TWI693415B - Transformer diagnosis method, system, computer program product and computer readable recording medium - Google Patents
Transformer diagnosis method, system, computer program product and computer readable recording medium Download PDFInfo
- Publication number
- TWI693415B TWI693415B TW108105144A TW108105144A TWI693415B TW I693415 B TWI693415 B TW I693415B TW 108105144 A TW108105144 A TW 108105144A TW 108105144 A TW108105144 A TW 108105144A TW I693415 B TWI693415 B TW I693415B
- Authority
- TW
- Taiwan
- Prior art keywords
- transformer
- normal
- abnormal
- correlation coefficient
- probability density
- Prior art date
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000004590 computer program Methods 0.000 title claims description 6
- 230000002159 abnormal effect Effects 0.000 claims abstract description 73
- 239000007789 gas Substances 0.000 claims description 81
- 238000004364 calculation method Methods 0.000 claims description 40
- 238000012423 maintenance Methods 0.000 claims description 32
- 238000012545 processing Methods 0.000 claims description 17
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 14
- 238000004458 analytical method Methods 0.000 claims description 10
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 7
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 7
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 7
- 239000005977 Ethylene Substances 0.000 claims description 7
- 230000005856 abnormality Effects 0.000 claims description 7
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 7
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 7
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 7
- 238000007405 data analysis Methods 0.000 claims description 6
- 238000012360 testing method Methods 0.000 abstract description 2
- 238000002405 diagnostic procedure Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
Images
Landscapes
- Housings And Mounting Of Transformers (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
Description
本發明係涉及變壓器,尤指變壓器診斷方法及其系統、電腦程式產品及電腦可讀取記錄媒體。 The invention relates to a transformer, especially a transformer diagnosis method and system, a computer program product and a computer-readable recording medium.
變壓器為變電設備的重要元件之一,其狀態直接影響供電穩定性及安全性,也因此變壓器狀態的診斷、檢修一直以來是各界重視的課題。 Transformer is one of the important components of substation equipment, and its state directly affects the stability and safety of power supply. Therefore, the diagnosis and maintenance of the state of the transformer has always been a topic that has been valued by all circles.
變壓器(例如油浸式變壓器)的診斷方式之一是利用其油中溶解的氣體含量做為判斷依據,相關技術例如有中國大陸發明專利編號第CN104820146A號之「基於變壓器油中溶解氣體監測數據的變壓器故障預測方法」、中國大陸發明專利編號第CN105550700A號之「一種基於關聯分析和主成分分析的時間序列數據清洗方法」等。 One of the diagnostic methods for transformers (such as oil-immersed transformers) is to use the dissolved gas content in the oil as a basis for judgment. Related technologies include, for example, the Chinese Mainland Invention Patent No. CN104820146A "based on monitoring data of dissolved gas in transformer oil. "Transformer fault prediction method", "Chinese Patent No. CN105550700A" "A time series data cleaning method based on correlation analysis and principal component analysis", etc.
但目前仍有待提出一種新的診斷方式,以便於檢測人員因應需求的不同來選擇。此外,目前的診斷方式並未將維護成本納入考量的依據。 However, there is still a new diagnostic method to be proposed so that the testing personnel can choose according to different needs. In addition, the current diagnostic methods do not take into account the maintenance cost.
