TWI690593B - Method of producing 2,3-butanediol with high yield - Google Patents

Method of producing 2,3-butanediol with high yield Download PDF

Info

Publication number
TWI690593B
TWI690593B TW107109789A TW107109789A TWI690593B TW I690593 B TWI690593 B TW I690593B TW 107109789 A TW107109789 A TW 107109789A TW 107109789 A TW107109789 A TW 107109789A TW I690593 B TWI690593 B TW I690593B
Authority
TW
Taiwan
Prior art keywords
butanediol
strain
yield
gene
production
Prior art date
Application number
TW107109789A
Other languages
Chinese (zh)
Other versions
TW201940700A (en
Inventor
黃瓊芳
馬天陽
梁克明
沈若樸
郭家倫
Original Assignee
行政院原子能委員會核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員會核能研究所 filed Critical 行政院原子能委員會核能研究所
Priority to TW107109789A priority Critical patent/TWI690593B/en
Publication of TW201940700A publication Critical patent/TW201940700A/en
Application granted granted Critical
Publication of TWI690593B publication Critical patent/TWI690593B/en

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A method is provided for producing 2,3-butanediol. An escherichia coli (E. coli) strain obtained through an innovation of genetic modification is used. In vivo of the strain, desired genes for producing 2,3-butanediol are expressed through gene transfer in a gene-recombination way. The present invention is characterized in that, during producing 2,3-butanediol, the strain does not change its yield owing to the change of oxygen concentration in the fermentation environment. The strain is capable of self-regulation by using an in-vivo metabolic pathway for dealing with the external environmental oxygen concentration. Thus, 2,3-butanediol is continuously produced with a high yield.

Description

生產高產量2,3-丁二醇之方法Method for producing high-yield 2,3-butanediol

本發明係有關於一種生產高產量2,3-丁二醇之方法,尤指涉及一種以基因重組、基因剔除及同時轉殖多個基因表現質體方式建構能夠高產量生產2,3-丁二醇之大腸桿菌菌株,特別係指菌株具有能夠自行調節利用體內代謝路徑機制可應付外在環境氧氣濃度改變,而持續生產高產量之2,3-丁二醇者。 The invention relates to a method for producing high-yield 2,3-butanediol, in particular to a method capable of producing high-yield 2,3-butane by gene recombination, gene knockout, and simultaneous transfer of multiple genes to express plastids Escherichia coli strains of diols, especially those strains that have the ability to self-regulate and utilize the mechanism of metabolic pathways in the body to cope with changes in the oxygen concentration in the external environment and continue to produce high yields of 2,3-butanediol.

2,3-丁二醇(2,3-butanediol)係一種重要之化工原料及液態燃料,廣泛應用於化工、醫藥、食品及航空領域。另外亦可藉由後續簡單化學反應,產生許多高價值之衍生化學品。例如2,3-丁二醇常被用於製備樹脂與溶劑等;其燃燒值(27.2KJ/g)與甲醇(22.1KJ/g)、乙醇(29.0KJ/g)相當,為極具潛力汽油添加劑;其具低冷凍點(-60℃)之特性,可當做抗凍劑。2,3-丁二醇經由脫水反應可以生成甲乙酮(methylethyl ketone,MEK),該MEK係一種高價液態燃料添加劑、低沸點化工溶劑,常應用於塗料、黏結劑、及油墨等,同時也是高品質航空燃料;2,3-丁二醇之前驅物乙偶姻(Acetoin)、2,3-丁二酮(Diacetyl),常當作天然食用香料、奶類製品香料來源,使食品有奶油口味;也可抑制細菌生長作為抑菌劑。2,3-丁二醇經縮醛(酮)化反應後可生產Acetone 2,3-butanediol ketal,應用於類似甲基第三丁基醚(methyl tert-butylether,MTBE)之汽油添加劑。2,3-丁二醇經酯化反應後可生產 2,3-Butanedioldiester,常應用於醫藥、化粧品之中間體及載體;熱塑性聚酯纖維塑化劑。其中有一最重要之應用是2,3-丁二醇脫水反應可以生成特用化學品1,3-丁二烯(1,3-butandiene),其為一種重要之化工原料,用來製造合成橡膠(如順丁橡膠、氯丁橡膠、丁苯橡膠、丁腈橡膠)、塑膠、樹脂(如ABS、SBS、BS、MBS等)、彈性纖維等合成橡膠工業,在第二次世界大戰期間丁二烯更是被許多國家列為重要開發資源之一。目前工業界主要藉由石油裂解之過程取得丁二烯,初步估計每年有超過1200萬噸之1,3-丁二烯被化工產業用來製造合成橡膠、塑膠、彈性纖維等物料。 2,3-butanediol (2,3-butanediol) is an important chemical raw material and liquid fuel, widely used in chemical, pharmaceutical, food and aviation fields. In addition, through subsequent simple chemical reactions, many high-value derivative chemicals can be produced. For example, 2,3-butanediol is often used to prepare resins and solvents, etc.; its combustion value (27.2KJ/g) is comparable to methanol (22.1KJ/g) and ethanol (29.0KJ/g), which is a highly potential gasoline Additive; it has the characteristics of low freezing point (-60℃), and can be used as antifreeze. 2,3-Butanediol can produce methyl ethyl ketone (MEK) through dehydration reaction. This MEK is a high-priced liquid fuel additive and a low-boiling chemical solvent. It is often used in coatings, adhesives, and inks. It is also of high quality. Aviation fuel; 2,3-butanediol precursors Acetoin and 2,3-butanedione (Diacetyl), often used as a source of natural edible flavorings and flavorings for dairy products to give food a creamy taste; It can also inhibit bacterial growth as a bacteriostatic agent. 2,3-Butanediol can produce Acetone 2,3-butanediol ketal after acetalization (ketone) reaction, which is used in gasoline additives similar to methyl tert-butylether (MTBE). 2,3-Butanediol can be produced after esterification 2,3-Butanedioldiester, commonly used in medicine, cosmetics intermediates and carriers; thermoplastic polyester fiber plasticizer. One of the most important applications is the dehydration reaction of 2,3-butanediol to produce the special chemical 1,3-butandiene (1,3-butandiene), which is an important chemical raw material used to make synthetic rubber (Such as cis-butadiene rubber, neoprene rubber, styrene-butadiene rubber, nitrile rubber), plastics, resins (such as ABS, SBS, BS, MBS, etc.), elastic fiber and other synthetic rubber industries. During the Second World War, Ding Er Diene is listed as one of the important development resources by many countries. At present, the industry mainly obtains butadiene through the process of oil cracking. It is estimated that more than 12 million tons of 1,3-butadiene is used by the chemical industry to manufacture synthetic rubber, plastics, elastic fibers and other materials every year.

以生物法之方式生產丁二烯,除了因菌種酵素之專一性特質可提升丁二烯產率外,相較於化學法,以生物法來生產1,3-丁二烯亦可具有低碳足跡之優點。目前全球以生物法生產丁二稀之發展上,尚未有商業化量產之進展,技術發展主要分為二種途徑,一是直接應用生物技術建構改造菌種,將原料轉化生成丁二稀之一步直接法,然而,現階段仰賴微生物菌種全程以生物法一步直接生產1,3-丁二烯仍存在著許多技術瓶頸;另一種途徑則是經由其他生物法製程之生質化學品(如乙醇、丁二醇等),接續進行化學法轉化成丁二稀之二步間接法。相較於乙醇,利用2,3-丁二醇化學法轉丁二稀之製程較簡易僅需進行一脫水步驟,產率亦相對較高。丁二烯全球市場龐大,而生物法製程兼具環保與減碳效益,目前二步間接生物法丁二稀製程已進入試量產階段。 The production of butadiene by biological methods, in addition to the specific characteristics of strain enzymes can increase the yield of butadiene, compared with chemical methods, the production of 1,3-butadiene by biological methods can also have low The advantages of carbon footprint. At present, there is no progress in commercial mass production of biologically-produced succinate. The technological development is mainly divided into two ways. One is to directly apply biotechnology to construct and transform strains, and convert raw materials into succinate. One-step direct method, however, at this stage, there are still many technical bottlenecks in the one-step direct production of 1,3-butadiene by biological methods in the whole process of microbial strains; another way is through the biochemical processes of other biological methods (such as Ethanol, butylene glycol, etc.), followed by a two-step indirect method of chemical conversion into butadiene. Compared with ethanol, the process of converting 2,3-butanediol chemical method to butadiene is simpler and only requires a dehydration step, and the yield is relatively higher. The global market of butadiene is huge, and the bio-process has both environmental protection and carbon reduction benefits. At present, the two-step indirect bio-process butadiene process has entered the stage of trial production.

