TWI694153B - Method and kit for visualization molecular diagnostic - Google Patents
Method and kit for visualization molecular diagnostic Download PDFInfo
- Publication number
- TWI694153B TWI694153B TW107147028A TW107147028A TWI694153B TW I694153 B TWI694153 B TW I694153B TW 107147028 A TW107147028 A TW 107147028A TW 107147028 A TW107147028 A TW 107147028A TW I694153 B TWI694153 B TW I694153B
- Authority
- TW
- Taiwan
- Prior art keywords
- probe
- sequence
- reagent
- rpa
- minutes
- Prior art date
Links
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本發明係關於一種分子診斷方法及試驗套組,特別係一種可視化之分子診斷方法及試驗套組。The invention relates to a molecular diagnosis method and a test set, in particular to a visualized molecular diagnosis method and a test set.
目測植物組織病徵是最直接的疾病診斷(disease diagnosis)方式,然而,這種傳統方法必需仰賴具經驗的病理學家,而且在無病徵的感染初期是無法以目測診斷。有鑒於早期檢測在植物病害風險管理中尤為重要,特別是植物檢疫和健康種苗培育(Miller et al.,2009)。許多分子生物技術方法已被廣泛地應用在植物病害診斷上,有免疫學(immunology)方法和核酸(nucleic acid)方法,偵測植物中病原的蛋白質和核酸,來替代觀察和培養病原的傳統方法(López et al.,2003)。 Visual inspection of plant tissue symptoms is the most direct way of disease diagnosis. However, this traditional method must rely on an experienced pathologist, and cannot be diagnosed visually at the early stage of infection without symptoms. In view of the fact that early detection is particularly important in the management of plant disease risks, especially plant quarantine and healthy seedling cultivation (Miller et al., 2009). Many molecular biotechnological methods have been widely used in the diagnosis of plant diseases, including immunology (nucleic acid) method and nucleic acid (nucleic acid) method, to detect the pathogen protein and nucleic acid in plants, to replace the traditional methods of observation and cultivation of pathogens (López et al., 2003).
免疫學方法,如酵素連結免疫分析法(enzyme-linked immunosorbent assay, ELISA)和側層流裝置(lateral flow, LF),可用於檢測病原抗原,並已被開發成可攜式裝備。這些方法是依賴於單克隆(monoclonal)抗體的專一性,因此靈敏度經常隨著不同生理小種(race)而變化(Nolasco et al.,2002)。 Immunological methods, such as enzyme-linked immunosorbent assay (ELISA) and lateral flow (LF), can be used to detect pathogenic antigens and have been developed into portable equipment. These methods rely on the specificity of monoclonal antibodies, so the sensitivity often varies with different races (Nolasco et al., 2002).
核酸方法通常所指的就是聚合酶連鎖反應(polymerase chain reaction, PCR),首先擴增病原特定基因片段,然後通過凝膠電泳(gel electrophoresis)來觀察擴增片段。由於其高靈敏度,各種核酸方法已被廣泛用於植物病原的檢測(Lievens et al.,2006; López et al.,2003; Schaad and Frederick, 2002)。 The nucleic acid method generally refers to polymerase chain reaction (PCR), which first amplifies pathogen-specific gene fragments, and then observes the amplified fragments by gel electrophoresis. Due to its high sensitivity, various nucleic acid methods have been widely used for the detection of plant pathogens (Lievens et al., 2006; López et al., 2003; Schaad and Frederick, 2002).
整體而言,核酸方法比免疫學方法具有更高的準確性、特異性和靈敏度,但操作核酸方法需完全依賴實驗室的專業技術和儀器,成為發展可攜式分子診斷的限制因子(Fang and Ramasamy, 2015; Khater et al.,2017)。 Overall, nucleic acid methods have higher accuracy, specificity, and sensitivity than immunological methods, but the operation of nucleic acid methods needs to completely rely on the laboratory's professional technology and instruments, becoming a limiting factor for the development of portable molecular diagnostics (Fang and Ramasamy, 2015; Khater et al., 2017).
結合恆溫核酸擴增(isothermal nucleic acid amplification)技術和生物感測器(biosensor)雖可解決免疫學方法和核酸方法其各自的缺陷,然而,以現行相對較簡便執行之重組酶聚合酶擴增(recombinase polymerase amplification,RPA)技術為例,RPA擴增子(amplicon)若不先以PCR cleanup管柱進行純化,則不適合以瓊脂糖(agarose)凝膠電泳進行檢測,或是需額外添加特別設計的探針、酵素、側層流條(lateral flow strip)與更多的操作才能檢測RPA擴增子。因此,如何簡單而有效的檢測RPA擴增子是發展快速且靈敏診斷技術的當前目標。Although the combination of isothermal nucleic acid amplification technology and biosensor can solve the respective drawbacks of immunological methods and nucleic acid methods, however, the current relatively simple implementation of recombinase polymerase amplification ( Recombinase polymerase amplification (RPA) technology as an example, if the RPA amplicon (amplicon) is not first purified by PCR cleanup column, it is not suitable for agarose (agarose) gel electrophoresis for detection, or additional design Probes, enzymes, lateral flow strips and more operations are required to detect RPA amplicons. Therefore, how to detect RPA amplicons simply and effectively is the current goal of developing rapid and sensitive diagnostic techniques.
有鑑於此,為解決上述問題,本發明之主要目的在於提供一種可視化分子診斷方法,其步驟包括:(a) 將包含有一目標DNA序列之一第一溶液與用以重組酶聚合酶擴增反應(RPA)之一第一試劑混合,進行擴增該目標DNA序列,其中該第一試劑包括一正向引子及一反向引子之一引子對,且該引子對係以該目標DNA序列作為一標靶序列;(b)將一具有奈米金探針之第二試劑加入該第一溶液中,該奈米金探針係帶有互補於該標靶序列之一內部區域之一序列,使經擴增後之該標靶序列及該奈米金探針發生雜合反應;及(c)於該第一溶液中加入一第三試劑,以觸發該第一溶液中之該奈米金探針聚集並呈肉眼可見之一顏色,並以該顏色判別該目標DNA序列之濃度。In view of this, in order to solve the above problems, the main object of the present invention is to provide a visual molecular diagnostic method, the steps of which include: (a) a first solution containing a target DNA sequence and a recombinase polymerase amplification reaction (RPA) a first reagent is mixed to amplify the target DNA sequence, wherein the first reagent includes a primer pair of a forward primer and a reverse primer, and the primer pair uses the target DNA sequence as a Target sequence; (b) add a second reagent with a nanogold probe to the first solution, the nanogold probe has a sequence complementary to an internal region of the target sequence, so that A hybrid reaction occurs between the target sequence after amplification and the nano gold probe; and (c) adding a third reagent to the first solution to trigger the nano gold probe in the first solution The needles gather and show a color visible to the naked eye, and the concentration of the target DNA sequence is judged by the color.
於一較佳實施例,該第三試劑係羥胺(NH 2OH)與四氯金酸(HAuCl 4)之混合物。 In a preferred embodiment, the third reagent is a mixture of hydroxylamine (NH 2 OH) and tetrachloroauric acid (HAuCl 4 ).
於一較佳實施例,該羥胺(NH 2OH)與該四氯金酸(HAuCl 4)之混合比例為1:0.5至1:2。 In a preferred embodiment, the mixing ratio of the hydroxylamine (NH 2 OH) and the tetrachloroauric acid (HAuCl 4 ) is 1:0.5 to 1:2.
於一較佳實施例,該目標DNA序列係高度保留序列。In a preferred embodiment, the target DNA sequence is a highly reserved sequence.
於一較佳實施例,該奈米金探針係帶有5'-末端修飾的巰基(C 6SH)。 In a preferred embodiment, the nano gold probe carries a 5'-modified sulfhydryl group (C 6 SH).
於一較佳實施例,該顏色依據該目標DNA序列之濃度由低至高分別呈現粉紅、紫紅、紫、靛藍、藏青或深藍之漸進式變化。In a preferred embodiment, the color exhibits a gradual change of pink, magenta, purple, indigo, navy blue, or dark blue according to the concentration of the target DNA sequence from low to high.
於一較佳實施例,於步驟(a)之前進行一前置比色濃度確立之步驟:(a-1)於包含不同特定濃度之該目標DNA序列之單股DNA之溶液中加入該奈米金探針,使該奈米金探針與該單股DNA發生雜合反應,並於該溶液中進一步添加羥胺(NH 2OH)與四氯金酸(HAuCl 4),使該奈米金探針聚集並呈肉眼可見之顏色,以建立一目標DNA序列系列濃度與該奈米金探針聚集顏色之一比色梯度系統。 In a preferred embodiment, a step of pre-colorimetric concentration establishment is performed before step (a): (a-1) The nanometer is added to a solution of single-stranded DNA containing different specific concentrations of the target DNA sequence Gold probe, which causes the hybridization reaction between the nanometer gold probe and the single stranded DNA, and further adding hydroxylamine (NH 2 OH) and tetrachloroauric acid (HAuCl 4 ) to the solution to make the nanometer gold probe The needles gather and exhibit a color that is visible to the naked eye to establish a colorimetric gradient system with a target DNA sequence series concentration and one of the nanogold probe aggregation colors.
於一較佳實施例,該步驟(a)中之重組酶聚合酶擴增反應(RPA)係於大於30℃的環境下作用5分鐘以上,50分鐘以下。In a preferred embodiment, the recombinase polymerase amplification reaction (RPA) in step (a) is performed in an environment greater than 30°C for more than 5 minutes and less than 50 minutes.
於一較佳實施例,該步驟(a)中之重組酶聚合酶擴增反應(RPA)係於33℃的環境下作用10分鐘。In a preferred embodiment, the recombinase polymerase amplification reaction (RPA) in step (a) is performed at 33°C for 10 minutes.