爰此,為提出有別於過去的變壓器診斷方式,本發明人提出一種變壓器診斷方法,包含下列步驟:一相關係數運算步驟、一機率密度函數估算步驟、一門檻值演算步驟及一待診斷氣體樣品資料分析步驟與診斷步驟。 該相關係數運算步驟:以一相關係數運算模組運算正常變壓器絕緣油產生的多筆正常氣體含量資料間相關係數之一正常群相關係數分布資料,該相關係數運算模組並運算異常變壓器絕緣油產生之至少一筆異常氣體含量資料與前述多筆正常氣體含量資料間相關係數之一異常群相關係數分布資料,這些相關係數其數值介於-1與1之間。 該機率密度函數估算步驟:以一機率密度函數估算模組依據該正常群相關係數分布資料估算一正常群機率密度函數,該機率密度函數估算模組並估算該異常群相關係數分布資料之一異常群機率密度函數。 該門檻值演算步驟:以一門檻值演算模組依據該正常群機率密度函數、該異常群機率密度函數、歷史統計資料之設備故障統計機率及預設之檢修費用資訊,以最低費用為準則演算前述門檻值。 該待診斷氣體樣品資料分析步驟與診斷步驟:取得一待診斷變壓器絕緣油產生之一待診斷氣體樣品資料,以一樣品分析模組運算該待診斷氣體樣品資料與前述正常氣體含量資料之一待比對相關係數;接著以一比對模組比對該待比對相關係數與該門檻值,以在該待比對相關係數大於或等於該門檻值時,判斷該待診斷變壓器為正常。 Secondly, in order to propose a transformer diagnosis method different from the past, the inventor proposes a transformer diagnosis method including the following steps: a correlation coefficient calculation step, a probability density function estimation step, a threshold calculation step, and a gas to be diagnosed Sample data analysis steps and diagnostic steps. The correlation coefficient calculation step: a correlation coefficient calculation module is used to calculate one of the correlation coefficient distribution data among the correlation coefficients among the normal gas content data generated by the normal transformer insulating oil. The correlation coefficient calculation module also calculates the abnormal transformer insulating oil The generated at least one abnormal gas content data and one of the correlation coefficients between the aforementioned normal gas content data is an abnormal group correlation coefficient distribution data, and the value of these correlation coefficients is between -1 and 1. The probability density function estimation step: using a probability density function estimation module to estimate a normal group probability density function based on the normal group correlation coefficient distribution data, the probability density function estimation module and estimating one of the abnormal group correlation coefficient distribution data anomalies Group probability density function. The threshold calculation step: a threshold calculation module is used to calculate the minimum group cost based on the normal group probability density function, the abnormal group probability density function, historical statistical data of equipment failure statistics probability and preset maintenance cost information The aforementioned threshold. The gas sample data analysis step and the diagnosis step of the gas to be diagnosed: obtaining a gas sample data to be diagnosed produced by a transformer insulating oil to be diagnosed, and calculating the gas sample data to be diagnosed and the normal gas content data by a sample analysis module Compare the correlation coefficient; then compare the correlation coefficient to be compared with the threshold value with a comparison module to determine that the transformer to be diagnosed is normal when the correlation coefficient to be compared is greater than or equal to the threshold value.
進一步,前述正常氣體含量資料及前述異常氣體含量資料皆包含氫氣、乙烯、乙炔、甲烷、乙烷、一氧化碳之氣體種類的氣體含量資料。 Further, both the normal gas content data and the abnormal gas content data include gas content data of gas types of hydrogen, ethylene, acetylene, methane, ethane, and carbon monoxide.
進一步,該相關係數運算模組係依據一皮爾森積差相關係數(Pearson Product-Moment Correlation Coefficient)公式進行運算:
進一步,該機率密度函數估算步驟:由該機率密度函數估算模組取得x筆正常變壓器之正常氣體含量資料,每筆正常氣體含量資料皆有6個變數:氫氣、乙烯、乙炔、甲烷、乙烷、一氧化碳,依上述皮爾森積差相關係數公式進行兩兩運算得到x(x-1)個相關係數值,再以機率密度函數估算法得到正常群機率密度函數。
Further, the probability density function estimation step: obtaining normal gas content data of x normal transformers from the probability density function estimation module, each normal gas content data has 6 variables: hydrogen, ethylene, acetylene, methane,
進一步,該機率密度函數估算步驟:由該機率密度函數估算模組取得y筆異常變壓器之氣體含量資料,每筆異常氣體含量資料皆有6個變數:氫氣、乙烯、乙炔、甲烷、乙烷、一氧化碳,利用此y筆異常與前述x筆正常資料,依上述皮爾森積差相關係數公式進行兩兩交叉運算得到xy個相關係數值,再以前述機率密度函數估算法得到異常群機率密度函數。前述機率密度函數估算法為所屬領域通常知識者所慣用,可見於一般文獻中,故為求簡明,於此不再詳加敘述。 Further, the probability density function estimation step: obtain gas content data of y abnormal transformers from the probability density function estimation module, and each abnormal gas content data has 6 variables: hydrogen, ethylene, acetylene, methane, ethane, Carbon monoxide, using this y anomaly and the aforementioned x normal data, perform a pairwise crossover operation according to the above Pearson product difference correlation coefficient formula to obtain xy correlation coefficient values, and then use the aforementioned probability density function estimation method to obtain the abnormal group probability density function . The aforementioned probability density function estimation method is commonly used by those with ordinary knowledge in the field and can be found in the general literature, so for simplicity, it will not be described in detail here.
