TWI694634B - Cathode layer and membrane electrode assembly of solid oxide fuel cell - Google Patents

Cathode layer and membrane electrode assembly of solid oxide fuel cell Download PDF

Info

Publication number
TWI694634B
TWI694634B TW107144783A TW107144783A TWI694634B TW I694634 B TWI694634 B TW I694634B TW 107144783 A TW107144783 A TW 107144783A TW 107144783 A TW107144783 A TW 107144783A TW I694634 B TWI694634 B TW I694634B
Authority
TW
Taiwan
Prior art keywords
layer
perovskite crystal
fuel cell
oxide fuel
cathode layer
Prior art date
Application number
TW107144783A
Other languages
Chinese (zh)
Other versions
TW201933662A (en
Inventor
周子琪
邱國創
劉子瑜
阮永祥
朱英豪
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN201910062006.4A priority Critical patent/CN110085873B/en
Priority to US16/255,833 priority patent/US10944115B2/en
Publication of TW201933662A publication Critical patent/TW201933662A/en
Application granted granted Critical
Publication of TWI694634B publication Critical patent/TWI694634B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

A cathode layer and a membrane electrode assembly of solid oxide fuel cell are provided. The cathode layer consists of a plurality of perovskite crystal films, and an average change rate of the liner thermal expansion coefficient of these perovskite crystal films is 5% to 40% along a thickness direction. The membrane electrode assembly includes above cathode layer, and the liner thermal expansion coefficient of these perovskite crystal films decreases towards a solid electrolyte layer of the membrane electrode assembly.

Description

固態氧化物燃料電池的陰極層與膜電極組Cathode layer and membrane electrode assembly of solid oxide fuel cell

本發明是有關於一種固態氧化物燃料電池技術,且特別是有關於一種固態氧化物燃料電池的陰極層與膜電極組(membrane electrode assembly,MEA)。The present invention relates to a solid oxide fuel cell technology, and particularly to a cathode layer and a membrane electrode assembly (MEA) of a solid oxide fuel cell.

固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)是一種利用固態陶瓷材料做為電解質的燃料電池技術。整個系統的運轉溫度介在500℃~1000℃之間,屬於高溫型燃料電池,因此具有很好的燃料選擇的靈活性,可選擇的燃料包括甲烷、天然氣、城市煤氣、生物質、柴油以及其它碳氫化合物。Solid Oxide Fuel Cell (SOFC) is a fuel cell technology that uses solid ceramic materials as electrolytes. The operating temperature of the entire system is between 500°C and 1000°C, and it is a high-temperature fuel cell, so it has good flexibility in fuel selection. The fuels that can be selected include methane, natural gas, city gas, biomass, diesel, and other carbon. Hydrogen compounds.

然而,由於燃料電池之膜電極組中的固態電解質與電極(陰極層與陽極層)在熱膨脹係數(CTE)相差大,所以固態電解質及電極容易因為循環熱應力而被破壞並產生裂化,造成固態氧化物燃料電池運轉發生問題。However, because the solid electrolyte and the electrodes (cathode layer and anode layer) in the fuel cell membrane electrode group have a large difference in coefficient of thermal expansion (CTE), the solid electrolyte and electrode are easily damaged and cracked due to cyclic thermal stress, resulting in solid state There is a problem with the operation of the oxide fuel cell.

本發明提供一種固態氧化物燃料電池的陰極層,能降少熱應力的產生。The invention provides a cathode layer of a solid oxide fuel cell, which can reduce the generation of thermal stress.

本發明另提供一種固態氧化物燃料電池的膜電極組,能大幅降低熱應力對電池效能的影響。The invention also provides a membrane electrode assembly of a solid oxide fuel cell, which can greatly reduce the influence of thermal stress on the battery performance.

本發明的固態氧化物燃料電池的陰極層,是由多數個鈣鈦礦晶體層所構成,且所述鈣鈦礦晶體層的線性熱膨脹係數在厚度方向的平均變化率為5%至40%。The cathode layer of the solid oxide fuel cell of the present invention is composed of a plurality of perovskite crystal layers, and the average linear thermal expansion coefficient of the perovskite crystal layer in the thickness direction is 5% to 40%.

本發明的固態氧化物燃料電池的膜電極組,包括陰極層、陽極層以及置於陰極層和陽極層之間的固態電解質層,所述陰極層即為上述由多數個鈣鈦礦晶體層所構成的陰極層,且鈣鈦礦晶體層的線性熱膨脹係數往固態電解質層減少。The membrane electrode assembly of the solid oxide fuel cell of the present invention includes a cathode layer, an anode layer, and a solid electrolyte layer interposed between the cathode layer and the anode layer. The cathode layer is composed of a plurality of perovskite crystal layers described above. The cathode layer is formed, and the linear thermal expansion coefficient of the perovskite crystal layer decreases toward the solid electrolyte layer.

基於上述,本發明藉由多數層鈣鈦礦晶體層構成陰極層,並通過控制各層之線性熱膨脹係數往固態電解質層減少,因此膜電極組能對於熱衝擊具有高的抵抗性,大幅降低熱循環應力對固態氧化物燃料電池效能的影響。Based on the above, the present invention constitutes a cathode layer by a plurality of perovskite crystal layers, and reduces the linear thermal expansion coefficient of each layer toward the solid electrolyte layer. Therefore, the membrane electrode assembly can have high resistance to thermal shock and greatly reduce the thermal cycle The effect of stress on the performance of solid oxide fuel cells.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and understandable, the embodiments are specifically described below in conjunction with the accompanying drawings for detailed description as follows.

請參考以下實施例及隨附圖式,以便更充分地了解本發明,但是本發明仍可以藉由多種不同形式來實踐,且不應將其解釋為限於本文所述之實施例。而在圖式中,為求明確起見對於各構件以及其相對尺寸可能未按實際比例繪製。Please refer to the following embodiments and accompanying drawings to understand the present invention more fully, but the present invention can still be practiced in many different forms and should not be interpreted as being limited to the embodiments described herein. In the drawings, for the sake of clarity, the components and their relative sizes may not be drawn according to the actual scale.