本發明之另一目的在於提供一種可視化分子診斷試驗套組,其包括:一第一試劑,包含一正向引子及一反向引子之一引子對及RPA試劑,該引子對係以一目標DNA作為標靶序列,行重組酶聚合酶擴增反應(RPA);一具有奈米金探針之第二試劑,該奈米金粒子帶有一互補於該標靶序列的一內部區域之序列,該奈米金探針於一溶液中之顏色係依據其聚集程度由低至高,而呈現出由粉紅色轉變為藍色之漸進式變化;及一第三試劑,用以觸發該奈米金探針聚集反應。Another object of the present invention is to provide a visual molecular diagnostic test kit, which includes: a first reagent, a primer pair including a forward primer and a reverse primer, and an RPA reagent, the primer pair is a target DNA As a target sequence, a recombinase polymerase amplification reaction (RPA) is performed; a second reagent with a nanogold probe, the nanogold particle carries a sequence complementary to an internal region of the target sequence, the The color of the nano gold probe in a solution is gradually changed from pink to blue according to the degree of aggregation, and a third reagent is used to trigger the nano gold probe Aggregation reaction.
本發明之可視化分子診斷方法及試驗套組不僅可縮短分子診斷的反應時間並簡化操作步驟,利用結合重組酶聚合酶擴增(RPA)與光學奈米金探針來檢測病原DNA,並進一步作可視化分子診斷方法反應條件的最佳化,使操作者於低設備需求條件下,不需比色儀器協助,即可以肉眼直接觀測結果作為病原的定性及定量分析,快速且簡便,並能廣泛地應用於疾病的診斷和預測。The visual molecular diagnosis method and test set of the present invention can not only shorten the reaction time of molecular diagnosis and simplify the operation steps, use combined recombinase polymerase amplification (RPA) and optical nanometer probe to detect pathogenic DNA, and further The optimization of the reaction conditions of the visual molecular diagnosis method allows the operator to directly observe the results as a qualitative and quantitative analysis of the pathogen without the assistance of colorimetric instruments under the condition of low equipment requirements, which is fast and simple, and can be widely Applied to the diagnosis and prediction of diseases.
有關本發明之詳細說明及技術內容,現就配合圖式說明如下。再者,本發明中之圖式,為說明方便,其比例未必照實際比例繪製,該等圖式及其比例並非用以限制本發明之範圍,在此先行敘明。The detailed description and technical content of the present invention will now be described in conjunction with the drawings. Furthermore, the drawings in the present invention are not necessarily drawn according to actual proportions for the convenience of explanation. The drawings and their proportions are not intended to limit the scope of the present invention, and will be described here first.
本文中所稱之「包含或包括」意指不排除一或多個其他組件、步驟、操作和/或元素的存在或添加至所述之組件、步驟、操作和/或元素。「約」、「接近」或「基本上」意指具有接近於允許指定誤差的數值或範圍,以避免被任何不合理之第三方,違法或不公平的使用為理解本發明揭示之精確或絕對數值。「一」意指該物的語法對象為一或一個以上(即,至少為一)。As referred to herein, "comprising or including" means not excluding the presence or addition of one or more other components, steps, operations, and/or elements. "About", "close" or "essentially" means having a value or range close to the allowable specified error to avoid being used by any unreasonable third party, illegal or unfair to understand the accuracy or absoluteness of the disclosure Value. "One" means that the grammatical object of the thing is one or more (ie, at least one).
本文揭示內容涉及一種可視化分子診斷方法,其步驟包括:(a)將包含有一目標DNA序列之一第一溶液與用以重組酶聚合酶擴增反應(RPA)之一第一試劑混合,進行擴增該目標DNA序列,其中該第一試劑包括一正向引子及一反向引子之一引子對,且該引子對係以該目標DNA序列作為一標靶序列;(b)將一具有奈米金探針之第二試劑加入該第一溶液中,該奈米金探針係帶有互補於該標靶序列之一內部區域之一序列,使經擴增後之該標靶序列及該奈米金探針發生雜合反應;及(c)於該第一溶液中加入一第三試劑,以觸發該第一溶液中之該奈米金探針聚集並呈肉眼可見之一顏色,並以該顏色判別該目標DNA序列之濃度。The disclosure herein relates to a visual molecular diagnostic method. The steps include: (a) mixing a first solution containing a target DNA sequence with a first reagent for recombinase polymerase amplification reaction (RPA) to expand Increase the target DNA sequence, wherein the first reagent includes a primer pair of a forward primer and a reverse primer, and the primer pair uses the target DNA sequence as a target sequence; (b) will have a nano The second reagent of the gold probe is added to the first solution. The nano gold probe carries a sequence complementary to an internal region of the target sequence, so that the target sequence and the nano A hybrid reaction of the rice gold probe occurs; and (c) A third reagent is added to the first solution to trigger the nanometer probe in the first solution to gather and display a color visible to the naked eye, and to The color determines the concentration of the target DNA sequence.
本文揭示內容亦涉及一種可視化分子診斷試驗套組,其包括:一第一試劑,包含一正向引子及一反向引子之一引子對及RPA試劑,該引子對係以一目標DNA作為標靶序列,行重組酶聚合酶擴增反應(RPA);一具有奈米金探針之第二試劑,該奈米金粒子帶有一互補於該標靶序列的一內部區域之序列,該奈米金探針於一溶液中之顏色係依據其聚集程度由低至高,而呈現出由粉紅色轉變為藍色之漸進式變化;及一第三試劑,用以觸發該奈米金探針聚集反應。The disclosure herein also relates to a visual molecular diagnostic test kit, which includes: a first reagent, a primer pair including a forward primer and a reverse primer, and an RPA reagent, the primer pair is targeted to a target DNA Sequence, a recombinase polymerase amplification reaction (RPA); a second reagent with a nanogold probe, the nanogold particle carries a sequence complementary to an internal region of the target sequence, the nanogold The color of the probe in a solution changes gradually from pink to blue according to the degree of aggregation, and a third reagent is used to trigger the aggregation reaction of the nanometer probe.
本文所述之「可視化」係指可直接利用目視法(即肉眼判讀、裸視法)進行分子診斷之定性或定量分析,具體而言係指不需直接或間接的依賴儀器、設備或輔助工具等而可進行分子診斷之定性及定量分析,前述儀器尤其係指分光比色類儀器。然而,需注意的是,本發明並不限於需排除儀器的使用,於一較佳實施態樣中,本發明亦可進一步結合儀器使用,例如結合本發明及一儀器作進一步之分析鑑定。The term "visualization" as used herein refers to the qualitative or quantitative analysis of molecular diagnostics that can be directly performed by visual inspection (ie, naked eye interpretation and naked vision). Specifically, it does not require direct or indirect dependence on instruments, equipment, or auxiliary tools. The qualitative and quantitative analysis of molecular diagnosis can be carried out, etc. The aforementioned instruments especially refer to spectrophotometric instruments. However, it should be noted that the present invention is not limited to the need to exclude the use of instruments. In a preferred embodiment, the present invention can be further used in conjunction with instruments, for example, in combination with the present invention and an instrument for further analysis and identification.
本文所述之「奈米金探針(gold nanoparticle probe,AuNP probe)」係一種生物傳感器(biosensor),可用來區別錯誤序列配對的互補DNA (cNDA),本發明之奈米金探針係藉由一DNA探針(即前述帶有互補於該標靶序列之一內部區域之一序列)與一奈米金粒子結合而成,與習知奈米金粒子係與抗體(antibody)結合不同,本發明之優勢在於,本發明之奈米金探針可達到只要2個鹼基對不同即不產生反應之功效,可大為降低診斷的偽陽性率。另一方面,奈米金探針的光學特性不僅能鑑別DNA片段序列,更能進行半定量解釋DNA濃度,習知奈米金探針的比色檢測大多利用測層流條或奈米金粒子集結的方式來實現,雖可在不需要額外的設備情況下用肉眼觀察結果,但仍存在諸如準確性、靈敏度及定量解讀等缺點,本發明之可視化分子診斷方法有別於習知奈米金探針比色法,進一步強化顯色效果。於一較佳實施態樣中,利用該第三試劑以觸發溶液中之該奈米金探針聚集,該第三試劑係羥胺(NH 2OH)與四氯金酸(HAuCl 4)之混合物,該羥胺例如但不限於:鹽酸羥胺(H 2NOH)。於另一較佳實施態樣中,該第三試劑係羥胺(NH 2OH)與四氯金酸(HAuCl 4)之混合物,且該羥胺(NH 2OH)與該四氯金酸(HAuCl 4)之混合比例為1:0.5至1:2,例如但不限於:1:0.5、1:0.6、1:0.7、1:0.8、1:0.9、1:1、1:1.1、1:1.2、1:1.3、1:1.4、1:1.5、1:1.6、1:1.7、1:1.8、1:1.9、1:2。於另一較佳實施態樣中,該奈米金探針係帶有5'-末端修飾的巰基(C 6SH)。 The "gold nanoparticle probe (AuNP probe)" described in this article is a kind of biosensor, which can be used to distinguish the complementary DNA (cNDA) of wrong sequence pairing. It is composed of a DNA probe (that is, a sequence complementary to an internal region complementary to the target sequence) and a nano-gold particle, which is different from the conventional nano-gold particle system and antibody binding. The advantage of the present invention is that the nano gold probe of the present invention can achieve the effect of not responding as long as the two base pairs are different, which can greatly reduce the false positive rate of diagnosis. On the other hand, the optical properties of nano gold probes can not only identify DNA fragment sequences, but also can semi-quantitatively explain DNA concentration. The colorimetric detection of conventional nano gold probes mostly uses laminar flow strips or nano gold particles. It can be realized by the way of aggregation. Although the results can be observed with the naked eye without the need for additional equipment, there are still shortcomings such as accuracy, sensitivity and quantitative interpretation. The visual molecular diagnostic method of the present invention is different from the conventional nanometer gold Probe colorimetric method to further enhance the color rendering effect. In a preferred embodiment, the third reagent is used to trigger the aggregation of the nanoprobe in the solution. The third reagent is a mixture of hydroxylamine (NH 2 OH) and tetrachloroauric acid (HAuCl 4 ). The hydroxylamine is, for example but not limited to, hydroxylamine hydrochloride (H 2 NOH). In another preferred embodiment, the third reagent is a mixture of hydroxylamine (NH 2 OH) and tetrachloroauric acid (HAuCl 4 ), and the hydroxylamine (NH 2 OH) and the tetrachloroauric acid (HAuCl 4 ) The mixing ratio is 1:0.5 to 1:2, such as but not limited to: 1:0.5, 1:0.6, 1:0.7, 1:0.8, 1:0.9, 1:1, 1:1.1, 1:1.2, 1:1.3, 1:1.4, 1:1.5, 1:1.6, 1:1.7, 1:1.8, 1:1.9, 1:2. In another preferred embodiment, the nano gold probe carries a 5'-modified sulfhydryl group (C 6 SH).