進一步,該門檻值依據維護與檢修成本最小化之一成本公式進行演算。詳細而言,該成本公式可包含:
本發明可為一種變壓器診斷方法,包含下列步驟:運算變壓器正常運作時絕緣油產生之多筆正常氣體含量資料間相關係數之一正常群相關係數分布資料,並運算異常變壓器絕緣油產生之至少一筆異常氣體含量資料與前述多筆正常氣體含量資料間相關係數之一異常群相關係數分布資料;估算該正常群相關係數分布資料之一正常群機率密度函數,並估算該異常群相關係數分布資料之一異常群機率密度函數;依據該正常群機率密度函數、該異常群機率密度函數、設備故障統計機率及檢修費用資訊,以最低費用為準則演算一門檻值,以該門檻值作為判斷一待診斷變壓器正常與否的依據。 The invention can be a transformer diagnosis method, including the following steps: calculating one of the correlation coefficient distribution data of one of the correlation coefficients among the normal gas content data generated by the insulating oil during normal operation of the transformer, and calculating at least one of the abnormal transformer insulating oil generated One of the correlation coefficient distribution data of the correlation coefficient between the abnormal gas content data and the aforementioned plurality of normal gas content data; estimating one of the normal group probability coefficient distribution data of the normal group correlation coefficient distribution data, and estimating the distribution of the abnormal group correlation coefficient distribution data An abnormal group probability density function; based on the normal group probability density function, the abnormal group probability density function, equipment failure statistical probability and maintenance cost information, a threshold value is calculated based on the minimum cost, and the threshold value is used as a judgment to be diagnosed The basis of whether the transformer is normal or not.
本發明亦可為一種電腦程式產品,內儲一程式,當電腦載入該程式並執行後,可完成如前所述之變壓器診斷方法。 The invention can also be a computer program product, which stores a program. After the computer loads the program and executes it, the transformer diagnosis method as described above can be completed.
本發明也可為一種電腦可讀取記錄媒體,內儲一程式,當電腦載入該程式並執行後,可完成如前所述之變壓器診斷方法。 The invention can also be a computer-readable recording medium that stores a program. After the computer loads the program and executes it, the transformer diagnosis method as described above can be completed.
本發明並可為一種變壓器診斷系統,包含:一處理單元、一儲存單元、一相關係數運算模組、一機率密度函數估算模組、一門檻值演算模組、一樣品分析模組及一比對模組。 該儲存單元連接該處理單元,儲存正常變壓器絕緣油產生之多筆正常氣體含量資料及異常變壓器絕緣油產生之多筆至少一筆異常氣體含量資料。 該相關係數運算模組連接該處理單元,用以運算前述多筆正常氣體含量資料間相關係數之一正常群相關係數分布資料,該相關係數運算模組並運算前述異常氣體含量資料與前述多筆正常氣體含量資料之一異常群相關係數分布資料。 該機率密度函數估算模組連接該處理單元,用以依據該正常群相關係數分布資料估算一正常群機率密度函數,並估算該異常群相關係數分布資料之一異常群機率密度函數。 該門檻值演算模組連接該處理單元,用以依據該正常群機率密度函數、該異常群機率密度函數、歷史統計資料之設備故障統計機率及預設之檢修費用資訊,以最低費用為準則演算一門檻值。 該樣品分析模組連接該處理單元,用以運算一待診斷變壓器絕緣油產生之一待診斷氣體樣品資料與前述正常氣體含量資料之一待比對相關係數。 該比對模組連接該處理單元,用以比對該待比對相關係數與該門檻值,以在該待比對相關係數大於或等於該門檻值時,判斷該待診斷變壓器為正常。 The invention can be a transformer diagnosis system, including: a processing unit, a storage unit, a correlation coefficient calculation module, a probability density function estimation module, a threshold calculation module, a sample analysis module and a ratio For modules. The storage unit is connected to the processing unit and stores a plurality of pieces of normal gas content data generated by normal transformer insulating oil and at least one piece of abnormal gas content data generated by abnormal transformer insulating oil. The correlation coefficient calculation module is connected to the processing unit for calculating one normal group correlation coefficient distribution data among correlation coefficients among the plurality of normal gas content data, and the correlation coefficient calculation module also calculates the abnormal gas content data and the plurality of data One of the normal gas content data is the abnormal group correlation coefficient distribution data. The probability density function estimation module is connected to the processing unit for estimating a normal group probability density function according to the normal group correlation coefficient distribution data, and estimating an abnormal group probability density function of the abnormal group correlation coefficient distribution data. The threshold calculation module is connected to the processing unit for calculating the probability of equipment failure statistics based on the normal group probability density function, the abnormal group probability density function, historical statistical data, and the preset maintenance cost information, based on the minimum cost as the criterion A threshold. The sample analysis module is connected to the processing unit, and is used to calculate a correlation coefficient of a gas sample data to be diagnosed produced by a transformer insulating oil to be diagnosed and a normal gas content data to be compared. The comparison module is connected to the processing unit for comparing the correlation coefficient to be compared with the threshold value, so as to determine that the transformer to be diagnosed is normal when the correlation coefficient to be compared is greater than or equal to the threshold value.