圖1是依照本發明的第一實施例的一種固態氧化物燃料電池的陰極層的剖面示意圖。1 is a schematic cross-sectional view of a cathode layer of a solid oxide fuel cell according to the first embodiment of the present invention.

請參照圖1,第一實施例的陰極層100是由多數個鈣鈦礦晶體層102a與102b所構成,且鈣鈦礦晶體層102a與102b的線性熱膨脹係數在厚度方向的平均變化率為5%至40%,可舉例為10%至35%、20%至35%、10%至25%、或者10%至20%。在文中所謂的「線性熱膨脹係數在厚度方向的平均變化率」是指,若有N層鈣鈦礦晶體層,先取得相鄰兩層的線性熱膨脹係數數值在厚度方向之(N-1)個變化率,再將這些變化率的總和除以(N-1),以得到變化率的平均值。鈣鈦礦晶體層102a與102b的材料例如鑭鍶鈷鐵氧化物、鑭鍶鐵氧化物或鑭鍶錳氧化物,且鈣鈦礦晶體層102a與102b的孔隙率可相近或一致。鈣鈦礦晶體層102a與102b基本上可以是相同或不同的鈣鈦礦材料;若是鈣鈦礦晶體層102a與102b為相同材料,例如鑭鍶鈷鐵氧化物(La1-x Srx Co1-y Fey O3 ,其中x=0.1~0.9,y=0.3~1.0、或者x=0.2~0.8,y=0.2~1.0),則可藉由調整鍶(Sr)和鈷(Co)的比例改變線性熱膨脹係數,如增加Sr或Co能得到線性熱膨脹係數較大的鈣鈦礦晶體層材料。在另一實施例中,若是鈣鈦礦晶體層102a與102b為相同材料,例如鑭鍶錳氧化物(La1-z Srz MnO3 ,其中z=0.1~0.5)、或鑭鍶鐵氧化物(La1-w Srw FeO3 ,w=0.1~0.5),則可藉由調整Sr的比例改變線性熱膨脹係數,如增加Sr能得到線性熱膨脹係數較大的鈣鈦礦晶體層材料。1, the cathode layer 100 of the first embodiment is composed of a plurality of perovskite crystal layers 102a and 102b, and the average change rate of the linear thermal expansion coefficient of the perovskite crystal layers 102a and 102b in the thickness direction is 5 % To 40%, for example, 10% to 35%, 20% to 35%, 10% to 25%, or 10% to 20%. The so-called "average rate of change of linear thermal expansion coefficient in the thickness direction" means that if there are N perovskite crystal layers, first obtain the (N-1) values of the linear thermal expansion coefficient values of the two adjacent layers in the thickness direction Change rate, and then divide the sum of these change rates by (N-1) to get the average value of change rate. The materials of the perovskite crystal layers 102a and 102b are, for example, lanthanum strontium cobalt iron oxide, lanthanum strontium iron oxide, or lanthanum strontium manganese oxide, and the porosity of the perovskite crystal layers 102a and 102b may be similar or consistent. The perovskite crystal layers 102a and 102b can be basically the same or different perovskite materials; if the perovskite crystal layers 102a and 102b are the same material, such as lanthanum strontium cobalt iron oxide (La 1-x Sr x Co 1 -y Fe y O 3 , where x=0.1~0.9, y=0.3~1.0, or x=0.2~0.8, y=0.2~1.0), you can adjust the ratio of strontium (Sr) and cobalt (Co) Changing the linear thermal expansion coefficient, such as increasing Sr or Co, can obtain a perovskite crystal layer material with a larger linear thermal expansion coefficient. In another embodiment, if the perovskite crystal layers 102a and 102b are the same material, such as lanthanum strontium manganese oxide (La 1-z Sr z MnO 3 , where z=0.1~0.5), or lanthanum strontium iron oxide (La 1-w Sr w FeO 3 , w=0.1~0.5), the linear thermal expansion coefficient can be changed by adjusting the ratio of Sr. For example, increasing Sr can obtain a perovskite crystal layer material with a large linear thermal expansion coefficient.

在第一實施例中,鈣鈦礦晶體層102b接觸固態電解質層104,鈣鈦礦晶體層102a未接觸固態電解質層104,因此鈣鈦礦晶體層102b的熱膨脹係數比鈣鈦礦晶體層102a的熱膨脹係數小,舉例來說,在厚度方向上最上層(鈣鈦礦晶體層102a)的線性熱膨脹係數例如是1.2×10-5 /K至2×10-5 /K、或者1.8×10-5 /K至2×10-5 /K,在厚度方向上最下層(鈣鈦礦晶體層102b)的線性熱膨脹係數例如是9×10-6 /K至1.5×10-5 /K、或者1.2×10-5 /K至1.5×10-5 /K,但本發明並不限於此。In the first embodiment, the perovskite crystal layer 102b contacts the solid electrolyte layer 104, and the perovskite crystal layer 102a does not contact the solid electrolyte layer 104, so the coefficient of thermal expansion of the perovskite crystal layer 102b is higher than that of the perovskite crystal layer 102a. The coefficient of thermal expansion is small, for example, the linear thermal expansion coefficient of the uppermost layer (perovskite crystal layer 102a) in the thickness direction is, for example, 1.2×10 −5 /K to 2×10 −5 /K, or 1.8×10 −5 /K to 2×10 -5 /K, the linear thermal expansion coefficient of the lowermost layer (perovskite crystal layer 102b) in the thickness direction is, for example, 9×10 -6 /K to 1.5×10 -5 /K, or 1.2× 10 -5 /K to 1.5×10 -5 /K, but the present invention is not limited to this.

圖2是依照本發明的第二實施例的一種固態氧化物燃料電池的陰極層的剖面示意圖,其中使用第一實施例的元件符號來表示相同或類似的構件,且相同的構件的說明可參照第一實施例,於此不再贅述。2 is a schematic cross-sectional view of a cathode layer of a solid oxide fuel cell according to a second embodiment of the present invention, in which the element symbols of the first embodiment are used to denote the same or similar components, and the description of the same components can be referred to The first embodiment will not be repeated here.