前述奈米金探針的光學特性,可使其依據奈米金粒子聚集程度的不同呈現出漸進式顏色變化。於一較佳實施態樣中,本發明之奈米金探針(其中帶有奈米金粒子)聚集程度受其與經擴增後之該標靶序列間之雜合反應影響,依據該目標DNA序列之濃度由低至高,該顏色分別呈現粉紅、紫紅、紫、靛藍(或藍紫)、藏青或深藍之漸進式變化(如圖2C所示)。於一較佳實施態樣中,本發明之該目標DNA序列係高度保留序列。The optical properties of the aforementioned nano-gold probe can make it exhibit a gradual color change according to the degree of aggregation of nano-gold particles. In a preferred embodiment, the degree of aggregation of the nanogold probe of the present invention (with nanogold particles) is affected by the hybridization reaction between it and the target sequence after amplification, according to the target The concentration of the DNA sequence changes from low to high, and the color shows a gradual change of pink, magenta, purple, indigo (or blue-violet), navy blue, or dark blue (as shown in Figure 2C). In a preferred embodiment, the target DNA sequence of the present invention is a highly reserved sequence.
本文所述之「重組酶聚合酶擴增反應(recombinase polymerase amplification,RPA)」係一種恆溫擴增技術。於一較佳實施態樣中,該步驟(a)中之重組酶聚合酶擴增反應(RPA)係於大於30℃的環境下作用5分鐘以上,50分鐘以下;前述溫度環境例如但不限於:30.5℃、31℃、31.5℃、32℃、32.5℃、33℃、33.5℃、34℃、34.5℃、35℃、35.5℃、36℃、36.5℃、37℃、37.5℃、38℃、38.5℃、39℃、39.5℃、40℃、40.5℃、41℃、41.5℃、42℃、42.5℃、43℃、43.5℃、44℃、44.5℃、45℃、46℃、47℃、48℃、49℃、50℃、51℃、52℃、53℃、54℃或55℃;前述作用時間例如但不限於:5分鐘、7分鐘、10分鐘、12分鐘、15分鐘、17分鐘、20分鐘、22分鐘、25分鐘、27分鐘、30分鐘、32分鐘、35分鐘、37分鐘、40分鐘、42分鐘、45分鐘、47分鐘或50分鐘。於一更佳實施態樣中,該步驟(a)中之重組酶聚合酶擴增反應(RPA)係於31℃至40℃的環境下作用5至35分鐘;前述溫度環境例如但不限於:31℃、31.1℃、31.2℃、31.3℃、31.4℃、31.5℃、31.6℃、31.7℃、31.8℃、31.9℃、32℃、32.1℃、32.2℃、32.3℃、32.4℃、32.5℃、32.6℃、32.7℃、32.8℃、32.9℃、33℃、33.1℃、33.2℃、33.3℃、33.4℃、33.5℃、33.6℃、33.7℃、33.8℃、33.9℃、34℃、34.1℃、34.2℃、34.3℃、34.4℃、34.5℃、34.6℃、34.7℃、34.8℃、34.9℃、35℃、35.1℃、35.2℃、35.3℃、35.4℃、35.5℃、35.6℃、35.7℃、35.8℃、35.9℃、36℃、36.1℃、36.2℃、36.3℃、36.4℃、36.5℃、36.6℃、36.7℃、36.8℃、36.9℃、37℃、37.1℃、37.2℃、37.3℃、37.4℃、37.5℃、37.6℃、37.7℃、37.8℃、37.9℃、38℃、38.1℃、38.2℃、38.3℃、38.4℃、38.5℃、38.6℃、38.7℃、38.8℃、38.9℃、39℃、39.1℃、39.2℃、39.3℃、39.4℃、39.5℃、39.6℃、39.7℃、39.8℃、39.9℃或40℃;前述作用時間例如但不限於:5分鐘、6分鐘、7分鐘、8分鐘、9分鐘、10分鐘、11分鐘、12分鐘、13分鐘、14分鐘、15分鐘、16分鐘、17分鐘、18分鐘、19分鐘、20分鐘、21分鐘、22分鐘、23分鐘、24分鐘、25分鐘、26分鐘、27分鐘、28分鐘、29分鐘、30分鐘、31分鐘、32分鐘、33分鐘、34分鐘或35分鐘。於一更佳實施態樣中,該步驟(a)中之重組酶聚合酶擴增反應(RPA)係於33℃的環境下作用10分鐘。The "recombinase polymerase amplification (RPA)" described in this article is a constant temperature amplification technique. In a preferred embodiment, the recombinase polymerase amplification reaction (RPA) in step (a) is performed in an environment greater than 30°C for more than 5 minutes and less than 50 minutes; the aforementioned temperature environment is, for example but not limited to, :30.5℃, 31℃, 31.5℃, 32℃, 32.5℃, 33℃, 33.5℃, 34℃, 34.5℃, 35℃, 35.5℃, 36℃, 36.5℃, 37℃, 37.5℃, 38℃, 38.5 ℃, 39℃, 39.5℃, 40℃, 40.5℃, 41℃, 41.5℃, 42℃, 42.5℃, 43℃, 43.5℃, 44℃, 44.5℃, 45℃, 46℃, 47℃, 48℃, 49 ℃, 50 ℃, 51 ℃, 52 ℃, 53 ℃, 54 ℃ or 55 ℃; the foregoing action time is, for example and not limited to: 5 minutes, 7 minutes, 10 minutes, 12 minutes, 15 minutes, 17 minutes, 20 minutes, 22 minutes, 25 minutes, 27 minutes, 30 minutes, 32 minutes, 35 minutes, 37 minutes, 40 minutes, 42 minutes, 45 minutes, 47 minutes or 50 minutes. In a more preferred embodiment, the recombinase polymerase amplification reaction (RPA) in step (a) is performed at an environment of 31°C to 40°C for 5 to 35 minutes; the aforementioned temperature environment is, for example but not limited to: 31℃, 31.1℃, 31.2℃, 31.3℃, 31.4℃, 31.5℃, 31.6℃, 31.7℃, 31.8℃, 31.9℃, 32℃, 32.1℃, 32.2℃, 32.3℃, 32.4℃, 32.5℃, 32.6℃ 、32.7℃、32.8℃、32.9℃、33℃、33.1℃、33.2℃、33.3℃、33.4℃、33.5℃、33.6℃、33.7℃、33.8℃、33.9℃、34℃、34.1℃、34.2℃、34.3 ℃、34.4℃、34.5℃、34.6℃、34.7℃、34.8℃、34.9℃、35℃、35.1℃、35.2℃、35.3℃、35.4℃、35.5℃、35.6℃、35.7℃、35.8℃、35.9℃、 36℃、36.1℃、36.2℃、36.3℃、36.4℃、36.5℃、36.6℃、36.7℃、36.8℃、36.9℃、37℃、37.1℃、37.2℃、37.3℃、37.4℃、37.5℃、37.6℃ 、37.7℃、37.8℃、37.9℃、38℃、38.1℃、38.2℃、38.3℃、38.4℃、38.5℃、38.6℃、38.7℃、38.8℃、38.9℃、39℃、39.1℃、39.2℃、39.3 ℃, 39.4 ℃, 39.5 ℃, 39.6 ℃, 39.7 ℃, 39.8 ℃, 39.9 ℃ or 40 ℃; the foregoing action time is for example but not limited to: 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes, 10 minutes, 11 Minutes, 12 minutes, 13 minutes, 14 minutes, 15 minutes, 16 minutes, 17 minutes, 18 minutes, 19 minutes, 20 minutes, 21 minutes, 22 minutes, 23 minutes, 24 minutes, 25 minutes, 26 minutes, 27 minutes, 28 minutes, 29 minutes, 30 minutes, 31 minutes, 32 minutes, 33 minutes, 34 minutes or 35 minutes. In a more preferred embodiment, the recombinase polymerase amplification reaction (RPA) in step (a) is performed at 33°C for 10 minutes.
本文所述之「比色梯度系統」係為進行比色之濃度確立之步驟,係指一獨立於本發明可視化分子診斷方法之步驟,可於操作該可視化分子診斷方法之前、之後或同時建立。於一較佳實施態樣中,於本發明可視化分子診斷方法步驟(a)之前進行一前置比色濃度確立之步驟:(a-1)於包含不同特定濃度之該目標DNA序列之單股DNA之溶液中加入該奈米金探針,使該奈米金探針與該單股DNA發生雜合反應,並於該溶液中進一步添加羥胺(NH 2OH)與四氯金酸(HAuCl 4),使該奈米金探針聚集並呈肉眼可見之顏色,以建立一目標DNA序列系列濃度與該奈米金探針聚集顏色之一比色梯度系統。 The "colorimetric gradient system" described herein is a step for establishing a colorimetric concentration, and refers to a step independent of the visual molecular diagnostic method of the present invention, which can be established before, after, or simultaneously with the operation of the visual molecular diagnostic method. In a preferred embodiment, a pre-colorimetric concentration establishment step is performed before step (a) of the visual molecular diagnostic method of the present invention: (a-1) a single strand containing the target DNA sequence at different specific concentrations Add the nano gold probe to the DNA solution to make the nano gold probe hybridize with the single strand of DNA, and further add hydroxylamine (NH 2 OH) and tetrachloroauric acid (HAuCl 4 ) to the solution ) To make the nanogold probe aggregate and display a color that is visible to the naked eye, so as to establish a colorimetric gradient system of the target DNA sequence series concentration and one of the nanogold probe aggregate colors.