進一步,依據維護與檢修成本最小化之一成本公式進行演算前述門檻值。該成本公式包含:
根據上述技術特徵可達成以下功效: According to the above technical features, the following effects can be achieved:
1.可依據該正常群機率密度函數、該異常群機率密度函數、設備故障統計機率及檢修費用資訊,以最低費用為準則演算一門檻值,以該門檻值作為判斷一待診斷變壓器正常與否的依據,讓門檻值的決定相較自訂方式更為客觀,使變壓器的診斷可符合成本效益。 1. According to the normal group probability density function, the abnormal group probability density function, equipment failure statistics probability and maintenance cost information, a threshold value can be calculated using the minimum cost as a criterion, and the threshold value is used as a criterion to determine whether the transformer to be diagnosed is normal or not The basis for making the threshold value more objective than the custom method makes the diagnosis of the transformer cost-effective.
2.依據成本公式調整門檻值,訂定機制相較於自訂方式較為客觀。 2. Adjust the threshold value according to the cost formula, and the setting mechanism is more objective than the custom method.
(100):變壓器診斷系統 (100): Transformer diagnostic system
(1):處理單元 (1): Processing unit
(2):儲存單元 (2): Storage unit
(21):正常氣體含量資料 (21): Normal gas content data
(22):異常氣體含量資料 (22): Abnormal gas content data
(23):待診斷氣體樣品資料 (23): gas sample data to be diagnosed
(3):相關係數運算模組 (3): Correlation coefficient calculation module
(4):機率密度函數估算模組 (4): Probability density function estimation module
(5):門檻值演算模組 (5): Threshold value calculation module
(6):樣品分析模組 (6): Sample analysis module
(7):比對模組 (7): Comparison module
(S01):相關係數運算步驟 (S01): Correlation coefficient calculation steps
(S02):機率密度函數估算步驟 (S02): Probability density function estimation step
(S03):門檻值演算步驟 (S03): Threshold value calculation steps
(S04):待診斷氣體樣品資料分析步驟與診斷步驟 (S04): Data analysis steps and diagnosis steps of the gas sample to be diagnosed
:正常群機率密度函數 : Normal group probability density function
:異常群機率密度函數 : Anomaly group probability density function
η:門檻值 η: threshold
[第一圖]係本發明實施例之系統方塊示意圖。 [Figure 1] is a schematic block diagram of a system according to an embodiment of the present invention.
[第二圖]係本發明實施例之主要步驟流程示意圖。 [Second figure] is a schematic flowchart of main steps of an embodiment of the present invention.
[第三圖]係本發明實施例之正常群機率密度函數及異常群機率密度函數之示意圖。 [Third figure] is a schematic diagram of a normal group probability density function and an abnormal group probability density function according to an embodiment of the present invention.
綜合上述技術特徵,本發明變壓器診斷方法及其系統、電腦程式產品及電腦可讀取記錄媒體的主要功效將可於下述實施例清楚呈現。 Based on the above technical features, the main functions of the transformer diagnosis method and system, computer program product and computer readable recording medium of the present invention will be clearly presented in the following embodiments.