請參照圖2,第二實施例的陰極層200與第一實施例的差別在於鈣鈦礦晶體層的層數,第一實施例的鈣鈦礦晶體層的層數是兩層,第二實施例的鈣鈦礦晶體層有三層,包含在厚度方向上最上層的鈣鈦礦晶體層202a、鈣鈦礦晶體層202b與在厚度方向上最下層的鈣鈦礦晶體層202c。2, the difference between the cathode layer 200 of the second embodiment and the first embodiment is the number of perovskite crystal layers. The number of the perovskite crystal layers of the first embodiment is two, the second embodiment The example perovskite crystal layer has three layers, including the uppermost perovskite crystal layer 202a in the thickness direction, the perovskite crystal layer 202b, and the lowermost perovskite crystal layer 202c in the thickness direction.

至於鈣鈦礦晶體層202a~c的線性熱膨脹係數在厚度方向的平均變化率以及材料的選擇均可參照第一實施例,其中在厚度方向上最上層(鈣鈦礦晶體層202a)的線性熱膨脹係數例如是1.2×10-5 /K至2×10-5 /K、或者1.8×10-5 /K至2×10-5 /K,在厚度方向上最下層(鈣鈦礦晶體層202c)的線性熱膨脹係數例如是9×10-6 /K至1.5×10-5 /K、或者1.2×10-5 /K至1.4×10-5 /K。在第二實施例中,鈣鈦礦晶體層202c接觸固態電解質層104,鈣鈦礦晶體層202b和202a未接觸固態電解質層104,且鈣鈦礦晶體層202b位在鈣鈦礦晶體層202a和202c之間,所以鈣鈦礦晶體層202c(第三層)的熱膨脹係數要小於鈣鈦礦晶體層202b(第二層)的熱膨脹係數、鈣鈦礦晶體層202b(第二層)的熱膨脹係數要小於鈣鈦礦晶體層202a(第一層)的熱膨脹係數;舉例來說,鈣鈦礦晶體層202a~c中相鄰的兩層之線性熱膨脹係數相差2×10-6 /K至5×10-6 /K,但本發明並不限於此。As for the average change rate of the linear thermal expansion coefficient of the perovskite crystal layers 202a~c in the thickness direction and the selection of materials, refer to the first embodiment, in which the linear thermal expansion of the uppermost layer (perovskite crystal layer 202a) in the thickness direction The coefficient is, for example, 1.2×10 -5 /K to 2×10 -5 /K, or 1.8×10 -5 /K to 2×10 -5 /K, and the lowest layer in the thickness direction (perovskite crystal layer 202c) The linear thermal expansion coefficient of is, for example, 9×10 −6 /K to 1.5×10 −5 /K, or 1.2×10 −5 /K to 1.4×10 −5 /K. In the second embodiment, the perovskite crystal layer 202c contacts the solid electrolyte layer 104, the perovskite crystal layers 202b and 202a do not contact the solid electrolyte layer 104, and the perovskite crystal layer 202b is located in the perovskite crystal layer 202a and Between 202c, so the thermal expansion coefficient of the perovskite crystal layer 202c (third layer) is smaller than the thermal expansion coefficient of the perovskite crystal layer 202b (second layer) and the thermal expansion coefficient of the perovskite crystal layer 202b (second layer) It is smaller than the thermal expansion coefficient of the perovskite crystal layer 202a (first layer); for example, the linear thermal expansion coefficients of two adjacent layers in the perovskite crystal layers 202a~c differ by 2×10 -6 /K to 5× 10 -6 /K, but the invention is not limited to this.

圖3是依照本發明的第三實施例的一種固態氧化物燃料電池的陰極層的剖面示意圖,其中使用第一實施例的元件符號來表示相同或類似的構件,且相同的構件的說明可參照第一實施例,於此不再贅述。3 is a schematic cross-sectional view of a cathode layer of a solid oxide fuel cell according to a third embodiment of the present invention, in which the element symbols of the first embodiment are used to denote the same or similar components, and the description of the same components can be referred to The first embodiment will not be repeated here.

請參照圖3,第三實施例的陰極層300與第一實施例的差別在於鈣鈦礦晶體層的層數,第一實施例的鈣鈦礦晶體層的層數是兩層,第三實施例的鈣鈦礦晶體層有四層,包含在厚度方向上最上層的鈣鈦礦晶體層302a、鈣鈦礦晶體層302b、鈣鈦礦晶體層302c與在厚度方向上最下層的鈣鈦礦晶體層302d。3, the difference between the cathode layer 300 of the third embodiment and the first embodiment is the number of perovskite crystal layers. The number of the perovskite crystal layers of the first embodiment is two, the third embodiment The example perovskite crystal layer has four layers, including the uppermost perovskite crystal layer 302a in the thickness direction, the perovskite crystal layer 302b, the perovskite crystal layer 302c, and the lowermost perovskite layer in the thickness direction Crystalline layer 302d.

