TWI694685B - Bipolar optical code division multiple access system in wireless optical communication - Google Patents

Bipolar optical code division multiple access system in wireless optical communication Download PDF

Info

Publication number
TWI694685B
TWI694685B TW107142305A TW107142305A TWI694685B TW I694685 B TWI694685 B TW I694685B TW 107142305 A TW107142305 A TW 107142305A TW 107142305 A TW107142305 A TW 107142305A TW I694685 B TWI694685 B TW I694685B
Authority
TW
Taiwan
Prior art keywords
optical
bragg grating
fiber bragg
decoding
encoding
Prior art date
Application number
TW107142305A
Other languages
Chinese (zh)
Other versions
TW202021293A (en
Inventor
鄭旭志
連子傑
賴柏翰
曾信賓
Original Assignee
國立虎尾科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立虎尾科技大學 filed Critical 國立虎尾科技大學
Priority to TW107142305A priority Critical patent/TWI694685B/en
Application granted granted Critical
Publication of TWI694685B publication Critical patent/TWI694685B/en
Publication of TW202021293A publication Critical patent/TW202021293A/en

Links

Images

Abstract

Disclosed is a bipolar optical code division multiple access system in wireless optical communication, comprising an encoding device, a light signal transmitting device, a light signal receiving device and a decoding device, wherein by applying the bipolar optical code and the optical code division multiple access to the wireless optical communication, an architecture of the bipolar optical code division multiple access system is realized at low cost, the problem of multiple access interference (MAI) is effectively eliminated and the bit error rate is reduced.

Description

無線光通訊之雙極性分碼多工系統 Bipolar code division multiplexing system for wireless optical communication

本發明相關於一種無線光通訊系統,特別是相關於一種無線光通訊之雙極性分碼多工系統。 The invention relates to a wireless optical communication system, in particular to a bipolar code division multiplexing system of wireless optical communication.

無線光通訊是一種利用光來攜帶資訊的無線通訊技術。有別於無線射頻(Radio frequency;RF)通訊可能有的電磁波干擾而致使在機場塔台和飛機之間的通訊、大型醫院的精密儀器等一些特殊場合的使用上被嚴格管制,無線光通訊有機會能提供更穩定的通訊服務,而成為目前相當熱門的研究課題。 Wireless optical communication is a wireless communication technology that uses light to carry information. Different from the radio frequency (Radio frequency; RF) communication that may have electromagnetic wave interference, it is strictly controlled on some special occasions such as communication between airport towers and aircraft, precision instruments in large hospitals, and wireless optical communication has the opportunity It can provide a more stable communication service and has become a very popular research topic.

光分碼多工擷取(Optical Code Division Multiple Access;OCDMA)技術是CDMA技術與光纖通訊技術相結合的一種技術,其依使用的光源及訊號疊加的形式可分為同調OCDMA系統及非同調OCDMA系統,而以非同調OCDMA系統因結構簡單、硬體要求寬鬆、成本低等而為目前的主流。非同調OCDMA系統採用光場的強度來表示訊號並進行編碼,其編碼方式以單極性分碼(0、1)為主,即,所有訊號以大於零或等於零來表示,利用光訊號的有無來得到單極性編碼的資料。 Optical Code Division Multiple Access (OCDMA) technology is a combination of CDMA technology and optical fiber communication technology. It can be divided into coherent OCDMA system and non-coherent OCDMA according to the form of light source and signal superposition The non-coherent OCDMA system is currently the mainstream due to its simple structure, loose hardware requirements, and low cost. The non-coherent OCDMA system uses the intensity of the optical field to represent the signal and encode it. The encoding method is mainly unipolar code division (0, 1), that is, all signals are represented by greater than zero or equal to zero, using the presence or absence of optical signals Get unipolar coded information.

然而,非同調OCDMA系統受限於單極性編碼的使用,所能提供的編碼數目較少,系統容量顯得不足,而在使用者數量增加、傳輸速率提升的同時,會有系統成本提高及多重擷取干擾(Multiple Access Interference;MAI)等種種問題,故作為光通訊系統尚有待改善。 However, the non-coherent OCDMA system is limited to the use of unipolar coding. The number of codes that can be provided is small, and the system capacity is insufficient. As the number of users increases and the transmission rate increases, there will be increased system costs and multiple acquisitions. Multiple interference (Multiple Access Interference; MAI) and other problems, so as the optical communication system still needs to be improved.

因此,本發明的目的即在提供一種無線光通訊之雙極性分碼多工系統,以解決習知技術的問題。 Therefore, the object of the present invention is to provide a bipolar code division multiplexing system for wireless optical communication to solve the problems of the conventional technology.

本發明為解決習知技術之問題所採用之技術手段係提供一種無線光通訊之雙極性分碼多工系統,包含:一編碼端裝置,包括一光源、一編碼端光耦合器、二個編碼端光循環器及一光開關,二個該編碼端光循環器之第一埠分別經由該編碼端光耦合器而光路連接於該光源,其中一個該編碼端光循環器之第二埠光路連接有形成反射光訊號之一第一編碼端光纖布拉格光柵群組,另外一個該編碼端光循環器之第二埠光路連接有形成反射光訊號之一第二編碼端光纖布拉格光柵群組,該光開關之二個輸入端分別光路連接於二個該編碼端光循環器之第三埠,而使來自該光源的光經由該光開關之切換而輸入資料並自該光開關之二個輸出端輸出光資料訊號;一光發送裝置,包括二個發送端光準直器、一垂直偏振片、一水平偏振片及一分光鏡,該垂直偏振片及該水平偏振片經由個別的該發送端光準直器而分別光路連接於該光開關之個別的該輸出端,而使自該編碼端裝置所輸出的光資料訊號分別藉由該垂直偏振片之垂直偏振及該水平偏振片之水平偏振而送至該分光鏡,而匯整成一個光傳輸訊號而予以傳輸;一光接收裝置,包括一極化分光鏡及二個接收端光準直器,該極化分光鏡 光路連接於該分光鏡,二個該接收端光準直器光路連接於該極化分光鏡,而由該極化分光鏡接收該光傳輸訊號,並將該光傳輸訊號依極化狀態而分別分光至二個該接收端光準直器;以及一解碼端裝置,包括二個解碼端光循環器、二個解碼端光耦合器及一平衡式光檢測器,二個該解碼端光循環器之第一埠經由個別的該接收端光準直器而分別光路連接於該極化分光鏡,其中一個該解碼端光耦合器分別經由形成穿透光訊號之一第二解碼端光纖布拉格光柵群組以及經由形成穿透光訊號之一第一解碼端光纖布拉格光柵群組而光路連接於個別的該解碼端光循環器之第二埠,另外一個該解碼端光耦合器光路連接於個別的該解碼端光循環器之第三埠,該平衡式光檢測器光路連接於二個該解碼端光耦合器,以對該光傳輸訊號解碼,其中該第一編碼端光纖布拉格光柵群組係波長對應於該第一解碼端光纖布拉格光柵群組,該第二編碼端光纖布拉格光柵群組係波長對應於該第二解碼端光纖布拉格光柵群組。 The technical means adopted by the present invention to solve the problems of the conventional technology is to provide a bipolar code division multiplexing system for wireless optical communication, including: an encoding end device, including a light source, an encoding end optical coupler, and two encodings An end optical circulator and an optical switch, two first ports of the encoding end optical circulator are respectively connected to the light source through the encoding end optical coupler, and one of the second ports of the encoding end optical circulator is connected There is a first encoding end fiber Bragg grating group forming a reflected light signal, and another second port optical path of the encoding end optical circulator is connected to a second encoding end fiber Bragg grating group forming a reflected light signal, the light The two input terminals of the switch are respectively optically connected to the third ports of the two optical circulators at the coding end, so that the light from the light source inputs data through the switching of the optical switch and outputs from the two output terminals of the optical switch Optical data signal; an optical transmission device, including two optical collimators at the transmitting end, a vertical polarizing plate, a horizontal polarizing plate and a beam splitter, the vertical polarizing plate and the horizontal polarizing plate are collimated by the individual transmitting end light Straightener and the optical path are respectively connected to the individual output ends of the optical switch, so that the optical data signals output from the encoding end device are sent by the vertical polarization of the vertical polarizer and the horizontal polarization of the horizontal polarizer, respectively To the beam splitter, it is integrated into an optical transmission signal and transmitted; an optical receiving device, including a polarized beam splitter and two receiving end optical collimators, the polarized beam splitter The optical path is connected to the beam splitter, the two optical collimator optical paths are connected to the polarized beam splitter, and the polarized beam splitter receives the optical transmission signal, and separates the optical transmission signal according to the polarization state Splitting into two optical collimators at the receiving end; and a decoding device including two optical circulators at the decoding end, two optical couplers at the decoding end and a balanced photodetector, and two optical circulators at the decoding end The first port is connected to the polarizing beam splitter through an optical path of each receiving end optical collimator, and one of the decoding end optical couplers respectively passes through a second decoding end fiber Bragg grating group forming a penetrating optical signal Group and an optical path connected to an individual second port of the decoding end optical circulator through a first decoding end fiber Bragg grating group forming a penetrating optical signal, and the other optical path of the decoding end optical coupler is connected to an individual The third port of the decode end optical circulator. The balanced optical detector optical path is connected to the two decode end optical couplers to decode the optical transmission signal. The first encoder end fiber Bragg grating group corresponds to the wavelength At the first decoding end fiber Bragg grating group, the second encoding end fiber Bragg grating group corresponds to a wavelength corresponding to the second decoding end fiber Bragg grating group.