下文中,將進一步以詳細說明及實施態樣描述本發明,然而,應理解這些實施態樣僅用於幫助可更加容易理解本發明,而非用以限制本發明之範圍。以下請一併參照「圖1」至「圖7」。 [實施例]Hereinafter, the present invention will be further described with detailed descriptions and implementations. However, it should be understood that these implementations are only used to help understand the present invention more easily, not to limit the scope of the present invention. Please refer to "Figure 1" to "Figure 7" below. [Example]
本發明為達縮短反應時間並簡化操作步驟以檢測各式病原DNA的目標,利用結合重組酶聚合酶擴增(RPA)與光學奈米金探針之技術,並為達在低設備需求條件下能以肉眼直接觀測結果,進行可視化分子診斷技術反應條件的最佳化。 A. 材料與方法 (1)目標DNA萃取In order to achieve the goal of shortening the reaction time and simplifying the operation steps to detect various types of pathogenic DNA, the present invention uses the technology of combining recombinase polymerase amplification (RPA) and optical nanometer probes, and achieves low equipment requirements The results can be directly observed with the naked eye to optimize the reaction conditions of the visual molecular diagnostic technology. A. Materials and methods (1) Target DNA extraction
本實施例使用的病原為能感染番茄和茄屬( Solanum)植物並造成嚴重經濟損失的番茄黃化捲葉病毒( Tomato yellow leaf-curl virus, TYLCV),以進行本發明可視化分子診斷方法及可視化分子診斷套組之試驗。 The pathogen used in this embodiment is Tomato yellow leaf-curl virus (TYLCV), which can infect tomatoes and Solanum plants and cause serious economic losses, to carry out the visual molecular diagnosis method and visualization of the present invention Molecular diagnostic kit test.
將健康的番茄苗種植於無蟲網室中,然後放入帶TYLCV的銀葉粉蝨( Bemisia tabacibiotype B)為期一週。透過植物DNA萃取試劑組(Gene-Spin TMGenomic DNA Isolation Kit,供應商:波士特生物科技股份有限公司,臺灣台北),從TYLCV感染的番茄葉片中萃取含病毒DNA。從含有TYLCV分離株82-2-1和57-2 DNA片段的液體培養大腸桿菌(TOP10菌株,供應商:賽默飛世爾科技股份有限公司,美國麻州)中萃取質體(plasmid) DNA。 (2)引子對設計及傳統PCR分析 Healthy tomato seedlings are planted in an insect-free net room, and then put into silver leaffly ( Bemisia tabaci biotype B) with TYLCV for a week. Viral DNA was extracted from tomato leaves infected with TYLCV through the Plant DNA Extraction Reagent Kit (Gene-Spin TM Genomic DNA Isolation Kit, supplier: Post Biotech Co., Ltd., Taipei, Taiwan). Plasma DNA was extracted from E. coli (TOP10 strain, supplier: Thermo Fisher Scientific Inc., Massachusetts, USA) containing liquid fragments of TYLCV isolates 82-2-1 and 57-2 DNA fragments. (2) Primer pair design and traditional PCR analysis
採用Tsai等人(2011)搜集的56支臺灣TYLCV分離株,以軟體JalView 2.10.3版 (Waterhouse
et al.,2009)進行多序列排比分析(multiple sequence alignment)。依據多序列排比分析的結果,找出高度保留序列區域以作為該目標DNA序列,並設計為鑑定TYLCV專一性引子對1/2R (5’-GGATTAGAGGCATGAGTACA-3’(SEQ ID NO:1) / 5’-GGATTAGAGGCATGAGTACATGCCATATA-3’ (SEQ ID NO:2)),以作為以該目標DNA序列作為一標靶序列之引子對,且該引子對包含一正向引子及一反向引子,並委託臺灣台北之明欣生物科技有限公司合成。
Using 56 Taiwan TYLCV isolates collected by Tsai et al. (2011) , multiple sequence alignment analysis was performed using software JalView version 2.10.3 (Waterhouse et al., 2009). Based on the results of multiple sequence alignment analysis, a highly reserved sequence region was identified as the target DNA sequence and designed to identify the TYLCV
10 μL的傳統PCR含有5 ng萃取該目標DNA序列、耐熱聚合酶預混組(1x Taq DNA Polymerase Master Mix RED,供應商: Ampliqon公司,丹麥奧登斯)及0.1 μM 該引子對1/2R,於熱循環儀Labcycler (供應商:SensoQuest公司,德國哥廷根)進行熱循環程序,先進行95 °C 5分鐘的DNA解旋(denaturation),再進入95 °C 30秒、55 °C 30秒及72 °C 30秒順序的30個循環,最後延伸72 °C達10分鐘。為了分析其靈敏度,將TYLCV分離株82-2-1的各種配製DNA濃度依次進行PCR反應,從每微升(microliter)中10
9隻病毒到1隻皆有。最後,藉由1.5%瓊脂糖凝膠電泳分析10 μL的擴增子。 (4) 基因片段的定序(sequencing)及奈米金探針設計
10 μL of conventional PCR contains 5 ng to extract the target DNA sequence, a thermostable polymerase premix set (1x Taq DNA Polymerase Master Mix RED, supplier: Ampliqon, Odens, Denmark) and 0.1 μM of the
將傳統PCR擴增子接合至pCR TM2.1-TOPO ®載體中(TOPO ®TA Cloning ®Kit;供應商:賽默飛世爾科技股份有限公司,美國麻州)並送至定序(明欣生物科技有限公司,臺灣台北)。發現來自不同樣品和TYLCV分離株的傳統PCR擴增子包含該目標DNA序列,且該目標DNA序列係具有高度保留序列。 Conjugate traditional PCR amplicons into pCR TM 2.1-TOPO ® vector (TOPO ® TA Cloning ® Kit; supplier: Thermo Fisher Scientific Inc., Massachusetts, USA) and send to sequencing (Mingxin Biotechnology Co., Ltd. Company, Taipei, Taiwan). It was found that traditional PCR amplicons from different samples and TYLCV isolates contained the target DNA sequence, and the target DNA sequence had a highly preserved sequence.
將前述具有高度保留序列之傳統PCR擴增子設計成帶有互補於該標靶序列之一內部區域之一序列,該序列係與奈米金接合的DNA探針,即形成一奈米金探針。該奈米金探針帶有5'-末端修飾的巰基(C 6SH,5’-thiol-(TATCGTGTTAATAATTATGT)-3’, SEQ ID NO:3)。同時設計及合成了與該DNA探針互補的人工cDNA (5’-ATGGTTCTCGTACTTCCCAGCTTCCTGGTGATTGTAAACTACATAATTATTAACACGATA-3’ (SEQ ID NO:4),明欣生物科技有限公司,臺灣台北)。 (5) 奈米金探針備製與比色檢測(colorimetric assay)方法確立 The above-mentioned traditional PCR amplicon with a highly preserved sequence is designed to have a sequence complementary to an internal region of the target sequence, and this sequence is a DNA probe conjugated to nano gold to form a nano gold probe needle. The nano gold probe has a 5'-terminal modified thiol group (C 6 SH, 5'-thiol-(TATCGTGTTAATAATTATGT)-3', SEQ ID NO: 3). At the same time, an artificial cDNA complementary to the DNA probe (5'-ATGGTTCTCGTACTTCCCAGCTTCCTGGTGATTGTAAACTACATAATTATTAACACGATA-3' (SEQ ID NO: 4), Mingxin Biotechnology Co., Ltd., Taipei, Taiwan) was designed and synthesized. (5) Preparation of nanometer gold probe and establishment of colorimetric assay method
奈米金溶液購買自供應商(TANBead ®NanoGold-13,臺灣圓點奈米技術開發有限公司,臺灣桃園),於本實施例中使用之顆粒尺寸為13 nm。用純水將奈米金探針的濃度調節至50 nM,然後保存在4 °C冰箱備用。 Nano gold solution was purchased from a supplier (TANBead ® NanoGold-13, Taiwan Dot Nano Technology Development Co., Ltd., Taoyuan, Taiwan), and the particle size used in this example was 13 nm. Adjust the concentration of the nanometer gold probe to 50 nM with pure water, then store in a refrigerator at 4 °C until use.