至於鈣鈦礦晶體層302a~d的線性熱膨脹係數在厚度方向的平均變化率以及材料的選擇均可參照第一實施例,其中在厚度方向上最上層(鈣鈦礦晶體層302a)的線性熱膨脹係數例如是1.2×10-5 /K至2×10-5 /K、或者1.8×10-5 /K至2×10-5 /K,在厚度方向上最下層(鈣鈦礦晶體層302d)的線性熱膨脹係數例如是9×10-6 /K至1.5×10-5 /K、或者9×10-6 /K至1.3×10-5 /K。在第三實施例中,鈣鈦礦晶體層302d接觸固態電解質層104,鈣鈦礦晶體層302a~c未接觸固態電解質層104,且鈣鈦礦晶體層302c位在鈣鈦礦晶體層302b和302d之間、鈣鈦礦晶體層302b位在鈣鈦礦晶體層302a和302c之間,所以鈣鈦礦晶體層302d(第四層)的熱膨脹係數要小於鈣鈦礦晶體層302c(第三層)的熱膨脹係數、鈣鈦礦晶體層302c(第三層)的熱膨脹係數要小於鈣鈦礦晶體層302b(第二層)的熱膨脹係數、鈣鈦礦晶體層302b(第二層)的熱膨脹係數要小於鈣鈦礦晶體層302a(第一層)的熱膨脹係數;舉例來說,鈣鈦礦晶體層302a~d中相鄰的兩層之線性熱膨脹係數相差1×10-6 /K至4.5×10-6 /K,但本發明並不限於此。For the average change rate of the linear thermal expansion coefficient of the perovskite crystal layers 302a~d in the thickness direction and the selection of materials, refer to the first embodiment, in which the linear thermal expansion of the uppermost layer (perovskite crystal layer 302a) in the thickness direction The coefficient is, for example, 1.2×10 -5 /K to 2×10 -5 /K, or 1.8×10 -5 /K to 2×10 -5 /K, and the lowest layer in the thickness direction (perovskite crystal layer 302d) The linear thermal expansion coefficient of is, for example, 9×10 −6 /K to 1.5×10 −5 /K, or 9×10 −6 /K to 1.3×10 −5 /K. In the third embodiment, the perovskite crystal layer 302d contacts the solid electrolyte layer 104, the perovskite crystal layers 302a-c do not contact the solid electrolyte layer 104, and the perovskite crystal layer 302c is located on the perovskite crystal layer 302b and Between 302d, the perovskite crystal layer 302b is located between the perovskite crystal layers 302a and 302c, so the thermal expansion coefficient of the perovskite crystal layer 302d (fourth layer) is smaller than that of the perovskite crystal layer 302c (third layer ), the thermal expansion coefficient of the perovskite crystal layer 302c (third layer) is smaller than the thermal expansion coefficient of the perovskite crystal layer 302b (second layer), the thermal expansion coefficient of the perovskite crystal layer 302b (second layer) It is smaller than the thermal expansion coefficient of the perovskite crystal layer 302a (first layer); for example, the linear thermal expansion coefficients of two adjacent layers in the perovskite crystal layers 302a~d differ by 1×10 -6 /K to 4.5× 10 -6 /K, but the invention is not limited to this.

圖4是依照本發明的第四實施例的一種固態氧化物燃料電池的膜電極組的剖面示意圖。4 is a schematic cross-sectional view of a membrane electrode assembly of a solid oxide fuel cell according to a fourth embodiment of the present invention.

請參照圖4,本實施例的膜電極組400包括陰極層402、陽極層404以及置於陰極層402和陽極層404之間的固態電解質層406。所述陰極層402即為第一至三實施例中的任一種陰極層;舉例來說,陰極層402是由鈣鈦礦晶體層408a與408b構成,且鈣鈦礦晶體層408a與408b的線性熱膨脹係數在厚度方向的平均變化率為5%至40%,可舉例為10%至35%、20%至35%、10%至25%、或者10%至20%。而且,鈣鈦礦晶體層408a與408b的線性熱膨脹係數是往固態電解質層406減少,以使接近固態電解質層406的鈣鈦礦晶體層408b的線性熱膨脹係數接近固態電解質層406的線性熱膨脹係數,遠離固態電解質層406的鈣鈦礦晶體層408a則具有與固態電解質層406的線性熱膨脹係數差異較大的線性熱膨脹係數,因此能減少膜電極組400內熱應力的產生,並使陰極層402與固態電解質層406直接接觸。在本實施例中,固態電解質層406的材料可包含氧化鋯(ZrO2 )、氧化鈰(CeO2 )、氧化鉍(Bi2 O3 )、鑭鍶鎵鎂氧化物(La(Sr)Ga(Mg)O3 )或其組合。在一些實施例中,氧化鋯可包含未摻雜氧化鋯、氧化釔安定化氧化鋯(Ytrria Stabilized Zirconia,YSZ)、氧化鈰安定化氧化鋯、氧化鈧安定化氧化鋯或其組合,但本發明並不以此為限。在一些實施例中,氧化鈰可包含未摻雜氧化鈰、釤摻雜氧化鈰(Sm-doped Ceria)、釓摻雜氧化鈰(Gd-doped Ceria)或其組合,但本發明並不以此為限。在本實施例中,陽極層404的材料可包含氧化鎳以及固態電解質的至少一種材料,其中固態電解質的材料如上所述內容,例如陽極層404可為含有氧化鎳的氧化釔安定化氧化鋯或含有氧化鎳的釤摻雜氧化鈰,但本發明並不以此為限。此外,目前可用於固態氧化物燃料電池的膜電極組的技術,也可與本發明在厚度方向上有特定線性熱膨脹係數變化率之陰極層相結合。Referring to FIG. 4, the membrane electrode group 400 of this embodiment includes a cathode layer 402, an anode layer 404, and a solid electrolyte layer 406 disposed between the cathode layer 402 and the anode layer 404. The cathode layer 402 is any one of the cathode layers in the first to third embodiments; for example, the cathode layer 402 is composed of perovskite crystal layers 408a and 408b, and the perovskite crystal layers 408a and 408b are linear The average change rate of the coefficient of thermal expansion in the thickness direction is 5% to 40%, and examples may be 10% to 35%, 20% to 35%, 10% to 25%, or 10% to 20%. Moreover, the linear thermal expansion coefficients of the perovskite crystal layers 408a and 408b decrease toward the solid electrolyte layer 406, so that the linear thermal expansion coefficient of the perovskite crystal layer 408b close to the solid electrolyte layer 406 is close to the linear thermal expansion coefficient of the solid electrolyte layer 406, The perovskite crystal layer 408a far away from the solid electrolyte layer 406 has a linear thermal expansion coefficient that is significantly different from the linear thermal expansion coefficient of the solid electrolyte layer 406, thus reducing the generation of thermal stress in the membrane electrode assembly 400 and making the cathode layer 402 and solid state The electrolyte layer 406 is in direct contact. In this embodiment, the material of the solid electrolyte layer 406 may include zirconium oxide (ZrO 2 ), cerium oxide (CeO 2 ), bismuth oxide (Bi 2 O 3 ), lanthanum strontium gallium magnesium oxide (La(Sr)Ga( Mg)O 3 ) or a combination thereof. In some embodiments, the zirconia may include undoped zirconia, yttria stabilized zirconia (YSZ), cerium oxide stabilized zirconia, scandium oxide stabilized zirconia, or a combination thereof, but the present invention Not limited to this. In some embodiments, the cerium oxide may include undoped cerium oxide, samarium-doped cerium oxide (Sm-doped Ceria), gadolinium-doped cerium oxide (Gd-doped Ceria), or a combination thereof, but the present invention does not use this Limited. In this embodiment, the material of the anode layer 404 may include at least one material of nickel oxide and solid electrolyte, wherein the material of the solid electrolyte is as described above, for example, the anode layer 404 may be yttrium oxide stabilized zirconia containing nickel oxide or Samarium containing nickel oxide is doped with cerium oxide, but the invention is not limited thereto. In addition, the technology currently available for the membrane electrode assembly of the solid oxide fuel cell can also be combined with the cathode layer of the present invention having a specific linear thermal expansion coefficient change rate in the thickness direction.