在本發明的一實施例中係提供一種無線光通訊之雙極性分碼多工系統,其中該雙極性分碼多工系統包括複數個該編碼端裝置及複數個該解碼端裝置,該光發送裝置更包括二個發送端光耦合器,該光發送裝置之該垂直偏振片及該水平偏振片經由個別的該發送端光耦合器而分別光路連接於各個該編碼端裝置的光開關之個別的該輸出端,該光接收裝置更包括二個接收端光耦合器,各個該解碼端裝置之個別的該解碼端光循環器分別經由個別的該接收端光耦合器而光路連接於該極化分光鏡。 In an embodiment of the present invention, a bipolar code division multiplexing system for wireless optical communication is provided, wherein the bipolar code division multiplexing system includes a plurality of encoding end devices and a plurality of decoding end devices, and the optical transmission The device further includes two transmitting-end optical couplers, the vertical polarizer and the horizontal polarizer of the optical transmitting device are respectively optically connected to the individual optical switches of the encoding-end devices via the individual transmitting-end optical couplers. At the output end, the light receiving device further includes two receiving end optical couplers, and each of the decoding end optical circulators of each decoding end device is connected to the polarization splitting optical path via the individual receiving end optical coupler mirror.

在本發明的一實施例中係提供一種無線光通訊之雙極性分碼多工系統,其中該編碼端裝置更包括一摻鉺光纖放大器,光路連接在該光源與該編碼端光耦合器之間。 In one embodiment of the present invention, a bipolar code division multiplexing system for wireless optical communication is provided, wherein the encoding end device further includes an erbium-doped fiber amplifier, and the optical path is connected between the light source and the encoding end optical coupler .

在本發明的一實施例中係提供一種無線光通訊之雙極性分碼多工系統,其中該解碼端裝置更包括一衰減器,光路連接在該解碼端光耦合器與該平衡式光檢測器之間。 In an embodiment of the present invention, a bipolar code division multiplexing system for wireless optical communication is provided, wherein the decoding end device further includes an attenuator, and the optical path is connected to the decoding end optical coupler and the balanced photodetector between.

在本發明的一實施例中係提供一種無線光通訊之雙極性分碼多工系統,其中該光源係為一超高亮度發光二極體。 In an embodiment of the present invention, a bipolar code division multiplexing system for wireless optical communication is provided, wherein the light source is an ultra-high brightness light-emitting diode.

在本發明的一實施例中係提供一種無線光通訊之雙極性分碼多工系統,其中該第一編碼端光纖布拉格光柵群組包括第一波長之光纖布拉格光柵及第三波長之光纖布拉格光柵,該第二編碼端光纖布拉格光柵群組包括第二波長之光纖布拉格光柵及第四波長之光纖布拉格光柵,該第一解碼端光纖布拉格光柵群組包括該第一波長之光纖布拉格光柵及該第三波長之光纖布拉格光柵,該第二解碼端光纖布拉格光柵群組包括該第二波長之光纖布拉格光柵及該第四波長之光纖布拉格光柵。 In an embodiment of the present invention, a bipolar code division multiplexing system for wireless optical communication is provided, wherein the first code-end fiber Bragg grating group includes a first wavelength fiber Bragg grating and a third wavelength fiber Bragg grating , The second encoding end fiber Bragg grating group includes a second wavelength fiber Bragg grating and a fourth wavelength fiber Bragg grating, the first decoding end fiber Bragg grating group includes the first wavelength fiber Bragg grating and the first For a three-wavelength fiber Bragg grating, the second decoding-end fiber Bragg grating group includes the second wavelength fiber Bragg grating and the fourth wavelength fiber Bragg grating.

在本發明的一實施例中係提供一種無線光通訊之雙極性分碼多工系統,其中該第一波長為1543nm,該第二波長為1546nm,該第三波長為1549nm,以及該第四波長為1552nm。 In an embodiment of the invention, a bipolar code division multiplexing system for wireless optical communication is provided, wherein the first wavelength is 1543 nm, the second wavelength is 1546 nm, the third wavelength is 1549 nm, and the fourth wavelength It is 1552nm.

經由本發明所採用之技術手段,在本發明的無線光通訊之雙極性分碼多工系統中,係將雙極性分碼(-1、1)、光分碼多工擷取技術及無線光通訊相結合,而利用簡單而低成本的結構實現雙極性光分碼多工的架構,能夠有效消除多重擷取干擾的問題,降低誤碼率(bit error rate;BER)。 Through the technical means adopted by the present invention, in the bipolar code division multiplexing system of the wireless optical communication of the present invention, the bipolar code division (-1, 1), optical code division multiplexing extraction technology and wireless optical The combination of communication and the use of a simple and low-cost structure to achieve bipolar optical code division multiplexing architecture can effectively eliminate the problem of multiple acquisition interference and reduce the bit error rate (bit error rate; BER).