以化學法生產2,3-丁二醇之製程方法主要係以石油裂解產生之四碳類碳氫化合物,在高溫高壓反應條件下經水解而得,但化學合成法程式繁複、成本昂貴,商業化目前侷限於生化途徑製法。生物法以微生物 發酵生產2,3-丁二醇不但可以克服化學法之困境,同時亦能降低傳統以不可再生之石化資源為原料之依賴,轉為以可再生生物物質為原料之生物精煉製程,符合綠色工業製程低碳經濟之國際趨勢發展方向。自然界中,很多微生物菌種都能夠以單糖為原料,代謝生產2,3-丁二醇,典型之代謝生成途徑主要經由3個關鍵酵素,乙醯乳酸合成酶(acetolactate synthase,ALS)、乙醯乳酸去羧酶(acetolactate decarboxylase,ALDC)、及2,3-丁二醇去氫酶(2,3-butanediol dehydrogenase,2,3-BDH)或稱為乙偶姻還原酶(acetoin reductase,AR)之作用下,最終轉化生成2,3-丁二醇。生成代謝過程中亦同時伴隨乙酸、乳酸、乙醇、丁二酸、甲酸等副產品之生成。目前以原生菌種生產化學品2,3-丁二醇且其產量較具有量產規模潛力者,只有包括克雷伯氏菌屬(Klebsiella)、腸桿菌屬(Enterobacter)、芽孢桿菌屬(Bacillus)及類芽孢桿菌屬(Paenibacillus)這少數幾屬。其中以KlebsiellaEnterobacter菌屬較具有工業化生產潛力,此2菌屬為2,3-丁二醇生產原生菌株中具有產量高及發酵基質利用範圍廣等較多優勢,而且能夠在便宜的基質快速生長,亦能夠利用非糧食纖維料源生產2,3-丁二醇,然而這些菌屬均屬於微生物安全等級2之菌屬,此乃是具有致病性感染風險之微生物菌屬,因此應用在工業生產放大規模量產時有嚴重的環境安全疑慮。 The production process of 2,3-butanediol by chemical method is mainly based on the four-carbon hydrocarbons produced by the cracking of petroleum, which is obtained by hydrolysis under high temperature and high pressure reaction conditions, but the chemical synthesis method is complicated, expensive and commercial. Chemistry is currently limited to biochemical approaches. The biological method of producing 2,3-butanediol by microbial fermentation can not only overcome the difficulties of the chemical method, but also reduce the traditional dependence on non-renewable petrochemical resources as raw materials, and convert it into a biological refining process that uses renewable biological materials as raw materials. , In line with the development trend of the international trend of green industrial process and low-carbon economy. In nature, many microbial strains can use monosaccharides as raw materials to metabolize 2,3-butanediol. The typical metabolic production pathway mainly passes through three key enzymes, acetolactate synthase (ALS), ethyl acetate Acetylactate decarboxylase (ALDC), and 2,3-butanediol dehydrogenase (2,3-BDH) or acetoin reductase (AR) ), the final conversion to 2,3-butanediol. Accompanying the production of acetic acid, lactic acid, ethanol, succinic acid, formic acid and other by-products in the process of metabolic metabolism. Native strains currently producing a chemical yield of 2,3-butanediol and which has a production scale than the potential by only including Klebsiella (Klebsiella), Enterobacter (Enterobacter), Bacillus (Bacillus ) And Paenibacillus genus ( Paenibacillus ) this few genus. Among them, Klebsiella and Enterobacter genus have more industrial production potential. These 2 genus are 2,3-butanediol producing native strains, which have many advantages such as high yield and wide range of fermentation substrate utilization, and can be quickly used on cheap substrates. It can also use non-grain fiber sources to produce 2,3-butanediol. However, these bacteria belong to the genus of microorganisms with microbial safety level 2. This is a genus of microorganisms with a risk of pathogenic infection, so it is used in There are serious environmental safety concerns when industrial production is scaled up and mass-produced.

此外,由於2,3-丁二醇化學結構式具有2個掌性中心(chiral centers),因此自然界存在有三種形式之同分異構物(RR、meso及SS isomers),其中RR與SS異構物具有光學活性因此在醫藥原料有高應用價值。一般而言,不同之原生種菌株會生產不同形式2,3-丁二醇異構物,且大部分菌株自身都可以生產二種以上之2,3-丁二醇異構物混合產物,因 此若要生產單一純度較高之2,3-丁二醇光學異構物,則須仰賴基改菌種才能達成。 In addition, because the chemical structural formula of 2,3-butanediol has two chiral centers, there are three forms of isomers (RR, meso, and SS isomers) in nature, of which RR and SS are different. The structure has optical activity and therefore has high application value in pharmaceutical raw materials. Generally speaking, different strains of native species will produce different forms of 2,3-butanediol isomers, and most strains themselves can produce more than two kinds of 2,3-butanediol isomer mixed products, because If we want to produce a single 2,3-butanediol optical isomer with higher purity, we must rely on the modified strain to achieve it.

自然界中可用於發酵生產2,3-丁二醇之菌種多,雖然提供較大之菌種選擇空間,但因為2,3-丁二醇屬於菌株代謝之次級產物,其產量受到一定限制,而代謝生產過程中同時也會產生許多副產品因而降低目標產物及純度。近年利用基因工程編輯技術修改微生物體內基因,或是殖入表現外來基因,此不但可以強化宿主細胞之目標產物生成,並且還能建構擴展宿主菌株之料源利用性。隨著合成生物之技術發展得以生物合成特定產物之代謝途徑,並以大腸桿菌(Escherichia coli)或酵母菌(Saccharomyces cerevisiae)等這些培養容易、遺傳訊息清楚之非原生2,3-丁二醇生產菌株為宿主細胞,在菌株體內建構人工合成之2,3-丁二醇生產代謝途徑,剔除或強化其中之關鍵酵素,調節代謝途徑相關之輔因子(cofactor)等各種策略,進行高產量2,3-丁二醇生產。 There are many strains of bacteria that can be used for the fermentation production of 2,3-butanediol in nature. Although it provides a larger choice of strains, because 2,3-butanediol is a secondary product of strain metabolism, its production is limited. And the metabolic production process will also produce many by-products at the same time, thus reducing the target product and purity. In recent years, genetic engineering editing techniques have been used to modify genes in microorganisms, or to colonize foreign genes for expression. This not only strengthens the production of target products in host cells, but also allows for the expansion of the source availability of host strains. With the development of synthetic biological technology, it is possible to biosynthesize specific product metabolic pathways, and use Escherichia coli or Saccharomyces cerevisiae to produce non-native 2,3-butanediol that is easy to cultivate and has clear genetic information. The strain is a host cell, which constructs a synthetic 2,3-butanediol production metabolic pathway in the strain body, eliminates or strengthens key enzymes, regulates cofactors related to the metabolic pathway, and other strategies for high yield. 2, 3-Butanediol production.