以下列舉實驗來驗證本發明的功效,但本發明並不侷限於以下的內容。The following lists experiments to verify the efficacy of the present invention, but the present invention is not limited to the following.

〈製備例1~6〉<Preparation Examples 1 to 6>

本發明是利用脈衝雷射沉積法(PLD)可快速製備樣品的特性,製備沉積不同比例之鈣鈦礦晶體層於YSZ基板上,其步驟如下。The present invention utilizes the pulsed laser deposition method (PLD) to quickly prepare the characteristics of samples, and prepares and deposits different proportions of perovskite crystal layers on the YSZ substrate. The steps are as follows.

先使用銀膠塗在試片座並將YSZ基板(線性熱膨脹係數為9.9×10-6 /K)放置於上方,經輕壓與加熱後,使銀膠完全凝固即可將此樣品置入PLD腔體。然後調整腔體內氧氣壓力、雷射焦距與基板溫度至所需條件,如壓力為80 mTorr~100 mTorr、溫度約600 ºC~700 ºC。First apply silver glue to the test piece holder and place the YSZ substrate (linear thermal expansion coefficient is 9.9×10 -6 /K) on top. After light pressing and heating, the silver glue is completely solidified and the sample can be placed into the PLD Cavity. Then adjust the oxygen pressure, laser focal length and substrate temperature in the chamber to the required conditions, such as a pressure of 80 mTorr~100 mTorr and a temperature of about 600 ºC~700 ºC.

接著,根據下表1的層數與相對應的鈣鈦礦晶體層材料,利用高能雷射均勻打擊靶材(雙靶實驗:LaCoO3 、LaFeO3 、SrCoO2.5 、SrFeO3 ),並藉由調整雷射在不同靶材的打擊發數而達成控制成分的目的。除此之外,本發明的各層鈣鈦礦晶體層也可採用網印方式形成,並不以實驗步驟為限。Then, according to the number of layers in Table 1 below and the corresponding perovskite crystal layer material, use high-energy laser to strike the target uniformly (dual target experiment: LaCoO 3 , LaFeO 3 , SrCoO 2.5 , SrFeO 3 ), and by adjusting The laser strikes the number of different targets to achieve the purpose of controlling the components. In addition, the perovskite crystal layers of the present invention can also be formed by screen printing, and are not limited to experimental steps.

將製備完成的樣品取出進行以下分析。The prepared sample was taken out for the following analysis.

〈變溫的X光繞射〉<X-ray diffraction with variable temperature>

利用變溫X光繞射儀(X-ray Diffraction)對樣品進行晶體結構分析:量測過程使用波長0.154 nm的Cu-Kα、掃描角度(2θ)從30º至32º、掃描速度約0.03º /秒等條件,分別在室溫、100 ºC、200 ºC、300 ºC、400 ºC、500 ºC進行測量(測量前皆持溫5~10分鐘使樣品達到熱平衡狀態),透過不同溫度下2θ的變化,可推知面間距的改變,進而計算出材料的線性熱膨脹係數,並將結果記載於下表1。Using a X-ray Diffraction (X-ray Diffraction) to analyze the crystal structure of the sample: the measurement process uses Cu-Kα with a wavelength of 0.154 nm, a scanning angle (2θ) from 30º to 32º, a scanning speed of about 0.03º/sec, etc. Conditions, measured at room temperature, 100 ºC, 200 ºC, 300 ºC, 400 ºC, 500 ºC (hold the temperature for 5-10 minutes before the measurement to make the sample reach the thermal equilibrium state), through the change of 2θ at different temperatures, it can be inferred The change of the inter-surface distance, and then calculate the linear thermal expansion coefficient of the material, and record the results in Table 1 below.

表1

Figure 107144783-A0304-0001
Table 1
Figure 107144783-A0304-0001

從表1可得到,單層陰極結構(製備例6)的ΔCTE差異達到47.6%;但是四層漸進式多層陰極結構(製備例5)各層ΔCTE差異可下降至<22%。From Table 1, it can be seen that the difference in ΔCTE of the single-layer cathode structure (Preparation Example 6) reaches 47.6%; but the difference in ΔCTE of each layer of the four-layer progressive multilayer cathode structure (Preparation Example 5) can be reduced to <22%.