100:無線光通訊之雙極性分碼多工系統 100: Bipolar code division multiplexing system for wireless optical communication

100a:無線光通訊之雙極性分碼多工系統 100a: Bipolar code division multiplexing system for wireless optical communication

100b:無線光通訊之雙極性分碼多工系統 100b: Bipolar code division multiplexing system for wireless optical communication

1:編碼端裝置 1: Coding device

11:光源 11: Light source

12:編碼端光耦合器 12: Encoding end optical coupler

13:編碼端光循環器 13: Code end optical circulator

131:第一埠 131: First port

132:第二埠 132: Second port

133:第三埠 133: Third port

14:編碼端光循環器 14: Code end optical circulator

141:第一埠 141: First port

142:第二埠 142: Second port

143:第三埠 143: Third Port

15:光開關 15: Optical switch

151:輸入端 151: input

152:輸入端 152: input

153:輸出端 153: output

154:輸出端 154: output

16:摻鉺光纖放大器 16: Erbium-doped fiber amplifier

2:光發送裝置 2: Optical transmission device

21:發送端光準直器 21: Transmitting optical collimator

22:發送端光準直器 22: Transmitting optical collimator

23:垂直偏振片 23: Vertical polarizer

24:水平偏振片 24: horizontal polarizer

25:分光鏡 25: Beamsplitter

26:發送端光耦合器 26: Transmitting optical coupler

27:發送端光耦合器 27: Transmitting optical coupler

3:光接收裝置 3: Optical receiving device

31:極化分光鏡 31: polarization beam splitter

32:接收端光準直器 32: Receiver optical collimator

33:接收端光準直器 33: Receiver optical collimator

34:接收端光耦合器 34: Receiver optical coupler

35:接收端光耦合器 35: Receiver optical coupler

4:解碼端裝置 4: Decoding device

41:解碼端光循環器 41: Decoding end optical circulator

411:第一埠 411: First port

412:第二埠 412: Second port

413:第三埠 413: Third port

42:解碼端光循環器 42: Decoding end optical circulator

421:第一埠 421: First port

422:第二埠 422: Second port

423:第三埠 423: Third port

43:解碼端光耦合器 43: Decoding end optical coupler

44:解碼端光耦合器 44: Decoding end optical coupler

45:平衡式光檢測器 45: Balanced photodetector

46:衰減器 46: attenuator

FBG1:第一編碼端光纖布拉格光柵群組 FBG1: Fiber Bragg Grating Group at the first coding end

FBG2:第二編碼端光纖布拉格光柵群組 FBG2: Fiber Bragg Grating Group at the second encoding end

FBG3:第一解碼端光纖布拉格光柵群組 FBG3: The first decoding end fiber Bragg grating group

FBG4:第二解碼端光纖布拉格光柵群組 FBG4: Fiber Bragg Grating Group at the second decoding end

L0:光 L0: light

L1:光資料訊號 L1: Optical data signal

L2:光傳輸訊號 L2: optical transmission signal

PD1:分支 PD1: branch

PD2:分支 PD2: branch

〔第1圖〕為顯示根據本發明的一實施例的無線光通訊之雙極性分碼多工系統的示意圖;〔第2圖〕為顯示根據本發明的一實施例的無線光通訊之雙極性分碼多工系統於多使用者時的示意圖;〔第3圖〕為顯示根據本發明的另一實施例的無線光通訊之雙極性分碼多工系統的示意圖。 [Figure 1] is a schematic diagram showing a bipolar code division multiplexing system for wireless optical communication according to an embodiment of the present invention; [Figure 2] is a bipolar display for wireless optical communication according to an embodiment of the present invention A schematic diagram of a code division multiplexing system when there are multiple users; [Figure 3] is a schematic diagram showing a bipolar code division multiplexing system for wireless optical communication according to another embodiment of the present invention.

以下根據第1圖至第3圖,而說明本發明的實施方式。該說明並非為限制本發明的實施方式,而為本發明之實施例的一種。 The embodiments of the present invention will be described below based on FIGS. 1 to 3. This description is not intended to limit the embodiments of the present invention, but is one of the examples of the present invention.

如第1圖所示,依據本發明的一實施例的一無線光通訊之雙極性分碼多工系統100,包含:一編碼端裝置1,包括一光源11、一編碼端光耦合器12、二個編碼端光循環器13、14及一光開關15,二個該編碼端光循環器13、14之第一埠131、141分別經由該編碼端光耦合器12而光路連接於該光源11,其中一個該編碼端光循環器13之第二埠132光路連接有形成反射光訊號之第一編碼端光纖布拉格光柵群組FBG1,另外一個該編碼端光循環器14之第二埠142光路連接有形成反射光訊號之一第二編碼端光纖布拉格光柵群組FBG2,該光開關15之二個輸入端151、152分別光路連接於二個該編碼端光循環器13、14之第三埠133、143,而使來自該光源11的光L0經由該光開關15之切換而輸入資料並自該光開關15之二個輸出端153、154輸出光資料訊號L1;一光發送裝置2,包括二個發送端光準直器21、22、一垂直偏振片23、一水平偏振片24及一分光鏡25,該垂直偏振片23及該水平偏振片24經由個別的該發送端光準直器21、22而分別光路連接 於該光開關15之個別的該輸出端153、154,而使自該編碼端裝置1所輸出的光資料訊號L1分別藉由該垂直偏振片23之垂直偏振及該水平偏振片24之水平偏振而送至該分光鏡25,而匯整成一個光傳輸訊號L2而予以傳輸;一光接收裝置3,包括一極化分光鏡31及二個接收端光準直器32、33,該極化分光鏡31光路連接於該分光鏡25,二個該接收端光準直器32、33光路連接於該極化分光鏡31,而由該極化分光鏡31接收該光傳輸訊號L2,並將該光傳輸訊號L2依極化狀態而分別分光至二個該接收端光準直器32、33;以及一解碼端裝置4,包括二個解碼端光循環器41、42、二個解碼端光耦合器43、44及一平衡式光檢測器45,二個該解碼端光循環器41、42之第一埠411、421經由個別的該接收端光準直器32、33而分別光路連接於該極化分光鏡31,其中一個該解碼端光耦合器43分別經由形成穿透光訊號之一第二解碼端光纖布拉格光柵群組FBG4以及經由形成穿透光訊號之一第一解碼端光纖布拉格光柵群組FBG3而光路連接於個別的該解碼端光循環器41、42之第二埠412、422,另外一個該解碼端光耦合器44光路連接於個別的該解碼端光循環器41、42之第三埠413、423,該平衡式光檢測器45光路連接於二個該解碼端光耦合器43、44,以對該光傳輸訊號L2解碼,其中該第一編碼端光纖布拉格光柵群組FBG1係分別波長對應於該第一解碼端光纖布拉格光柵群組FBG3,該第二編碼端光纖布拉格光柵群組FBG2係分別波長對應於該第二解碼端光纖布拉格光柵群組FBG4。 As shown in FIG. 1, a bipolar code division multiplexing system 100 for wireless optical communication according to an embodiment of the present invention includes: an encoding end device 1, including a light source 11, an encoding end optical coupler 12, Two code-end optical circulators 13, 14 and an optical switch 15, two first ports 131, 141 of the code-end optical circulators 13, 14 are respectively connected to the light source 11 via the code-end optical coupler 12 and the light path , One of the optical ports of the second port 132 of the encoding end optical circulator 13 is connected to the first encoding end fiber Bragg grating group FBG1 forming the reflected optical signal, and the other of the second port 142 of the encoding end optical circulator 14 is optically connected There is a second encoding end fiber Bragg grating group FBG2 which forms one of the reflected optical signals. The two input ends 151 and 152 of the optical switch 15 are respectively optically connected to the third ports 133 of the two encoding end optical circulators 13 and 14 143, so that the light L0 from the light source 11 inputs data through the switching of the optical switch 15 and outputs the optical data signal L1 from the two output terminals 153, 154 of the optical switch 15; an optical transmission device 2, including two A transmitting end optical collimator 21, 22, a vertical polarizing plate 23, a horizontal polarizing plate 24 and a beam splitter 25, the vertical polarizing plate 23 and the horizontal polarizing plate 24 pass through the individual transmitting end optical collimator 21 , 22 and optical connection At the individual output terminals 153, 154 of the optical switch 15, the optical data signal L1 output from the encoding terminal device 1 passes the vertical polarization of the vertical polarizer 23 and the horizontal polarization of the horizontal polarizer 24, respectively It is sent to the beam splitter 25, and aggregated into an optical transmission signal L2 for transmission; an optical receiving device 3 includes a polarized beam splitter 31 and two receiving end optical collimators 32, 33, the polarization The optical path of the beam splitter 31 is connected to the beam splitter 25, the two optical paths of the receiving end optical collimators 32, 33 are connected to the polarized beam splitter 31, and the polarized beam splitter 31 receives the optical transmission signal L2, and The optical transmission signal L2 is split into two optical collimators 32, 33 of the receiving end according to the polarization state; and a decoding end device 4 includes two decoding end optical circulators 41, 42, two decoding end light The couplers 43, 44 and a balanced photodetector 45, the two first ports 411, 421 of the decoding end optical circulators 41, 42 are respectively optically connected to the receiving end optical collimators 32, 33 respectively In the polarization beam splitter 31, one of the decoding-end optical couplers 43 respectively passes through a second decoding-end fiber Bragg grating group FBG4 forming a through-optical signal and a first decoding-end fiber Bragg through forming a through-optical signal The grating group FBG3 and the optical path are connected to the second ports 412 and 422 of the individual decoding end optical circulators 41 and 42, and the other optical path of the decoding end optical coupler 44 is connected to the individual decoding end optical circulators 41 and 42 The third port 413, 423, the optical path of the balanced photodetector 45 is connected to two of the decoding end optical couplers 43, 44 to decode the optical transmission signal L2, wherein the first encoding end fiber Bragg grating group FBG1 respectively corresponds to the wavelength of the first decoding end fiber Bragg grating group FBG3, and the second encoding end of the fiber Bragg grating group FBG2 corresponds to the wavelength of the second decoding end fiber Bragg grating group FBG4.

