TWI693612B - 環境賀爾蒙與人體基因的關聯性運算平台 - Google Patents
環境賀爾蒙與人體基因的關聯性運算平台 Download PDFInfo
- Publication number
- TWI693612B TWI693612B TW107100995A TW107100995A TWI693612B TW I693612 B TWI693612 B TW I693612B TW 107100995 A TW107100995 A TW 107100995A TW 107100995 A TW107100995 A TW 107100995A TW I693612 B TWI693612 B TW I693612B
- Authority
- TW
- Taiwan
- Prior art keywords
- environmental
- correlation
- environmental hormones
- human genes
- computing platform
- Prior art date
Links
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
本發明提出一種環境賀爾蒙與人體基因的關聯性運算平台。該運算平台包含一網路介面、一資料庫及一中央處理器。藉由基於計數的分布運算,可以利用不同的微小核醣核酸標的預測方法運算結果以及環境賀爾蒙模組中的微小核醣核酸當運算標的,得到環境賀爾蒙對人體基因的關聯值,進而提供醫界與學界對於環境賀爾蒙與人體基因間的互動及關連模式。
Description
本發明關於一種運算平台,特別是一種用於尋找環境賀爾蒙與人體基因的關聯性運算平台。
近十多年來,許多生態學者、流行病學者、內分泌學家和環境毒理學家皆不約而同地發現環境中一些具有類似生物體內激素作用之化學物質可能對人類健康與生態造成危害。這些化學物質一般稱為環境荷爾蒙(environmental hormone)或內分泌干擾物(endocrine disrupting chemicals),其具有類似生物體內荷爾蒙之功能,能抑制生物體正常生理作用,進而改變生物體內免疫、神經與內分泌系統之正常運作。影響所及,這類化學物質可能產生的人類健康影響包括:女性乳癌和子宮內膜異常增生(endometriosis)、男性前列腺癌及睪丸癌、不正常的性發育、降低男性生殖力、腦下垂體及甲狀腺功能改變、免疫力抑制和神經行為作用等。
目前已知之環境荷爾蒙至少有70種,其中40餘種為農藥。美國針對「環境荷爾蒙篩選計畫」(Endocrine Disruptor Screening Program,EDSP),已於2009年4月15日公布第一階段最終篩選清單(Final List of Chemicals for Initial Tier 1 Screening)67種化學物質。日本依據「環境內分泌干擾物質因應策略」(Strategic Programs on Environmental Endocrine Disruptors,SPEED’ 98),亦於1998年公布包括67種化學物質疑似為環境荷爾蒙。隨著人們對化學合成物質的瞭解,環境荷爾蒙種類將不斷增加。雖然隨著技術演進及科研的突破,已知的環境荷爾蒙對人體,尤其是人體基因的影響方式,已逐漸明瞭。然而,要達到全面了解的層面,還有相當長的路要走。
另一方面,從微小核醣核酸(miRNA)出發,有一些辨識微小核醣核酸與的資訊方法,已能預測及鑑定出數以千計的微小核醣核酸與環境化合物、疾病及/或人體基因之關聯性,但尚未有資訊方法能加以整合,因此,很重要的是提出資訊方法整合微小核醣核酸的相關資訊,進而達到找出環境賀爾蒙與人體基因的關聯性的目的。目前已有收集微小核醣核酸目標基因與疾病關聯性等不同主題的資料庫。有關微小核醣核酸目標基因預測的各式不同的演算法主要有三種類型,第一種是判斷微小核醣核酸與可能目標的序列互補程度,依靠互補性找出微小核醣核酸目標基因的演算法,以TargetScan與miRanda為代表;第二種是利用熱力學方法,以PicTar為代表;第三種則是仰賴目前已知的研究成果,藉由資料探勘的方法,訓練演算法找出可能的目標基因後,再進行驗證,例如以MirTarget2建立的miRDB。miRGen將幾個預測方法的結果再行整合。而ComiR整合了miRanda、PITA、TargetScan與mirSVR四種預測方法。另外SM2miR收錄了小分子對miRNA表達影響的相關資訊。
雖然目前有這些預測miRNA標的基因的演算法,然而這些演算法的預測結果相去甚遠,不同miRNA目標基因間預測的計算方法所得到的候選目標基因結果常常不一致,需花許多時間去做實驗加以驗證,也使得目前這些預測方法的資訊可用性不高,因此調整更精確的預測生物資訊演算法以及通過實驗驗證是同等重要。此外,基於以上獲得的資訊,特別是關於環境賀爾蒙與人體基因關聯性的資訊,需要有一個整合性的平台,讓研究人員甚至是一般大眾可以了解最新的研究成果,對人類的健康有進一步的貢獻。