請先參閱第一圖,係揭示本發明實施例變壓器診斷系統(100),包含:一處理單元(1)、及連接該處理單元(1)之一儲存單元(2)、一相關係數運算模組(3)、一機率密度函數估算模組(4)、一門檻值演算模組(5)、一樣品分析模組(6)與一比對模組(7)。該儲存單元(2)用以儲存正常變壓器絕緣油產生之多筆正常氣體含量資料(21)、異常變壓器絕緣油產生之至少一筆異常氣體含量資料(22)及待診斷變壓器絕緣油產生之至少一筆待診斷氣體樣品資料(23)。於本實施例中,該變壓器診斷系統(100)是應用於診斷油浸式變壓器,故前述正常氣體含量資料(21)、前述異常氣體含量資料(22)及前述待診斷氣體樣品資料(23)皆包含氫氣、乙烯、乙炔、甲烷、乙烷、一氧化碳之氣體種類的氣體含量資料,以這些氣體種類作為診斷的指標,但並不以此為限。 Please refer to the first figure, which discloses a transformer diagnosis system (100) according to an embodiment of the present invention, including: a processing unit (1), a storage unit (2) connected to the processing unit (1), and a correlation coefficient calculation module Group (3), a probability density function estimation module (4), a threshold calculation module (5), a sample analysis module (6) and a comparison module (7). The storage unit (2) is used to store multiple pieces of normal gas content data (21) produced by normal transformer insulating oil, at least one piece of abnormal gas content data (22) produced by abnormal transformer insulating oil and at least one piece of transformer insulating oil to be diagnosed Information of gas samples to be diagnosed (23). In this embodiment, the transformer diagnosis system (100) is used to diagnose oil-immersed transformers, so the aforementioned normal gas content data (21), the aforementioned abnormal gas content data (22) and the aforementioned gas sample data to be diagnosed (23) All contain gas content data of gas types such as hydrogen, ethylene, acetylene, methane, ethane, and carbon monoxide. These gas types are used as diagnostic indicators, but not limited to this.
續請參閱第二圖搭配第一圖,本實施例之變壓器診斷方法係以上述變壓器診斷系統(100)來執行,或者可編程為一程式並儲存於電腦程式產品或電腦可讀取記錄媒體。當電腦載入該程式並執行後,可完成前述之變壓器診斷方法。本實施例之變壓器診斷方法,主要包括下列步驟:一相關係數運算步驟(S01)、一機率密度函數估算步驟(S02)、一門檻值演算步驟(S03)及一待診斷氣體樣品資料分析步驟與診斷步驟(S04)。要補充說明的是,該相關係數運算步驟 (S01)、該機率密度函數估算步驟(S02)及該門檻值演算步驟(S03)可預先執行取得比對所需的門檻值,以供後續不同待診斷氣體樣品資料反覆比對之用。 Please refer to the second figure and the first figure. The transformer diagnosis method of this embodiment is executed by the above-mentioned transformer diagnosis system (100), or can be programmed as a program and stored in a computer program product or a computer-readable recording medium. After the computer loads the program and executes it, the aforementioned transformer diagnosis method can be completed. The transformer diagnosis method of this embodiment mainly includes the following steps: a correlation coefficient calculation step (S01), a probability density function estimation step (S02), a threshold calculation step (S03), and a gas sample data analysis step to be diagnosed and Diagnostic step (S04). It should be added that this correlation coefficient calculation step (S01), the probability density function estimation step (S02) and the threshold value calculation step (S03) can be performed in advance to obtain the threshold value required for comparison, for subsequent repeated comparison of different gas sample data to be diagnosed.
續請參閱第二圖搭配第一圖,該相關係數運算步驟(S01):以前述相關係數運算模組(3)運算正常變壓器絕緣油產生之多筆正常氣體含量資料(21)間之相關係數之一正常群相關係數分布資料,該相關係數運算模組(3)並運算異常變壓器絕緣油產生之至少一筆異常氣體含量資料(22)與前述多筆正常氣體含量資料(21)間之一異常群相關係數分布資料。這些相關係數其數值介於-1與1之間。 Continue to refer to the second figure and the first figure. The correlation coefficient calculation step (S01): use the aforementioned correlation coefficient calculation module (3) to calculate the correlation coefficient between the multiple normal gas content data (21) generated by the normal transformer insulating oil One normal group correlation coefficient distribution data, the correlation coefficient calculation module (3) also calculates an abnormality between at least one abnormal gas content data (22) generated by abnormal transformer insulating oil and the aforementioned multiple normal gas content data (21) Group correlation coefficient distribution data. These correlation coefficients have values between -1 and 1.