具體而言,在該編碼端裝置1中,該光源11係為一超高亮度發光二極體(Super Luminescent Diode;SLD),其為一種基於放大自發放射的邊緣發光二極體光源,用以提供穩定的寬頻光線。另外,在本實施例中,該第一編碼端光纖布拉格光柵群組FBG1包括第一波長λ1之光纖布拉格光柵及第三波長λ3之 光纖布拉格光柵,該第二編碼端光纖布拉格光柵群組FBG2包括第二波長λ2之光纖布拉格光柵及第四波長λ4之光纖布拉格光柵,以此四個波長λ1、λ2、λ3、λ4表示為四個位元的使用者編碼。並且,在本實施例中,各個位元所代表的波長分別為:該第一波長λ1為1543nm,該第二波長λ2為1546nm,該第三波長λ3為1549nm,以及該第四波長λ4為1552nm。相似地,在該解碼端裝置4中,該第一編碼端光纖布拉格光柵群組FBG1係波長對應於該第一解碼端光纖布拉格光柵群組FBG3,該第二編碼端光纖布拉格光柵群組FBG2係波長對應於該第二解碼端光纖布拉格光柵群組FBG4,因此該第一解碼端光纖布拉格光柵群組FBG3包括該第一波長λ1之光纖布拉格光柵及該第三波長λ3之光纖布拉格光柵,該第二解碼端光纖布拉格光柵群組FBG4包括該第二波長λ2之光纖布拉格光柵及該第四波長λ4之光纖布拉格光柵。 Specifically, in the encoding end device 1, the light source 11 is a super high-luminance LED (Super Luminescent Diode; SLD), which is an edge-emitting diode light source based on amplified spontaneous emission, used to Provide stable broadband light. In addition, in this embodiment, the first encoding end fiber Bragg grating group FBG1 includes a fiber Bragg grating of a first wavelength λ1 and a third wavelength of λ3 Fiber Bragg Grating, the second coding end fiber Bragg Grating group FBG2 includes a fiber Bragg grating with a second wavelength λ2 and a fiber Bragg grating with a fourth wavelength λ4, and the four wavelengths λ1, λ2, λ3, λ4 are expressed as four Bit user code. Moreover, in this embodiment, the wavelengths represented by the respective bits are: the first wavelength λ1 is 1543 nm, the second wavelength λ2 is 1546 nm, the third wavelength λ3 is 1549 nm, and the fourth wavelength λ4 is 1552 nm . Similarly, in the decoding end device 4, the wavelength of the first encoding end fiber Bragg grating group FBG1 corresponds to the first decoding end fiber Bragg grating group FBG3, and the second encoding end fiber Bragg grating group FBG2 system The wavelength corresponds to the second decoding end fiber Bragg grating group FBG4, so the first decoding end fiber Bragg grating group FBG3 includes the fiber Bragg grating of the first wavelength λ1 and the fiber Bragg grating of the third wavelength λ3, the first The two decoding end fiber Bragg grating group FBG4 includes the fiber Bragg grating of the second wavelength λ2 and the fiber Bragg grating of the fourth wavelength λ4.