是故,一種利用有關微小核醣核酸目標基因預測的各式不同的演算法的成果建立的環境賀爾蒙與人體基因的關聯性運算平台,可以滿足以上需求,亦亟為相關醫界與學界所需。
本段文字提取和編譯本發明的某些特點。其它特點將被揭露於後續段落中。其目的在涵蓋附加的申請專利範圍之精神和範圍中,各式的修改和類似的排列。
為了滿足上述需求,本發明提出一種環境賀爾蒙與人體基因的關聯性運算平台。該平台包含:一網路介面,該網路介面用以提供使用者端透過網路選擇一環境賀爾蒙、選擇微小核醣核酸標的預測方法TargetMiner、TarPmiR、ComiR、mirDIP、metaMIR與mir2disease其中至少一者、輸入至少一人體基因、輸入一限制運算值,及顯示環境賀爾蒙與人體基因的一關聯性於該使用者端;一資料庫,該資料庫具有複數個微小核醣核酸標的預測方法模組及一環境賀爾蒙模組,其中每一預測方法模組儲存前述微小核醣核酸標的預測方法之一的運算結果之所有微小核醣核酸與對應的人體基因;該環境賀爾蒙模組儲存環境賀爾蒙與對應的微小核醣核酸;及一中央處理器,該中央處理器與該網路介面與資料庫電連接,用以接收透過該網路介面選擇的環境賀爾蒙與微小核醣核酸標的預測方法,及輸入的限制運算值與人體基因、當有前述選擇的環境賀爾蒙出現的微小核醣核酸標的預測方法數量在該限制運算值以上時,選取微小核醣核酸標的預測方法模組中所有對應的微小核醣核酸、選取與選擇的環境賀爾蒙對應的所有的微小核醣核酸、及於前述所有選取之與選擇的環境賀爾蒙對應的微小核醣核酸與輸入之至少一人體基因的所有的微小核醣核酸間進行一基於計數的分布運算,以獲得該選擇的環境賀爾蒙與至少一人體基因有關的關聯性。
依照本案構想,該環境賀爾蒙可為美國環保署公布的環境荷爾蒙物質;最好,前述環境賀爾蒙可包含2,4-Dichlorophenoxyacetic acid、Abamectin、Acephate、Acetone、Atrazine、Benfluralin、Bifenthrin、Butyl benzyl phthalate、Captan、Carbamothioic acid, dipropyl-, S-ethyl ester、Carbaryl、Carbofuran、Chlorothalonil、Chlorpyrifos、Cyfluthrin、Cypermethrin、Chlorthal-dimethyl、Diazinon、Dibutyl phthalate、Dichlobenil、Dicofol、Diethyl phthalate、Dimethoate、Dimethyl phthalate、Di-sec-octyl phthalate、Disulfoton、Endosulfan、Esfenvalerate、Ethoprop、Fenbutatin oxide、Flutolanil、Folpet、Gardona、Glyphosate、Imidacloprid、Iprodione、Isophorone、Linuron、Malathion、Metalaxyl、Methamidophos、Methidathion、Methomyl、Methyl ethyl ketone、Methyl parathion、Metolachlor、Metribuzin、Myclobutanil、Norflurazon、o-Phenylphenol、Oxamyl、Permethrin、Phosmet、Piperonyl butoxide、Propachlor、Propargite、Propiconazole、Propyzamide、Pyrioxyfen、Quintozene、Resmethrin、Simazine、Tebuconazole、Toluene與Triadimefon。在本案中,該關聯性為一p-value。一關聯值可以-ln(p-value)表示。該基於計數的分布運算可為超幾何分布運算、二項分佈算,或邏輯回歸分布運算。該限制運算值為不小於1且不大於5的正整數。該網路可為有線網路或無線網路。
藉由基於計數的分布運算,可以利用不同的微小核醣核酸標的預測方法運算結果,以及環境賀爾蒙模組中的微小核醣核酸當運算標的,得到環境賀爾蒙與人體基因的關聯值,進而提供醫界與學界對於環境賀爾蒙與人體基因間的互動及關連模式。
本發明將藉由參照下列的實施方式而更具體地描述。
請參閱圖1,該圖為依照本發明的一種環境賀爾蒙與人體基因的關聯性運算平台100的方框圖。運算平台100主要由三個元件所組成:一網路介面110、一資料庫120與一中央處理器130。在實作上,網路介面110與中央處理器130可以是一台伺服器,資料庫120則是安裝於與該伺服器相連的儲存設備中,無論伺服器儲存設備是分離或整合地架設。以下詳述各個元件的功能與協作方式。