續請參閱第二圖搭配第一圖,詳細而言,該相關係數運算模組(3)係依據一皮爾森積差相關係數(Pearson Product-Moment Correlation Coefficient)公式進行運算:
續請參閱第二圖搭配第一圖,於本實施案例之機率密度函數估算步驟中,由該機率密度函數估算模組(4)取得x筆正常變壓器之正常氣體含量資料,每筆正常氣體含量資料皆有6個變數:氫氣、乙烯、乙炔、甲烷、乙烷、一氧化碳,依上述皮爾森積差相關係數公式進行兩兩運算得到x(x-1)個相關係數值,再以機率密度函數估算法得到正常群機率密度函數。 Please continue to refer to the second figure and the first figure. In the probability density function estimation step of this embodiment, the probability density function estimation module (4) obtains the normal gas content data of x normal transformers, each normal gas content There are 6 variables in the data: hydrogen, ethylene, acetylene, methane, ethane, carbon monoxide. According to the above Pearson product difference correlation coefficient formula, two (2) calculations are performed to obtain x(x-1) correlation coefficient values, and then the probability density function Estimation method to obtain probability density function of normal group .
續請參閱第二圖搭配第一圖,於本實施案例之機率密度函數估算步驟中,由該機率密度函數估算模組(4)取得y筆異常變壓器之氣體含量資料, 每筆異常氣體含量資料皆有6個變數:氫氣、乙烯、乙炔、甲烷、乙烷、一氧化碳,利用此y筆異常與前述x筆正常資料,依上述皮爾森積差相關係數公式進行兩兩交叉運算得到xy個相關係數值,再以機率密度函數估算法得到異常群機率密度函數。前述機率密度函數估算法為所屬領域通常知識者所慣用,可見於一般文獻中,故為求簡明,於此不再詳加敘述。 Please refer to the second figure and the first figure. In the probability density function estimation step of this embodiment, the probability density function estimation module (4) obtains the gas content data of y abnormal transformers, and each abnormal gas content data There are 6 variables: hydrogen, ethylene, acetylene, methane, ethane, carbon monoxide. Using this y-anomaly and the above-mentioned x normal data, carry out the pairwise crossover operation according to the above Pearson product difference correlation coefficient formula to obtain xy correlation coefficients Value, and then use the probability density function estimation method to obtain the probability density function of the abnormal group . The aforementioned probability density function estimation method is commonly used by those with ordinary knowledge in the field and can be found in the general literature, so for simplicity, it will not be described in detail here.
續請參閱第二圖搭配第一圖,該門檻值演算模組(5)可將該門檻值η進一步依據維護與檢修成本最小化進行演算。詳細而言,依據一成本公式調整,該成本公式包含:
其中,cost為維護與檢修成本;η為待演算之門檻值;P(H1)與P(H0)分別為依據歷史資料統計得到之變壓器正常工作及異常之機率;C00為異常變壓器被判斷為異常時變壓器停機之檢修費用;C01為異常變壓器被判斷為變壓器正常,繼續運作發生故障而造成之損失與維修費;C10為正常變壓器被判斷為異常時變壓器停機之檢修費用;C11為正常變壓器被判斷為正常變壓器之費用(一般為0);為前述估算得到之正常群機率密度函數;為前述估算得到之異常群機率密度函數。 Among them, cost is the cost of maintenance and repair; η is the threshold value to be calculated; P(H 1 ) and P(H 0 ) are the probability of normal operation and abnormality of the transformer based on historical data statistics; C 00 is the abnormal transformer. The maintenance cost of transformer shutdown when judged to be abnormal; C 01 is the loss and maintenance cost caused by the abnormal transformer being judged to be normal and the operation continues to fail; C 10 is the maintenance cost of transformer shutdown when the normal transformer is judged to be abnormal; C 11 is the cost of a normal transformer judged as a normal transformer (generally 0); It is the normal group probability density function obtained from the aforementioned estimation; It is the probability density function of the anomaly group obtained from the aforementioned estimation.
上述成本公式,使用成本最小化的最佳化分析可以得到一診斷準則:
續請參閱第二圖搭配第一圖,該待診斷氣體樣品資料分析步驟與診斷步驟(S04):以前述樣品分析模組(6)運算該待診斷氣體樣品資料(23)與前述正常氣體含量資料(21)之一待比對相關係數。具體來說,可計算該待診斷氣體樣品資料(23)與前述821筆正常變壓器之正常氣體含量資料(21)的至少一筆的相關係數或全部筆數的相關係數(例如取平均值),即可取得該待比對相關係數。 Please refer to the second figure and the first figure, the analysis step and diagnosis step (S04) of the gas sample data to be diagnosed: the sample analysis module (6) is used to calculate the gas sample data to be diagnosed (23) and the normal gas content One of the data (21) to be compared with the correlation coefficient. Specifically, the correlation coefficient of at least one of the gas sample data to be diagnosed (23) and the normal gas content data (21) of the 821 normal transformers (21) or the total number of correlations (for example, the average value), that is, The correlation coefficient to be compared can be obtained.