而且,製備例1的兩層鈣鈦礦晶體層的線性熱膨脹係數在遠離固態電解質層方向(厚度方向)的變化率為21.2%,第一層鈣鈦礦晶體層與電解質層的變化率為33.6%;製備例2的兩層鈣鈦礦晶體層的線性熱膨脹係數在遠離固態電解質層方向(厚度方向)的變化率為33.9%,第一層鈣鈦礦晶體層與電解質層的變化率為20.8%;製備例3的三層鈣鈦礦晶體層彼此間的線性熱膨脹係數在遠離固態電解質層方向(厚度方向)的平均變化率為18.6%,第一層鈣鈦礦晶體層與電解質層的變化率為20.8%;製備例4的四層鈣鈦礦晶體層彼此間的線性熱膨脹係數在遠離固態電解質層方向(厚度方向)的平均變化率為12.8%,第一層鈣鈦礦晶體層與電解質層的變化率為20.8%;製備例5的四層鈣鈦礦晶體層的線性熱膨脹係數在遠離固態電解質層方向(厚度方向)的平均變化率為19.3%,第一層鈣鈦礦晶體層與電解質層的變化率為0.2%。Furthermore, the change rate of the linear thermal expansion coefficient of the two-layer perovskite crystal layer of Preparation Example 1 in the direction away from the solid electrolyte layer (thickness direction) was 21.2%, and the change rate of the first perovskite crystal layer and the electrolyte layer was 33.6 %; the change rate of the linear thermal expansion coefficient of the two-layer perovskite crystal layer of Preparation Example 2 in the direction away from the solid electrolyte layer (thickness direction) is 33.9%, and the change rate of the first perovskite crystal layer and the electrolyte layer is 20.8 %; the average change rate of the linear thermal expansion coefficient of the three perovskite crystal layers of Preparation Example 3 in the direction away from the solid electrolyte layer (thickness direction) is 18.6%, and the change of the first perovskite crystal layer and the electrolyte layer The rate is 20.8%; the average change rate of the linear thermal expansion coefficient of the four perovskite crystal layers of Preparation Example 4 in the direction away from the solid electrolyte layer (thickness direction) is 12.8%. The first perovskite crystal layer and the electrolyte The change rate of the layer is 20.8%; the average change rate of the linear thermal expansion coefficient of the four-layer perovskite crystal layer of Preparation Example 5 in the direction away from the solid electrolyte layer (thickness direction) is 19.3%. The rate of change of the electrolyte layer is 0.2%.

〈製備例7~8〉<Preparation Examples 7-8>

採用與製備例1相同的方式製備如下表2的雙層鈣鈦礦晶體層於YSZ基板上,其中製備例7~8所使用的雙靶材分別為「LaMnO3 、SrMnO3 」以及「LaFeO3 、SrFeO3 」。然後採用與製備例1相同的分析方式,計算出材料的線性熱膨脹係數,並將結果記載於下表2。The double-layer perovskite crystal layer in the following Table 2 was prepared on the YSZ substrate in the same manner as in Preparation Example 1, wherein the dual targets used in Preparation Examples 7 to 8 were "LaMnO 3 , SrMnO 3 "and "LaFeO 3 , SrFeO 3 ". Then, using the same analysis method as in Preparation Example 1, the linear thermal expansion coefficient of the material was calculated, and the results are described in Table 2 below.

表2

Figure 107144783-A0304-0002
Table 2
Figure 107144783-A0304-0002

從表2可得到,製備例7的兩層鈣鈦礦晶體層的線性熱膨脹係數在遠離固態電解質層方向(厚度方向)的變化率為7.9%,第一層鈣鈦礦晶體層與電解質層的變化率為14.7%;製備例8的兩層鈣鈦礦晶體層的線性熱膨脹係數在遠離固態電解質層方向(厚度方向)的變化率為35.8%,第一層鈣鈦礦晶體層與電解質層的變化率為18.9%。It can be obtained from Table 2 that the change rate of the linear thermal expansion coefficient of the two-layer perovskite crystal layer of Preparation Example 7 in the direction away from the solid electrolyte layer (thickness direction) is 7.9%. The difference between the first perovskite crystal layer and the electrolyte layer The rate of change was 14.7%; the change rate of the linear thermal expansion coefficient of the two-layer perovskite crystal layer of Preparation Example 8 in the direction away from the solid electrolyte layer (thickness direction) was 35.8%. The difference between the first perovskite crystal layer and the electrolyte layer The rate of change was 18.9%.

〈實驗例1~7〉<Experimental Examples 1~7>

取製備例1~5和7~8的樣品,進行室溫至800o C模擬運轉狀況的熱循環試驗,經過五次熱循環測試後,將膜電極組的阻值改變率顯示於圖5,其中阻值改變率是以當次(熱循環)所測得的阻值除以第一次熱循環所測得的阻值再乘以100的數值(單位為%)。Take the samples of Preparation Examples 1~5 and 7~8, and perform the thermal cycle test at room temperature to 800 o C to simulate the operating conditions. After five thermal cycle tests, the resistance change rate of the membrane electrode group is shown in Figure 5. The resistance change rate is the resistance value measured by the current (thermal cycle) divided by the resistance value measured by the first thermal cycle and then multiplied by 100 (the unit is %).

〈比較例〉<Comparative example>

取製備例6的樣品,同樣進行上述五次熱循環測試,並將膜電極組的阻值改變率顯示於圖5。Taking the sample of Preparation Example 6, the above five thermal cycle tests were also conducted, and the resistance change rate of the membrane electrode group was shown in FIG. 5.

從圖5可得到,比較例的單層結構之陰極層的電阻值變化高達99%;相較下,實驗例1~2、6~7(即製備例1~2和7~8)的兩層結構之陰極層的電阻值變化小於5%,而且實驗例4(即製備例4)的四層結構之陰極層的電阻值變化<1%,因此證實本發明能大幅降低熱循環應力對固態氧化物燃料電池效能的影響。It can be seen from FIG. 5 that the resistance value of the cathode layer of the single-layer structure of the comparative example is as high as 99%; in comparison, the experimental examples 1 to 2, 6 to 7 (that is, the preparation examples 1 to 2 and 7 to 8) The change of the resistance value of the cathode layer of the layer structure is less than 5%, and the change of the resistance value of the cathode layer of the four-layer structure of Experimental Example 4 (ie, Preparation Example 4) is less than 1%, thus confirming that the present invention can greatly reduce the thermal cycle stress on the solid state The effect of oxide fuel cell performance.

綜上所述,本發明的陰極層是由線性熱膨脹係數在厚度方向具有特定變化率的多數層鈣鈦礦晶體層所構成,因此對於熱衝擊具有高的抵抗性,可大幅降低熱循環應力對固態氧化物燃料電池效能的影響。In summary, the cathode layer of the present invention is composed of a plurality of perovskite crystal layers with a linear coefficient of thermal expansion with a specific rate of change in the thickness direction, so it has high resistance to thermal shock and can greatly reduce the thermal cycling stress The effect of solid oxide fuel cell performance.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to the scope defined in the appended patent application.