化學品生產菌株之效能攸關生質化學品產業化進程,菌株之效能表現在產物之濃度(Titer,g/L)、生產速率(Rate,g/L/h)、產物生成產率(Yield,g/g)等各方面,產物濃度會影響製程設備及能耗需求,產物生產速率會影響發酵槽設置及商業廠規模,而產品產率則關係生質料源之成本,三個效能指標息息相關,大腸桿菌由於其生長快速、菌株代謝路徑及機制等資訊清楚,培養操作容易等優點,因此普遍被利用為生產生質化學品之宿主菌株,藉由代謝工程與合成生物技術,並依據產業需求得以達到高效能2,3-丁二醇生產菌株建構。 The efficiency of chemical production strains is related to the industrialization process of biomass chemicals. The efficiency of the strains is expressed in the product concentration (Titer, g/L), production rate (Rate, g/L/h), and product yield (Yield) , g/g) and other aspects, the product concentration will affect the process equipment and energy consumption requirements, the product production rate will affect the fermentation tank setting and the scale of the commercial plant, and the product yield is related to the cost of the biomass source, and the three performance indicators are closely related Escherichia coli is widely used as a host strain for the production of qualitative chemicals due to its fast growth, clear information on strain metabolic pathways and mechanisms, and easy cultivation and other advantages. Through metabolic engineering and synthetic biotechnology, and according to industrial needs To achieve high efficiency 2,3-butanediol production strain construction.

以細胞為主之生物轉換過程常需要經歷大量之複雜反應,並且需要特定輔因子參與,如菸鹼醯胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NADH)或菸鹼醯胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleoside phosphate,NADPH),其中輔因子之供給不足容易造成代謝過程中氧化還原失衡,連帶影響生物轉化,因此調節氧化還原輔因子之代謝循環,是優化生物轉化代謝工程重要策略之一。過去的研究中曾有為了在反應中得到更多之輔因子NADH以提高2,3-丁二醇產量為目的,而在生產菌株-枯草桿菌(Bacillus subtilis)中轉殖一基因編碼為udhA之轉氫酶(transhydrogenase),一方面限制發酵於低溶氧狀態條件以及額外添加還原物質等策略達到菌株最終生產(R,R)-2,3-丁二醇達49g/L。 Cell-based biological conversion processes often need to undergo a large number of complex reactions and require specific cofactors to participate, such as nicotineamide adenine dinucleotide (NADH) or nicotineamide adenine dinucleotide Nicotinamide adenine dinucleoside phosphate (NADPH), in which the supply of cofactors is insufficient, it is easy to cause redox imbalance in the metabolic process, and it also affects biotransformation. Therefore, regulating the metabolic cycle of redox cofactors is an important strategy to optimize biotransformation metabolic engineering one. In the past research, in order to obtain more cofactor NADH in the reaction in order to increase the production of 2,3-butanediol, the production strain-Bacillus subtilis ( Bacillus subtilis ) was transformed with a gene encoding udhA Transhydrogenase (transhydrogenase), on the one hand, restricts fermentation to low dissolved oxygen conditions and additional reducing substances to achieve the final production of strains (R,R)-2,3-butanediol up to 49g/L.

常見之非天然2,3-丁二醇生產菌株(如大腸桿菌或酵母菌)之建構策略,係將完整異源性2,3-丁二醇之代謝途徑轉殖於宿主中表現,除了必須表現路徑中之關鍵生成酵素ALS與ALDC以產生2,3-丁二醇之前驅物乙偶姻之外,同時也需表現AR/2,3-BDH,亦有稱之為仲醇脫氫酶(secondary alcohol dehydrogenase,sADH),2,3-BDH此一酵素目的為藉由輔因子(常見使用NADH)協助進行氧化作用將乙偶姻還原生成目標產物2,3-丁二醇。再者,2,3-丁二醇生產係屬發酵代謝途徑,為提高產量,一方面要避免生成發酵代謝其他副產物生成(如乙醇(ethanol)、乳酸(lactate)、琥珀酸(succinate)等),使碳通量(carbon flux)集中往2,3-丁二醇之生成路徑,另一方面要控制生產環境之氧濃度於微好氧狀態(microaerobic)以利菌株生長,同時又能兼顧2,3-丁二醇生產。另外,大腸桿菌在不同氧氣培養條件下,糖解作用與五碳糖代謝路徑之碳通量會產生變化,造成NAD+/NADH與NADP+/NADPH濃度比例會因應環境氧氣濃度改變而變化,影響對輔因子具專一選擇性酵素之催化能力,而影響目標產物產量。而在低溶氧狀態下以2,3-丁二醇為唯一發酵產物生產,其中輔因子濃度與反應之氧化還原平衡,將是影響 2,3-丁二醇產量之重要限制因子。 The construction strategy of common non-natural 2,3-butanediol production strains (such as E. coli or yeast) is to transfer the metabolic pathway of complete heterologous 2,3-butanediol into the host, except for the necessary The key in the performance path is to produce enzymes ALS and ALDC to produce 2,3-butanediol precursor acetoin, and also to display AR/2,3-BDH, also known as secondary alcohol dehydrogenase (secondary alcohol dehydrogenase, sADH), 2,3-BDH The purpose of this enzyme is to reduce oxidation of acetoin to the target product of 2,3-butanediol through the cofactor (commonly used NADH) to assist oxidation. In addition, 2,3-butanediol production line belongs to fermentation and metabolic pathways. In order to increase production, on the one hand, it is necessary to avoid the formation of other byproducts of fermentation and metabolism (such as ethanol, lactate, succinate, etc.) ), so that the carbon flux is concentrated to the production path of 2,3-butanediol, on the other hand, the oxygen concentration in the production environment must be controlled in a microaerobic state (microaerobic) to facilitate the growth of the strain, and at the same time, it can take into account 2,3-Butanediol production. In addition, E. coli under different oxygen culture conditions, the carbon flux of glycolysis and the five-carbon sugar metabolic pathway will change, causing the concentration ratio of NAD + /NADH and NADP + /NADPH to change in response to changes in ambient oxygen concentration. It has a specific selective enzyme catalytic ability for cofactors, which affects the target product yield. In the low dissolved oxygen state, 2,3-butanediol is produced as the only fermentation product. The concentration of cofactor and the redox balance of the reaction will be an important limiting factor affecting the production of 2,3-butanediol.

目前研究文獻顯示,以代謝工程改質2,3-丁二醇生產菌株皆只有表現偏好單一特定輔因子(NADH或NADPH)酵素之2,3-BDH將乙偶姻還原生成2,3-丁二醇,因此在產量上仍然有進步空間。為了因應菌株在培養生產過程中,能適應環境各種不同氧氣濃度變化,避免輔因子濃度與比例分布發生改變,而影響原本利用代謝途徑之目標物產量。實有必要另外尋求能改善輔因子影響調節代謝之策略方法。故,一般習用者係無法符合使用者於實際使用時之所需。 Current research literature shows that the 2,3-butanediol-producing strains modified by metabolic engineering only exhibit 2,3-BDH that prefers a single specific cofactor (NADH or NADPH) enzyme to reduce acetoin to 2,3-butane Glycol, therefore there is still room for improvement in production. In order to cope with the different oxygen concentration changes in the environment during the cultivation and production of the strains, to avoid changes in the concentration and proportion distribution of cofactors, which affects the yield of the target substance that originally used the metabolic pathway. It is really necessary to seek additional strategies and methods that can improve the influence of cofactors on regulating metabolism. Therefore, general users cannot meet the needs of users in actual use.

本發明之主要目的係在於,克服習知技藝所遭遇之上述問題並提供一種能在不同氧濃度環境下保有彈性應用菌株自身輔因子以維持良好2,3-丁二醇產量之生產高產量2,3-丁二醇之方法。 The main purpose of the present invention is to overcome the above-mentioned problems encountered in the conventional art and provide a high-yield production that can maintain the flexibility of the application of the strain's own cofactor under different oxygen concentration environments to maintain good 2,3-butanediol production. , 3-butanediol method.

本發明之次要目的係在於,提供一種可以避免2,3-丁二醇之前驅物acetoin累積,因此可間接提高2,3-丁二醇產量,且產生純度高之(R,R)-2,3-丁二醇之生產高產量2,3-丁二醇之方法。 The secondary objective of the present invention is to provide a method that can avoid the accumulation of 2,3-butanediol precursor acetoin, thus indirectly increase the yield of 2,3-butanediol and produce (R,R)- 2,3-Butanediol production method of high yield 2,3-butanediol.

本發明之另一目的係在於,提供一種以發酵槽製程批次饋料模式進行生產2,3-丁二醇,發酵製程56小時後,可達92g/L之2,3-丁二醇高產量生成,此菌株生產2,3-丁二醇之表現優於目前文獻發表中之非天然原生種基改菌株之2,3-丁二醇產量,無論是在2,3-丁二醇之產量或生產速率(productivity)上都是最高產量之生產高產量2,3-丁二醇之方法。為達以上之目的,本發明係一種生產高產量2,3-丁二醇之方法,係以基因重組、基因剔除及同時轉殖多個基因共同表現能夠利用不同輔因子之最佳化2,3-丁二醇去氫酶代謝基因表現量方式,建構能夠高產量 生產2,3-丁二醇之大腸桿菌菌株,且該菌株於食品工業發展研究所之生物資源保存及研究中心之寄存編號為BCRC 940664。 Another object of the present invention is to provide a 2,3-butanediol produced in a batch feed mode of the fermentation tank process. After 56 hours of the fermentation process, the 2,3-butanediol can reach a high of 92g/L Yield generation, the performance of this strain in producing 2,3-butanediol is better than the yield of 2,3-butanediol produced by the non-native native species based strains currently published in the literature, whether it is in 2,3-butanediol Yield or production rate are the highest yield methods for producing high yield 2,3-butanediol. In order to achieve the above purpose, the present invention is a method for producing high-yield 2,3-butanediol, which is based on gene recombination, gene knockout and simultaneous transfer of multiple genes, which can be optimized using different cofactors. 2, 3-butanediol dehydrogenase metabolic gene expression quantity method, constructing high yield An E. coli strain producing 2,3-butanediol, and the deposit number of the strain in the Biological Resources Preservation and Research Center of the Food Industry Development Institute is BCRC 940664.

於本發明上述實施例中,該菌株為大腸桿菌屬,能以葡萄糖為主要碳源生長,並能發酵葡萄糖轉化生成2,3-丁二醇。 In the above embodiments of the present invention, the strain is of the genus Escherichia coli, can grow with glucose as the main carbon source, and can ferment glucose to convert to 2,3-butanediol.

於本發明上述實施例中,該建構之菌株體內能表現生產2,3-丁二醇所需之酵素acetolactate synthase(基因alsS)、acetolactate decarboxylase(基因alsD)以及兩種不同之2,3-丁二醇去氫酶。 In the above embodiment of the present invention, the constructed strain can express the enzymes acetolactate synthase (gene alsS ), acetolactate decarboxylase (gene alsD ) and two different 2,3-butanes required for the production of 2,3-butanediol in vivo. Diol dehydrogenase.

於本發明上述實施例中,該acetolactate synthase基因alsS係來自於Bacillus subtilisIn the above embodiment of the present invention, the acetSactase synthase gene alsS line is derived from Bacillus subtilis .

於本發明上述實施例中,該acetolactate decarboxylase基因alsD係來自於Bacillus subtilisIn the above-described embodiments of the invention, the acetolactate decarboxylase gene alsD lines derived from Bacillus subtilis.

於本發明上述實施例中,該些2,3-丁二醇去氫酶其中之一係為NADH-dependent budC,來自於Klebsiella pneumoniaeIn the above embodiments of the present invention, one of the 2,3-butanediol dehydrogenases is NADH-dependent budC from Klebsiella pneumoniae .

於本發明上述實施例中,該些2,3-丁二醇去氫酶其中之一係為NADPH-dependent adh,來自於拜氏梭菌(Clostridium beijerinckii)。 In the above embodiments of the present invention, one of the 2,3-butanediol dehydrogenases is NADPH-dependent adh from Clostridium beijerinckii .

於本發明上述實施例中,該菌株表現該些2,3-丁二醇去氫酶之方法係同時將兩種不同之2,3-丁二醇去氫酶基因轉殖入菌株。 In the above embodiment of the present invention, the method for expressing these 2,3-butanediol dehydrogenases by this strain is to simultaneously transfer two different 2,3-butanediol dehydrogenase genes into the strain.

於本發明上述實施例中,該轉殖入菌株體內之外源基因係於質體上表現後轉殖入菌株。 In the above embodiment of the present invention, the foreign gene line transferred into the strain body is expressed on the plastid and then transferred into the strain.

於本發明上述實施例中,該葡萄糖來源係選自木質纖維素原料及木質纖維素原料經處理後衍生之糖液。 In the above embodiments of the present invention, the glucose source is selected from lignocellulosic raw materials and sugar liquids derived from the treatment of lignocellulosic raw materials.

第1圖 係本發明在不同氧氣條件對大腸桿菌JCL166表現不同輔因子依賴性之BDH生產2,3-丁二醇之影響示意圖。 Figure 1 is a schematic diagram of the effect of the present invention on the production of 2,3-butanediol by E. coli JCL166 with different cofactor-dependent BDH production under different oxygen conditions.

第2圖,係本發明以發酵槽批次饋料策略生產2,3-丁二醇之相關變化示意圖。 Figure 2 is a schematic diagram of the relevant changes of the present invention in the production of 2,3-butanediol with a batch feed strategy of fermentation tank.

本發明係一種生產高產量2,3-丁二醇之方法,主要特色係以基因重組、基因剔除及同時轉殖多個基因表現質體方式建構能夠高產量生產2,3-丁二醇之大腸桿菌(Escherichia coli,E.coli)菌株。大腸桿菌基改菌株YCW3體內,除了表現生產2,3-丁二醇所需之基因alsS(乙醯乳酸合成酶(acetolactate synthase,ALS),來源為枯草桿菌(Bacillus subtilis,BS))及alsD(乙醯乳酸去羧酶(acetolactate decarboxylase,ALDC),來源為Bacillus subtilis)外,最重要之技術特徵為共同表現能夠利用不同輔因子(cofactor)NADP及NADPH之2,3-丁二醇去氫酶(acetoin reductase,AR或稱2,3-butanediol dehydrogenase,2,3-BDH),宿主菌株體內共同轉殖表現NADH-dependent budC(來源為克雷伯氏肺炎桿菌(Klebsiella pneumoniae)),以及NADPH-dependent adh(來源為拜氏梭菌(Clostridium beijerinckii))2種酵素,因此使得菌株在生產2,3-丁二醇之過程中,不會因為培養發酵環境之變動而影響產量,菌株能夠彈性化利用體內NADH及NADPH自行調節比例,進而生產高產量2,3-丁二醇。 The present invention is a method for producing high-yield 2,3-butanediol. The main feature is that it can construct 2,3-butanediol with high yield by gene recombination, gene knockout, and simultaneous transfer of multiple genes to express plastids. Escherichia coli ( E. coli ) strains. In addition to the gene alsS (acetolactate synthase (ALS) derived from Bacillus subtilis ( BS )) and alsD (in addition to the gene alsS (acetolactate synthase (ALS)) required for the production of 2,3-butanediol in Escherichia coli strain YCW3 Acetylactate decarboxylase (ALDC), sourced from Bacillus subtilis ), the most important technical feature is the common performance of 2,3-butanediol dehydrogenase that can utilize different cofactors NADP and NADPH (acetoin reductase, AR or 2,3-butanediol dehydrogenase, 2,3-BDH), the host strain co-transforms in the body to show NADH-dependent budC (source Klebsiella pneumoniae ), and NADPH- dependent adh (source: Clostridium beijerinckii ) 2 enzymes, so that the strain does not affect the yield due to changes in the culture and fermentation environment during the production of 2,3-butanediol, the strain can be flexible The ratio of NADH and NADPH in the body is used to adjust the ratio to produce high-yield 2,3-butanediol.

本發明之詳細技術內容及部分具體實施態樣,將描述於以下內容中,以供本發明所屬領域具通常知識者據以明瞭本發明之特徵。 The detailed technical content and part of the specific implementation of the present invention will be described in the following content for those with ordinary knowledge in the field to which the present invention belongs to understand the characteristics of the present invention.

[實施例一]建構大腸桿菌E.Coli-YCW3之2,3-丁二醇生產菌株 [Example 1] Construction of 2,3-butanediol production strain of E. coli- YCW3

表一所示為實驗所使用之菌株及建構之質體,大腸桿菌BW25113品係由野生型設計而來,此品係之基因特徵為(rrnBT14△lacZWJ16hsdR514△araBADAH33△rhaBADLD78)。XL-1 Blue品系購買自Stratagene公 司,用於保存所有製備實驗所需之質體。菌株JCL16係BW25113經過接合生殖方式(conjugation),傳送帶有lacIq之F’質體。JCL166之製備係經過剔除adhE、ldhA以及frdBC三個基因之菌株,基因剔除方法則是以Keio collection購得之菌株作為捐贈者菌株(donor),藉由λ P1噬菌體轉殖方法(P1 transduction)經過基因同源互換,則可將宿主之目標基因替換成康黴素(kanamycin)抗生素基因,接著將帶有FLP重組酶(Flp recombinase)之溫度敏感質體(pCP20),以電穿孔方式送入宿主並表現,使之能辨識FRT位置而將kanamycin抗生素基因踢出宿主體外,爾後再將pCP20失活,並以菌落PCR(colony PCR)確認,即完成宿主目標基因基因剔除。 Table 1 shows the strains and plastids used in the experiment. The E. coli strain BW25113 was designed from the wild type. The genetic characteristics of this strain are ( rrnBT14△lacZWJ16hsdR514△araBADAH33△rhaBADLD78 ). The XL-1 Blue strain was purchased from Stratagene and used to store all the plastids required for the preparation experiment. Strain JCL16 line BW25113, through conjugation, delivers F'plastids with lacIq. The preparation of JCL166 is a strain that eliminates the three genes of adhE, ldhA, and frdBC . The gene knockout method uses the strain purchased from Keio collection as a donor strain, and passes through the λ P1 phage transformation method (P1 transduction). Gene homology exchange, you can replace the target gene of the host with kanamycin (kanamycin) antibiotic gene, and then the temperature-sensitive plastid (pCP20) with FLP recombinase (Flp recombinase), into the host by electroporation and Performance, so that it can identify the FRT position and kick the kanamycin antibiotic gene out of the host, and then inactivate pCP20, and confirm with colony PCR (colony PCR), that is, the target gene deletion of the host is completed.

構築質體之方法,主要依據Gibson isothermal DNA assembly方法,將欲進行組裝各基因片段,先經PCR製備、純化、測濃度,再依各片段大小與濃度,計算組裝時各片段所需之體積量,再加入內含外切酶(exonuclease)、聚合酶(polymerase)、及連接酶(ligase)之AMM反應試劑進行反應,組裝好之質體以熱休克方法(heart shock transformation)轉殖於XL-1 strain保存,並進行質體定序確認。 The method of constructing plastids is mainly based on the Gibson isothermal DNA assembly method. The gene fragments to be assembled are first prepared, purified, and measured by PCR, and then the volume of each fragment is calculated according to the size and concentration of each fragment. , Then add AMM reaction reagents containing exonuclease, polymerase, and ligase to react, and the assembled plastids are transformed into XL- by heat shock method (heart shock transformation) 1 Save strain and confirm plastid sequencing.

表2所示為實驗所需構築之質體及製備目標基因所需引子(primer),個別質體建構如下說明: Table 2 shows the plastids required for the experiment and the primers required to prepare the target gene. The construction of individual plastids is described below:

pKM5:骨架片段以pPC150(p15A ori,Specr)與引子K3,K4進行PCR獲得;Bs-alsS-alsD基因片段以pZE12-alsS-alsD-BudC為模版與引子K9,K10進行PCR所得。 pKM5: The backbone fragment was obtained by PCR with pPC150 (p15A ori, Specr) and primers K3 and K4; the Bs-alsS-alsD gene fragment was obtained by PCR with pZE12-alsS-alsD-BudC as the template and primers K9 and K10.

pKM9:骨架片段以pPC150(p15A ori,Specr)與引子K3,K4進行PCR獲得;Bs-alsS基因片段以pZE12-alsS-alsD-BudC為模版與引子K9,K11進行PCR所得。 pKM9: The backbone fragment was obtained by PCR with pPC150 (p15A ori, Specr) and primers K3 and K4; the Bs-alsS gene fragment was obtained by PCR with pZE12-alsS-alsD-BudC as the template and primers K9 and K11.

pKM11:骨架段以pCS180(pUC ori,Kanr)與引子K5,K6進行PCR獲得;Kp-budC基因片段以pZE12-alsS-alsD-BudC(密碼子優化(codon optimized))為模版與引子K12,K13進行PCR所得。 pKM11: The backbone segment was obtained by PCR with pCS180 (pUC ori, Kanr) and primers K5 and K6; the Kp-budC gene fragment was modeled with pZE12-alsS-alsD-BudC (codon optimized) and primers K12, K13 Perform PCR.

pKM12:骨架片段以pCS180(pUC ori,Kanr)與引子K5,K6進行PCR獲得;Cb-adh基因片段以pZE12-alsS-alsD-CBADH(codon optimized)為模版與引子K14,K15進行PCR所得。 pKM12: The backbone fragment was obtained by PCR with pCS180 (pUC ori, Kanr) and primers K5 and K6; the Cb-adh gene fragment was obtained by PCR with pZE12-alsS-alsD-CBADH (codon optimized) as the template and primers K14 and K15.

為了能生產更高2,3-丁二醇產量,於是將表現宿主(JCL166)為原始母株,陸續剔除其他可能的競爭代謝途徑基因,包括了pflB(pyruvate formate-lyase)與ilvC(acetohydroxy acid isomeroreductase)而產生新的突變菌株YCW3(△adhE△ldhA△frdBC△pflB△ilvC)。 In order to produce a higher yield of 2,3-butanediol, the expression host (JCL166) was used as the original mother strain, and other possible competitive metabolic pathway genes were successively eliminated, including pflB (pyruvate formate-lyase) and ilvC (acetohydroxy acid isomeroreductase) to produce a new mutant strain YCW3 ( △adhE△ldhA△frdBC△pflB△ilvC ).

Figure 107109789-A0305-02-0011-1
Figure 107109789-A0305-02-0011-1

表中縮寫代表基因來源:BS,Bacillus subtilis;KP,Klebsiella pneumoniae MGH78578;CB,Clostridium beijerinckii NRRL B593。 The abbreviations in the table represent gene sources: BS, Bacillus subtilis ; KP, Klebsiella pneumoniae MGH78578; CB, Clostridium beijerinckii NRRL B593.

Figure 107109789-A0305-02-0012-2
Figure 107109789-A0305-02-0012-2

[實施例二]菌株轉殖同時具有NADH及NADPH輔因子依賴性功能之酵素可適應不同氧氣濃度環境下生成2,3-丁二醇 [Embodiment 2] Enzymes with both NADH and NADPH cofactor-dependent functions can be adapted to produce 2,3-butanediol under different oxygen concentrations

請參閱『第1圖』所示,係本發明在不同氧氣條件對大腸桿菌JCL166表現不同輔因子依賴性之BDH生產2,3-丁二醇之影響示意圖。如圖所示:為了使菌株能適應環境各種不同氧氣濃度,避免輔因子濃度與比例分布發生變化,影響原本利用這些輔因子代謝途徑之目標物產量。為解決上述問題,本發明在大腸桿菌JCL166(△adhE△ldhA△frdBC)母株中轉殖內含Bacillus subtilis來源之酵素acetolactate synthase(ALS)與acetolactate decarboxylase(ALDC)之質體pKM5作為生產2,3-丁二醇前驅物-乙偶姻(Acetoin)所需之酵素,同時亦分別共同轉殖質體pKM11(帶有Klebsiella pneumonias NADH-dependent BDH,KpBudC),pKM12(帶有Clostridium beijerinkiis NADPH-dependent BDH,CbAdh)以及pKM9(帶有KpBudC及CbAdh兩者,Combo)共3株菌株,分別於有氧及無氧條件環境下,測試氧氣濃度對於2,3-丁二醇產量之影響。 Please refer to "Figure 1", which is a schematic diagram of the effect of the present invention on the production of 2,3-butanediol by BDH of Escherichia coli JCL166 which exhibits different cofactor dependence. As shown in the figure: In order to adapt the strain to various oxygen concentrations in the environment, to avoid changes in the concentration and ratio distribution of cofactors, affecting the yield of the target substance that originally used these cofactor metabolic pathways. In order to solve the above-mentioned problems, the present invention transformed the plastid pKM5 containing the enzymes acetolactate synthase (ALS) and acetolactate decarboxylase (ALDC) derived from Bacillus subtilis in E. coli JCL166 ( △adhE△ldhA△frdBC ) as a production 2, 3-butanediol precursor-Acetoin (Acetoin) required enzymes, and also co-transformed plastid pKM11 (with Klebsiella pneumonias NADH-dependent BDH, KpBudC), pKM12 (with Clostridium beijerinkiis NADPH-dependent A total of 3 strains of BDH, CbAdh) and pKM9 (with KpBudC and CbAdh, Combo) were tested for the effect of oxygen concentration on the production of 2,3-butanediol under aerobic and anaerobic conditions, respectively.

結果如第1圖所示,圖中(A)係以不同轉殖菌株,在有氧環境條件下,於250mL搖瓶以20mL培養液(M9、30g/L葡萄糖、5g/L酵母萃出物),培養48小時生產2,3-丁二醇之結果。結果顯示僅表現KpBudC之菌株, 主要生產5.6g/L meso-2,3-丁二醇,同時累積大量之acetoin(3.8g/L),另一僅表現CbAdh之菌株,其丁二醇產量可達10.5g/L,其中75%為(R,R)-2,3-丁二醇,25%為meso-2,3-丁二醇,沒有任何acetoin累積,而同時表現NADH-dependent KpBudC及NADPH-dependent CbAdh之菌株(Combo),則有2,3-丁二醇最高產量12g/L,而且丁二醇幾乎都為(R,R)異構物型式。 The results are shown in Figure 1. (A) in the figure is differently transformed strains, under aerobic environmental conditions, in a 250mL shake flask with 20mL culture medium (M9, 30g/L glucose, 5g/L yeast extract ), the result of producing 2,3-butanediol for 48 hours. The results showed that only strains expressing KpBudC, Mainly produces 5.6g/L meso-2,3-butanediol, while accumulating a large amount of acetoin (3.8g/L), another strain that only shows CbAdh, its butanediol production can reach 10.5g/L, of which 75 % Is (R,R)-2,3-butanediol, 25% is meso-2,3-butanediol, without any accumulation of acetoin, while showing NADH-dependent KpBudC and NADPH-dependent CbAdh strains (Combo ), the highest yield of 2,3-butanediol is 12g/L, and almost all butanediols are (R, R) isomers.

圖中(B)係菌株在20mL培養液(M9、15g/L葡萄糖、5g/L酵母萃出物)並外加5g/L acetoin,於無氧環境條件下培養24小時生產2,3-丁二醇之結果。結果顯示僅帶有KpBudC菌株可產6.43g/L meso-2,3-丁二醇,而僅表現CbAdh菌株,由於無氧環境下,此基改菌株累積大量NADH,無法利用糖解作用所產生NADH,加上所表現CbAdh係專一性之NADPH-dependent,同樣不能以NADH為輔因子,將外加之acetoin進行還原反應消耗累積過多NADH。因此,菌株最後無法再循環NAD+/NADH,糖解作用無法進行,因此菌株在無氧環境幾乎沒有生長,也沒有2,3-丁二醇生成。相反的YCW 3株菌株同時表現KpBudC與CbAdh,具有對NADH、NADPH輔因子之彈性調控,因此菌株生成meso-2,3-丁二醇及少量之(R,R)-2,3-丁二醇。 The strain (B) in the picture is cultivated in 20mL culture solution (M9, 15g/L glucose, 5g/L yeast extract) plus 5g/L acetoin, and cultivated under anaerobic environment for 24 hours to produce 2,3-butane Alcohol results. The results show that only the strain with KpBudC can produce 6.43g/L meso-2,3-butanediol, but only the strain of CbAdh. Due to the anaerobic environment, this GM strain accumulates a large amount of NADH and cannot be produced by glycolysis NADH, plus the specific NADPH-dependent CbAdh shown, also cannot use NADH as a cofactor, and excessive acetoin can be used in the reduction reaction to accumulate too much NADH. Therefore, the strain could not recycle NAD + /NADH at the end, and glycolysis could not proceed, so the strain hardly grew in an anaerobic environment, and no 2,3-butanediol was produced. In contrast, the YCW 3 strains simultaneously exhibited KpBudC and CbAdh, and had flexible regulation of NADH and NADPH cofactors, so the strain produced meso-2,3-butanediol and a small amount of (R,R)-2,3-butane alcohol.

由上述結果可知,菌株僅表現NADH-dependent或NADPH-dependent單一種BDH酵素時,因為受到特定輔因子供應狀態限制停滯於特定代謝狀態下,2,3-丁二醇產量受到限制;當菌株同時表現KpBudC與CbAdH兩者酵素時,不管在何種環境下,菌株因為具有NADH與NADPH輔因子適應性可以因應菌體內NADH與NADPH動態濃度變化,暨不同氧氣濃度條件下,菌株可以自行調整使用體內NADH及NADPH輔因子,協同作用轉化促使能有2,3-丁二醇高產量生成。 It can be seen from the above results that when the strain only expresses a single NADH-dependent or NADPH-dependent BDH enzyme, the production of 2,3-butanediol is restricted due to the supply of specific cofactors and the stagnation in a specific metabolic state; when the strains are simultaneously When expressing the enzymes of KpBudC and CbAdH, no matter what kind of environment, the strain can adapt to the dynamic changes of NADH and NADPH in the bacteria because of the adaptability of NADH and NADPH cofactors. Under different oxygen concentration conditions, the strain can adjust itself to use in vivo The cofactors of NADH and NADPH, synergistic transformation, promote the production of 2,3-butanediol at high yield.

[實施例三]發酵槽批次饋料方式生產2,3-丁二醇 [Embodiment 3] Production of 2,3-butanediol by batch feeding in fermentation tank

請參閱『第2圖』所示,係本發明以發酵槽批次饋料策略生產2,3-丁二醇之相關變化示意圖。如圖所示:YCW3菌株以1.5公升發酵槽、批次饋料模式(fed-batch)策略進行92小時發酵生產2,3-丁二醇,結果如第2圖所示,圖中(A)係2,3-丁二醇與acetoin產量變化情形之結果。結果顯示,菌株在此發酵條件下,能夠充分將acetoin還原生成2,3-丁二醇,避免2,3-丁二醇之前驅物acetoin累積,因此有2,3-丁二醇高產量,且產生純度高之(R,R)-2,3-丁二醇。 Please refer to the "Figure 2", which is a schematic diagram of the relevant changes of the present invention for producing 2,3-butanediol with a batch feeding strategy of a fermentation tank. As shown in the figure: YCW3 strain was fermented in 1.5 liter fermentation tank and fed-batch strategy for 92 hours to produce 2,3-butanediol. The results are shown in Figure 2 (A) It is the result of changes in the production of 2,3-butanediol and acetoin. The results show that the strain can fully reduce acetoin to 2,3-butanediol under this fermentation condition to avoid the accumulation of the precursor of 2,3-butanediol, so there is a high yield of 2,3-butanediol. And produce (R,R)-2,3-butanediol with high purity.

圖中(B)係發酵培養液之糖濃度變化與菌株生長情形之結果。結果顯示,發酵以穩定快速之狀態進行至44小時生成80g/L之2,3-丁二醇,平均產率為1.8g/L/h;發酵至56小時時,2,3-丁二醇產物為92g/L約達其發酵總程之高原期,至92小時發酵實驗停止,2,3-丁二醇總產量為107.92g/L,生產率為1.17g/L/h,其中超過90%之2,3-丁二醇產物為(R,R)-form之異構物型式(98.56g/L),純度為91.32%。在發酵期間,以攪拌速率來控制槽內培養液溶氧值維持在10%,期望讓菌株維持基本生長與生理代謝活性以持續生產2,3-丁二醇,但菌株生長代謝旺盛情況下,消耗氧氣速率非常快速,以致於有段長時間槽內培養液溶氧值呈現0%,到最後菌株依然約有100g/L產量,相較於在相同發酵槽生產條件,使用僅單獨表現KpBudC或CbAdh酵素之菌株,產量顯著不如同時表現KpBudC與CbAdh酵素之菌株。結果顯示雖然槽內環境之溶氧度,在發酵過程有很大差異之變動,但是同時表現NADH/NADPH-dependent BDH之菌株卻能因應環境氧氣濃度變化,自行調節使用不同輔因子,而依然有高產量表現。 (B) in the figure is the result of the change in the sugar concentration of the fermentation broth and the growth of the strain. The results showed that the fermentation was carried out in a stable and rapid state to 44 hours to produce 80g/L of 2,3-butanediol, with an average yield of 1.8g/L/h; when fermented to 56 hours, 2,3-butanediol The product is 92g/L up to the plateau period of its total fermentation process. When the fermentation experiment is stopped at 92 hours, the total output of 2,3-butanediol is 107.92g/L, and the productivity is 1.17g/L/h, of which more than 90% The 2,3-butanediol product is (R,R)-form isomer type (98.56g/L) with a purity of 91.32%. During fermentation, the dissolved oxygen value of the culture solution in the tank is controlled at a stirring rate to maintain 10%. It is expected that the strain can maintain basic growth and physiological metabolic activity to continuously produce 2,3-butanediol, but the strain has a strong growth and metabolism. The rate of oxygen consumption is very fast, so that the dissolved oxygen value of the culture solution in the tank is 0% for a long time, and the strain still has a yield of about 100g/L. Compared with the production conditions in the same fermentation tank, the use of KpBudC or The yield of CbAdh enzyme strain is significantly lower than that of strains that simultaneously exhibit KpBudC and CbAdh enzyme. The results show that although the dissolved oxygen in the tank environment varies greatly during the fermentation process, the strains that simultaneously express NADH/NADPH-dependent BDH can adjust and use different cofactors in response to changes in the environmental oxygen concentration. High output performance.

綜上所述,本發明係一種生產高產量2,3-丁二醇之方法,可有效改善 習用之種種缺點,所建構之大腸桿菌2,3-丁二醇生產菌株YCW3除了具有自行調節體內2,3-丁二醇生成代謝路徑輔因子NADP/NADPH濃度比例彈性運用外,並在最適發酵製程條件中生成高產量、高產率之2,3-丁二醇,此外本發明建構之菌株亦無2,3-丁二醇原生種菌株須顧慮其生物安全等級之致病性,因此極具有2,3-丁二醇工業化量產應用潛力,進而使本發明之產生能更進步、更實用、更符合使用者之所須,確已符合發明專利申請之要件,爰依法提出專利申請。 In summary, the present invention is a method for producing high-yield 2,3-butanediol, which can be effectively improved Due to various shortcomings of the practice, the constructed E. coli 2,3-butanediol production strain YCW3 has the flexibility to self-adjust the 2,3-butanediol production metabolic pathway cofactor NADP/NADPH concentration ratio in the body, and is optimally fermented. High-yield and high-yield 2,3-butanediol is produced under the process conditions. In addition, the strain constructed in the present invention also has no 2,3-butanediol native strains and must be considered for the pathogenicity of its biological safety level. 2,3-Butanediol has the potential for industrial mass production and application, thereby making the invention more advanced, practical, and more in line with the needs of users. It has indeed met the requirements of the invention patent application, and the patent application has been filed in accordance with the law.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍;故,凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。 However, the above are only preferred embodiments of the present invention, which should not be used to limit the scope of implementation of the present invention; therefore, simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the invention description , Should still fall within the scope of this invention patent.

【生物材料寄存】 【Biological Material Storage】

TW中華民國 財團法人食品工業發展研究所 TW Republic of China Food Industry Development Institute

2018/03/07 BCRC 940664 2018/03/07 BCRC 940664

<110> 行政院原子能委員會核能研究所 <110> Nuclear Energy Research Institute, Atomic Energy Commission, Executive Yuan

<120> 生產高產量2,3-丁二醇之方法 <120> Method for producing high-yield 2,3-butanediol

<140> 107109789 <140> 107109789

<141> 2018-3-22 <141> 2018-3-22

<160> 11 <160> 11

<210> 1 <210> 1

<211> 19 <211> 19

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<221> primer <221> primer

<223> 作為PCR擴增pKM5質體建構之骨架片段基因之正向引子 <223> As a forward primer for PCR amplification of pKM5 plastid constructed skeleton fragment gene

<400> 1

Figure 107109789-A0305-02-0016-3
<400> 1
Figure 107109789-A0305-02-0016-3

<210> 2 <210> 2

<211> 27 <211> 27

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<221> primer <221> primer

<223> 作為PCR擴增pKM5質體建構之骨架片段基因之反向引子 <223> As a reverse primer for PCR amplification of pKM5 plastid constructed skeleton fragment gene

<400> 2

Figure 107109789-A0305-02-0016-4
<400> 2
Figure 107109789-A0305-02-0016-4

<210> 3 <210> 3

<211> 20 <211> 20

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<221> primer <221> primer

<223> 作為PCR擴增pKM11、pKM12質體建構之骨架片段基因之正向引子 <223> As a forward primer for PCR amplification of pKM11 and pKM12 plastid skeleton gene

<400> 3

Figure 107109789-A0305-02-0016-5
<400> 3
Figure 107109789-A0305-02-0016-5

<210> 4 <210> 4

<211> 28 <211> 28

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<221> primer <221> primer

<223> 作為PCR擴增pKM11、pKM12質體建構之骨架片段基因之正向引子 <223> As a forward primer for PCR amplification of pKM11 and pKM12 plastid skeleton gene

<400> 4

Figure 107109789-A0305-02-0017-6
<400> 4
Figure 107109789-A0305-02-0017-6

<210> 5 <210> 5

<211> 55 <211> 55

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<221> primer <221> primer

<223> 作為PCR擴增Bs-alsS-alsD基因片段之正向引子 <223> As a forward primer for PCR amplification of Bs-alsS-alsD gene fragments

<400> 5

Figure 107109789-A0305-02-0017-7
<400> 5
Figure 107109789-A0305-02-0017-7

<210> 6 <210> 6

<211> 58 <211> 58

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<221> primer <221> primer

<223> 作為PCR擴增Bs-alsS-alsD基因片段之反向引子 <223> As a reverse primer for PCR amplification of Bs-alsS-alsD gene fragments

<400> 6

Figure 107109789-A0305-02-0017-8
<400> 6
Figure 107109789-A0305-02-0017-8

<210> 7 <210> 7

<211> 55 <211> 55

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<221> primer <221> primer

<223> 作為PCR擴增Bs-alsS基因片段之反向引子 <223> As a reverse primer for PCR amplification of Bs-alsS gene fragments

<400> 7

Figure 107109789-A0305-02-0018-9
<400> 7
Figure 107109789-A0305-02-0018-9

<210> 8 <210> 8

<211> 58 <211> 58

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<221> primer <221> primer

<223> 作為PCR擴增Kp-budC基因片段之正向引子 <223> As a forward primer for PCR amplification of Kp-budC gene fragments

<400> 8

Figure 107109789-A0305-02-0018-10
<400> 8
Figure 107109789-A0305-02-0018-10

<210> 9 <210> 9

<211> 59 <211> 59

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<221> primer <221> primer

<223> 作為PCR擴增Kp-budC基因片段之反向引子 <223> As a reverse primer for PCR amplification of Kp-budC gene fragment

<400> 9

Figure 107109789-A0305-02-0018-11
<400> 9
Figure 107109789-A0305-02-0018-11

<210> 10 <210> 10

<211> 59 <211> 59

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<221> primer <221> primer

<223> 作為PCR擴增Cb-adh基因片段之正向引子 <223> As a forward primer for PCR amplification of Cb-adh gene fragments

<400> 10

Figure 107109789-A0305-02-0018-12
<400> 10
Figure 107109789-A0305-02-0018-12

<210> 11 <210> 11

<211> 59 <211> 59

<212> DNA <212> DNA

<213> 人工序列 <213> Artificial sequence

<220> <220>

<221> primer <221> primer

<223> 作為PCR擴增Cb-adh基因片段之反向引子 <223> As a reverse primer for PCR amplification of Cb-adh gene fragments