將1 μL 50 nM奈米金探針(即第二試劑)加到含有15 μL 3M氯化鈉(NaCl)的100 μL 含有目標DNA序列之第一溶液中,以進行比色檢測,共分析了50 pM至10 μM的人工互補ssDNA溶液。DNA樣品與奈米金探針的混合物在95 °C下作用5分鐘後,分別加入第三試劑,該第三試劑包含有1.5 μL之400 mM鹽酸羥胺(hydroxylamine hydrochloride, H
2NOH)與1.5 μL之25 mM四氯金酸(hydrogen tetrachloroaurate III, HAuCl
4,供應商:西格瑪奧瑞奇公司,美國),並充分混合。反應大約30秒後,即可見奈米金粒子長成各種可見的顏色。最後,再以分光光度計(Nano-Drop 2000,供應商:賽默飛世爾科技股份有限公司,美國麻州)分析奈米金粒子溶液的紫外/可見光譜(UV/vis spectra)。 (5) 重組酶聚合酶擴增(RPA)與奈米金比色檢測
Add 1 μL of 50 nM nanometer gold probe (ie the second reagent) to 100 μL of the first solution containing the target DNA sequence in 15 μL of 3M sodium chloride (NaCl) for colorimetric detection. 50 pM to 10 μM artificial complementary ssDNA solution. After the mixture of the DNA sample and the nano gold probe was allowed to act at 95 °C for 5 minutes, a third reagent was added. The third reagent included 1.5 μL of 400 mM hydroxylamine hydrochloride (H 2 NOH) and 1.5 μL. 25 mM tetrachloroaurate III (hydrogen tetrachloroaurate III, HAuCl 4 , supplier: Sigma-Aldrich, USA), and thoroughly mixed. After about 30 seconds of reaction, the nano-gold particles can grow into various visible colors. Finally, the UV/vis spectra of the nanoparticle solution was analyzed with a spectrophotometer (Nano-
重組酶聚合酶擴增(recombinase polymerase amplification, RPA)反應是選用試劑組TwistAmp ®Basic Kit (TwistDX,英國劍橋),並依據製造商的建議進行些許調整;含有5 ng萃取該目標DNA序列和480 nM之該引子對的20 μL RPA反應物在39 °C作用30分鐘,前述包含引子對及RPA試劑組之混合物稱為第一試劑。為了建立RPA檢測DNA的最佳條件,RPA反應物分別在33 °C、35 °C、37 °C及39 °C下作用5分鐘、10分鐘、20分鐘及30分鐘。為了分析RPA的靈敏度,將TYLCV分離株82-2-1的各種配製DNA濃度依次進行RPA擴增反應,從每微升中10 9隻病毒到1隻皆有,然後在33 °C下作用10分鐘。最後,藉由1.5%瓊脂糖凝膠電泳驗證4 μL的RPA擴增子帶有該目標DNA序列,剰餘10 μL之RPA擴增子用於後續奈米金比色檢測。 Recombinase polymerase amplification (recombinase polymerase amplification, RPA) reaction is to use the reagent set TwistAmp ® Basic Kit (TwistDX, Cambridge, UK), and make some adjustments according to the manufacturer's recommendations; contains 5 ng to extract the target DNA sequence and 480 nM The 20 μL RPA reactant of the primer pair was allowed to act at 39 °C for 30 minutes. The aforementioned mixture containing the primer pair and the RPA reagent group is called the first reagent. In order to establish the best conditions for RPA DNA detection, RPA reactants were reacted at 33 °C, 35 °C, 37 °C and 39 °C for 5 minutes, 10 minutes, 20 minutes and 30 minutes, respectively. In order to analyze the sensitivity of RPA, various DNA concentrations of TYLCV isolate 82-2-1 were sequentially subjected to RPA amplification reaction, from 109 viruses to 1 virus per microliter, and then acted at 33 °C for 10 minute. Finally, by 1.5% agarose gel electrophoresis, it was verified that 4 μL of the RPA amplicon had the target DNA sequence, and the remaining 10 μL of the RPA amplicon was used for the subsequent nanometer colorimetric detection.
將3.5 μL的50 nM奈米金探針(即第二試劑)混合於10 μL RPA擴增子,其係含有目標DNA序列之第一溶液中,然後在95 °C作用5分鐘,以進行可視化分子診斷。隨後,加入第三試劑,其包含1 μL之200 mM鹽酸羥胺(H 2NOH)與1 μL之25 mM四氯金酸(HAuCl 4,供應商:西格瑪奧瑞奇公司,美國)並充分混合。大約30秒後,即可見奈米金粒子長成各種可見的顏色。最後,記錄奈米金粒子溶液的影像和紫外/可見光譜。 B. 結果 (1)可視化分子診斷設計 Mix 3.5 μL of 50 nM nanoprobe (ie the second reagent) in 10 μL of RPA amplicon, which is the first solution containing the target DNA sequence, and then act at 95 °C for 5 minutes for visualization Molecular diagnosis. Subsequently, a third reagent was added, which contained 1 μL of 200 mM hydroxylamine hydrochloride (H 2 NOH) and 1 μL of 25 mM tetrachloroauric acid (HAuCl 4 , supplier: Sigma-Aldrich, USA) and mixed thoroughly. After about 30 seconds, you can see the nano gold particles grow into various visible colors. Finally, record the image and UV/Vis spectrum of the nanoparticle solution. B. Results (1) Visual molecular diagnostic design
除總DNA的萃取步驟外,可視化分子診斷方法可主要分為三個操作步驟以進行三個階段的反應,即(a)重組酶聚合酶擴增、(b)奈米金探針雜合反應及(c)可視化DNA訊號放大及觀察。In addition to the extraction step of total DNA, the visual molecular diagnostic method can be divided into three steps to perform three-stage reaction, namely (a) recombinase polymerase amplification, (b) nanoprobe hybridization reaction And (c) Visualize DNA signal amplification and observation.
步驟(a)中的反應為第一階段反應,其是將包含有該目標DNA序列之1 μL番茄全萃取DNA之第一溶液加入9 μL之第一試劑中,該第一試劑係用以進行RPA擴增該目標DNA序列,且該第一試劑含有TYLCV專一性擴增引子對,該引子對包括以該目標DNA序列做為標靶序列之一正向引子及一反向引子,於一較佳反應環境,即33 °C恆溫狀態下10 min,進行TYLCV基因片段的專一性擴增。採用專一性擴增引子對,不但能偵測病原的有無,更能區隔不同分離菌株(isolate)。事實上,在恆定且較低的溫度和較少的反應時間下,RPA與傳統PCR一樣有效。使用RPA不但達成節省時間和精力,並且對設備和專業技術的需求很低。The reaction in step (a) is the first-stage reaction, which is to add a first solution of 1 μL tomato full-extracted DNA containing the target DNA sequence to 9 μL of the first reagent, which is used to proceed RPA amplifies the target DNA sequence, and the first reagent contains a TYLCV specific amplification primer pair. The primer pair includes a forward primer and a reverse primer with the target DNA sequence as the target sequence. In a good reaction environment, that is, at a constant temperature of 33 °C for 10 minutes, the TYLCV gene fragment was specifically amplified. The use of specific amplification primer pairs can not only detect the presence or absence of pathogens, but also separate different isolates. In fact, at a constant and lower temperature and less reaction time, RPA is as effective as traditional PCR. Using RPA not only saves time and effort, but also has low requirements for equipment and expertise.
步驟(b)中的反應為第二階段反應,其是將3.5 μL奈米金探針之第二試劑直接加入完成前述步驟(a)反應的該第一溶液中並且充分混合,該奈米金探針係帶有互補於該標靶序列之一內部區域之一序列,於95 °C狀態下5分鐘以進行奈米金探針與TYLCV專一性擴增該目標DNA序列(即該標靶序列)的高嚴格度雜合反應(high stringency hybridization)。The reaction in step (b) is a second-stage reaction, which is to directly add the second reagent of 3.5 μL of the nanometer gold probe to the first solution that completes the reaction of the aforementioned step (a) and mix it thoroughly, the nanometer gold The probe carries a sequence complementary to an internal region of the target sequence, and the target DNA sequence (i.e. the target sequence) is specifically amplified by the nanometer probe and TYLCV at 95 °C for 5 minutes. )'S high stringency hybridization.
隨後,步驟(c)中的反應為第三階段反應,是於完成前述步驟(b)反應的該第一溶液中加入第三試劑,該第三試劑包含羥胺(NH 2OH,200 mM)及四氯金酸(HAuCl 4,12.5 mM)各1 μL,充分混合後,觸發該第一溶液中之該奈米金探針聚集並呈肉眼可見之一顏色。 Subsequently, the reaction in step (c) is a third-stage reaction. A third reagent is added to the first solution that completes the reaction in step (b) above, and the third reagent includes hydroxylamine (NH 2 OH, 200 mM) and 1 μL each of tetrachloroauric acid (HAuCl 4 , 12.5 mM), after being thoroughly mixed, triggers the aggregation of the nanoprobe in the first solution and presents a color visible to the naked eye.
於前述步驟(b)之第二階段反應中,該目標DNA序列擴增片段經95 °C變性(denaturation)後,先形成單股DNA (ssDNA);若與該奈米金粒探針上的該序列(DNA)為互補核酸序列時,擴增該目標DNA序列的單股DNA即與奈米金探針上的該序列DNA片段重組為雙股螺旋DNA。該奈米金探針與不同擴增量及不同序列相似性的互補單股DNA (complementary ssDNA)重組後,會生成(或稱聚集)不同尺寸及形狀的奈米金粒子,並具有不同顏色及紫外/可見光分光光度,此一特性顯示雖能以肉眼初步判斷是否有目標DNA存在,即病原初步篩檢的定性診斷,然而此階段奈米金粒子的顏色變化並不明顯,需仰賴比色儀器(如分光光度計)協助才可達到cDNA濃度的定量解釋。再經由步驟(c)觸發該奈米金探針聚集,使可視化DNA訊號放大,則可達到不需比色儀器協助,即可以肉眼直接觀測結果同步進行病原的定性及定量分析,快速且簡便。In the second-stage reaction of the aforementioned step (b), after the target DNA sequence amplified fragment is denatured at 95 °C, a single-stranded DNA (ssDNA) is formed first; When the sequence (DNA) is a complementary nucleic acid sequence, the single-stranded DNA that amplifies the target DNA sequence recombines with the sequence DNA fragment on the nanoprobe to form a double-stranded helix DNA. After recombination with the complementary single-stranded DNA (complementary ssDNA) with different amplification amounts and different sequence similarities, the nanometer gold probe will generate (or call for aggregation) nanometer gold particles of different sizes and shapes, and have different colors and UV/Visible spectrophotometry, this feature shows that although it can be judged by the naked eye whether the target DNA is present, that is, the qualitative diagnosis of the initial screening of the pathogen, the color change of the nanoparticles at this stage is not obvious, and it depends on the colorimetric instrument (For example, spectrophotometer) Only with assistance can quantitative interpretation of cDNA concentration be achieved. Then, by triggering the aggregation of the nanometer gold probe through step (c) to amplify the visualized DNA signal, without the assistance of colorimetric instruments, the qualitative and quantitative analysis of the pathogen can be performed simultaneously by direct observation of the naked eye, which is fast and simple.