網路介面110廣義上包含了運算平台100對外部(網路)資料擷取及提供所必備的所有硬體,以及提供遠端設備呈現資料畫面所必須之軟體。前者可能包含網通模組、輸出入設備、與中央處理器130連結的資料匯流排等。後者則為運作於運算平台100作業系統上的應用軟體,可控制中央處理器130與網路介面110,並對資料庫120進行存取。由於應用軟體的作業內容涵蓋所有硬體,因此狹義來說,網路介面110可僅指硬體部分。應用軟體可使用Java、JavaScript、R、Python、C等程式語言進行撰寫,執行後可進行計算並輸出對應結果。在網路架構上來說是呈現前台資料於使用者端。
網路介面110的功能為:提供使用者端透過網路200選擇一環境賀爾蒙、選擇微小核醣核酸標的預測方法TargetMiner、TarPmiR、ComiR、mirDIP、metaMIR與mir2disease其中至少一者、輸入至少一人體基因、輸入一限制運算值,及顯示環境賀爾蒙與人體基因的一關聯性於該使用者端。以上需要選擇與輸入的資料,其呈現於使用者端的理想介面態樣如圖2所示。這裡所說的網路200,包含有線網路或無線網路,可以是區域網路或網際網路。人體基因可以下拉式選單,一次將所有的人體基因名稱通通呈現在使用者面前,讓使用者挑選其中之一;實作上,也可以讓使用者以手動方式輸入,一次可輸入多個人體基因名稱入文字框中,每個人體基因名稱間可以一種符號做分隔,比如分號。人體基因名稱在學術或實務界上有特殊定義,但不好記憶,一般民眾可能無法使用,故人體基因名稱輸入也可以使用多重勾選式選單為之。人類基因名稱以HUGO基因命名委員會(HUGO Gene Nomenclature Committee,HGNC)提供的基因給定特定編號gene symbol為標準,本發明中所關聯的人體基因,皆以此gene symbol基因名稱命名之。依照本發明,雖然目前許多應用的微小核醣核酸標的預測方法,但就尋找環境賀爾蒙與人體基因的關聯性方面來說,適合的有TargetMiner、TarPmiR、ComiR、mirDIP、metaMIR與mir2disease等微小核醣核酸標的預測方法。實際上,這些微小核醣核酸標的預測方法都極其複雜,需要運算的輸入資料相當龐雜。發明者以資料庫的方式架設於雲端,供使用者下載其運算結果;本發明即是預先下載該些運算結果(詳如後續),免於每次查詢都需要更新一次運算結果。要注意的是,輸入選擇的環境賀爾蒙名稱可以依照美國環保署公布的環境荷爾蒙物質為基準。依照本發明,環境荷爾蒙可包含2,4-Dichlorophenoxyacetic acid、Abamectin、Acephate、Acetone、Atrazine、Benfluralin、Bifenthrin、Butyl benzyl phthalate、Captan、Carbamothioic acid, dipropyl-, S-ethyl ester、Carbaryl、Carbofuran、Chlorothalonil、Chlorpyrifos、Cyfluthrin、Cypermethrin、Chlorthal-dimethyl、Diazinon、Dibutyl phthalate、Dichlobenil、Dicofol、Diethyl phthalate、Dimethoate、Dimethyl phthalate、Di-sec-octyl phthalate、Disulfoton、Endosulfan、Esfenvalerate、Ethoprop、Fenbutatin oxide、Flutolanil、Folpet、Gardona、Glyphosate、Imidacloprid、Iprodione、Isophorone、Linuron、Malathion、Metalaxyl、Methamidophos、Methidathion、Methomyl、Methyl ethyl ketone、Methyl parathion、Metolachlor、Metribuzin、Myclobutanil、Norflurazon、o-Phenylphenol、Oxamyl、Permethrin、Phosmet、Piperonyl butoxide、Propachlor、Propargite、Propiconazole、Propyzamide、Pyrioxyfen、Quintozene、Resmethrin、Simazine、Tebuconazole、Toluene與Triadimefon等常見環境賀爾蒙;實作上,也可以下拉式選單為之。輸入完畢後點擊”查詢” ,輸入資料就會藉由網路介面110傳給應用軟體,透過中央處理器130來執行。其執行結果為關聯性或關聯值,可於使用者端上顯示。依照本發明,使用者端可為不同的硬體設備。比如圖1中的一使用者端210為一台筆記型電腦。實務上,使用者端210亦可為一台平板電腦或一台智慧型手機。對應不同的作業系統、螢幕大小,應用軟體可提供相應的HTML碼,以呈現適合的前台。