續請參閱第二圖搭配第一圖,接著以前述比對模組(7)比對該待比對相關係數與該門檻值,以在該待比對相關係數大於或等於該門檻值時,判斷該待診斷變壓器為正常。反之,在該待比對相關係數大於或等於該門檻值時,可判斷該待診斷變壓器為異常。舉例來說,經過成本公式計算之門檻值為η,該門檻值η為0.7,因此當該待比對相關係數大於或等於0.7時,可判斷該待診斷變壓器為正常,若該待比對相關係數小於0.7時,可判斷該待診斷變壓器為異常(參考第三圖)。 Please refer to the second figure and the first figure, and then compare the correlation coefficient to be compared with the threshold using the aforementioned comparison module (7), so that when the correlation coefficient to be compared is greater than or equal to the threshold, Determine that the transformer to be diagnosed is normal. Conversely, when the correlation coefficient to be compared is greater than or equal to the threshold value, it can be determined that the transformer to be diagnosed is abnormal. For example, the threshold value calculated by the cost formula is η, and the threshold value η is 0.7, so when the correlation coefficient of the to-be-matched is greater than or equal to 0.7, it can be judged that the transformer to be diagnosed is normal. When the coefficient is less than 0.7, it can be judged that the transformer to be diagnosed is abnormal (refer to the third figure).
綜合上述實施例之說明,當可充分瞭解本發明之操作、使用及本發明產生之功效,惟以上所述實施例僅係為本發明之較佳實施例,當不能以此限定本發明實施之範圍,即依本發明申請專利範圍及發明說明內容所作簡單的等效變化與修飾,皆屬本發明涵蓋之範圍內。 Based on the description of the above embodiments, the operation, use and effects of the present invention can be fully understood. However, the above-mentioned embodiments are only preferred embodiments of the present invention, and cannot be used to limit the implementation of the present invention. The scope, that is, simple equivalent changes and modifications made in accordance with the scope of the present invention's patent application and the description of the invention, is within the scope of the present invention.
(S01):相關係數運算步驟 (S01): Correlation coefficient calculation steps
(S02):機率密度函數估算步驟 (S02): Probability density function estimation step
(S03):門檻值演算步驟 (S03): Threshold value calculation steps
(S04):待診斷氣體樣品資料分析步驟與診斷步驟 (S04): Data analysis steps and diagnosis steps of the gas sample to be diagnosed
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108105144A TWI693415B (en) | 2019-02-15 | 2019-02-15 | Transformer diagnosis method, system, computer program product and computer readable recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108105144A TWI693415B (en) | 2019-02-15 | 2019-02-15 | Transformer diagnosis method, system, computer program product and computer readable recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI693415B true TWI693415B (en) | 2020-05-11 |
TW202032148A TW202032148A (en) | 2020-09-01 |
Family
ID=71895888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108105144A TWI693415B (en) | 2019-02-15 | 2019-02-15 | Transformer diagnosis method, system, computer program product and computer readable recording medium |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI693415B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0342597A2 (en) * | 1988-05-16 | 1989-11-23 | Hitachi, Ltd. | Abnormality system for a high voltage power supply apparatus |
US5214595A (en) * | 1988-05-16 | 1993-05-25 | Hitachi, Ltd. | Abnormality diagnosing system and method for a high voltage power apparatus |
TW584732B (en) * | 2002-02-20 | 2004-04-21 | Mang-Hui Wang | CMAC_based fault diagnosis of power transformers |
EP1883829B1 (en) * | 2005-05-20 | 2011-10-05 | Hydro-Quebec | Detection, localization and interpretation of partial discharge |
CN102411106A (en) * | 2011-11-18 | 2012-04-11 | 广东电网公司广州供电局 | Power Transformer Fault Monitoring Method and Device |
CN103328990A (en) * | 2010-12-17 | 2013-09-25 | Abb研究有限公司 | Method and apparatus for transformer diagnosis |
CN103941131A (en) * | 2014-05-14 | 2014-07-23 | 国家电网公司 | Transformer fault detecting method based on simplified set unbalanced SVM (support vector machine) |
CN105137277A (en) * | 2015-09-11 | 2015-12-09 | 西安交通大学 | Diagnosis method of winding machinery state in case of sudden short circuit of transformer |
-
2019