以下說明本實施例的該無線光通訊之雙極性分碼多工系統100的運作。如第1圖所示,在該編碼端裝置1中,自該光源11所發出的光L0經由該編碼端光耦合器12而傳送至圖中上下兩個該編碼端光循環器13、14之第一埠131、141。光循環器(Optical circulator)係為一種具有三個埠(port)的元件,其中自光循環器第一埠所輸入的光訊號,只有第二埠可以收到,第三埠則否;自光循環器第二埠所輸入的光訊號,只有第三埠可以收到,第一埠則否。藉此,與二個該編碼端光循環器13、14之第二埠132、142分別光路連接的光纖布拉格光柵則會反射需要編碼的特定波長(即,該第一波長λ1、該第二波長λ2、該第三波長λ3及該第四波長λ4),而由二個該編碼端光循環器13、14之第三埠133、143將反射回來的光送入該光開關15中。該光開關15係藉由切換而選擇傳送代表「Bit 1」或「Bit 0(-1)」的光訊號,藉以輸入資料。該光開關15可為一機械式光開 關,而為了提升系統速率,亦可選擇切換頻率更高的光開關。在本實施例中,在該光開關15為「OFF」時,圖中上側的該編碼端光循環器13所反射回來的光會自該輸入端151送往該輸出端153,圖中下側的該編碼端光循環器14所反射回來的光會自該輸入端152送往該輸出端154。在該光開關15為「ON」時,圖中上側的該編碼端光循環器13所反射回來的光會自該輸入端151送往該輸出端154,圖中下側的該編碼端光循環器14所反射回來的光會自該輸入端152送往該輸出端153。 The operation of the bipolar code division multiplexing system 100 of the wireless optical communication of this embodiment will be described below. As shown in FIG. 1, in the encoding end device 1, the light L0 emitted from the light source 11 is transmitted to the upper and lower two encoding end optical circulators 13 and 14 through the encoding end optical coupler 12. The first port 131,141. An optical circulator is an element with three ports. Among the optical signals input from the first port of the optical circulator, only the second port can receive it, but the third port does not. Only the third port can receive the optical signal input from the second port of the circulator, but the first port does not. In this way, the fiber Bragg gratings connected to the second ports 132, 142 of the two encoding end optical circulators 13, 14 respectively will reflect the specific wavelength to be encoded (ie, the first wavelength λ1, the second wavelength λ2, the third wavelength λ3 and the fourth wavelength λ4), and the reflected light is sent into the optical switch 15 by the third ports 133 and 143 of the two encoding-end optical circulators 13 and 14. The optical switch 15 selects and transmits the optical signal representing "Bit 1" or "Bit 0(-1)" by switching to input data. The optical switch 15 can be a mechanical optical switch In order to improve the system speed, you can also choose an optical switch with a higher switching frequency. In this embodiment, when the optical switch 15 is "OFF", the light reflected by the code end optical circulator 13 on the upper side in the figure is sent from the input end 151 to the output end 153, and the lower side in the figure The light reflected by the encoder-end optical circulator 14 is sent from the input end 152 to the output end 154. When the optical switch 15 is "ON", the light reflected by the encoder end optical circulator 13 on the upper side in the figure will be sent from the input end 151 to the output end 154, and the encoder end light circulation on the lower side in the figure The light reflected by the receiver 14 is sent from the input terminal 152 to the output terminal 153.

在該光發送裝置2中,自該光開關15之該輸出端153所送入的光資料訊號L1經由該發送端光準直器21而送至該垂直偏振片23並極化成90°,自該光開關15之該輸出端154所送入的光資料訊號L1則經由該發送端光準直器22而送至該水平偏振片24並極化成0°。之後,兩個不同偏振態的光經過該分光鏡25而耦合成一個訊號(即,該光傳輸訊號L2)並在自由空間(Free space)中進行無線光通訊傳輸,傳送至該光接收裝置3。 In the optical transmission device 2, the optical data signal L1 sent from the output end 153 of the optical switch 15 is sent to the vertical polarizer 23 through the optical collimator 21 at the transmission end and polarized to 90°, from The optical data signal L1 sent from the output end 154 of the optical switch 15 is sent to the horizontal polarizer 24 through the transmitting end optical collimator 22 and polarized to 0°. After that, two lights with different polarization states are coupled into a signal (ie, the light transmission signal L2) through the beam splitter 25 and transmitted in a free space (wireless optical communication) to the light receiving device 3 .

在該光接收裝置3中,接收到的該光傳輸訊號L2經過該極化分光鏡31分開成90°及0°的光訊號,並經由個別的該接收端光準直器32、33而分別傳往二個該解碼端光循環器41、42。 In the light receiving device 3, the received light transmission signal L2 is separated into 90° and 0° optical signals by the polarizing beam splitter 31, and respectively passed through the respective receiving end optical collimators 32, 33 It is sent to the two optical circulators 41 and 42 at the decoding end.

在該解碼端裝置4中,90°的光訊號自該極化分光鏡31傳至圖中上側的該解碼端光循環器41之第一埠411,0°的光訊號則自該極化分光鏡31傳至圖中下側的該解碼端光循環器42之第一埠421。藉此,由與二個該解碼端光循環器41、42之第二埠412、422分別光路連接的光纖布拉格光柵解碼穿透至圖中上側的該解碼端光耦合器43,或者是由該解碼端光循環器41、42之第三埠413、423反射至圖中下側的該解碼端光耦合器44。傳往該解碼端光耦合器43、44的光會 分別送入該平衡式光檢測器45的二個分支PD1、PD2,而利用該平衡式光檢測器45的輸出為二個分支相減的此一特性,達成正確的解碼。舉例而言,在光訊號為「Bit 1」時,所有的光訊號皆會穿透過光纖布拉格光柵進入圖中上側的該分支PD1,而不會進行反射,從而在該平衡式光檢測器45透過二個該分支PD1、PD2相減(1-0=1)而得到「Bit 1」的結果。在光訊號為「Bit 0」時,所有的光訊號皆會被光纖布拉格光柵反射至圖中下側的該分支PD2,從而在該平衡式光檢測器45透過二個該分支PD1、PD2相減(0-1=-1)得到「Bit 0(-1)」的結果。在光訊號不正確時,通過二個該解碼端光循環器41、42的光會同時發生穿透與反射,使得在該平衡式光檢測器45之二個該分支PD1、PD2皆會有經穿透與反射的訊號,經過相減後會相消,而達到消除多重擷取干擾的效果。 In the decoding device 4, the 90° optical signal passes from the polarization beam splitter 31 to the first port 411 of the decoding end optical circulator 41 on the upper side in the figure, and the 0° optical signal is split from the polarization The mirror 31 passes to the first port 421 of the decoding end optical circulator 42 on the lower side in the figure. In this way, the fiber Bragg grating decoded by the optical paths connected to the second ports 412, 422 of the two decoding end optical circulators 41, 42 respectively penetrates to the decoding end optical coupler 43 on the upper side in the figure, or by the The third ports 413 and 423 of the decode end optical circulators 41 and 42 reflect to the decode end optical coupler 44 on the lower side in the figure. The light meeting to the decode end optical couplers 43, 44 The two branches PD1 and PD2 of the balanced photodetector 45 are respectively sent, and the output of the balanced photodetector 45 is the characteristic that the two branches are subtracted to achieve correct decoding. For example, when the optical signal is "Bit 1", all optical signals will pass through the fiber Bragg grating and enter the branch PD1 on the upper side of the figure without reflection, so that the balanced light detector 45 transmits The two branches PD1 and PD2 are subtracted (1-0=1) to obtain the result of "Bit 1". When the optical signal is "Bit 0", all optical signals will be reflected by the fiber Bragg grating to the branch PD2 in the lower side of the figure, so that the balanced photodetector 45 is subtracted through the two branches PD1 and PD2 (0-1=-1) Get the result of "Bit 0(-1)". When the optical signal is incorrect, the light passing through the two decoding end optical circulators 41 and 42 will simultaneously penetrate and reflect, so that both branches PD1 and PD2 of the balanced light detector 45 will have The penetrating and reflecting signals will be eliminated after subtraction, so as to achieve the effect of eliminating multiple acquisition interference.