進一步地,本發明之可視化分子診斷方法還可結合不同分析步驟及設備,毋需精密儀器及特殊藥劑,即能快速且簡單地進行分子診斷;亦能應用於田間、在場、醫院等第一線病害診斷。 (2)可視化分子診斷之奈米金探針的適用性Further, the visual molecular diagnosis method of the present invention can also combine different analysis steps and equipment, and can perform molecular diagnosis quickly and simply without the need of precise instruments and special medicines; it can also be applied to field, field, hospital and other first Line disease diagnosis. (2) The applicability of nanometer probes for visualizing molecular diagnosis
本發明之可視化分子診斷方法及試驗套組可依據需求,對不同疾病(或稱檢測標的)設計鑑定用擴增子與奈米金探針。圖1所示係本發明一較佳實施態樣之TYLCV DNA標記的特異性比較,其中圖1B及圖1C中軌跡P為TYLCV之參考分離株82-2-1,軌跡1至6為各個TYLCV感染植株(或稱檢體1至6)。以本實施例而言,設計了新穎的鑑定TYLCV引子對,以滿足RPA反應的需求,與傳統引子對相比,其長度短,靈敏度高,準確度高(如圖1A所示)。並且依據不同感病番茄植株和TYLCV分離株的擴增核苷酸序列,設計了與奈米金粒子結合的DNA探針序列(如圖2B所示)。同時設計並合成與TYLCV鑑定擴增子相同核苷酸序列的互補ssDNA,以驗證目標擴增片段與奈米金探針的雜合效果(如圖2A至C所示)。The visual molecular diagnosis method and test set of the present invention can design and identify amplicons and nanoprobes for different diseases (or detection targets) according to needs. FIG. 1 shows a comparison of the specificity of TYLCV DNA markers according to a preferred embodiment of the present invention, wherein the trace P in FIGS. 1B and 1C is the reference isolate 82-2-1 of TYLCV, and traces 1 to 6 are each TYLCV Infect plants (or
為了確立該奈米金探針檢測該目標DNA序列的有效性和靈敏度,將不同濃度的cDNA依次與奈米金探針雜交。該奈米金探針(其中包含奈米金粒子)溶液的顏色明顯地從粉紅色變為深藍色、藏青、靛藍、紫、紫紅及淡紫,分別代表cDNA濃度為10、5、1、0.5、0.1 μM到50 nM。當cDNA濃度低於10 nM時,奈米金粒子的顏色不甚明顯,甚至在低於0.5 nM的反應中出現沉澱物(如圖2C所示)。前述結果顯示TYLCV鑑定使用本發明之可視化分子診斷方法及試驗套組進行目視比色檢測是可行的,此外,本發明中的奈米金探針的顏色變化能做為cDNA濃度的定量解釋。此外,與先前技術不同,本實施例之該目標DNA序列使用了與實際DNA鑑定較類似的長cDNA (60 nt)與該奈米金探針(20 nt)進行雜合。值得注意的是,本實施例結果顯示較長的cDNA可影響奈米金探針的聚集,進而產生較大的顏色變化量。由於顏色和cDNA濃度間具有較佳的線性分佈關係,使得該奈米金探針聚集反應更適合用肉眼觀察。 (3) 重組酶聚合酶擴增反應的最佳化條件In order to establish the effectiveness and sensitivity of the nano gold probe to detect the target DNA sequence, cDNAs of different concentrations were sequentially hybridized with the nano gold probe. The color of the nanogold probe (including nanogold particles) solution obviously changed from pink to dark blue, navy blue, indigo, purple, purple and light purple, representing cDNA concentrations of 10, 5, 1, 0.5 respectively , 0.1 μM to 50 nM. When the cDNA concentration is lower than 10 nM, the color of the nano-gold particles is not obvious, and even precipitates appear in the reaction below 0.5 nM (as shown in FIG. 2C). The foregoing results show that TYLCV identification is feasible using the visual molecular diagnostic method and test kit of the present invention for visual colorimetric detection. In addition, the color change of the nanometer probe in the present invention can be used as a quantitative interpretation of cDNA concentration. In addition, unlike the prior art, the target DNA sequence of this example uses a long cDNA (60 nt) that is similar to the actual DNA identification and the nanoprobe (20 nt) for hybridization. It is worth noting that the results of this example show that a longer cDNA can affect the aggregation of nano gold probes, which in turn produces a larger amount of color change. Due to the better linear distribution relationship between color and cDNA concentration, the nanogold probe aggregation reaction is more suitable for visual observation. (3) Optimized conditions for recombinase polymerase amplification reaction
根據試劑組TwistAmp ®Basic Kit製造商的建議,RPA反應的最佳條件在恆定溫度(37-39 °C)下作用20~40分鐘,且於39 °C下作用40分鐘的RPA擴增產物明顯多於傳統PCR (如圖3A所示)。然而,一般而言RPA於25至45 °C環境下仍可正常運作,且反應作用時間的變化更大 。因此,為節省時間與人力,本發明進一步尋找可視化分子診斷的最佳RPA反應條件。 According to the recommendations of the manufacturer of the reagent kit TwistAmp ® Basic Kit, the optimal conditions for the RPA reaction are 20 to 40 minutes at a constant temperature (37-39 °C), and the RPA amplification products at 39 °C for 40 minutes are obvious More than traditional PCR (as shown in Figure 3A). However, in general, RPA can still operate normally at 25 to 45 °C, and the reaction time varies more. Therefore, in order to save time and manpower, the present invention further seeks the best RPA reaction conditions for visualizing molecular diagnosis.
本實施例將RPA反應物分別置於33°C、35°C、37°C或39°C環境下各分別作用5分鐘、10分鐘、20分鐘及30分鐘,即以不同反應條件重覆前述步驟(a)。根據凝膠電泳的分析結果,30分鐘的RPA擴增反應在37 °C具有最大產量,而在33 °C具有最小產量。另根據各種時間的影響結果,顯示在10分鐘作用下,RPA擴增反應能達電泳檢測下限(如圖3B所示)。In this example, the RPA reactants were placed in an environment of 33°C, 35°C, 37°C, or 39°C for 5 minutes, 10 minutes, 20 minutes, and 30 minutes, respectively, that is, repeating the foregoing with different reaction conditions. Step (a). According to the analysis results of gel electrophoresis, the 30-minute RPA amplification reaction has the maximum yield at 37 °C and the minimum yield at 33 °C. In addition, according to the effects of various times, it was shown that under the action of 10 minutes, the RPA amplification reaction can reach the lower limit of electrophoretic detection (as shown in FIG. 3B).
隨後,進行奈米金比色檢測(即前述步驟(b)及(c))以了解RPA反應的最低可檢出條件是否適合用與該奈米金探針結合。與各種RPA反應雜合的奈米金溶液的顏色分別為紫色、藍紫色及藏青,分別代表反應溫度為33、35、37到39 °C。甚至RPA擴增子的電泳分析表現為低量電泳條帶(10分鐘)和不清楚電泳條帶(5分鐘)的比色檢測結果都是紫色。整體而言,各種RPA反應所檢測到奈米金粒子顏色類似於各種濃度的人工互補ssDNA (如圖3C)。上述結果顯示,RPA反應的有效檢測條件是在33 °C下作用10分鐘,可使僅具1 copy/μL的TYLCV模板,從初始為粉紅色的奈米金探針溶液轉而呈現出淡紫色。 (4)可視化分子診斷的靈敏度檢測Subsequently, a nanogold colorimetric test (ie, the aforementioned steps (b) and (c)) is performed to understand whether the lowest detectable condition of the RPA reaction is suitable for binding to the nanogold probe. The colors of nanogold solutions hybridized with various RPA reactions are purple, blue-purple, and navy blue, respectively, representing reaction temperatures of 33, 35, 37 to 39 °C. Even the electrophoretic analysis of the RPA amplicon showed that the colorimetric detection results of low-level electrophoretic bands (10 minutes) and unclear electrophoretic bands (5 minutes) were purple. Overall, the color of the nanoparticles detected by various RPA reactions is similar to artificial ssDNA of various concentrations (see Figure 3C). The above results show that the effective detection condition of the RPA reaction is that it can be used for 10 minutes at 33 °C, which can only change the TYLCV template with only 1 copy/μL from the pink nanoparticle probe solution to a pale purple. . (4) Sensitivity detection of visual molecular diagnosis
為進一步釐清本發明可視化分子診斷方法及試驗套組的運作極限,檢測病原分子診斷的靈敏度具有重大意義。本實施例透過偵測分離株82-2-1的不同DNA模板濃度,以建立一目標DNA序列系列濃度與該奈米金探針聚集顏色之一比色梯度系統,比較RPA與傳統PCR的靈敏度。In order to further clarify the operational limit of the visual molecular diagnosis method and the test kit of the present invention, the sensitivity of detecting the molecular diagnosis of pathogens is of great significance. In this embodiment, by detecting different DNA template concentrations of the isolate 82-2-1, a colorimetric gradient system of a series concentration of the target DNA sequence and one of the aggregation colors of the nanometer probe is established to compare the sensitivity of RPA and traditional PCR .
圖4所示為透過傳統PCR及本發明之RPA進行TYLCV之分子(DNA)診斷靈敏度測試,依凝膠電泳分析結果,PCR與RPA的擴增效果與模板濃度皆呈正相關(R
2= 0.9438及0.8909)。從結果可以明顯地發現,本發明之RPA (1 copy/μL)比PCR (10
6copies/μL)靈敏100萬倍(如圖4A至圖4D所示),圖5所示為透過定量PCR (quantitative PCR, qPCR)進行TYLCV之分子(DNA)診斷靈敏度測試,結果顯示本發明之方法偵測所需時間也比qPCR短(如圖5A及圖5B所示),且在相當於20分鐘的20循環程序後即可檢測到1 copy/μL的TYLCV。
Fig. 4 shows the molecular (DNA) diagnostic sensitivity test of TYLCV by conventional PCR and RPA of the present invention. According to the results of gel electrophoresis analysis, the amplification effects of PCR and RPA are positively correlated with the template concentration (R 2 = 0.9438 and 0.8909). Evident from the results found, RPA (1 copy / μL) of the present invention, the ratio of PCR (10 6 copies / μL)
接著,再透過該奈米金探針溶液的顏色與紫外光/可見光譜以了解該奈米金探針偵測RPA擴增子(其中包含該目標DNA序列)的靈敏度。如圖6A所示,在特定範圍的模板濃度下,該奈米金探針偵測該RPA擴增子所表現出的顏色明顯地從粉紅色(NTC)變為紫紅色(1-10 3copies/μL)、紫色(10 4-10 5copies/μL)、藍紫色(10 6-10 7copies/μL)及藏青(10 8-10 9copies/μL)。如圖6B所示,由於該奈米金探針聚集的顏色及光譜吸收峰從粉紅色(530 nm,A530)轉變為藍色(570 nm,A570),呈現出藍移現象,因此,透過該奈米金探針聚集的吸光度比值 R(A570/A530)以精準的釐清顏色與該系列濃度(即模板濃度)之間的關係。結果發現吸光度比值 R與該系列濃度間呈線性分佈關係(R 2= 0.9239),如圖6C所示,可視化分子診斷可以偵測到1 copy/μL的TYLCV,當病毒量達到10 6copies/μL時,該奈米金探針聚集呈現豐富色澤。 (5)可視化分子診斷的可靠性評估 Then, through the color and ultraviolet/visible spectrum of the nano gold probe solution to understand the sensitivity of the nano gold probe to detect the RPA amplicon (including the target DNA sequence). As shown in FIG. 6A, at a specific range of template concentrations, the color of the nanoprobe detected by the RPA amplicon obviously changed from pink (NTC) to purple (1-10 3 copies /μL), purple (10 4 -10 5 copies/μL), blue-purple (10 6 -10 7 copies/μL) and navy blue (10 8 -10 9 copies/μL). As shown in FIG. 6B, the color and spectral absorption peak of the nano-gold probe changed from pink (530 nm, A530) to blue (570 nm, A570), showing a blue shift phenomenon. The absorbance ratio R (A570/A530) collected by the nanometer gold probe accurately clarifies the relationship between the color and the concentration of the series (ie, template concentration). The results showed that there was a linear distribution relationship between the absorbance ratio R and the concentration of the series (R 2 = 0.9239). As shown in Figure 6C, the visual molecular diagnosis could detect 1 copy/μL of TYLCV. When the amount of virus reached 10 6 copies/μL At this time, the nano gold probe gathers and exhibits a rich color. (5) Reliability assessment of visual molecular diagnosis
病原的核酸萃取經常伴隨著大量宿主基因組DNA (gDNA),由於病原核酸濃度被大量宿主gDNA稀釋,逕而影響病原的分子診斷。基於這個理由,本實施例藉由檢驗不同症狀番茄病株來驗證可視化分子診斷的可靠性。Pathogen nucleic acid extraction is often accompanied by a large amount of host genomic DNA (gDNA), because the concentration of pathogen nucleic acid is diluted by a large amount of host gDNA, which affects the molecular diagnosis of the pathogen. For this reason, this embodiment verifies the reliability of visual molecular diagnosis by examining tomato disease plants with different symptoms.
首先經由傳統PCR (如圖1B及圖1C)和核苷酸測序(如圖1A)確認7個受TYLCV感染的植株。再分別以凝膠電泳、比色檢測及吸光度比值 R(A570/A530)檢驗這些被感染檢體的RPA反應,結果如圖7A至C所示。 First, seven plants infected with TYLCV were confirmed by conventional PCR (see Figure 1B and Figure 1C) and nucleotide sequencing (see Figure 1A). The RPA reactions of these infected specimens were then tested by gel electrophoresis, colorimetric detection, and absorbance ratio R (A570/A530). The results are shown in FIGS. 7A to C.
凝膠電泳結果呈現了檢體的病毒量,但病毒量較高的檢體間無顯著性差異。具體而言,具健康外觀的檢體1的奈米金顏色為紫色,而病徵嚴重的檢體2至7與參考分離株57-2則為紫藍色或藍紫色。The results of gel electrophoresis showed the amount of virus in the sample, but there was no significant difference between the samples with higher virus amount. Specifically, the nano-gold color of the healthy-looking
結果顯示,檢體2至6已嚴重受損,NTC的吸光度比值
R(A570/A530)為0.79,藉由吸光度比值
R可以清楚地指出,檢體1 (
R= 0.95)的病毒含量有10 copies/μL (
R= 0.94),而檢體2 (
R= 1.55)的病毒量則有10
9copies/μL (
R= 1.31)。所有的檢測結果呈現出具有高病毒量檢體的該奈米金探針聚集會顯現出豐富的顏色,即藍色或藍紫色,以及高吸光度比值
R(> 1)。而檢體7呈現出極高的吸光度比值,可能是因為出現了奈米金粒子沉澱現象,進而干擾吸光度。此外,含有單核苷酸多型性(single nucleotide polymorphism, SNP)的判別分離株57-2 (如圖2A所示)在高模板濃度(10
9copies/μL)條件下,其奈米金探針溶液的顏色和吸光度比值
R雖較弱,但SNP檢體的診斷結果仍具有鑑別力。整體而言,本發明之可視化分子診斷方法及試驗套組的比色測定診斷結果和吸光度比值是一致的,顯示本發明之可視化分子診斷方法及試驗套組確實可以應用於病原DNA的診斷及定量檢測,特別係可以應用於TYLCV的分子(DNA)診斷及病毒量的定量檢測。
The results show that
本實施例證實本發明之可視化分子診斷方法及試驗套組可以藉由快速和簡單的程序以擴增並檢測DNA,並且仍然維持高靈敏度。本發明實現在低溫和短時間運作的RPA反應,達到省時和省力的DNA擴增方法,並透過生物傳感器奈米金探針鑑別RPA擴增子,產生各種可見顏色的奈米金探針溶液,即紫紅色、紫色、藍紫色及藏青色等。整體操作過程僅需20分鐘,且設備需求極低。以TYLCV為一較佳實施例之結果顯示,本發明之可視化分子診斷方法比傳統PCR和qPCR更快且更靈敏。特別是,1 copy/μL病毒量和無病徵但帶有病毒的病株仍然可被檢出,改善傳統以目測疾病診斷方式的缺失;同時,觀察溶液顏色即可進行病毒的定性和定量分析。此外,根據實施例中可靠性評估結果得知,本發明之可視化分子診斷方法及試驗套組不受植物基因組DNA的干擾,並且能清楚地檢測出感病植株中的病毒。基於上述的優點,本發明可以直接應用於田間、在場、醫院等健康監測。由於僅需簡便的操作流程及藥劑,本發明還可與微流道(microfluidic)系統結合以實現多重(multiplex)和單一(singleplex)的診斷。This example demonstrates that the visual molecular diagnostic method and test kit of the present invention can amplify and detect DNA by a quick and simple procedure, and still maintain high sensitivity. The invention realizes the RPA reaction operating at a low temperature and a short time to achieve a time-saving and labor-saving DNA amplification method, and distinguishes RPA amplicons through a biosensor nano-gold probe to produce nano-gold probe solutions of various colors. , Namely fuchsia, purple, blue-purple and navy blue. The overall operation process takes only 20 minutes, and the equipment requirements are extremely low. The results using TYLCV as a preferred embodiment show that the visual molecular diagnostic method of the present invention is faster and more sensitive than traditional PCR and qPCR. In particular, the virus volume of 1 copy/μL and the disease-free strains with virus can still be detected, which improves the traditional lack of visual diagnosis of diseases; meanwhile, the qualitative and quantitative analysis of viruses can be performed by observing the color of the solution. In addition, according to the reliability evaluation results in the examples, it is known that the visual molecular diagnosis method and test kit of the present invention are not interfered by plant genomic DNA, and can clearly detect viruses in susceptible plants. Based on the above advantages, the present invention can be directly applied to health monitoring in the field, in the field, in hospitals, etc. Since only simple operation procedures and medicines are needed, the present invention can also be combined with a microfluidic system to realize multiplex and singleplex diagnosis.
綜上所述,本發明之可視化分子診斷方法及試驗套組不僅可縮短分子診斷的反應時間並簡化操作步驟,利用結合重組酶聚合酶擴增(RPA)與光學奈米金探針來檢測病原DNA,並進一步作可視化分子診斷方法反應條件的最佳化,使操作者於低設備需求條件下,不需比色儀器協助,即可以肉眼直接觀測結果作為病原的定性及定量分析,快速且簡便,並能廣泛地應用於疾病的診斷和預測。In summary, the visual molecular diagnosis method and test kit of the present invention can not only shorten the reaction time of molecular diagnosis and simplify the operation steps, but also use a combination of recombinase polymerase amplification (RPA) and optical nanometer probe to detect the pathogen DNA, and further optimize the reaction conditions of the visual molecular diagnosis method, so that the operator can directly observe the results as a qualitative and quantitative analysis of the pathogen with the naked eye without the assistance of colorimetric instruments under the condition of low equipment requirements, fast and simple , And can be widely used in the diagnosis and prediction of diseases.
以上已將本發明做一詳細說明,惟以上所述者,僅惟本發明之一較佳實施例而已,當不能以此限定本發明實施之範圍,即凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬本發明之專利涵蓋範圍內。The present invention has been described in detail above, but the above mentioned is only one of the preferred embodiments of the present invention, which cannot be used to limit the scope of implementation of the present invention, that is, any equivalent made according to the patent application scope of the present invention Changes and modifications should still fall within the scope of the patent of the present invention.
無。no.
圖1,係本發明一較佳實施例之TYLCV DNA標記的特異性比較:A為TYLCV基因組結構、擴增子及奈米金探針位置之示意圖;B為傳統鑑定引子對PAR1c715H/TH1978,被擴增片段的長度為1280 bp;及C為本發明新穎鑑定引子對1/2R,被擴增片段的長度為158 bp。Fig. 1 is a comparison of the specificity of TYLCV DNA markers according to a preferred embodiment of the present invention: A is a schematic diagram of the TYLCV genome structure, amplicons and the position of the nanoprobe; B is the traditional identification primer pair PAR1c715H/TH1978, The length of the amplified fragment is 1280 bp; and C is the novel
圖2,係本發明一較佳實施例之奈米金探針設計:A為擴增自不同TYCLV感染植株及參考分離株標靶序列之測序圖,其中該參考分離株57-2在第61個鹼基處攜帶單核苷酸多態性(single nucleotide polymorphism,SNP) (A/G);B為透過與互補的含標靶序列之擴增子互補雜交之奈米金探針進行DNA比色診斷之示意圖;及C為與特異人性工cDNA雜交之奈米金探針的靈敏度測試比色圖。FIG. 2 is a design of a nanometer probe according to a preferred embodiment of the present invention: A is a sequence diagram of target sequences amplified from different TYCLV-infected plants and reference isolates, wherein the reference isolate 57-2 is located at the 61st A single nucleotide polymorphism (SNP) (A/G) is carried at each base; B is the DNA ratio through the nano-probe that complementary hybridizes with the complementary amplicon containing the target sequence Schematic diagram of color diagnosis; and C is a colorimetric chart of sensitivity test of nanometer probe hybridized with specific human sex cDNA.
圖3,係本發明一較佳實施例之RPA最佳化條件測試結果:A為傳統PCR及RPA產物之比較圖;B為不同RPA溫度下反應30分鐘之放大效果,及於33℃下不同RPA擴增時間之放大效果;C為本發明可視化分子診斷於不同RPA溫度下反應30分鐘及於33℃下不同RPA擴增時間之呈色結果。Figure 3 is a test result of RPA optimization conditions of a preferred embodiment of the present invention: A is a comparison diagram of traditional PCR and RPA products; B is an amplification effect of 30 minutes of reaction at different RPA temperatures, and different at 33 ℃ The amplification effect of the RPA amplification time; C is the coloring result of the visual molecular diagnosis of the present invention reacting at different RPA temperatures for 30 minutes and at 33°C for different RPA amplification times.
圖4,係本發明一較佳實施例透過傳統PCR及RPA進行TYLCV之分子(DNA)診斷靈敏度測試:A為傳統PCR擴增子的量與模板濃度間之相關性分析圖;B為具有10 μL負載體積之傳統PCR擴增子之凝膠電泳圖;C為RPA擴增子的量與模板濃度間之相關性分析圖;D為具有4 μL負載體積之RPA擴增子之凝膠電泳圖;圖中,NTC表示沒有模板之控制組(no template control),誤差槓代表± SE,樣本數n = 4。FIG. 4 is a preferred embodiment of the present invention for performing the molecular (DNA) diagnostic sensitivity test of TYLCV through traditional PCR and RPA: A is a correlation analysis diagram between the amount of traditional PCR amplicons and template concentration; B is 10 Gel electrophoresis of conventional PCR amplicons with a loading volume of μL; C is a correlation analysis diagram between the amount of RPA amplicons and template concentration; D is a gel electrophoresis diagram of RPA amplicons with a loading volume of 4 μL ; In the figure, NTC means no template control, the error bar represents ± SE, and the number of samples n = 4.
圖5,係本發明一較佳實施例透過qPCR進行TYLCV之分子(DNA)診斷靈敏度測試:A為不同模板濃度之擴增曲線圖;B為閾值循環( C T )及模板濃度間之相關性分析圖。 Fig. 5 is a preferred embodiment of the present invention to perform molecular diagnostic sensitivity test of TYLCV through qPCR: A is the amplification curve of different template concentrations; B is the correlation between threshold cycle ( C T ) and template concentration diagram.
圖6,係本發明一較佳實施例使用參考分離株進行本發明可視化分子(DNA)診斷方法之靈敏度測試:A為比色圖;B為在一系列模板濃度下衍生自RPA擴增子的奈米金探針聚集溶液吸收光譜,圖中q表示每種奈米金探針聚集溶液的吸收峰;C為吸收率 R(A570/A530)與模板濃度間之相關性分析圖;圖中,NTC表示沒有模板之控制組(no template control),誤差槓代表± SE,樣本數n = 4。 FIG. 6 is a preferred embodiment of the present invention using a reference isolate to perform the sensitivity test of the visual molecular (DNA) diagnostic method of the present invention: A is a colorimetric chart; B is derived from an RPA amplicon at a series of template concentrations The absorption spectrum of the nano gold probe aggregation solution, q in the figure represents the absorption peak of each nano gold probe aggregation solution; C is the correlation analysis chart between the absorption rate R (A570/A530) and the template concentration; in the figure, NTC means no template control, the error bar represents ± SE, and the number of samples n = 4.
圖7,係本發明一較佳實施例使用受感染植株進行本發明之可視化分子診斷方法的可靠性評估:A為RPA反應之凝膠電泳圖;B為利用本發明之方法的比色圖;C為衍生自不同TYLCV感染植株及參考分離株57-2的奈米金探針聚集溶液吸收率 R(A570/A530)之長條圖。 7 is a preferred embodiment of the present invention using an infected plant to perform the reliability assessment of the visual molecular diagnostic method of the present invention: A is a gel electrophoresis diagram of the RPA reaction; B is a colorimetric diagram using the method of the present invention; C is a bar graph of the absorption rate R (A570/A530) of the aggregation solution of nanometer gold probes derived from different TYLCV infected plants and the reference isolate 57-2.
無。no.
無。no.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107147028A TWI694153B (en) | 2018-12-25 | 2018-12-25 | Method and kit for visualization molecular diagnostic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107147028A TWI694153B (en) | 2018-12-25 | 2018-12-25 | Method and kit for visualization molecular diagnostic |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI694153B true TWI694153B (en) | 2020-05-21 |
TW202024336A TW202024336A (en) | 2020-07-01 |
Family
ID=71896207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107147028A TWI694153B (en) | 2018-12-25 | 2018-12-25 | Method and kit for visualization molecular diagnostic |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI694153B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9581590B2 (en) * | 2011-11-09 | 2017-02-28 | Board Of Trustees Of Michigan State University | Metallic nanoparticle synthesis with carbohydrate capping agent |
-
2018
- 2018-12-25 TW TW107147028A patent/TWI694153B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9581590B2 (en) * | 2011-11-09 | 2017-02-28 | Board Of Trustees Of Michigan State University | Metallic nanoparticle synthesis with carbohydrate capping agent |
Non-Patent Citations (1)
Title |
---|
Fan, Aiping, Choiwan Lau, and Jianzhong Lu. "Hydroxylamine-amplified gold nanoparticles for the naked eye and chemiluminescent detection of sequence-specific DNA with notable potential for single-nucleotide polymorphism discrimination." Analyst 134.3 (2009): 497-503. * |
Also Published As
Publication number | Publication date |
---|---|
TW202024336A (en) | 2020-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6574703B2 (en) | Method for detecting Helicobacter pylori DNA in stool samples | |
AU2011227110B2 (en) | Methods, kits and compositions for detection of MRSA | |
Wang et al. | Detection of nucleic acids and elimination of carryover contamination by using loop-mediated isothermal amplification and antarctic thermal sensitive uracil-DNA-glycosylase in a lateral flow biosensor: application to the detection of Streptococcus pneumoniae | |
CN106399517B (en) | Nucleic acid detection technology combining multi-cross constant-temperature amplification with gold nano biosensing | |
Lee et al. | Rapid and visual detection of tomato spotted wilt virus using recombinase polymerase amplification combined with lateral flow strips | |
CN110358815B (en) | Method for simultaneously detecting multiple target nucleic acids and kit thereof | |
Zhao et al. | Establishment and application of multiple cross displacement amplification coupled with lateral flow biosensor (MCDA-LFB) for visual and rapid detection of Candida albicans in clinical samples | |
CN110295255B (en) | RT-LAMP-LFD-based rapid detection method for detecting kiwi chlorotic and ringspot related viruses | |
CN109913565B (en) | Kit, primer pair, probe and method for detecting vibrio parahaemolyticus | |
US20160186265A1 (en) | Methods for Typing HLA Alleles | |
CN113891943A (en) | Comparative analysis of microsatellites by Capillary Electrophoresis (CE) DNA mapping | |
Ye et al. | A high-specificity flap probe-based isothermal nucleic acid amplification method based on recombinant FEN1-Bst DNA polymerase | |
Zhou et al. | Rapid, ultrasensitive and highly specific diagnosis of Mycoplasma pneumoniae by a CRISPR-based detection platform | |
CN105755134B (en) | Endonuclease-mediated real-time multiple cross-displacement nucleic acid amplification technology and application | |
WO2008077329A1 (en) | Probe for detecting maternal inherited mitochondrial genetic deafness a1555g mutation and its usage | |
Wu et al. | Rapid and visual detection of soybean mosaic virus SC7 with a loop-mediated isothermal amplification strategy | |
KR20190037027A (en) | Primer set for detection of SFTSV and SFTSV detection method using the same | |
An et al. | Recombinase polymerase amplification lateral flow dipstick (RPA-LF) detection of Babesia orientalis in water buffalo (Bubalus babalis, Linnaeus, 1758) | |
TWI694153B (en) | Method and kit for visualization molecular diagnostic | |
Zhang et al. | A CRISPR/Cas12a-assisted array for Helicobacter pylori DNA analysis in saliva | |
Qian et al. | Sensitive and rapid RT-RPA-Cas12a-mediated detection method capable of human rhinovirus A and/or C species by targeting VP4 | |
CN114085926B (en) | Primer, probe, kit and detection method for SNP locus polymorphism of ABCB1 gene C3435T | |
KR102076343B1 (en) | Composition for detecting adenovirus type 55 using Real-time LAMP and uses thereof | |
CN112899385A (en) | Primer group and probe for identifying Brucella S2 vaccine strain and wild strain and application of primer group and probe | |
KR20120086028A (en) | Differential detection of West nile virus and Japanese encephalitis virus |