由於資料庫的每個微小核醣核酸標的預測方法原理不同,對於特定的人體基因,會得到不同的標的微小核醣核酸。因此可開放選擇複數個微小核醣核酸標的預測方法的運算結果,作為運算平台100運算的依據。限制運算值是用來找出最多聯集標的微小核醣核酸之用;若其數字為n,則在選取的微小核醣核酸標的預測方法中至少要有n種提及到的微小核醣核酸標的預測方法, 才會被運算平台100使用。舉例來說,如果選擇的環境賀爾蒙為Malathion,在選擇3種微小核醣核酸標的預測方法之下,每一種微小核醣核酸標的預測方法分別對應到的標的微小核醣核酸數量分別為1734、5249、7732。若設n=4,也就是找出至少出現4次的微小核醣核酸標的預測方法,那麼運算平台100會使用的標的微小核醣核酸總數可能剩下1000個以下;若設n=5,也就是找出至少出現5次的微小核醣核酸標的預測方法,那麼運算平台100會使用的標的微小核醣核酸總數可能剩下500個以下;若設n=6,也就是找出至少出現6次的標的微小核醣核酸(全部微小核醣核酸標的預測方法都出現結果),那麼運算平台100會使用的標的微小核醣核酸總數可能只剩下不到100個。就分析廣度而言,限制運算值最好為不小於1且不大於5的正整數。
如圖3所示,資料庫120具有數個微小核醣核酸標的預測方法模組(TargetMiner預測方法模組、TarPmiR預測方法模組、ComiR預測方法模組、mirDIP預測方法模組、metaMIR預測方法模組與mir2disease預測方法模組)及一環境賀爾蒙模組。每一預測方法模組前述微小核醣核酸標的預測方法之一的運算結果之所有微小核醣核酸與對應的人體基因。運算結果有很多數據、資料或指標,因此資料庫120中各模組不限定於只有環境賀爾蒙與對應的人體基因兩種型態的資料。舉例來說,關於一個特定的環境賀爾蒙,在一個預測方法模組中,它可能除了對應很多疾病,也可能會對應到環境毒素、生物途徑…等運算結果。就本發明而言,只要求至少具備運算結果中的環境賀爾蒙與對應的標的基因兩種型態的資料,其它的可有可無。環境賀爾蒙模組則是儲存環境賀爾蒙與對應的微小核醣核酸。
中央處理器130與網路介面110及資料庫120電連接,用以接收來自應用軟體,透過網路介面110選擇的環境賀爾蒙與微小核醣核酸標的預測方法,及輸入的限制運算值與人體基因。當有前述選擇的環境賀爾蒙出現的微小核醣核酸標的預測方法數量在該限制運算值以上時(比如選取的預測方法數量是5個,而限制運算值是4時),中央處理器130選取微小核醣核酸標的預測方法模組中所有對應的微小核醣核酸。中央處理器130還可以選取與選擇的環境賀爾蒙對應的所有的微小核醣核酸、及於前述所有選取之與選擇的環境賀爾蒙對應的微小核醣核酸與輸入之至少一人體基因的所有的微小核醣核酸間進行一基於計數的分布運算,以獲得該選擇的環境賀爾蒙與至少一人體基因有關的關聯性。
此處所謂的基於計數的分布運算,可以是超幾何分布運算、二項分佈算,或邏輯回歸分布運算。以超幾何分布為例。超幾何分布是統計學上一種離散機率分布。它描述了由有限個物件中抽出n個物件,成功抽出指定種類的物件的個數(不歸還)。應用在本發明中,對兩群微小核醣核酸進行超幾何分布運算,可以獲得的關聯性為p-value。中央處理器130可以透過應用軟體將計算獲得的p-value,經由網路介面110,呈現在查詢的使用者端螢幕上。由於p-value數值很小,但彼此間的差異性很大,故採一關聯值,-ln(p-value),便於以較接近的數值,以圖形呈現在查詢的使用者端螢幕上。最好,關聯值可以一可視化方式呈現於使用者端,比如該可視化方式為使用長條圖長度顯示該關聯值,其長短表示關聯值高低;或使用泡泡圖大小顯示該關聯值。
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100‧‧‧運算平台110‧‧‧網路介面120‧‧‧資料庫130‧‧‧中央處理器200‧‧‧網路210‧‧‧使用者端
圖1為依照本發明的一種環境賀爾蒙與人體基因的關聯性運算平台的方框圖,圖2描述一使用者端的理想介面態樣,圖3為一資料庫結構。
100‧‧‧運算平台
110‧‧‧網路介面
120‧‧‧資料庫
130‧‧‧中央處理器
200‧‧‧網路
210‧‧‧使用者端
Claims (8)
- 一種環境賀爾蒙與人體基因的關聯性運算平台,包含: 一網路介面,該網路介面用以提供使用者端透過網路選擇一環境賀爾蒙、選擇微小核醣核酸標的預測方法TargetMiner、TarPmiR、ComiR、mirDIP、metaMIR與mir2disease其中至少一者、輸入至少一人體基因、輸入一限制運算值,及顯示環境賀爾蒙與人體基因的一關聯性於該使用者端; 一資料庫,該資料庫具有複數個微小核醣核酸標的預測方法模組及一環境賀爾蒙模組,其中每一預測方法模組儲存前述微小核醣核酸標的預測方法之一的運算結果之所有微小核醣核酸與對應的人體基因;該環境賀爾蒙模組儲存環境賀爾蒙與對應的微小核醣核酸;及 一中央處理器,該中央處理器與該網路介面與資料庫電連接,用以接收透過該網路介面選擇的環境賀爾蒙與微小核醣核酸標的預測方法,及輸入的限制運算值與人體基因、當有前述選擇的環境賀爾蒙出現的微小核醣核酸標的預測方法數量在該限制運算值以上時,選取微小核醣核酸標的預測方法模組中所有對應的微小核醣核酸、選取與選擇的環境賀爾蒙對應的所有的微小核醣核酸、及於前述所有選取之與選擇的環境賀爾蒙對應的微小核醣核酸與輸入之至少一人體基因的所有的微小核醣核酸間進行一基於計數的分布運算,以獲得該選擇的環境賀爾蒙與至少一人體基因有關的關聯性。
- 如申請專利範圍第1項所述之環境賀爾蒙與人體基因的關聯性運算平台,其中該環境賀爾蒙為美國環保署公布的環境荷爾蒙物質。
- 如申請專利範圍第1項所述之環境賀爾蒙與人體基因的關聯性運算平台,其中該環境賀爾蒙包含2,4-Dichlorophenoxyacetic acid、Abamectin、Acephate、Acetone、Atrazine、Benfluralin、Bifenthrin、Butyl benzyl phthalate、Captan、Carbamothioic acid, dipropyl-, S-ethyl ester、Carbaryl、Carbofuran、Chlorothalonil、Chlorpyrifos、Cyfluthrin、Cypermethrin、Chlorthal-dimethyl、Diazinon、Dibutyl phthalate、Dichlobenil、Dicofol、Diethyl phthalate、Dimethoate、Dimethyl phthalate、Di-sec-octyl phthalate、Disulfoton、Endosulfan、Esfenvalerate、Ethoprop、Fenbutatin oxide、Flutolanil、Folpet、Gardona、Glyphosate、Imidacloprid、Iprodione、Isophorone、Linuron、Malathion、Metalaxyl、Methamidophos、Methidathion、Methomyl、Methyl ethyl ketone、Methyl parathion、Metolachlor、Metribuzin、Myclobutanil、Norflurazon、o-Phenylphenol、Oxamyl、Permethrin、Phosmet、Piperonyl butoxide、Propachlor、Propargite、Propiconazole、Propyzamide、Pyrioxyfen、Quintozene、Resmethrin、Simazine、Tebuconazole、Toluene與Triadimefon。
- 如申請專利範圍第1項所述之環境賀爾蒙與人體基因的關聯性運算平台,其中該關聯性為一p-value。
- 如申請專利範圍第4項所述之環境賀爾蒙與人體基因的關聯性運算平台,其中一關聯值以-ln(p-value)表示。
- 如申請專利範圍第1項所述之環境賀爾蒙與人體基因的關聯性運算平台,其中該基於計數的分布運算為超幾何分布運算、二項分佈算,或邏輯回歸分布運算。
- 如申請專利範圍第1項所述之環境賀爾蒙與人體基因的關聯性運算平台,其中該限制運算值為不小於1且不大於5的正整數。
- 如申請專利範圍第1項所述之環境賀爾蒙與人體基因的關聯性運算平台,其中該網路為有線網路或無線網路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107100995A TWI693612B (zh) | 2018-01-10 | 2018-01-10 | 環境賀爾蒙與人體基因的關聯性運算平台 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107100995A TWI693612B (zh) | 2018-01-10 | 2018-01-10 | 環境賀爾蒙與人體基因的關聯性運算平台 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201931182A TW201931182A (zh) | 2019-08-01 |
TWI693612B true TWI693612B (zh) | 2020-05-11 |
Family
ID=68315915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107100995A TWI693612B (zh) | 2018-01-10 | 2018-01-10 | 環境賀爾蒙與人體基因的關聯性運算平台 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI693612B (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040225449A1 (en) * | 1999-06-28 | 2004-11-11 | Bevilacqua Michael P. | Systems and methods for characterizing a biological condition or agent using selected gene expression profiles |