100、200、300、402‧‧‧陰極層102a、102b、202a、202b、202c、302a、302b、302c、302d、408a、408b‧‧‧鈣鈦礦晶體層104、406‧‧‧固態電解質層400‧‧‧膜電極組404‧‧‧陽極層100, 200, 300, 402‧‧‧ Cathode layers 102a, 102b, 202a, 202b, 202c, 302a, 302b, 302c, 302d, 408a, 408b ‧‧‧ perovskite crystal layers 104, 406‧‧‧ solid electrolyte layer 400‧‧‧Membrane electrode group 404‧‧‧Anode layer

圖1是依照本發明的第一實施例的一種固態氧化物燃料電池的陰極層的剖面示意圖。 圖2是依照本發明的第二實施例的一種固態氧化物燃料電池的陰極層的剖面示意圖。 圖3是依照本發明的第三實施例的一種固態氧化物燃料電池的陰極層的剖面示意圖。 圖4是依照本發明的第四實施例的一種固態氧化物燃料電池的膜電極組的剖面示意圖。 圖5是實驗例1~7與比較例的膜電極組經熱循環測試所得到的電阻值曲線圖。1 is a schematic cross-sectional view of a cathode layer of a solid oxide fuel cell according to the first embodiment of the present invention. 2 is a schematic cross-sectional view of a cathode layer of a solid oxide fuel cell according to a second embodiment of the present invention. 3 is a schematic cross-sectional view of a cathode layer of a solid oxide fuel cell according to a third embodiment of the present invention. 4 is a schematic cross-sectional view of a membrane electrode assembly of a solid oxide fuel cell according to a fourth embodiment of the present invention. 5 is a graph of resistance values obtained by thermal cycle testing of the membrane electrode groups of Experimental Examples 1-7 and Comparative Examples.

100‧‧‧陰極層 100‧‧‧Cathode layer

102a、102b‧‧‧鈣鈦礦晶體層 102a, 102b ‧‧‧ perovskite crystal layer

104‧‧‧固態電解質層 104‧‧‧Solid electrolyte layer

Claims (13)

一種固態氧化物燃料電池的陰極層,其特徵在於:所述陰極層是由多數個鈣鈦礦晶體層所構成,其中所述鈣鈦礦晶體層的材料包括鑭鍶鈷鐵氧化物、鑭鍶鐵氧化物或鑭鍶錳氧化物,且所述多數個鈣鈦礦晶體層的線性熱膨脹係數在厚度方向的平均變化率為5%至40%。 A cathode layer of a solid oxide fuel cell, characterized in that the cathode layer is composed of a plurality of perovskite crystal layers, wherein the material of the perovskite crystal layer includes lanthanum strontium cobalt iron oxide, lanthanum strontium Iron oxide or lanthanum strontium manganese oxide, and the average change rate of the linear thermal expansion coefficient of the plurality of perovskite crystal layers in the thickness direction is 5% to 40%. 如申請專利範圍第1項所述的固態氧化物燃料電池的陰極層,其中所述多數個鈣鈦礦晶體層的層數為二至四層。 The cathode layer of the solid oxide fuel cell as described in item 1 of the patent application range, wherein the number of the plurality of perovskite crystal layers is two to four layers. 如申請專利範圍第1項所述的固態氧化物燃料電池的陰極層,其中所述多數個鈣鈦礦晶體層為La1-xSrxCo1-yFeyO3,x=0.1~0.9,y=0.3~1.0。 The cathode layer of the solid oxide fuel cell as described in item 1 of the patent application range, wherein the plurality of perovskite crystal layers are La 1-x Sr x Co 1-y Fe y O 3 , x=0.1~0.9 , Y=0.3~1.0. 如申請專利範圍第1項所述的固態氧化物燃料電池的陰極層,其中所述多數個鈣鈦礦晶體層為La1-wSrwFeO3,w=0.1~0.5。 The cathode layer of the solid oxide fuel cell as described in item 1 of the patent application range, wherein the plurality of perovskite crystal layers are La 1-w Sr w FeO 3 , w=0.1~0.5. 如申請專利範圍第1項所述的固態氧化物燃料電池的陰極層,其中所述多數個鈣鈦礦晶體層為La1-zSrzMnO3,z=0.1~0.5。 The cathode layer of the solid oxide fuel cell as described in item 1 of the patent application range, wherein the plurality of perovskite crystal layers are La 1-z Sr z MnO 3 , z=0.1~0.5. 如申請專利範圍第1項所述的固態氧化物燃料電池的陰極層,其中所述多數個鈣鈦礦晶體層中在所述厚度方向上最上層的線性熱膨脹係數為1.2×10-5/K至2×10-5/K,最下層的線性熱膨脹係數為9×10-6/K至1.5×10-5/K。 The cathode layer of the solid oxide fuel cell as described in item 1 of the patent application range, wherein the linear thermal expansion coefficient of the uppermost layer in the thickness direction of the plurality of perovskite crystal layers is 1.2×10 -5 /K To 2×10 -5 /K, the linear thermal expansion coefficient of the lowermost layer is 9×10 -6 /K to 1.5×10 -5 /K. 如申請專利範圍第6項所述的固態氧化物燃料電池的陰極層,其中所述多數個鈣鈦礦晶體層的層數為三層,且相鄰的兩層所述鈣鈦礦晶體層的線性熱膨脹係數相差2×10-6/K至5×10-6/K。 The cathode layer of the solid oxide fuel cell as described in item 6 of the patent application range, wherein the number of the plurality of perovskite crystal layers is three, and the two adjacent layers of the perovskite crystal layer The linear thermal expansion coefficients differ by 2×10 -6 /K to 5×10 -6 /K. 如申請專利範圍第6項所述的固態氧化物燃料電池的陰極層,其中所述多數個鈣鈦礦晶體層的層數為四層,且相鄰的兩層所述鈣鈦礦晶體層的線性熱膨脹係數相差1×10-6/K至4.5×10-6/K。 The cathode layer of the solid oxide fuel cell as described in item 6 of the patent application range, wherein the number of the plurality of perovskite crystal layers is four, and the two adjacent layers of the perovskite crystal layer The linear thermal expansion coefficients differ by 1×10 -6 /K to 4.5×10 -6 /K. 如申請專利範圍第1項所述的固態氧化物燃料電池的陰極層,其中所述多數個鈣鈦礦晶體層的孔隙率一致。 The cathode layer of a solid oxide fuel cell as described in item 1 of the patent application range, wherein the plurality of perovskite crystal layers have the same porosity. 一種固態氧化物燃料電池的膜電極組,包括:陰極層;陽極層;以及固態電解質層,置於所述陰極層和所述陽極層之間,其中所述陰極層是如申請專利範圍第1~9項中任一項所述的固態氧化物燃料電池的陰極層,其所述多數個鈣鈦礦晶體層的線性熱膨脹係數往所述固態電解質層減少。 A membrane electrode assembly of a solid oxide fuel cell, comprising: a cathode layer; an anode layer; and a solid electrolyte layer disposed between the cathode layer and the anode layer, wherein the cathode layer is the first in the patent application The cathode layer of the solid oxide fuel cell according to any one of items 9 to 9, wherein the linear thermal expansion coefficients of the plurality of perovskite crystal layers decrease toward the solid electrolyte layer. 如申請專利範圍第10項所述的固態氧化物燃料電池的膜電極組,其中所述固態電解質層的材料包括氧化鋯、氧化鈰、氧化鉍、鑭鍶鎵鎂氧化物或其組合。 The membrane electrode assembly of a solid oxide fuel cell as described in item 10 of the patent application range, wherein the material of the solid electrolyte layer includes zirconia, cerium oxide, bismuth oxide, lanthanum strontium gallium magnesium oxide, or a combination thereof. 如申請專利範圍第11項所述的固態氧化物燃料電池的膜電極組,其中所述陽極層的材料包括氧化鎳以及所述固態電解質層的至少一種所述材料。 The membrane electrode assembly of a solid oxide fuel cell according to item 11 of the patent application range, wherein the material of the anode layer includes nickel oxide and at least one of the materials of the solid electrolyte layer. 如申請專利範圍第10項所述的固態氧化物燃料電池的膜電極組,其中所述陰極層與所述固態電解質層直接接觸。The membrane electrode assembly of a solid oxide fuel cell as described in item 10 of the patent application range, wherein the cathode layer is in direct contact with the solid electrolyte layer.
TW107144783A 2018-01-26 2018-12-12 Cathode layer and membrane electrode assembly of solid oxide fuel cell TWI694634B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910062006.4A CN110085873B (en) 2018-01-26 2019-01-23 Cathode layer and membrane electrode assembly of solid oxide fuel cell
US16/255,833 US10944115B2 (en) 2018-01-26 2019-01-24 Cathode layer and membrane electrode assembly of solid oxide fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862622154P 2018-01-26 2018-01-26
US62/622,154 2018-01-26