- 2019-02-15 TW TW108105144A patent/TWI693415B/en not_active IP Right Cessation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0342597A2 (en) * | 1988-05-16 | 1989-11-23 | Hitachi, Ltd. | Abnormality system for a high voltage power supply apparatus |
US5107447A (en) * | 1988-05-16 | 1992-04-21 | Hitachi, Ltd. | Abnormality diagnosing system and method for a high voltage power apparatus |
US5214595A (en) * | 1988-05-16 | 1993-05-25 | Hitachi, Ltd. | Abnormality diagnosing system and method for a high voltage power apparatus |
TW584732B (en) * | 2002-02-20 | 2004-04-21 | Mang-Hui Wang | CMAC_based fault diagnosis of power transformers |
EP1883829B1 (en) * | 2005-05-20 | 2011-10-05 | Hydro-Quebec | Detection, localization and interpretation of partial discharge |
CN103328990A (en) * | 2010-12-17 | 2013-09-25 | Abb研究有限公司 | Method and apparatus for transformer diagnosis |
CN102411106A (en) * | 2011-11-18 | 2012-04-11 | 广东电网公司广州供电局 | Power Transformer Fault Monitoring Method and Device |
CN103941131A (en) * | 2014-05-14 | 2014-07-23 | 国家电网公司 | Transformer fault detecting method based on simplified set unbalanced SVM (support vector machine) |
CN105137277A (en) * | 2015-09-11 | 2015-12-09 | 西安交通大学 | Diagnosis method of winding machinery state in case of sudden short circuit of transformer |
Also Published As
Publication number | Publication date |
---|---|
TW202032148A (en) | 2020-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110610035B (en) | Rolling bearing residual life prediction method based on GRU neural network | |
Rediansyah et al. | Artificial intelligence-based power transformer health index for handling data uncertainty | |
JP7460864B2 (en) | Method and apparatus for performing state classification of power grid assets | |
US10488384B2 (en) | System and method for assessing power transformers | |
CN108663582A (en) | A kind of fault diagnosis method and system of transformer | |
CN111579731B (en) | Early-stage defect early warning method for transformer based on combined model | |
CN105242155A (en) | Transformer fault diagnosis method based on entropy weight method and grey correlation analysis | |
CN114152685B (en) | Fault diagnosis method and system for transformer oil chromatography based on multiple linear regression | |
CN110687895B (en) | Chemical process fault detection method based on self-adaptive kernel principal component analysis | |
CN109799405A (en) | It is a kind of based on time series-Kalman filtering transformer fault prediction technique | |
CN112686515B (en) | Transformer running state evaluation method, device, computer equipment and storage medium | |
CN111624986A (en) | Case base-based fault diagnosis method and system | |
CN114595883B (en) | Individualized dynamic prediction method for residual life of oil immersed transformer based on meta learning | |
CN110751217A (en) | Equipment energy consumption ratio early warning analysis method based on principal component analysis | |
CN111340367B (en) | Oil-shortage equipment state evaluation method and system based on multi-dimensional relevance data analysis | |
CN110221590B (en) | Industrial process multi-fault diagnosis method based on discriminant analysis | |
WO2020166236A1 (en) | Work efficiency evaluating method, work efficiency evaluating device, and program | |
CN109359742B (en) | Method for generating preventive maintenance period of subway subsystem | |
CN115081331A (en) | Wind turbine generator running state abnormity detection method based on state parameter reconstruction error | |
CN111046331A (en) | Health monitoring method based on signal abnormity | |
TWI693415B (en) | Transformer diagnosis method, system, computer program product and computer readable recording medium | |
Snow et al. | The implementation of continuous online Dissolved Gas Analysis (DGA) monitoring for all transmission and distribution substations | |
Poiss | Development of DGA indicator for estimating risk level of power transformers | |
CN113591396B (en) | Power grid component fault diagnosis method based on naive Bayesian network | |
CN113406537B (en) | Quantitative evaluation method for fault degree of power equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |