TWI692695B - Feedback system for improving process quality of product and method thereof - Google Patents
Feedback system for improving process quality of product and method thereof Download PDFInfo
- Publication number
- TWI692695B TWI692695B TW108105468A TW108105468A TWI692695B TW I692695 B TWI692695 B TW I692695B TW 108105468 A TW108105468 A TW 108105468A TW 108105468 A TW108105468 A TW 108105468A TW I692695 B TWI692695 B TW I692695B
- Authority
- TW
- Taiwan
- Prior art keywords
- cause
- product
- solution
- information
- countermeasure
- Prior art date
Links
Images
Landscapes
- General Factory Administration (AREA)
Abstract
Description
本發明係有關產品製程品質之肇因(root cause)分析與回饋機制,特別是關於一種提升產品製程品質之回饋系統及其方法。The invention relates to a root cause analysis and feedback mechanism related to product process quality, in particular to a feedback system and method for improving product process quality.
近年來,工業產品製造程序越來越複雜,且為即時發現可能造成產品缺陷的原因,業界已開發出各種檢測製造缺陷的方法。以半導體業為例,透過過程控制、統計分析以及各種測試程序,可為提高製造過程中成品良率奠定堅實的基礎,然識別產品缺陷的根本原因仍有難度,其可能因為造成產品缺陷的根本原因是由多個因素組成,又或者多個因素是以非線性的方式進行交互,此導致找出切確造成產品缺陷的根本原因相當不易。In recent years, industrial product manufacturing procedures have become more and more complicated, and in order to immediately discover the causes that may cause product defects, the industry has developed various methods for detecting manufacturing defects. Taking the semiconductor industry as an example, through process control, statistical analysis, and various test procedures, it can lay a solid foundation for improving the yield of finished products in the manufacturing process. However, it is still difficult to identify the root cause of product defects, which may be caused by the root cause of product defects. The reason is that it is composed of multiple factors, or multiple factors interact in a non-linear manner, which makes it very difficult to find out the root cause of the product defect.
此外,在電腦整合製造(Computer-Integrated Manufacturing,CIM)、製造執行系統(Manufacturing Execution System,EMS)和電子設計自動化(Electronic design automation,EDA)系統之類的生產製造系統中,由於數據庫中存儲的大量半導體工程數據以及生產和開發中的各種分析圖表和報告,可幫助半導體業分析收集到的信息來分配根本原因。由於半導體製造工藝複雜,採集的數據量大,採用K-W二氏檢定測試、協方差分析、回歸分析等多種統計方法進行初步分析的原始數據,其結果可能會給現有數據添加更多有用的索引,然而這些索引不易被用戶理解,甚至有誤報可能,以致用戶花費不必要的時間來驗證報警。In addition, in manufacturing systems such as Computer-Integrated Manufacturing (CIM), Manufacturing Execution System (EMS) and Electronic Design Automation (EDA) systems, due to the A large number of semiconductor engineering data and various analysis charts and reports in production and development can help the semiconductor industry analyze the collected information to assign root causes. Due to the complexity of the semiconductor manufacturing process and the large amount of data collected, the original data for preliminary analysis using various statistical methods such as KW second test, covariance analysis, regression analysis, etc., the results may add more useful indexes to the existing data, However, these indexes are not easy to understand by users, and there may even be false alarms, so that users spend unnecessary time to verify the alarm.
現有技術中,部分業者應用決策樹來發現集成電路產量損失的根本原因,部分業者則是將自組織神經網絡和規則歸納結合起來,從正常收集的晶圓製造數據中識別關鍵的不良收益因素,另外,亦有部分業者在LSI製造中對回歸樹分析進行故障分析,然目前對於問題成品發現與處理,仍是透過顧客訊息回饋或是使用人工肇因分析來達成,簡單來說,目前主要採用人工方式處理問題,導致肇因無法被精確掌握,且所耗時程可能需要2~3周。In the prior art, some companies use decision trees to discover the root cause of IC output loss, while some companies combine self-organizing neural networks and rule induction to identify key adverse revenue factors from normally collected wafer manufacturing data. In addition, there are also some manufacturers who perform failure analysis on regression tree analysis in LSI manufacturing. However, at present, the discovery and processing of problematic products are still achieved through customer information feedback or using artificial cause analysis. In short, currently mainly used Handle the problem manually, so that the cause cannot be accurately grasped, and the time taken may take 2 to 3 weeks.
由上可知,現行對於產品製程品質之肇因分析多採用人工方式判斷,亦即當產品出現問題時,有相關人員判斷問題出處為何,但產線包括了設計、製程和檢測等過程,人員僅能依據知識和經驗提出調整方案並手動調整設計、製程或檢測等相關數據,不僅缺乏效率,也有精確度問題,因此,如何找出一種分析產品製程品質之肇因並能即時、主動回饋以調整相關參數設定,進而達到維繫產品製程品質,此將成為目前本技術領域人員急欲解決之技術問題。It can be seen from the above that the current analysis of the causes of product process quality mostly uses manual methods to determine, that is, when there is a problem with the product, relevant personnel determine the source of the problem, but the production line includes design, process and inspection processes. Can propose adjustment programs based on knowledge and experience and manually adjust relevant data such as design, process or inspection, which not only lacks efficiency, but also has accuracy problems. Therefore, how to find an analysis of the causes of product process quality and can promptly and actively feedback to adjust The setting of relevant parameters to achieve the maintenance of the quality of the product process will become a technical problem that those skilled in the art are eager to solve.
鑒於前述現有技術缺陷,本發明係提出一種在複雜的製造過程中用於自動檢測製造缺陷根本原因的技術,此技術包括產品製程品質之肇因分析以及即時參數調整之回饋機制,透過預先建立肇因對策來修正相關參數設定,進而達到自動化、智慧化之肇因分析與處理。In view of the aforementioned defects in the prior art, the present invention proposes a technology for automatically detecting the root cause of manufacturing defects in a complex manufacturing process. This technology includes the analysis of the causes of product process quality and the feedback mechanism of real-time parameter adjustment. Correct the relevant parameter settings according to the countermeasures, and then achieve automatic and intelligent analysis and processing of the causes.
本發明提出一種提升產品製程品質之回饋系統,其包括:肇因知識模型資料庫,係儲存複數肇因知識模型;解決對策資料庫,係具有包含肇因問題與解決對策之肇因對策對照表;肇因分析模組,係連線該肇因知識模型資料庫,用於在該產品之製程品質不符設定的參數時進行肇因分析,其中,該肇因分析模組接收產品於設計程序中的設計資訊、製造程序中的製程資訊以及驗證程序中的成品檢測資訊,並且由該肇因知識模型資料庫取得對應該產品之肇因知識模型,令該設計資訊、該製程資訊及該成品檢測資訊輸入至該肇因知識模型,以得到該產品之肇因問題;以及回饋對策模組,係連線該肇因分析模組及該解決對策資料庫,用於接收來自該肇因分析模組之該肇因問題,以自該解決對策資料庫之該肇因對策對照表中找出該肇因問題所對應之解決對策,並分析該解決對策而產生解決該肇因問題之預修正參數,之後回傳該預修正參數至該設計程序、該製造程序或該驗證程序,以分別調整該設計資訊、該製程資訊或該成品檢測資訊。The present invention proposes a feedback system for improving product process quality, which includes: a cause knowledge model database, which stores a plurality of cause knowledge models; and a solution countermeasure database, which has a cause countermeasure comparison table containing cause problems and solution countermeasures ; The cause analysis module is connected to the cause knowledge model database, which is used to perform cause analysis when the process quality of the product does not match the set parameters. The cause analysis module receives the product in the design process Design information, process information in the manufacturing process, and finished product inspection information in the verification process, and the cause knowledge model corresponding to the product is obtained from the cause knowledge model database, so that the design information, the process information, and the finished product inspection Information is input to the cause knowledge model to obtain the cause problem of the product; and the feedback countermeasure module connects the cause analysis module and the solution countermeasure database for receiving the cause analysis module For the cause problem, find out the corresponding solution to the cause problem from the cause solution comparison table of the solution database, and analyze the solution strategy to generate the pre-correction parameters for solving the cause problem, Afterwards, the pre-correction parameters are returned to the design process, the manufacturing process or the verification process to adjust the design information, the process information or the finished product inspection information, respectively.
本發明復提出一種提升產品製程品質之方法,係用於在產品之製程品質不符設定的參數時進行肇因分析,該方法包括:預先儲存複數肇因知識模型以及包含肇因問題與解決對策之肇因對策對照表;擷取該產品於設計程序中的設計資訊、於製造程序中的製程資訊以及於驗證程序中的成品檢測資訊,以及取得對應該產品之肇因知識模型;令該設計資訊、該製程資訊及該成品檢測資訊輸入至該肇因知識模型,以得到該產品之肇因問題;以及依據該肇因問題自該肇因對策對照表中找出該肇因問題所對應之解決對策,並從該解決對策中取得解決該肇因問題之預修正參數,之後回傳該預修正參數至該設計程序、該製造程序或該驗證程序,以分別調整該設計資訊、該製程資訊或該成品檢測資訊。The present invention further proposes a method for improving product process quality, which is used for cause analysis when the process quality of the product does not match the set parameters. The method includes: pre-storing a plurality of cause knowledge models and including cause problems and solutions Cause countermeasure comparison table; extract the design information of the product in the design process, the manufacturing process information in the manufacturing process and the finished product inspection information in the verification process, and obtain the knowledge model of the cause of the product; make the design information , The process information and the finished product detection information are input into the cause knowledge model to obtain the cause problem of the product; and the corresponding solution to the cause problem is found from the cause countermeasure comparison table based on the cause problem Countermeasures, and obtain the pre-correction parameters for solving the cause problem from the solution countermeasures, and then return the pre-correction parameters to the design process, the manufacturing process, or the verification process to adjust the design information, the process information, or The finished product inspection information.
本發明所提出之提升產品製程品質之回饋系統及其方法,透過預先建立數個肇因知識模型以用於肇因分析,另外還預先建立數個解決對策,以於找出肇因後提供對應之解決對策,其中,肇因分析包括參考設計程序、製造程序及驗證程序所取得之設計資訊、製程資訊及成品檢測資訊,因為產品品質不符設定的參數可能是來自於三個程序的參數設定,因而透過設計資訊、製程資訊及成品檢測資訊與肇因知識模型找出肇因問題以及依據肇因問題取得相對應之解決對策,最後由解決對策找出更適用的參數值以調整設計程序、製造程序及驗證程序等程序的參數,另外,倘若未能由肇因知識模型找出解決對策,則透過演算法找出最適用的解決對策(即相關參數),並於確認解決對策之可靠度後備存,以作為現行和之後肇因分析的參考依據。透過本發明之提升產品製程品質之回饋系統及其方法,提供了智慧化和自動化的肇因分析與排除,故能提升製程中產品品質良率,同時能降低現行人為判斷下耗時過久和精確問題等可能問題。The feedback system and method for improving the quality of the product process proposed by the present invention, by pre-establishing a number of cause knowledge models for cause analysis, in addition to establishing a number of solutions in advance to provide a response after finding the cause The solution, including analysis of the cause, includes design information, process information, and finished product inspection information obtained with reference to the design process, manufacturing process, and verification process, because the parameters that do not match the product quality may be the parameter settings from the three processes. Therefore, through the design information, process information and finished product detection information and the cause knowledge model, the cause problem is identified and the corresponding solution is obtained according to the cause problem. Finally, the solution countermeasure finds more suitable parameter values to adjust the design process and manufacturing Parameters such as procedures and verification procedures. In addition, if the solution cannot be found from the cause knowledge model, the most suitable solution (ie, related parameters) is found through the algorithm, and the reliability of the solution is confirmed. Save as a reference basis for the analysis of current and future causes. Through the feedback system and method for improving product process quality of the present invention, intelligent and automated cause analysis and elimination are provided, so that the product quality yield rate in the process can be improved, and at the same time, it can reduce the time and time spent under current human judgment. Possible problems such as precision problems.
本發明的示範性實施例可包括本文中所描述(包括具體實施方式中所描述)和/或圖式中所展示的新穎特徵中的任何一個或一個以上。如本文中所使用,“至少一個”、“一個或一個以上”和“和/或”為在操作中既連接又分離的開端表達。舉例來說,表達“A、B和C中的至少一個”、“A、B或C中的至少一個”、“A、B和C中的一個或一個以上”、“A、B或C中的一個或一個以上”和“A、B和/或C”中的每一個意味單獨A、單獨B、單獨C、A和B一起、A和C一起、B和C一起或A、B和C一起。Exemplary embodiments of the invention may include any one or more of the novel features described herein (including those described in the detailed description) and/or shown in the drawings. As used herein, "at least one", "one or more", and "and/or" are beginning expressions that are both connected and separated in operation. For example, the expression "at least one of A, B, and C", "at least one of A, B, or C", "one or more of A, B, and C", "in A, B, or C" Each of "one or more" and "A, B and/or C" means A alone, B alone, C alone, A and B together, A and C together, B and C together or A, B and C together.
應注意,術語“一”實體指一個或一個以上所述實體。因此,術語“一”、“一個或一個以上”和“至少一個”可在本文中互換使用。It should be noted that the term "a" entity refers to one or more of the entities described. Therefore, the terms "a", "one or more" and "at least one" can be used interchangeably herein.
第1圖說明本發明之提升產品製程品質之回饋系統的系統架構圖。如圖所示,提升產品製程品質之回饋系統1能於檢視產品製程品質並於品質不符設定的參數下找出肇因並提供設計、製程或檢測之參數調整的對應解決方案,這裡所述的產品可以為PCB板,但不以此為限,其中,產品品質的決定因素包含厚度、線寬、顏色等是否符合設計要求,提升產品製程品質之回饋系統1包括肇因知識模型資料庫11、解決對策資料庫12、肇因分析模組13以及回饋對策模組14。FIG. 1 illustrates a system architecture diagram of a feedback system for improving product process quality of the present invention. As shown in the figure, the
肇因知識模型資料庫11係儲存複數肇因知識模型,簡單來說,為了可以快速進行肇因分析,本發明透過預先建立對應產品的至少一個肇因知識模型,當取得產品製造前後階段的相關資訊後,即可利用肇因知識模型來找出產品缺陷的肇因問題。The cause
解決對策資料庫12具有包含肇因問題與解決對策之肇因對策對照表,簡言之,為了快速找出肇因問題的解決對策,本發明同樣預先在解決對策資料庫12儲存肇因對策對照表,而肇因對策對照表記載各種肇因問題與其對應之解決對策,以用於後續分析出肇因問題後,亦即能透過查表篩選以快速找出解決方法,藉此即時改正製造前後階段的相關設定。The
肇因分析模組13係連線該肇因知識模型資料庫11,該肇因分析模組13用於在產品之製程品質不符設定的參數時進行肇因分析,其中,該肇因分析模組13接收產品於設計程序中的設計資訊100、製造程序中的製程資訊200以及驗證程序中的成品檢測資訊300,並且由該肇因知識模型資料庫11取得對應該產品之肇因知識模型,以令該設計資訊100、該製程資訊200及該成品檢測資訊300輸入至該肇因知識模型而得到該產品之肇因問題。具體來說,當產品之製程品質不符設定的參數時,表示產品製造前後階段的至少某一處出現問題,可能是設計程序、製造程序或驗證程序的某一個設定錯誤或偏差,因而肇因分析模組13取得這三個階段的資訊,即設計資訊100、製程資訊200及成品檢測資訊300,並將該些資訊帶入該產品對應之肇因知識模型,進而取得該產品之肇因問題。The
回饋對策模組14係連線該肇因分析模組13及該解決對策資料庫12,該回饋對策模組14用於接收來自該肇因分析模組13之該肇因問題,以自該解決對策資料庫12之該肇因對策對照表中找出該肇因問題所對應之解決對策,並分析該解決對策而產生解決該肇因問題之預修正參數400,之後回傳該預修正參數400至該設計程序、該製造程序或該驗證程序,以分別調整該設計資訊100、該製程資訊200及該成品檢測資訊300。詳言之,回饋對策模組14接收來自肇因分析模組13之肇因問題後,會到解決對策資料庫12找出適用的肇因對策對照表,並由該肇因對策對照表找出對應該肇因問題的解決對策,肇因對策對照表中所記載之解決對策能得到解決此肇因問題之預修正參數400,這些參數的修正是為了改善設計程序、製造程序或驗證程序至少其中一者參數設定,進而達到調整製造前後階段可能出現的問題。The
由上可知,透過肇因知識模型和解決對策的預先建立,肇因分析模組13可針對產品瑕疵找出肇因問題,回饋對策模組14依據肇因問題自肇因對策對照表取得對應的解決對策,最後,可由解決對策取得相關預修正參數400,並將該預修正參數400送至設計程序、製造程序或驗證程序,進而調整設計資訊100、製程資訊200或成品檢測資訊300。As can be seen from the above, through the pre-establishment of the cause knowledge model and the solution countermeasures, the
第2圖說明本發明之提升產品製程品質之回饋系統另一實施例的系統架構圖。本實施例中,提升產品製程品質之回饋系統1中的肇因知識模型資料庫11、解決對策資料庫12、肇因分析模組13及回饋對策模組14與第1圖所述相似,於此不再贅述,主要差異在於提升產品製程品質之回饋系統1更包括新對策生成模組15。FIG. 2 illustrates a system architecture diagram of another embodiment of the feedback system for improving product process quality of the present invention. In this embodiment, the cause
新對策生成模組15係包含生成解決對策以及對應之預修正參數的功能,關於生成解決對策,係於該回饋對策模組14未由該解決對策資料庫12取得對應該肇因問題之解決對策時,該新對策生成模組15依據該肇因問題產生適用於該肇因問題之新解決對策,並將該新解決對策回存至該解決對策資料庫12。 簡言之,儘管解決對策資料庫12預存有產品問題的解決對策,然此為先前已發生過問題的解決對策,而事實上,有可能會遭遇部分問題不曾發生,因而無法由解決對策資料庫12找出對應的解決對策,此時該肇因問題會送至新對策生成模組15進行分析,進而產生適用於該肇因問題之新解決對策500,此新解決對策500除了用來取得新的參數設定值外,同時會被回存至解決對策資料庫12,以作為後續肇因問題的參考依據。The new
新對策生成模組15可透過不同的演算法找出所需解決對策,亦即用於調整參數的相關資訊,演算法可例如資料比對演算法或反函數(inverse)演算法。具體來說,資料比對演算法可自歷史資料中,篩選出適用於該肇因問題之參數設定值,簡言之,由於每一筆設計資訊100、製程資訊200及成品檢測資訊300都會被保存,此時可透過資料比對方式,找出與目前問題較接近的設定,舉例來說,目前PCB板製程時電流為13.8A±0.5A,可透過此電流範圍,到歷史資料中找出相似數值,並參考相似此數值者的其他參數,例如銅層厚度,進而得到可能適用的參數設定值。The new
反函數演算法能推算出符合該肇因問題且適用於該設計程序、該製造程序或該驗證程序之參數設定值,也就是說,透過反函數演算法算出最合適的機台相關參數設定值(recipe),前述反函數演算法可為卷積神經網路之反函數(Inverse Convolutional Neural Networks)。關於前述演算法,後面將會再進一步說明。The inverse function algorithm can calculate the parameter settings that are consistent with the cause problem and are applicable to the design process, the manufacturing process, or the verification process, that is, the most suitable machine-related parameter settings are calculated through the inverse function algorithm (recipe), the aforementioned inverse function algorithm can be the inverse function of convolutional neural networks (Inverse Convolutional Neural Networks). The aforementioned algorithm will be further described later.
另外,新對策生成模組15更包括解決對策可靠度驗證單元151,該解決對策可靠度驗證單元151用於驗證該新解決對策500是否適用於該設計程序、該製造程序或該驗證程序中,換言之,不論是透過資料比對演算法或反函數演算法找出的新解決對策500,儘管有一定參考價值,但仍須先進行可靠度驗證,舉例來說,找出來的新參數設定值或許能滿足肇因問題的改善,但相關數值可能並不適用於目前產品生產程序的最終結果,倘若直接更動設計資訊100、製程資訊200或成品檢測資訊300,最終新的產品極有可能產出其他問題,因而當取得新解決對策500時,解決對策可靠度驗證單元151會針對新解決對策500執行可靠度驗證,透過產品生產程序的相關模擬,確定新解決對策500不會對產品生產程序產生新的影響,此時方能成為合適於參數調整的新解決對策500。In addition, the new
第3A-3C圖說明現有技術與本發明關於肇因分析和解決的流程圖以及解決對策資料庫內容的示意圖,其中,第3A圖為現有技術流程圖,第3B圖為本發明流程圖,如第3A圖所示,一開始產品會經過設計及模擬,之後進入製程階段,此時製程設備依據產品需求有不同參數設定,產品完成後會進入產品檢測,此時在設計、製程、驗證等階段的數據通常會彙整保存,此時會判斷產品品質是否符合需求,若無問題,則可出貨,當產品到達顧客端時,顧客可能會有意見回饋至產品製造者,當然包括產品缺陷等等,此時產品製造者會進行肇因分析,另外,若前面判斷產品品質有問題,則直接進行肇因分析,但在現有技術中,都是透過人員來處理肇因問題,包括找出肇因的相對應對策,並且人工調整設計、製程、驗證等階段的參數設定,進而改善之後產品製程品質。Figures 3A-3C illustrate the flow chart of cause analysis and resolution of the prior art and the present invention and the contents of the solution countermeasure database, where Figure 3A is a flow chart of the prior art, and Figure 3B is a flow chart of the present invention, such as As shown in Figure 3A, the product will be designed and simulated at the beginning, and then enter the process stage. At this time, the process equipment will have different parameter settings according to the product requirements. After the product is completed, it will enter the product inspection. The data is usually collected and stored. At this time, it will be judged whether the product quality meets the demand. If there is no problem, it can be shipped. When the product reaches the customer, the customer may have feedback to the product manufacturer, of course including product defects, etc. At this time, the product manufacturer will conduct the cause analysis. In addition, if the product quality is judged to be problematic, the cause analysis will be performed directly. However, in the existing technology, the cause is dealt with through personnel, including finding the cause The corresponding countermeasures, and manually adjust the parameter settings in the design, process, verification and other stages, and then improve the quality of the product process afterwards.
如第3B圖所示,為本發明所提出產品製程品質分析與回饋的機制,與第3A圖前段相同,產品同樣會經過設計及模擬,之後進入製程階段以及產品檢測階段,設計、製程、驗證等階段的數據也會彙整保存,之後判斷產品品質是否符合需求,若無問題,則可出貨,顧客可能會有意見回饋至產品製造者,此時產品製造者會進行肇因分析,另外,若前面判斷產品品質有問題,則直接進行肇因分析,到此為止,與現有技術流程相同。本發明與現有技術主要差異在於能自動化分析肇因問題和智慧化調整參數,即系統除了分析出肇因問題外,更能自動提供解決對策,其中,解決對策來自於解決對策資料庫,而解決對策資料庫中的解決對策可由人員外部預先輸入,此時,若能找出解決對策,則會將新參數自動送至設計、製程、驗證等階段的相關設備中,藉此調整先前的參數設定,倘若無法從解決對策資料庫找出解決對策時,則可透過推估對策機制,利用演算法推算出適用的新解決對策並回存到解決對策資料庫。As shown in Figure 3B, the mechanism of product process quality analysis and feedback proposed by the present invention is the same as the previous section of Figure 3A. The product will also be designed and simulated, and then enter the process stage and product inspection stage, design, process, verification The data at other stages will also be aggregated and stored, and then judge whether the product quality meets the demand. If there is no problem, it can be shipped. The customer may have feedback to the product manufacturer. At this time, the product manufacturer will conduct an analysis of the cause. In addition, If it is judged that there is a problem with the quality of the product, the cause analysis is performed directly. So far, it is the same as the prior art process. The main difference between the present invention and the existing technology is that it can automatically analyze the cause of the problem and intelligently adjust the parameters. That is, in addition to analyzing the cause of the problem, the system can automatically provide a solution countermeasure. The solution countermeasure comes from the solution countermeasure database. The countermeasures in the countermeasure database can be pre-entered by external personnel. At this time, if the countermeasures can be found, the new parameters will be automatically sent to the relevant equipment in the design, process, verification and other stages to adjust the previous parameter settings If you can not find a solution from the solution database, you can use the algorithm to estimate the new solution and use the algorithm to calculate and restore it to the solution database.
如第3C圖所示,繪示解決對策資料庫內的內容。如圖所示,解決對策資料庫內每一筆資料包括肇因項、對應端以及解決對策,肇因項即是設備來源以及肇因問題,此透過如第1和2圖所示的肇因分析模組即可得到,對應端即列出肇因問題是出現在哪一個階段,如前所述,包括設計端、製程端和驗證端,最後解決對策則列出肇因問題的解決方法,例如圖中所示,可能是控制膜厚大小,也可能是治具需調整。由上可知,透過解決對策資料庫,可依據肇因問題找出對應可解決對策,並考量肇因是出自哪一個對應端,並透過解決對策來調整該對應端的相關設定,故能達到自動分析與智慧化調整的目的。As shown in Figure 3C, the contents of the solution database are shown. As shown in the figure, each piece of data in the solution countermeasure database includes the cause item, the corresponding end, and the solution countermeasure. The cause item is the source of the equipment and the cause problem. This is analyzed through the cause analysis shown in Figures 1 and 2. The module can be obtained, the corresponding end lists the stage where the cause problem occurs, as mentioned above, including the design end, the process end, and the verification end, and the final solution countermeasures list the cause problem solutions, for example As shown in the figure, it may be that the thickness of the film is controlled or that the jig needs to be adjusted. It can be seen from the above that through the solution countermeasure database, the corresponding countermeasures can be found according to the cause problem, and which corresponding end is caused by the cause, and the relevant settings of the corresponding end can be adjusted through the solution countermeasures, so automatic analysis can be achieved With the purpose of intelligent adjustment.
另外,於第3C圖中,肇因項除了包括肇因簡述外,前面還帶有一串文數字,此為紀錄缺陷站別和肇因機台,也就是說,紀錄哪一個站別以及哪一個機台所產出的產品可能有哪些肇因問題,透過確認站別和機台能快速搜尋出解決對策,進而能即時回饋調整以及方便後續大數據整理。In addition, in Figure 3C, in addition to a brief description of the cause, the cause item is preceded by a series of alphanumerics. This is the record of the defective station type and the cause machine, that is, which station type and which What are the possible causes of the products produced by a machine? By confirming the station type and the machine, you can quickly search for solutions, and then you can feedback and adjust in real time and facilitate the subsequent big data collation.
第4A-4C圖說明本發明中在無法從肇因問題取得對應之解決對策時的處理流程圖。如第4A圖所示,其說明未能從肇因問題取得對應之解決對策時的處理方式,亦即當判斷肇因解決對策不存在時,則進入推估對策機制,此時會經過兩階段的處理,包括演算處理和解決對策可靠度驗證,其中演算處理即透過演算法找出合適的解決對策,演算法可採用反函數演算法或資料比對演算法,兩種將於第4B和4C圖中說明,當找出新的解決對策時,為避免此解決對策與產品製程有所違背,故還將此新的解決對策經過可靠度驗證,例如透過製程模擬,確認新的參數值不會對產品、設計、產線等產生影響,才能真正成為適用的新解決對策。最終,新解決對策會被回存到解決對策資料庫。Figures 4A-4C illustrate the process flow when the corresponding solution cannot be obtained from the cause problem in the present invention. As shown in Figure 4A, it explains how to deal with failure to obtain the corresponding solution from the cause problem, that is, when it is determined that the cause solution does not exist, it enters the estimated countermeasure mechanism, which will go through two stages Processing, including algorithmic processing and verification of reliability of solutions, in which algorithmic processing is to find suitable solutions through algorithms. Algorithms can use inverse function algorithms or data comparison algorithms, two of which will be in 4B and 4C. The figure shows that when a new solution is found, in order to avoid that the solution is contrary to the product process, the new solution is also verified for reliability, such as through process simulation to confirm that the new parameter value will not Only when it has an impact on products, design, production lines, etc. can it truly become a suitable new solution. Eventually, the new solution will be restored to the solution database.
第4B圖說明反函數演算法的處理方式。如圖所示,傳統解決方式通常是透過大數據分析來得到想要參數值,也就是說,透過輸入(Input)生產參數至模型中,之後產出(Output)預測規格,此方式由生產來推出產品結果,缺乏主導性,若要達到目標規格,甚至要嘗試多次才能得到。反之,本發明採用反函數(inverse)模型,透過輸入目標規格至反函數模型中,藉以產出最佳化參數,換言之,透過最佳化參數可得到目標規格,此方式更能有效取得參數要如何調整,因而推估對策並自動回饋機制採用反函數演算法,將能推算出最合適的機台相關參數設定值(recipe)。Figure 4B illustrates the processing method of the inverse function algorithm. As shown in the figure, the traditional solution is usually to obtain the desired parameter value through big data analysis, that is, by inputting the production parameters into the model and then outputting the output prediction specifications, this method comes from production The result of launching a product lacks dominance. If you want to reach the target specification, you have to try many times to get it. On the contrary, the present invention adopts the inverse model, by inputting the target specification into the inverse function model, so as to output the optimized parameter, in other words, the target specification can be obtained by optimizing the parameter, this way can obtain the parameter more effectively How to adjust, therefore, to estimate the countermeasures and the automatic feedback mechanism using inverse function algorithm, will be able to calculate the most appropriate machine-related parameter settings (recipe).
第4C圖說明資料比對演算法的處理方式。如圖所示,透過篩選條件,比較設計/製程/檢測資料表中是否有相符條件者,若有相符,則列出符合條件的資料,若無,則可透過如第4B圖所示之反函數演算法來處理。具體來說,比對資料方式可從特定資料中尋找特定條件的資料,常見方法至少有兩種,一種為傳統的資料庫篩選方式,即對資料庫下查詢指令‘SELECT’並給予篩選條件(例如目標規格),進而找出所需資訊,另外一種為搜尋演算法(Search Algorithm),即輸入要搜尋的條件資料,將搜尋資料與資料序列中資料做比較, 符合條件資料者則保留,其餘忽略。Figure 4C illustrates how the data comparison algorithm is processed. As shown in the figure, through the screening conditions, compare the design/process/test data table with the matching conditions. If there is a match, the qualified data is listed. If not, you can use the reverse as shown in Figure 4B. Function algorithm to deal with. Specifically, the comparison data method can find data with specific conditions from specific data. There are at least two common methods. One is the traditional database screening method, which is to query the database under the query command'SELECT' and give the screening conditions ( For example, the target specification), and then find the required information. The other is the search algorithm (Search Algorithm), that is, enter the conditional data to be searched, and compare the search data with the data in the data sequence. ignore.
以目標規格銅厚1.05
.2為例,例如目標銅厚1.05mm
.2 mm、板材尺寸為長24 mm /寬20 mm、板厚類型為T/T、板厚為0.0082mm
0.002 mm,在此情況下透過搜尋資料與資料序列中資料做比較,即可找出如第4C圖下方所示資訊,左半邊為與篩選條件相符者,右邊則為相符者過去製程設定值,此時符合條件的製程參數包括電鍍時間為45分鐘以及電流值為13.8安培,以在無法由解決對策資料庫找出對應解決對策時,透過推估對策並自動回饋機制,提供適用的新解決對策,以供調整相關參數設定。
To target specification copper thickness 1.05 .2 as an example, for example target copper thickness 1.05mm .2 mm,
第5圖為本發明之提升產品製程品質之方法的步驟圖。本發明所述的提升產品製程品質之方法,能於產品之製程品質不符設定的參數時進行肇因分析及處理,藉此達到肇因分析、自動找尋解決對策以及智慧化參數調整的目的。於步驟S51中,預先儲存複數肇因知識模型以及包含肇因問題與解決對策之肇因對策對照表。為了能快速分析肇因問題以及即時找出解決對策,在肇因分析前,會先預存對應每種產品之肇因知識模型,以透過產品類型找出適用之肇因知識模型,另外,為了方便取得每種產品產生問題時之解決對策,故預先建立一肇因對策對照表,裡面記載肇因問題與解決對策的關係,一個產品能有多種肇因問題,故會對應多個解決對策。FIG. 5 is a step diagram of the method of the present invention for improving the quality of the product process. The method for improving product process quality described in the present invention can perform cause analysis and processing when the process quality of the product does not match the set parameters, thereby achieving the purposes of cause analysis, automatic search for solutions, and intelligent parameter adjustment. In step S51, a plurality of cause knowledge models and a cause countermeasure table containing cause problems and solutions are stored in advance. In order to quickly analyze the cause of the problem and find a solution in real time, before the cause analysis, the cause knowledge model corresponding to each product will be pre-stored to find the applicable cause knowledge model by product type. In addition, for convenience To obtain the solution to the problem caused by each product, a cause comparison table is established in advance, which records the relationship between the cause problem and the solution. A product can have multiple cause problems, so it will correspond to multiple solutions.
於步驟S52中,擷取該產品於設計程序中的設計資訊、於製造程序中的製程資訊以及於驗證程序中的成品檢測資訊,以及取得對應該產品之肇因知識模型。於本步驟中,產品生產過程中,包括設計程序、製造程序及驗證程序,上述各階段會分別產生設計資訊、製程資訊以及成品檢測資訊,因而當產品不符設定的參數時,當然會擷取設計資訊、製程資訊及成品檢測資訊,並且取得對應該產品之肇因知識模型。In step S52, the design information of the product in the design process, the manufacturing process information in the manufacturing process and the product inspection information in the verification process are retrieved, and the knowledge model of the cause of the product is obtained. In this step, the product production process includes the design process, manufacturing process, and verification process. The above stages will generate design information, process information, and finished product inspection information, respectively. Therefore, when the product does not meet the set parameters, the design will of course be retrieved. Information, process information and finished product inspection information, and obtain the knowledge model corresponding to the cause of the product.
於步驟S53中,將該設計資訊、該製程資訊及該成品檢測資訊輸入至該肇因知識模型,以得到該產品之肇因問題。於本步驟中,即係將設計資訊、製程資訊及成品檢測資訊輸入至該產品的肇因知識模型,進而得到該產品之肇因問題。In step S53, the design information, the process information and the finished product detection information are input to the cause knowledge model to obtain the cause problem of the product. In this step, the design information, process information, and finished product inspection information are input to the cause knowledge model of the product, and the cause problem of the product is obtained.
於步驟S54中,依據該肇因問題自該肇因對策對照表中找出該肇因問題所對應之解決對策,並從該解決對策中取得解決該肇因問題之預修正參數,之後回傳該預修正參數至該設計程序、該製造程序或該驗證程序,以分別調整該設計資訊、該製程資訊或該成品檢測資訊。本步驟即由肇因問題取得對應解決對策,解決對策是被預先提供且記載在解決對策資料庫內的肇因對策對照表中,接著,再從該解決對策中取得解決肇因問題之預修正參數,此預修正參數會回傳對應的程序端(設計程序、製造程序或驗證程序),藉此調整設計資訊、製程資訊或成品檢測資訊。In step S54, according to the cause problem, find out the solution corresponding to the cause problem from the cause countermeasure table, and obtain the pre-correction parameters for solving the cause problem from the solution, and then return The pre-correction parameters are applied to the design process, the manufacturing process or the verification process to adjust the design information, the process information or the finished product inspection information, respectively. In this step, the corresponding solution is obtained from the cause problem. The solution is provided in advance and listed in the solution table of the cause solution in the solution database. Then, the pre-correction to solve the cause problem is obtained from the solution Parameters, this pre-correction parameter will be returned to the corresponding terminal (design process, manufacturing process or verification process) to adjust the design information, process information or finished product inspection information.
於一實施例,當步驟S53中, 倘若無法找出對應該肇因問題之解決對策時,則產生適用於該肇因問題之新解決對策。更具體來說,可透過資料比對演算法,自歷史資料中篩選出適用於該肇因問題之參數設定值,又或者可透過反函數演算法,推算出符合該肇因問題且適用於該設計程序、該製造程序或該驗證程序之參數設定值,其中該反函數演算法可為卷積神經網路之反函數。有關資料比對演算法或反函數演算法,前面已說明,於此不再重述。In an embodiment, if it is not possible to find a solution to the cause problem in step S53, a new solution to the cause problem is generated. More specifically, the data comparison algorithm can be used to filter out the parameter settings that are suitable for the cause problem from the historical data, or the inverse function algorithm can be used to infer that the cause problem is suitable for the cause problem The parameter setting value of the design procedure, the manufacturing procedure or the verification procedure, wherein the inverse function algorithm may be an inverse function of the convolutional neural network. The data comparison algorithm or inverse function algorithm has already been explained above, and will not be repeated here.
另外,產生適用於該肇因問題之新解決對策時,為了確保新解決對策適用於目前產品生產,則上述步驟中更包括於產生該新解決對策後,驗證該新解決對策是否適用於該設計程序、該製造程序或該驗證程序中。據此,透過資料比對演算法或反函數演算法找出合適的新解決對策,並經過驗證,方能將此參數設定值傳送至設計端、製程端或驗證端等應用設備中。In addition, when a new solution to the problem is generated, in order to ensure that the new solution is applicable to the current product production, the above steps are also included after the new solution is generated, to verify whether the new solution is suitable for the design Process, the manufacturing process, or the verification process. According to this, through the data comparison algorithm or inverse function algorithm to find a suitable new solution, and after verification, this parameter setting can be transmitted to the design side, process side or verification side and other application equipment.
第6圖為本發明之提升產品製程品質之回饋系統第一範例的示意圖。如圖所示,在肇因分析得到肇因分析結果後,可至解決對策資料庫內的肇因對策對照表找出解決對策,對此範例而言,肇因分析結果是模擬與量測誤差>25%,對應端為設計端,解決對策建議是翹曲模擬設計參數權重修正,而目前設計模擬資料包括熱膨脹係數 、彈性係數等等,產品的目標規格則是模擬與量測誤差<25%,在此情況下,自動回饋機制(即生成回饋參數)可採用資料比對之回饋演算法,比對設計模擬數據庫是否已有類似權重資料,進而產生回饋設計模擬參數,也就是更新翹曲模擬參數權重,例如修正熱膨脹係數為 ,以達到參數調整之目的。由上可知,當產線設定與翹曲模擬設定的材料熱膨脹係數不一致下,使得模擬預測與量測誤差>25%,本實施例即是透過權重矩陣以更新參數設定為一致。 FIG. 6 is a schematic diagram of a first example of a feedback system for improving product process quality of the present invention. As shown in the figure, after the cause analysis result is obtained, the solution can be found in the cause countermeasure table in the solution database. For this example, the cause analysis result is the simulation and measurement error >25%, the corresponding end is the design end, the solution countermeasure is to correct the weight of the warpage simulation design parameters, and the current design simulation data includes thermal expansion coefficient , Elastic coefficient, etc., the target specification of the product is the simulation and measurement error <25%, in this case, the automatic feedback mechanism (that is, the generation of feedback parameters) can use the feedback algorithm of data comparison to compare and design the simulation database Whether there is similar weight data, and then the feedback design simulation parameters are generated, that is, the weight of the warpage simulation parameters is updated, for example, the modified thermal expansion coefficient is To achieve the purpose of parameter adjustment. It can be seen from the above that when the material thermal expansion coefficients of the production line settings and the warpage simulation settings are inconsistent, the simulation prediction and measurement errors are greater than 25%. In this embodiment, the weight matrix is used to update the parameter settings to be consistent.
第7圖為本發明之提升產品製程品質之回饋系統第二範例的示意圖。如圖所示,在肇因分析得到肇因分析結果後,可至解決對策資料庫內的肇因對策對照表找出解決對策,在此範例中,肇因分析結果是板銅厚值超出容許範圍,對應端為製程端,解決對策建議是電鍍線相關參數設定修正,而目前製程資料包括電鍍時間45分鐘,電流值為18.2A ±0.5A等等,產品的目標規格則是銅厚1.05mm±0.2mm,在此情況下,自動回饋機制(即生成回饋參數)可採用資料比對之回饋演算法,如圖中下方表格所示,從資料庫篩選出相同規格的歷史資料,得知當設定電流13.8A±0.5A時能生產出的銅厚範圍0.94mm~1.08mm,藉此產生回饋製程參數,也就是更新機台電流值,例如調控為13.8A±0.5A,以達到參數調整之目的。FIG. 7 is a schematic diagram of a second example of a feedback system for improving product process quality of the present invention. As shown in the figure, after the cause analysis result is obtained, the solution can be found in the cause countermeasure table in the solution database. In this example, the cause analysis result is that the copper thickness value exceeds the allowable The range, the corresponding end is the process end, the solution is to correct the related parameters of the plating line. The current process data includes the plating time of 45 minutes, the current value is 18.2A ±0.5A, etc. The target specification of the product is copper thickness 1.05mm ±0.2mm, in this case, the automatic feedback mechanism (that is, generating feedback parameters) can use the feedback algorithm of data comparison. As shown in the table below, the historical data of the same specification is selected from the database. When the current is set to 13.8A±0.5A, the copper thickness range that can be produced is 0.94mm~1.08mm, thereby generating feedback process parameters, that is, updating the machine current value, for example, adjusting to 13.8A±0.5A, to achieve the parameter adjustment purpose.
第8圖為本發明之提升產品製程品質之回饋系統第三範例的示意圖。如圖所示,在肇因分析得到肇因分析結果後,可至解決對策資料庫內的肇因對策對照表找出解決對策,於此範例中,肇因分析結果是線寬過粗導致報錯率過高,對應端為檢測端,解決對策建議是AOI光學檢測機線寬容忍值設定修正,而目前檢測資料包括線寬誤差容忍值設定為±0.5um、報錯率60%等等,另外,產品的目標規格則是標準線寬(設計) 20um以及報錯率20%,在此情況下,自動回饋機制(即生成回饋參數)可採用量測線寬分佈資訊(生產),如下方小圖所示,當容忍值設定± 0.5um時,則報錯率為15/25=60%,並非是預期目標,因而透過數學運算式X(允收個數)/25(總數)=20%(目標),可得到X=5,亦即允收個數<5的最小容忍值為1um,之後,最小容忍值調至±1um時,即只有22um以上才會報錯。透過上述演算,即可取得回饋檢測參數,具體來說,即是將AOI機台調控為線寬誤差容忍值設定為± 1um,據以達到參數調整之目的。FIG. 8 is a schematic diagram of a third example of a feedback system for improving product process quality of the present invention. As shown in the figure, after the cause analysis results are obtained, you can go to the cause countermeasure table in the solution countermeasure database to find the solution. In this example, the result of the cause analysis is that the line width is too thick, resulting in an error The rate is too high, the corresponding end is the detection end, the solution countermeasure is the correction of the line width tolerance value of the AOI optical inspection machine, and the current detection data includes the line width error tolerance value set to ±0.5um, the error rate of 60%, etc. In addition, The target specification of the product is the standard line width (design) 20um and the
第9圖為本發明之提升產品製程品質之回饋系統第四範例的示意圖,本實施例中,是透過推估對策並自動回饋機制,採用反函數(inverse)方法,推理出最合適之機台相關參數設定值(recipe),透過資料庫篩選出相同規格的歷史資料,將該些資料編碼與正規化(0~100)並排成方陣,形成如中間的方陣,此時將方陣套用卷積神經網絡(Convolutional neural network,CNN) 訓練,即透過CNN模型進行卷積運算(convolution)和池化運算(pooling),之後,先取得反函數模型,再將生產目標值填入至反函數CNN模型以進行逆卷積運算(deconvolution)和非池化運算(unpooling) ,進而取得回饋參數以及值域回復。Fig. 9 is a schematic diagram of a fourth example of a feedback system for improving product process quality of the present invention. In this embodiment, the inverse function (inverse) method is used to infer the most suitable machine by estimating countermeasures and an automatic feedback mechanism. Relevant parameter settings (recipe), through the database to filter out the historical data of the same specifications, the data is encoded and normalized (0~100) and arranged in a square matrix, forming a square matrix like the middle, the square matrix is applied to convolution Neural network (Convolutional neural network, CNN) training, that is, the CNN model is used for convolution and pooling operations. After that, the inverse function model is obtained first, and then the production target value is filled into the inverse function CNN model. To perform deconvolution and unpooling operations, and then obtain feedback parameters and range recovery.
於一具體實施例中,在方陣形成後,可輸入一開始的生產參數至CNN模型,之後,在生產目標值填入部分,可輸入目標銅厚修正值,最終即可得到有關電鍍時間、電流值等參數設定。由上可知,此為透過推估對策並自動回饋機制,以反函數卷積神經網絡推理出最合適之機台相關參數設定值的過程。In a specific embodiment, after the square matrix is formed, the initial production parameters can be input to the CNN model, and then, in the production target value filling part, the target copper thickness correction value can be input, and finally the relevant plating time and current can be obtained Value and other parameter settings. It can be seen from the above that this is the process of inferring the most appropriate machine-related parameter settings through inverse function convolutional neural network through inferred countermeasures and automatic feedback mechanism.
本發明所述設計程序、製造程序、驗證程序所涉及的機台設備可包括微處理器及記憶體,而演算法、資料、程式等係儲存記憶體或晶片內,微處理器可從記憶體載入資料或演算法或程式進行資料分析或計算等處理,在此不予贅述。另外,本發明的模組、單元、裝置等可包括微處理器及記憶體,而演算法、資料、程式等係儲存記憶體或晶片內,微處理器可從記憶體載入資料或演算法或程式進行資料分析或計算等處理,例如本發明之肇因分析模組及回饋對策模組包括有微處理器與記憶體等,且各模組內的各單元以此執行分析運算,因而本發明所述之單元或模組其硬體細部結構亦可以相同實現方式。The machine equipment involved in the design procedure, manufacturing procedure, and verification procedure of the present invention may include a microprocessor and a memory, and algorithms, data, programs, etc. are stored in a memory or a chip, and the microprocessor may use the memory Loading data or algorithms or programs for data analysis or calculation, etc., will not repeat them here. In addition, the modules, units, devices, etc. of the present invention may include a microprocessor and a memory, and algorithms, data, programs, etc. are stored in a memory or chip, and the microprocessor may load data or algorithms from the memory Or program for data analysis or calculation, for example, the cause analysis module and feedback countermeasure module of the present invention include a microprocessor and a memory, etc. The hardware details of the unit or module described in the invention can also be implemented in the same way.
綜上所述,本發明之提升產品製程品質之回饋系統及其方法,透過預先建立肇因知識模型以及解決對策,用於分析肇因問題、比對肇因對策對照表以找出對應之解決對策,其中,肇因分析包括參考設計程序、製造程序及驗證程序所取得之設計資訊、製程資訊及成品檢測資訊,最終由解決對策找出更適用的參數值來調整設計程序、製造程序及驗證程序等程序的參數,另外,若未能從肇因對策對照表找出解決對策時,則透過演算法找出最適用的解決對策(即相關參數),並於確認解決對策可靠度後備存,以作為現行和往後肇因分析的參考依據。因此,本發明之提升產品製程品質之回饋系統及其方法,能提供了智慧化和自動化的肇因分析與排除,故能降低現行肇因分析因人為判斷所導致的耗時過久和精確問題等問題。In summary, the feedback system and method for improving the quality of the product process of the present invention are used to analyze the cause problem and compare the cause countermeasure table to find the corresponding solution by establishing the cause knowledge model and the solution countermeasure in advance Countermeasure, in which the cause analysis includes design information, process information and finished product inspection information obtained by referring to the design procedure, manufacturing procedure and verification procedure, and finally finds out more suitable parameter values to adjust the design procedure, manufacturing procedure and verification by solving the strategy The parameters of the program and other programs. In addition, if the solution cannot be found from the cause countermeasure table, the most suitable solution (ie, related parameters) is found through the algorithm, and the reliability of the solution is confirmed and kept. To serve as a reference basis for current and future cause analysis. Therefore, the feedback system and method for improving product process quality of the present invention can provide intelligent and automated cause analysis and elimination, so it can reduce the time-consuming and accurate problems caused by human judgment in the current cause analysis And other issues.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to the scope defined in the appended patent application.
1 提升產品製程品質之回饋系統
100 設計資訊
11 肇因知識模型資料庫
12 解決對策資料庫
13 肇因分析模組
14 回饋對策模組
15 新對策生成模組
151 解決對策可靠度驗證單元
200 製程資訊
300 成品檢測資訊
400 預修正參數
500 新解決對策
S51~S54 步驟
1 A feedback system to improve
第1圖為本發明之提升產品製程品質之回饋系統的系統架構圖;Figure 1 is a system architecture diagram of a feedback system for improving product process quality of the present invention;
第2圖為本發明之提升產品製程品質之回饋系統另一實施例的系統架構圖;FIG. 2 is a system architecture diagram of another embodiment of the feedback system for improving product process quality of the present invention;
第3A-3C圖為現有技術與本發明關於肇因分析和解決的流程圖以及解決對策資料庫內容的示意圖;Figures 3A-3C are schematic diagrams of the cause analysis and resolution of the prior art and the present invention and the contents of the solution database;
第4A-4C圖為本發明中在無法從肇因問題取得對應之解決對策時的處理流程圖;Figures 4A-4C are flowcharts of the processing in the present invention when a corresponding solution cannot be obtained from the cause problem;
第5圖為本發明之提升產品製程品質之方法的步驟圖;Figure 5 is a diagram of the steps of the method of the present invention to improve the quality of the product process;
第6圖為本發明之提升產品製程品質之回饋系統第一範例的示意圖;FIG. 6 is a schematic diagram of a first example of a feedback system for improving product process quality of the present invention;
第7圖為本發明之提升產品製程品質之回饋系統第二範例的示意圖;FIG. 7 is a schematic diagram of a second example of a feedback system for improving product process quality of the present invention;
第8圖為本發明之提升產品製程品質之回饋系統第三範例的示意圖;以及FIG. 8 is a schematic diagram of a third example of a feedback system for improving product process quality of the present invention; and
第9圖為本發明之提升產品製程品質之回饋系統第四範例的示意圖。FIG. 9 is a schematic diagram of a fourth example of a feedback system for improving product process quality of the present invention.
1 提升產品製程品質之回饋系統
100 設計資訊
11 肇因知識模型資料庫
12 解決對策資料庫
13 肇因分析模組
14 回饋對策模組
200 製程資訊
300 成品檢測資訊
400 預修正參數
1 A feedback system to improve
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862693936P | 2018-07-04 | 2018-07-04 | |
US62/693,936 | 2018-07-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202006568A TW202006568A (en) | 2020-02-01 |
TWI692695B true TWI692695B (en) | 2020-05-01 |
Family
ID=70412873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108105468A TWI692695B (en) | 2018-07-04 | 2019-02-19 | Feedback system for improving process quality of product and method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI692695B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11586794B2 (en) * | 2020-07-30 | 2023-02-21 | Applied Materials, Inc. | Semiconductor processing tools with improved performance by use of hybrid learning models |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM385742U (en) * | 2009-09-18 | 2010-08-01 | You-Tern Tsai | A device of fault diagnosing using case-based reasoning |
TW201615844A (en) * | 2014-10-22 | 2016-05-01 | 財團法人工業技術研究院 | Method and system of cause analysis and correction for manufacturing data |
TW201738785A (en) * | 2016-04-27 | 2017-11-01 | 亦思科技股份有限公司 | Method for analyzing semiconductor fabrication fault and computer program |
-
2019
- 2019-02-19 TW TW108105468A patent/TWI692695B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWM385742U (en) * | 2009-09-18 | 2010-08-01 | You-Tern Tsai | A device of fault diagnosing using case-based reasoning |
TW201615844A (en) * | 2014-10-22 | 2016-05-01 | 財團法人工業技術研究院 | Method and system of cause analysis and correction for manufacturing data |
TW201738785A (en) * | 2016-04-27 | 2017-11-01 | 亦思科技股份有限公司 | Method for analyzing semiconductor fabrication fault and computer program |
Also Published As
Publication number | Publication date |
---|---|
TW202006568A (en) | 2020-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112384924B (en) | Method and device for establishing product performance prediction model, computer equipment, computer readable storage medium, product performance prediction method and prediction system | |
TWI549007B (en) | Method for searching and analyzing process parameters and computer program product thereof | |
JP2020040119A (en) | Parameter proposal method of soldering process | |
JP5157359B2 (en) | Time-series data analysis device, time-series data analysis system, control method for time-series data analysis device, program, and recording medium | |
TW200949596A (en) | Server and system and method for automatic virtual metrology | |
TWI663569B (en) | Quality prediction method for multi-workstation system and system thereof | |
JP6641372B2 (en) | Determining important parameters using a high-dimensional variable selection model | |
KR102003961B1 (en) | System and method for identifying root causes of yield loss | |
US11982995B2 (en) | Defect detection during an automated production process | |
CN113655768B (en) | Assembly yield control method, equipment and computer readable storage medium | |
TW202001681A (en) | Industrial image inspection method and system and computer readable recording medium | |
CN101118422A (en) | Virtual measurement prediction generated by semi-conductor, method for establishing prediction model and system | |
TWI692695B (en) | Feedback system for improving process quality of product and method thereof | |
US10432800B1 (en) | Apparatus and method for managing three-dimensional printing | |
CN118052793A (en) | Real-time monitoring system and method for plush toy production process | |
US20230052392A1 (en) | Process abnormality identification using measurement violation analysis | |
CN116748352A (en) | Metal pipe bending machine processing parameter monitoring control method, system and storage medium | |
JP2004145390A (en) | Process correcting system | |
TWI736999B (en) | Data analyzing device, data analyzing method and associated quality improvement system | |
US11797646B2 (en) | Method, electronic device, and computer program product for standardizing image annotation | |
TWI821666B (en) | Service management system and adaption method of service information process | |
TWI832403B (en) | Methods, apparatus and non-transitory computer-readable medium for multidimensional dynamic part average testing | |
WO2022266833A1 (en) | Root cause identification method and related device | |
WO2021015094A1 (en) | Failure factor estimating device, and failure factor estimating method | |
JP7345006B1 (en) | Learning model generation method and testing device |