US20050060102A1 (en) * | 2000-10-12 | 2005-03-17 | O'reilly David J. | Interactive correlation of compound information and genomic information |
TW201114698A (en) * | 2009-10-20 | 2011-05-01 | Po-Jung Chen | Active substance for decomposition of environmental hormone from fungi cultured substrate, preparation method and application thereof |
WO2014001451A1 (en) * | 2012-06-27 | 2014-01-03 | Metanomics Health Gmbh | Methods for identifying diabetes drugs |
WO2014014518A1 (en) | 2012-07-18 | 2014-01-23 | Dana-Farber Cancer Institute, Inc. | Methods for treating, preventing and predicting risk of developing breast cancer |
US20140214336A1 (en) * | 2011-09-09 | 2014-07-31 | Philip Morris Products S.A. | Systems and methods for network-based biological activity assessment |
TW201730345A (zh) * | 2016-02-19 | 2017-09-01 | 高雄醫學大學 | 用以評估乳癌罹患風險之方法及基因標記 |
-
2018
- 2018-01-10 TW TW107100995A patent/TWI693612B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040225449A1 (en) * | 1999-06-28 | 2004-11-11 | Bevilacqua Michael P. | Systems and methods for characterizing a biological condition or agent using selected gene expression profiles |
US20050060102A1 (en) * | 2000-10-12 | 2005-03-17 | O'reilly David J. | Interactive correlation of compound information and genomic information |
TW201114698A (en) * | 2009-10-20 | 2011-05-01 | Po-Jung Chen | Active substance for decomposition of environmental hormone from fungi cultured substrate, preparation method and application thereof |
US20140214336A1 (en) * | 2011-09-09 | 2014-07-31 | Philip Morris Products S.A. | Systems and methods for network-based biological activity assessment |
WO2014001451A1 (en) * | 2012-06-27 | 2014-01-03 | Metanomics Health Gmbh | Methods for identifying diabetes drugs |
WO2014014518A1 (en) | 2012-07-18 | 2014-01-23 | Dana-Farber Cancer Institute, Inc. | Methods for treating, preventing and predicting risk of developing breast cancer |
TW201730345A (zh) * | 2016-02-19 | 2017-09-01 | 高雄醫學大學 | 用以評估乳癌罹患風險之方法及基因標記 |
Non-Patent Citations (1)
Title |
---|
/8A1 * |
Also Published As
Publication number | Publication date |
---|---|
TW201931182A (zh) | 2019-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hoinka et al. | AptaSUITE: a full-featured bioinformatics framework for the comprehensive analysis of aptamers from HT-SELEX experiments | |
Wang et al. | Genomewide comparative analysis of alternative splicing in plants | |
Ben-Ari Fuchs et al. | GeneAnalytics: an integrative gene set analysis tool for next generation sequencing, RNAseq and microarray data | |
Zhou et al. | Using OmicsNet for network integration and 3D visualization | |
Ané et al. | Bayesian estimation of concordance among gene trees | |
McBreen et al. | Reconstructing reticulate evolutionary histories of plants | |
Medina et al. | Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling | |
US10353882B2 (en) | Packaging data science operations | |
Tacutu et al. | The NetAge database: a compendium of networks for longevity, age-related diseases and associated processes | |
Chae et al. | BioVLAB-MMIA-NGS: microRNA–mRNA integrated analysis using high-throughput sequencing data | |
US20210089358A1 (en) | Techniques for improving processing of bioinformatics information to decrease processing time | |
CN104331306A (zh) | 一种内容更新方法、设备以及系统 | |
Forsythe et al. | Exploring human metabolites using the human metabolome database | |
AU2018201712B2 (en) | Visualising Clinical and Genetic Data | |
Jung et al. | Web tools for rice transcriptome analyses | |
CN103207928B (zh) | 基于产品响应撞击事件的耐久性选择采样点的方法及系统 | |
WO2016156952A1 (en) | Method of and system for processing a search query | |
Biswas et al. | Analysis of pan-omics data in human interactome network (APODHIN) | |
Su et al. | ChemiRs: a web application for microRNAs and chemicals | |
US8630995B2 (en) | Methods and systems for acquiring and processing veterinary-related information to facilitate differential diagnosis | |
TWI693612B (zh) | 環境賀爾蒙與人體基因的關聯性運算平台 | |
Zhang | Extracting functional information from microarrays: a challenge for functional genomics | |
US8255846B2 (en) | Development tool for comparing netlists | |
Kao et al. | Browsing Multidimensional Molecular Networks with the Generic Network Browser (N‐Browse) | |
CN110990256B (zh) | 开源代码检测方法、装置及计算机可读存储介质 |