如第2圖所示,根據本發明的實施例,在多使用者的情況下,無線光通訊之雙極性分碼多工系統100a包括複數個該編碼端裝置1及複數個該解碼端裝置4,該光發送裝置2更包括二個發送端光耦合器26、27,該光發送裝置2之該垂直偏振片23及該水平偏振片24經由個別的該發送端光耦合器26、27而分別光路連接於各個該編碼端裝置1的光開關15之個別的該輸出端153、154,該光接收裝置3更包括二個接收端光耦合器34、35,各個該解碼端裝置4之個別的該解碼端光循環器41、42分別經由個別的該接收端光耦合器34、35而光路連接於該極化分光鏡31。此一實施例的無線光通訊之雙極性分碼多工系統100a與前述實施例的差別在於,在多使用者的情況下,各個該編碼端裝置1會將所有屬於垂直極化狀態的部分經由該發送端光耦合器26集結至該垂直偏振片23,所有屬於垂直極化狀態的部分經由該發送端光耦合器27集結至該水平偏振片24,而由分光鏡25將多使用者的編碼訊號耦合並送入自由空間,而後由該極化分光鏡31將垂 直與水平的訊號分開,分別經由個別的該接收端光耦合器34、35而傳送至各個該解碼端裝置4,從而實現多使用者的無線光通訊。 As shown in FIG. 2, according to an embodiment of the present invention, in the case of multiple users, the bipolar code division multiplexing system 100a for wireless optical communication includes a plurality of the encoding end devices 1 and a plurality of the decoding end devices 4 The optical transmitting device 2 further includes two transmitting-end optical couplers 26 and 27. The vertical polarizing plate 23 and the horizontal polarizing plate 24 of the optical transmitting device 2 are respectively separated by the transmitting-end optical couplers 26 and 27. The optical path is connected to the individual output terminals 153 and 154 of the optical switch 15 of each encoding-end device 1, the optical receiving device 3 further includes two receiving-end optical couplers 34 and 35, and each of the decoding-end device 4 has an individual The decoding-end optical circulators 41 and 42 are optically connected to the polarization beam splitter 31 via individual receiving-end optical couplers 34 and 35, respectively. The difference between the bipolar code division multiplexing system 100a of the wireless optical communication of this embodiment and the foregoing embodiments is that in the case of multiple users, each of the encoding end devices 1 will pass all the parts that belong to the vertically polarized state through The transmitting-end optical coupler 26 is assembled to the vertical polarizer 23, and all parts that belong to the vertically polarized state are integrated to the horizontal-polarizing plate 24 via the transmitting-end optical coupler 27, and the multi-user code is encoded by the beam splitter 25 The signal is coupled and sent into free space, and then the polarization beam splitter 31 will drop The straight and horizontal signals are separated and transmitted to the respective decoding-end devices 4 through the individual receiving-end optical couplers 34 and 35, respectively, so as to realize wireless optical communication for multiple users.

如第3圖所示,依據本發明的一實施例的無線光通訊之雙極性分碼多工系統100b,該編碼端裝置1更包括一摻鉺光纖放大器16,光路連接在該光源11與該編碼端光耦合器12之間,以將來自該光源11的輸入功率增大,改進整體系統消耗功率過大造成最後結果功率過小的問題。另外,在本實施例中,該解碼端裝置4更包括一衰減器46,光路連接在該解碼端光耦合器43與該平衡式光檢測器45之間,以有效地消除額外的訊號穿透所造成的多餘功率。 As shown in FIG. 3, according to an embodiment of the present invention, a bipolar code division multiplexing system 100b for wireless optical communication, the encoding end device 1 further includes an erbium-doped fiber amplifier 16, an optical path connected between the light source 11 and the Between the optical couplers 12 at the encoding end, the input power from the light source 11 is increased to improve the problem that the overall system power consumption is too large and the resulting power is too small. In addition, in this embodiment, the decoding-end device 4 further includes an attenuator 46, and the optical path is connected between the decoding-end optical coupler 43 and the balanced photodetector 45 to effectively eliminate additional signal penetration The excess power caused.

藉由上述結構,在本發明的無線光通訊之雙極性分碼多工系統100、100a、100b中,係將雙極性分碼(-1、1)、光分碼多工擷取技術及無線光通訊相結合,而利用簡單而低成本的結構實現雙極性光分碼多工的架構,能夠有效消除多重擷取干擾的問題,降低誤碼率。 With the above structure, in the bipolar code division multiplexing system 100, 100a, 100b of the wireless optical communication of the present invention, the bipolar code division (-1, 1), optical code division multiplexing extraction technology and wireless The combination of optical communication and the use of a simple and low-cost structure to achieve bipolar optical code division multiplexing architecture can effectively eliminate the problem of multiple acquisition interference and reduce the bit error rate.

以上之敘述以及說明僅為本發明之較佳實施例之說明,對於此項技術具有通常知識者當可依據以下所界定申請專利範圍以及上述之說明而作其他之修改,惟此些修改仍應是為本發明之發明精神而在本發明之權利範圍中。 The above description and description are only for the description of the preferred embodiments of the present invention. Those with ordinary knowledge of this technology can make other modifications based on the scope of the patent application defined below and the above description, but these modifications should still be It is within the scope of the rights of the invention for the spirit of the invention.

100:無線光通訊之雙極性分碼多工系統 100: Bipolar code division multiplexing system for wireless optical communication

1:編碼端裝置 1: Coding device

11:光源 11: Light source

12:編碼端光耦合器 12: Encoding end optical coupler

13:編碼端光循環器 13: Code end optical circulator

131:第一埠 131: First port

132:第二埠 132: Second port

133:第三埠 133: Third port

14:編碼端光循環器 14: Code end optical circulator

141:第一埠 141: First port

142:第二埠 142: Second port

143:第三埠 143: Third Port

15:光開關 15: Optical switch

151:輸入端 151: input

152:輸入端 152: input

153:輸出端 153: output

154:輸出端 154: output

2:光發送裝置 2: Optical transmission device

21:發送端光準直器 21: Transmitting optical collimator

22:發送端光準直器 22: Transmitting optical collimator

23:垂直偏振片 23: Vertical polarizer

24:水平偏振片 24: horizontal polarizer

25:分光鏡 25: Beamsplitter

3:光接收裝置 3: Optical receiving device

31:極化分光鏡 31: polarization beam splitter

32:接收端光準直器 32: Receiver optical collimator

33:接收端光準直器 33: Receiver optical collimator

4:解碼端裝置 4: Decoding device

41:解碼端光循環器 41: Decoding end optical circulator

411:第一埠 411: First port

412:第二埠 412: Second port

413:第三埠 413: Third port

42:解碼端光循環器 42: Decoding end optical circulator

421:第一埠 421: First port

422:第二埠 422: Second port

423:第三埠 423: Third port

43:解碼端光耦合器 43: Decoding end optical coupler

44:解碼端光耦合器 44: Decoding end optical coupler

45:平衡式光檢測器 45: Balanced photodetector

FBG1:第一編碼端光纖布拉格光柵群組 FBG1: Fiber Bragg Grating Group at the first coding end

FBG2:第二編碼端光纖布拉格光柵群組 FBG2: Fiber Bragg Grating Group at the second encoding end

FBG3:第一解碼端光纖布拉格光柵群組 FBG3: The first decoding end fiber Bragg grating group

FBG4:第二解碼端光纖布拉格光柵群組 FBG4: Fiber Bragg Grating Group at the second decoding end

L0:光 L0: light

L1:光資料訊號 L1: Optical data signal

L2:光傳輸訊號 L2: optical transmission signal

PD1:分支 PD1: branch

PD2:分支 PD2: branch

Claims (7)