<400> 11

Figure 107109789-A0305-02-0019-13
<400> 11
Figure 107109789-A0305-02-0019-13

Claims (5)

一種生產高產量2,3-丁二醇之方法,係以基因重組、基因剔除及同時轉殖多個基因共同表現能夠利用不同輔因子(cofactor)之最佳化2,3-丁二醇去氫酶(acetoin reductase,AR或稱2,3-butanediol dehydrogenase,2,3-BDH)代謝基因表現量方式,建構能夠高產量生產2,3-丁二醇之大腸桿菌菌株,且該菌株於食品工業發展研究所之生物資源保存及研究中心之寄存編號為BCRC 940664;其中該建構之菌株體內能表現生產2,3-丁二醇所需之兩種不同的2,3-丁二醇去氫酶,分別為NADH-dependent budC,來自於克雷伯氏肺炎桿菌(Klebsiella pneumoniae),以及NADPH-dependent adh,來自於拜氏梭菌(Clostridium beijerinckii)。 A method for producing high-yield 2,3-butanediol, which uses gene recombination, gene knockout, and simultaneous transmutation of multiple genes to perform together and can use different cofactors to optimize 2,3-butanediol. Hydrogenase (acetoin reductase, AR or 2,3-butanediol dehydrogenase, 2,3-BDH) metabolic gene expression method to construct an E. coli strain capable of producing 2,3-butanediol with high yield, and the strain is used in food The deposit number of the Biological Resources Conservation and Research Center of the Industrial Development Institute is BCRC 940664; the constructed strain can express two different 2,3-butanediol dehydrogenations required for the production of 2,3-butanediol in vivo The enzymes are NADH-dependent budC from Klebsiella pneumoniae and NADPH-dependent adh from Clostridium beijerinckii . 依申請專利範圍第1項所述之生產高產量2,3-丁二醇之方法,其中,該菌株為大腸桿菌屬,能以葡萄糖為主要碳源生長,並能發酵葡萄糖轉化生成2,3-丁二醇。 The method for producing high-yield 2,3-butanediol according to item 1 of the patent application scope, wherein the strain is of the genus Escherichia coli, can grow with glucose as the main carbon source, and can ferment glucose into 2,3 -Butanediol. 依申請專利範圍第1項所述之生產高產量2,3-丁二醇之方法,其中,該菌株表現該些2,3-丁二醇去氫酶之方法係同時將該兩種2,3-丁二醇去氫酶基因轉殖入菌株。 According to the method for producing high-yield 2,3-butanediol described in item 1 of the scope of the patent application, wherein the method for expressing the 2,3-butanediol dehydrogenase by the strain is to combine the two 2, The 3-butanediol dehydrogenase gene was transferred into the strain. 依申請專利範圍第3項所述之生產高產量2,3-丁二醇之方法,其中,該轉殖入菌株體內之外源基因係於質體上表現後轉殖入菌株。 The method for producing high-yield 2,3-butanediol according to item 3 of the scope of the patent application, wherein the foreign gene transferred into the strain body is expressed on the plastid and then transferred into the strain. 依申請專利範圍第2項所述之生產高產量2,3-丁二醇之方法,其中,該葡萄糖來源係選自木質纖維素原料及木質纖維素原料經處理後衍生之糖液。The method for producing high-yield 2,3-butanediol according to item 2 of the scope of the patent application, wherein the glucose source is selected from lignocellulosic raw materials and sugar liquids derived from lignocellulosic raw materials after treatment.
TW107109789A 2018-03-22 2018-03-22 Method of producing 2,3-butanediol with high yield TWI690593B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107109789A TWI690593B (en) 2018-03-22 2018-03-22 Method of producing 2,3-butanediol with high yield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107109789A TWI690593B (en) 2018-03-22 2018-03-22 Method of producing 2,3-butanediol with high yield

Publications (2)

Publication Number Publication Date
TW201940700A TW201940700A (en) 2019-10-16
TWI690593B true TWI690593B (en) 2020-04-11

Family

ID=69023374

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107109789A TWI690593B (en) 2018-03-22 2018-03-22 Method of producing 2,3-butanediol with high yield

Country Status (1)

Country Link
TW (1) TWI690593B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748420B (en) * 2020-04-21 2021-12-01 台灣中油股份有限公司 A recombinant klebsiella for producing of 2,3-butanediol and a method for production of 2,3-butanediol

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699081B (en) * 2021-09-23 2023-03-14 大连理工大学 Bacillus subtilis for producing (2R, 3R) -butanediol and acetoin through fermentation and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9428773B2 (en) * 2012-09-28 2016-08-30 The Regents Of The University Of California Methods of producing acetoin and 2,3-butanediol using photosynthetic microorganisms

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9428773B2 (en) * 2012-09-28 2016-08-30 The Regents Of The University Of California Methods of producing acetoin and 2,3-butanediol using photosynthetic microorganisms

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Kopke et. al., "Reconstruction of an Acetogenic 2,3-Butanediol Pathway Involving a Novel NADPH-Dependent Primary-Secondary Alcohol Dehydrogenase" Applied and Environmental Microbiology,2014, Vol. 80, No. 11, p. 3394–3403 *
Ng et al., "Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering" Microbial Cell Factories 2012, 11:68 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748420B (en) * 2020-04-21 2021-12-01 台灣中油股份有限公司 A recombinant klebsiella for producing of 2,3-butanediol and a method for production of 2,3-butanediol

Also Published As

Publication number Publication date
TW201940700A (en) 2019-10-16

Similar Documents

Publication Publication Date Title
US11655484B2 (en) Electron consuming ethanol production pathway to displace glycerol formation in S. cerevisiae
Celińska et al. Biotechnological production of 2, 3-butanediol—current state and prospects
Li et al. Microbial production of meso-2, 3-butanediol by metabolically engineered Escherichia coli under low oxygen condition
Zeng et al. Microbial production of diols as platform chemicals: recent progresses
Fischer et al. Selection and optimization of microbial hosts for biofuels production
US8969055B2 (en) Method for producing butanol using extractive fermentation with electrolyte addition
Yang et al. Recent advances on production of 2, 3-butanediol using engineered microbes
Jiayang et al. Production of 2, 3-butanediol by Klebsiella pneumoniae using glucose and ammonium phosphate
US8956850B2 (en) Enhanced pyruvate to acetolactate conversion in yeast
CA2956184C (en) Method for producing acetoin
Maina et al. Improvement on bioprocess economics for 2, 3-butanediol production from very high polarity cane sugar via optimisation of bioreactor operation
Cui et al. Advances in biological production of acetoin: A comprehensive overview
Su et al. Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock
TWI690593B (en) Method of producing 2,3-butanediol with high yield
Castañón‐Rodríguez et al. Continuous multistep versus fed‐batch production of ethanol and xylitol in a simulated medium of sugarcane bagasse hydrolyzates
Mitsui et al. Bioengineering for the industrial production of 2, 3-butanediol by the yeast, Saccharomyces cerevisiae
Lu et al. Overcoming glutamate auxotrophy in Escherichia coli itaconate overproducer by the Weimberg pathway
CN103184243A (en) Fermentation production method for xylitol
CN106893683B (en) Method for expanding culture of saccharomycetes, application of saccharomycetes and method for fermenting ethanol
JP6445018B2 (en) Microbial fermentation processes using sugar as a substrate and the use of atomic, ionic and gaseous hydrogen in the process
CN104204206B (en) A kind of method for producing butanol
Liang et al. Engineering cofactor flexibility enhanced 2, 3-butanediol production in Escherichia coli
Tang et al. Recent developments in the microbial production of 1, 3-propanediol
TWI438274B (en) A method for preparing a xylose-utilizing strain of saccharomyces cerevisiae and the saccharomyces cerevisiae
Shah et al. Ethanol production kinetics by a thermo-tolerant mutant of Saccharomyces cerevisiae from starch industry waste (Hydrol)