表面上,以於該些第二溝槽的該表面上共形地形成一多晶矽層。 A method for forming a diode with high electrostatic protection capability includes: etching a silicon base layer having a first conductivity type to form a plurality of first trenches and a plurality of second trenches having the first conductivity In the silicon base layer of the type; filling the first trenches with a dielectric material to form a plurality of shallow trench isolation structures in the first trenches; and depositing a polysilicon material on the second trenches On a surface of the trench, a polysilicon layer is conformally formed on the surface of the second trenches. 如申請專利範圍第7項所述之具有高靜電防護能力之二極體的形成方法,其中該多晶矽材料為具有一第二導電類型的該多晶矽材料,以使得該多晶矽層成為具有該第二導電類型的該多晶矽層。 The method for forming a diode with high electrostatic protection capability as described in item 7 of the patent scope, wherein the polysilicon material is the polysilicon material with a second conductivity type, so that the polysilicon layer becomes the second conductivity Type of this polysilicon layer. 如申請專利範圍第7項所述之具有高靜電防護能力之二極體的形成方法,更包含:對該多晶矽層進行一離子佈植(Ion Implantation)處理,來對該多晶矽層進行摻雜,以使得該多晶矽層成為具有一第二導電類型的該多晶矽層。 The method for forming a diode with high electrostatic protection capability as described in item 7 of the patent application scope further includes: performing an ion implantation process on the polysilicon layer to dope the polysilicon layer, So that the polysilicon layer becomes the polysilicon layer with a second conductivity type. 如申請專利範圍第7項所述之具有高靜電防護能力之二極體的形成方法,更包含:對該矽基底層進行一離子佈植處理,以於兩相鄰的該些淺溝槽隔離結構之間形成具有該第一導電類型的一高摻雜區。 The method for forming a diode with high electrostatic protection capability as described in item 7 of the patent application scope further includes: performing an ion implantation treatment on the silicon base layer to isolate the two adjacent shallow trenches A highly doped region with the first conductivity type is formed between the structures. 如申請專利範圍第7項所述之具有高靜電防護能力之二極體的形成方法,其中該些第一溝槽係環繞該些第二溝槽。 The method for forming a diode with high electrostatic protection capability as described in item 7 of the patent application scope, wherein the first trenches surround the second trenches. 如申請專利範圍第10項所述之具有高靜電防護能力之二極體的形成方法,其中該些淺溝槽隔離結構用以隔離具有該第一導電類型的該高摻雜區與該多晶矽層。 The method for forming a diode with high electrostatic protection capability as described in item 10 of the patent application scope, wherein the shallow trench isolation structures are used to isolate the highly doped region having the first conductivity type from the polysilicon layer . 如申請專利範圍第7項所述之具有高靜電防護能力之二極體的形成方法,其中該些第二溝槽於該矽基底層的表面上呈矩陣排列。 The method for forming a diode with high electrostatic protection capability as described in item 7 of the patent application scope, wherein the second trenches are arranged in a matrix on the surface of the silicon base layer. 如申請專利範圍第7項所述之具有高靜電防護能力之二極體的形成方法,其中該些第二溝槽於該矽基底層的表面上呈環形且共心地排列。 The method for forming a diode with high electrostatic protection capability as described in item 7 of the patent application scope, wherein the second trenches are arranged in a ring and concentrically on the surface of the silicon base layer.
TW108123320A 2019-07-02 2019-07-02 Diode with high esd protection capability and method for forming the same TWI695479B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108123320A TWI695479B (en) 2019-07-02 2019-07-02 Diode with high esd protection capability and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108123320A TWI695479B (en) 2019-07-02 2019-07-02 Diode with high esd protection capability and method for forming the same

Publications (2)

Publication Number Publication Date
TWI695479B true TWI695479B (en) 2020-06-01
TW202103287A TW202103287A (en) 2021-01-16

Family

ID=72176107

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108123320A TWI695479B (en) 2019-07-02 2019-07-02 Diode with high esd protection capability and method for forming the same

Country Status (1)

Country Link
TW (1) TWI695479B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120068178A1 (en) * 2005-12-28 2012-03-22 Vishay-Siliconix Trench polysilicon diode
US20170243984A1 (en) * 2014-09-10 2017-08-24 Ipdia Semiconductor device comprising a diode and electrostatic discharge protection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120068178A1 (en) * 2005-12-28 2012-03-22 Vishay-Siliconix Trench polysilicon diode
US20170243984A1 (en) * 2014-09-10 2017-08-24 Ipdia Semiconductor device comprising a diode and electrostatic discharge protection device

Also Published As

Publication number Publication date
TW202103287A (en) 2021-01-16

Similar Documents

Publication Publication Date Title
KR100479292B1 (en) Conductive coupling of electrical structures to a semiconductor device located under a buried oxide layer
US20200035667A1 (en) Trench diode and method of forming the same
US8274131B2 (en) Isolation trench with rounded corners for BiCMOS process
US20210005599A1 (en) Internally stacked npn with segmented collector
US20210184055A1 (en) Capacitor structure having vertical diffusion plates
US20120261804A1 (en) Vertical substrate diode, method of manufacture and design structure
TWI440183B (en) Ultra-high voltage n-type-metal-oxide-semiconductor (uhv nmos) device and methods of manufacturing the same
US10541241B2 (en) Semiconductor device having thyristor and metal-oxide semiconductor transistor
TWI692854B (en) Capacitor structure having vertical diffusion plates
KR20030026912A (en) High-voltage periphery
TWI695479B (en) Diode with high esd protection capability and method for forming the same
US9269616B2 (en) Semiconductor device structure and method of forming
KR100853799B1 (en) Trench gate semi-conductor device, and method for fabricating thereof
US8921973B2 (en) Semiconductor device
JP2017168478A (en) Semiconductor device and method for manufacturing the same
CN112086501A (en) Diode with high electrostatic protection capability and forming method thereof
KR20100079158A (en) Method for manufacturing bipolar junction transistor and structure therefor
KR100986630B1 (en) Trench MOS transistor of semiconductor device and manufacturing method thereof