一種無線光通訊之雙極性分碼多工系統,包含:一編碼端裝置,包括一光源、一編碼端光耦合器、二個編碼端光循環器及一光開關,二個該編碼端光循環器之第一埠分別經由該編碼端光耦合器而光路連接於該光源,其中一個該編碼端光循環器之第二埠光路連接有形成反射光訊號之一第一編碼端光纖布拉格光柵群組,另外一個該編碼端光循環器之第二埠光路連接有形成反射光訊號之一第二編碼端光纖布拉格光柵群組,該光開關之二個輸入端分別光路連接於二個該編碼端光循環器之第三埠,而使來自該光源的光經由該光開關之切換而輸入資料並自該光開關之二個輸出端輸出光資料訊號;一光發送裝置,包括二個發送端光準直器、一垂直偏振片、一水平偏振片及一分光鏡,該垂直偏振片及該水平偏振片經由個別的該發送端光準直器而分別光路連接於該光開關之個別的該輸出端,而使自該編碼端裝置所輸出的光資料訊號分別藉由該垂直偏振片之垂直偏振及該水平偏振片之水平偏振而送至該分光鏡,而匯整成一個光傳輸訊號而予以傳輸;一光接收裝置,包括一極化分光鏡及二個接收端光準直器,該極化分光鏡光路連接於該分光鏡,二個該接收端光準直器光路連接於該極化分光鏡,而由該極化分光鏡接收該光傳輸訊號,並將該光傳輸訊號依極化狀態而分別分光至二個該接收端光準直器;以及一解碼端裝置,包括二個解碼端光循環器、二個解碼端光耦合器及一平衡式光檢測器,二個該解碼端光循環器之第一埠經由個別的該接收端光準直器而分別光路連接於該極化分光鏡,其中一個該解碼端光耦合器分別經由形成穿透光 訊號之一第二解碼端光纖布拉格光柵群組以及經由形成穿透光訊號之一第一解碼端光纖布拉格光柵群組而光路連接於個別的該解碼端光循環器之第二埠,另外一個該解碼端光耦合器光路連接於個別的該解碼端光循環器之第三埠,該平衡式光檢測器光路連接於二個該解碼端光耦合器,以對該光傳輸訊號解碼,其中該第一編碼端光纖布拉格光柵群組係波長對應於該第一解碼端光纖布拉格光柵群組,該第二編碼端光纖布拉格光柵群組係波長對應於該第二解碼端光纖布拉格光柵群組。 A bipolar code division multiplexing system for wireless optical communication, comprising: an encoding end device, including a light source, an encoding end optical coupler, two encoding end optical circulators and an optical switch, and two encoding end optical cycles The first port of the device is connected to the light source through the encoding end optical coupler, and the second port of the encoding end optical circulator is connected to the first encoding end fiber Bragg grating group forming the reflected light signal In addition, the second port optical path of the encoding end optical circulator is connected to a second encoding end fiber Bragg grating group forming a reflected light signal, and the two input ends of the optical switch are respectively connected to the two encoding end optical paths The third port of the circulator, allowing light from the light source to input data through the switching of the optical switch and output optical data signals from the two output ends of the optical switch; an optical sending device, including two sending end optical standards Straightener, a vertical polarizer, a horizontal polarizer and a beam splitter, the vertical polarizer and the horizontal polarizer are respectively optically connected to the individual output ends of the optical switch through the individual optical collimators at the transmitting end , So that the optical data signals output from the encoding end device are sent to the beam splitter through the vertical polarization of the vertical polarizer and the horizontal polarization of the horizontal polarizer, and are aggregated into an optical transmission signal for transmission An optical receiving device, including a polarizing beam splitter and two receiving end optical collimators, the polarizing beam splitter optical path is connected to the beam splitter, the two receiving end optical collimator optical paths are connected to the polarizing beam splitter Mirror, and the polarization beam splitter receives the optical transmission signal, and splits the optical transmission signal into two optical collimators at the receiving end according to the polarization state; and a decoding end device including two decoding ends An optical circulator, two decoding-end optical couplers, and a balanced photodetector, and the first ports of the two decoding-end optical circulators are respectively connected to the polarized beam splitter via individual optical collimators at the receiving end Mirror, one of the decoding end optical couplers is respectively formed through the penetrating light One of the second decoding end fiber Bragg grating group of the signal and the first decoding end fiber Bragg grating group forming the penetrating optical signal are optically connected to the second port of the individual decoding end optical circulator, and the other one of the The optical path of the decode end optical coupler is connected to the third port of the individual decode end optical circulator. The balanced optical detector optical path is connected to two of the decode end optical couplers to decode the optical transmission signal. An encoding-end fiber Bragg grating group corresponds to a wavelength corresponding to the first decoding-end fiber Bragg grating group, and a second encoding-end fiber Bragg grating group corresponds to a wavelength corresponding to the second decoding-end fiber Bragg grating group. 如請求項1所述之無線光通訊之雙極性分碼多工系統,其中該雙極性分碼多工系統包括複數個該編碼端裝置及複數個該解碼端裝置,該光發送裝置更包括二個發送端光耦合器,該光發送裝置之該垂直偏振片及該水平偏振片經由個別的該發送端光耦合器而分別光路連接於各個該編碼端裝置的光開關之個別的該輸出端,該光接收裝置更包括二個接收端光耦合器,各個該解碼端裝置之個別的該解碼端光循環器分別經由個別的該接收端光耦合器而光路連接於該極化分光鏡。 The bipolar code division multiplexing system of wireless optical communication according to claim 1, wherein the bipolar code division multiplexing system includes a plurality of the encoding end devices and a plurality of the decoding end devices, and the optical transmission device further includes two A transmitting end optical coupler, the vertical polarizing plate and the horizontal polarizing plate of the optical transmitting device are respectively optically connected to the individual output ends of the optical switches of the encoding end devices through the individual transmitting end optical couplers, The optical receiving device further includes two receiving-end optical couplers, and each of the decoding-end optical circulators of each decoding-end device is optically connected to the polarizing beam splitter through an individual receiving-end optical coupler. 如請求項1所述之無線光通訊之雙極性分碼多工系統,其中該編碼端裝置更包括一摻鉺光纖放大器,光路連接在該光源與該編碼端光耦合器之間。 The bipolar code division multiplexing system of wireless optical communication according to claim 1, wherein the encoding end device further includes an erbium-doped fiber amplifier, and the optical path is connected between the light source and the encoding end optical coupler. 如請求項1或3所述之無線光通訊之雙極性分碼多工系統,其中該解碼端裝置更包括一衰減器,光路連接在該解碼端光耦合器與該平衡式光檢測器之間。 The bipolar code division multiplexing system of wireless optical communication according to claim 1 or 3, wherein the decoding end device further includes an attenuator, and the optical path is connected between the decoding end optical coupler and the balanced photodetector . 如請求項1所述之無線光通訊之雙極性分碼多工系統,其中該光源係為一超高亮度發光二極體。 The bipolar code division multiplexing system of wireless optical communication according to claim 1, wherein the light source is an ultra-high brightness light emitting diode. 如請求項1所述之無線光通訊之雙極性分碼多工系統,其中該第一編碼端光纖布拉格光柵群組包括第一波長之光纖布拉格光柵及第三波長之光纖布拉格光柵,該第二編碼端光纖布拉格光柵群組包括第二波長之光纖布拉格光柵及第四波長之光纖布拉格光柵,該第一解碼端光纖布拉格光柵群組包括該第一波長之光纖布拉格光柵及該第三波長之光纖布拉格光柵,該第二解碼端光纖布拉格光柵群組包括該第二波長之光纖布拉格光柵及該第四波長之光纖布拉格光柵。 The bipolar code division multiplexing system of wireless optical communication according to claim 1, wherein the first coded end fiber Bragg grating group includes a first wavelength fiber Bragg grating and a third wavelength fiber Bragg grating, the second The encoding end fiber Bragg grating group includes a second wavelength fiber Bragg grating and a fourth wavelength fiber Bragg grating, and the first decoding end fiber Bragg grating group includes the first wavelength fiber Bragg grating and the third wavelength fiber A Bragg grating, the second decoding end fiber Bragg grating group includes the second wavelength fiber Bragg grating and the fourth wavelength fiber Bragg grating. 如請求項6所述之無線光通訊之雙極性分碼多工系統,其中該第一波長為1543nm,該第二波長為1546nm,該第三波長為1549nm,以及該第四波長為1552nm。 The bipolar code division multiplexing system of wireless optical communication according to claim 6, wherein the first wavelength is 1543 nm, the second wavelength is 1546 nm, the third wavelength is 1549 nm, and the fourth wavelength is 1552 nm.
TW107142305A 2018-11-27 2018-11-27 Bipolar optical code division multiple access system in wireless optical communication TWI694685B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107142305A TWI694685B (en) 2018-11-27 2018-11-27 Bipolar optical code division multiple access system in wireless optical communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107142305A TWI694685B (en) 2018-11-27 2018-11-27 Bipolar optical code division multiple access system in wireless optical communication