Publications (2)

Publication Number Publication Date
TW201933662A TW201933662A (en) 2019-08-16
TWI694634B true TWI694634B (en) 2020-05-21

Family

ID=68316058

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107144783A TWI694634B (en) 2018-01-26 2018-12-12 Cathode layer and membrane electrode assembly of solid oxide fuel cell

Country Status (1)

Country Link
TW (1) TWI694634B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449834C (en) * 2006-12-22 2009-01-07 清华大学 Anode-electrolyte-cathode assembly of middly temp SOFC and preparation method thereof
CN107394213A (en) * 2017-08-08 2017-11-24 淮北师范大学 SOFC low-thermal-expansion cathode material and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449834C (en) * 2006-12-22 2009-01-07 清华大学 Anode-electrolyte-cathode assembly of middly temp SOFC and preparation method thereof
CN107394213A (en) * 2017-08-08 2017-11-24 淮北师范大学 SOFC low-thermal-expansion cathode material and preparation method thereof

Also Published As

Publication number Publication date
TW201933662A (en) 2019-08-16

Similar Documents

Publication Publication Date Title
JP5762295B2 (en) New materials and structures for low temperature SOFC
JP4737946B2 (en) Solid electrolyte fuel cell
JP5263790B2 (en) Interconnecting member for solid oxide fuel cell comprising metal and titanate
US9065104B2 (en) Process for manufacturing elementary electrochemical cells for energy- or hydrogen-producing electrochemical systems, in particular of SOFC and HTE type
JP5313726B2 (en) Solid oxide fuel cell and interconnector for the cell
US6896989B2 (en) Solid electrolyte fuel cell and related manufacturing method
US20120189939A1 (en) Fuel cell, cell stack, fuel cell module, and fuel cell device
US20220223880A1 (en) Solid oxide fuel cells with cathode functional layers
US6872331B2 (en) Oxide ion conductor, manufacturing method therefor, and fuel cell using the same
Chasta et al. A review on materials, advantages, and challenges in thin film based solid oxide fuel cells
JP5368139B2 (en) Solid oxide fuel cell
JP2016512916A (en) Fuel cell system including multilayer interconnection
KR101290577B1 (en) Solid oxide electrolyte membrane, manufacturing method thereof, and fuel cell employing the same
JP2022009365A (en) Cell, cell stack device, module, and module housing device
JPWO2018230247A1 (en) Solid electrolyte member, solid oxide fuel cell, water electrolysis device, hydrogen pump, and method for manufacturing solid electrolyte member
CN110085873B (en) Cathode layer and membrane electrode assembly of solid oxide fuel cell
TWI694634B (en) Cathode layer and membrane electrode assembly of solid oxide fuel cell
JP5350893B2 (en) Solid oxide fuel cell
KR102264661B1 (en) Solid oxide electrolyte including thin film electrolyte layer of multiple repetitive structures, method for manufacturing the same, solid oxide fuel cell and solid oxide electrolysis cell comprising the same
JPH1074528A (en) Solid electrolyte fuel cell and its manufacture
JP2005243473A (en) Cerium based solid electrolyte and its manufacturing method
JP6712119B2 (en) Solid oxide fuel cell stack
KR101788553B1 (en) The Fabrication Method for Eletrode Device Comprising Anode Supporter and Electrolyte for Anode-supported SOFC by Using Sintering Additive and Co-firing
JP5270296B2 (en) Interconnector for solid oxide fuel cell and solid oxide fuel cell
JP2000077082A (en) Solid electrolyte fuel cell