Publications (2)

Publication Number Publication Date
TWI694685B true TWI694685B (en) 2020-05-21
TW202021293A TW202021293A (en) 2020-06-01

Family

ID=71896247

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107142305A TWI694685B (en) 2018-11-27 2018-11-27 Bipolar optical code division multiple access system in wireless optical communication

Country Status (1)

Country Link
TW (1) TWI694685B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056518A1 (en) 2001-01-13 2002-07-18 Nokia Corporation Method for optical coding, optical coder and ocdma network architecture
WO2002058285A2 (en) 2001-01-22 2002-07-25 Essex Corporation Optical cdma communications system using otdl device
US6807372B1 (en) * 2000-07-14 2004-10-19 University Of Maryland Integrated spectral encoder/decoder for optical CDMA communication system
WO2006083822A2 (en) * 2005-01-31 2006-08-10 Telcordia Technologies, Inc. Multi-wavelength optical cdma with differential encoding and bipolar differential detection
WO2007053172A2 (en) * 2005-02-18 2007-05-10 Telcordia Technologies, Inc. Phase chip frequency-bins optical code division multiple access
US7689124B2 (en) * 2004-12-17 2010-03-30 Electronics And Telecommunications Research Institute Two-dimensional optical CDMA system, PN coded wavelength/time encoder and decoder therein, and method of encoding/decoding
US7983562B1 (en) * 2005-06-30 2011-07-19 Hrl Laboratories, Llc Dynamic coding for optical code-division multiple access
WO2018133262A1 (en) * 2017-01-20 2018-07-26 深圳大学 Method and system for constructing two-dimensional bipolar code with time/frequency domain zero-correlation zone

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807372B1 (en) * 2000-07-14 2004-10-19 University Of Maryland Integrated spectral encoder/decoder for optical CDMA communication system
WO2002056518A1 (en) 2001-01-13 2002-07-18 Nokia Corporation Method for optical coding, optical coder and ocdma network architecture
WO2002058285A2 (en) 2001-01-22 2002-07-25 Essex Corporation Optical cdma communications system using otdl device
US7689124B2 (en) * 2004-12-17 2010-03-30 Electronics And Telecommunications Research Institute Two-dimensional optical CDMA system, PN coded wavelength/time encoder and decoder therein, and method of encoding/decoding
WO2006083822A2 (en) * 2005-01-31 2006-08-10 Telcordia Technologies, Inc. Multi-wavelength optical cdma with differential encoding and bipolar differential detection
US7620328B2 (en) * 2005-01-31 2009-11-17 Telcordia Technologies, Inc. Multi-wavelength optical CDMA with differential encoding and bipolar differential detection
WO2007053172A2 (en) * 2005-02-18 2007-05-10 Telcordia Technologies, Inc. Phase chip frequency-bins optical code division multiple access
US7983562B1 (en) * 2005-06-30 2011-07-19 Hrl Laboratories, Llc Dynamic coding for optical code-division multiple access
WO2018133262A1 (en) * 2017-01-20 2018-07-26 深圳大学 Method and system for constructing two-dimensional bipolar code with time/frequency domain zero-correlation zone

Also Published As

Publication number Publication date
TW202021293A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
US9294146B2 (en) System for transmission over a multi-mode and/or multi-core optical fiber
Yang et al. Optical CDMA network codecs structured with M-sequence codes over waveguide-grating routers
CN102771066B (en) Apparatus and method for controlling the lasing wavelength of a tunable laser, and wavelength division multiplexed passive optical network comprising same
CN108650091B (en) Phase decoding method, phase decoding receiving device and quantum key distribution system
EP2398166A2 (en) Low-noise optical signal transmitter with low-noise multi-wavelength light source, broadcast signal transmitter using low-noise multi-wavelength light source, and optical network with the same
Cheng et al. Wavelength division multiplexing/spectral amplitude coding applications in fiber vibration sensor systems
CN109981174A (en) Light frequency-hopping system and transmitter based on optical circulator
JP4977899B2 (en) Optical communication system, optical transmitter, optical receiver and method, and optical correlator used in these
EP1382140A2 (en) Optical sources and transmitters for optical telecommunications
Griffin et al. Demonstration of data transmission using coherent correlation to reconstruct a coded pulse sequence
CN209517162U (en) A kind of palarization multiplexing two-way quantum key dissemination system
TWI694685B (en) Bipolar optical code division multiple access system in wireless optical communication
KR100488415B1 (en) Optical spectral domain CDMA transmitting apparatus and method with bipolar capacity
US20110013909A1 (en) Optical Code Division Multiplexing Access System
CN110149208B (en) Transmitting end coding module of integrated time phase coding quantum key distribution system
Ullah et al. Feasibility analysis of 2-dimensional permutation vector optical code division multiple access passive optical network
CN205986907U (en) High one -tenth point -to -point QKD system of code check and transmitting terminal, receiving terminal
Chen et al. A tunable encoder/decoder based on polarization modulation for the SAC-OCDMA PON
CN210578593U (en) Integrated waveguide polarization orthogonal rotation reflection device and quantum key distribution system
CN210137334U (en) Quantum key transmitter based on time phase coding and quantum key distribution system
JP4556780B2 (en) Optical waveguide device and optical code division multiplexing communication system
CA2338027A1 (en) Optical cdma using a cascaded mask structure
CN113438026B (en) Optical frequency hopping communication system based on optical fiber Bragg grating
Sahbudin et al. Cost comparison of the detection techniques for optical spectrum CDMA system
Alhassan et al. Beat noise mitigation through spatial multiplexing in spectral amplitude coding OCDMA networks

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees