TWI688221B - Sending method and receiving device - Google Patents
Sending method and receiving device Download PDFInfo
- Publication number
- TWI688221B TWI688221B TW108100619A TW108100619A TWI688221B TW I688221 B TWI688221 B TW I688221B TW 108100619 A TW108100619 A TW 108100619A TW 108100619 A TW108100619 A TW 108100619A TW I688221 B TWI688221 B TW I688221B
- Authority
- TW
- Taiwan
- Prior art keywords
- matrix
- ldpc code
- bit
- bits
- code
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/033—Theoretical methods to calculate these checking codes
- H03M13/036—Heuristic code construction methods, i.e. code construction or code search based on using trial-and-error
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1105—Decoding
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1105—Decoding
- H03M13/1111—Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1148—Structural properties of the code parity-check or generator matrix
- H03M13/116—Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1148—Structural properties of the code parity-check or generator matrix
- H03M13/116—Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
- H03M13/1165—QC-LDPC codes as defined for the digital video broadcasting [DVB] specifications, e.g. DVB-Satellite [DVB-S2]
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1148—Structural properties of the code parity-check or generator matrix
- H03M13/118—Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure
- H03M13/1185—Parity check matrix structured for simplifying encoding, e.g. by having a triangular or an approximate triangular structure wherein the parity-check matrix comprises a part with a double-diagonal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/25—Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM]
- H03M13/255—Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM] with Low Density Parity Check [LDPC] codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/27—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
- H03M13/2703—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques the interleaver involving at least two directions
- H03M13/2707—Simple row-column interleaver, i.e. pure block interleaving
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/27—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
- H03M13/2778—Interleaver using block-wise interleaving, e.g. the interleaving matrix is sub-divided into sub-matrices and the permutation is performed in blocks of sub-matrices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/29—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
- H03M13/2906—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using block codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/61—Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
- H03M13/615—Use of computational or mathematical techniques
- H03M13/616—Matrix operations, especially for generator matrices or check matrices, e.g. column or row permutations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0041—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0057—Block codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0071—Use of interleaving
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/13—Linear codes
- H03M13/15—Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
- H03M13/151—Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
- H03M13/152—Bose-Chaudhuri-Hocquenghem [BCH] codes
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Probability & Statistics with Applications (AREA)
- Mathematical Physics (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Algebra (AREA)
- Computing Systems (AREA)
- Multimedia (AREA)
- Error Detection And Correction (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
Abstract
本技術係有關於,在使用到LDPC碼的資料傳輸中,能夠確保良好的通訊品質的送訊方法及收訊裝置。 在群組式交錯中,碼長度N為17280位元的LDPC碼,係以360位元的位元群組0至47之單位而被交錯。在群組式去交錯中,群組式交錯後的LDPC碼之排列係被恢復成原本之排列。本技術係可適用於例如,進行使用到LDPC碼的資料傳輸等情況。This technology relates to a transmission method and a receiving device that can ensure good communication quality in data transmission using LDPC codes. In group interleaving, an LDPC code with a code length N of 17280 bits is interleaved in units of bit groups 0 to 47 of 360 bits. In group deinterleaving, the arrangement of LDPC codes after group interleaving is restored to the original arrangement. This technical system can be applied to, for example, data transmission using LDPC codes.
Description
本技術係有關於送訊方法及收訊裝置,尤其是有關於例如,在使用到LDPC碼的資料傳輸中,能夠確保良好的通訊品質的送訊方法及收訊裝置。This technology relates to a transmission method and a reception device, and particularly to, for example, a transmission method and a reception device that can ensure good communication quality in data transmission using an LDPC code.
LDPC(Low Density Parity Check)碼,係具有高的錯誤訂正能力,近年來,例如在歐洲等的DVB(Digital Video Broadcasting)-S.2、或DVB-T.2、DVB-C.2、美國等的ATSC(Advanced Television Systems Committee)3.0等之數位播送等之傳輸方式中被廣泛採用(例如參照非專利文獻1)。LDPC (Low Density Parity Check) code has a high error correction ability. The transmission method such as ATSC (Advanced Television Systems Committee) 3.0 and other digital broadcasting is widely adopted (for example, refer to Non-Patent Document 1).
LDPC碼,根據近年的研究,漸漸得知係和渦輪碼等同樣地,隨著碼長度越長,可獲得越接近於薛農極限的性能。又,LDPC碼,係由於具有最小距離是與碼長度呈比例的此一性質,因此作為其特徵,區塊錯誤機率特性佳,而且幾乎不會發生在渦輪碼等之解碼特性中會被觀測到的所謂錯誤平緩現象,這點也可以列舉為其優點。 [先前技術文獻] [非專利文獻]LDPC codes, according to research in recent years, have gradually learned that, similar to turbo codes, etc., as the code length becomes longer, the performance closer to the Xuenong limit can be obtained. In addition, LDPC codes have such a property that the minimum distance is proportional to the code length, so as their characteristics, the block error probability characteristic is good, and almost does not occur in the decoding characteristics such as turbo codes. The so-called error gradual phenomenon can also be cited as its advantages. [Prior Technical Literature] [Non-patent literature]
[非專利文獻1]ATSC Standard:Physical Layer Protocol (A/322), 7 September 2016[Non-Patent Document 1] ATSC Standard: Physical Layer Protocol (A/322), 7 September 2016
[發明所欲解決之課題][Problems to be solved by the invention]
在使用到LDPC碼的資料傳輸中,例如,LDPC碼是被視為QPSK(Quadrature Phase Shift Keying)等之正交調變(數位調變)之符元(被符元化),該符元係被對映至正交調變之訊號點而被發送。In data transmission using the LDPC code, for example, the LDPC code is regarded as a symbol (or symbolized) of orthogonal modulation (digital modulation) such as QPSK (Quadrature Phase Shift Keying), etc. The signal points mapped to the quadrature modulation are sent.
如以上的使用到LDPC碼的資料傳輸,係逐漸擴展至全世界,而被要求確保良好的通訊(傳輸)品質。As mentioned above, the data transmission using the LDPC code is gradually extended to the whole world, and is required to ensure good communication (transmission) quality.
本技術係有鑑於如此狀況而研發,目的在於,在使用到LDPC碼的資料傳輸中,能夠確保良好的通訊品質。 [用以解決課題之手段]This technology was developed in view of this situation, and its purpose is to ensure good communication quality in data transmission using LDPC codes. [Means to solve the problem]
本技術的第1送訊方法,係為一種送訊方法,係含有:編碼步驟,係基於碼長度N為17280位元、編碼率r為3/16之LDPC碼的檢查矩陣,而進行LDPC編碼;和群組式交錯步驟,係進行將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯;和對映步驟,係將前記LDPC碼,以8位元單位,對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者;在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而將前記17280位元之LDPC碼的位元群組0至47之排列,交錯成位元群組
之排列;前記檢查矩陣係含有:以所定值M1、與前記LDPC碼的資訊長度K=N×r而被表示的M1行K列的,前記檢查矩陣之左上的A矩陣;和M1行M1列的,前記A矩陣之右方相鄰的階梯結構之B矩陣;和M1行N-K-M1列的,前記B矩陣之右方相鄰的屬於零矩陣的Z矩陣;和N-K-M1行K+M1列的,前記A矩陣及前記B矩陣之下方相鄰的C矩陣;和N-K-M1行N-K-M1列的,前記C矩陣之右方相鄰的屬於單位矩陣的D矩陣;前記所定值M1係為1440;前記A矩陣及C矩陣,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記A矩陣及C矩陣的1之元素的位置每360列地加以表示的表,係為: The first transmission method of this technology is a transmission method, which includes: an encoding step based on an inspection matrix of an LDPC code with a code length N of 17280 bits and an encoding rate r of 3/16 for LDPC encoding ; And group interleaving step, the group interleaving is to interleave the predecessor LDPC code in 360-bit bit group units; and the mapping step is to interleave the predecessor LDPC code in 8-bit units, Any one of the 256 signal points of UC (Uniform Constellation) mapped to 256QAM; in the group interleaving of the preamble, the i+1th bit group from the beginning of the preamble LDPC code is regarded as a bit Group i, and the arrangement of
於本技術的第1送訊方法中,基於碼長度N為17280位元、編碼率r為3/16之LDPC碼的檢查矩陣,LDPC編碼會被進行;將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯,會被進行。然後,前記LDPC碼,係以8位元單位,而被對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者。在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而前記17280位元之LDPC碼的位元群組0至47之排列,會被交錯成位元群組
之排列。前記檢查矩陣係含有:以所定值M1、與前記LDPC碼之資訊長度K=N×r而被表示的M1行K列的,前記檢查矩陣之左上的A矩陣;和M1行M1列的,前記A矩陣之右方相鄰的階梯結構之B矩陣;和M1行N-K-M1列的,前記B矩陣之右方相鄰的屬於零矩陣的Z矩陣;和N-K-M1行K+M1列的,前記A矩陣及前記B矩陣之下方相鄰的C矩陣;和N-K-M1行N-K-M1列的,前記C矩陣之右方相鄰的屬於單位矩陣的D矩陣;前記所定值M1係為1440;前記A矩陣及C矩陣,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記A矩陣及C矩陣的1之元素的位置每360列地加以表示的表,係為: In the first transmission method of this technology, based on the check matrix of the LDPC code with a code length N of 17280 bits and an encoding rate r of 3/16, the LDPC code will be carried out; Group interleaving with bit group units interleaved will be performed. Then, the preceding LDPC code is mapped to any of the 256 signal points of 256QAM UC (Uniform Constellation) in 8-bit units. In the preamble group interleaving, the i+1th bit group from the beginning of the preamble LDPC code is regarded as the bit group i, while the preamble 17280 bit LDPC
本技術的第1收訊裝置係為,一種收訊裝置,係具備:解碼部,係將從藉由送訊方法所被發送過來之資料所得出的LDPC碼,予以解碼;其中,前記送訊方法係含有:編碼步驟,係基於碼長度N為17280位元、編碼率r為3/16之LDPC碼的檢查矩陣,而進行LDPC編碼;和群組式交錯步驟,係進行將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯;和對映步驟,係將前記LDPC碼,以8位元單位,對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者;在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而將前記17280位元之LDPC碼的位元群組0至47之排列,交錯成位元群組
之排列;前記檢查矩陣係含有:以所定值M1、與前記LDPC碼的資訊長度K=N×r而被表示的M1行K列的,前記檢查矩陣之左上的A矩陣;和M1行M1列的,前記A矩陣之右方相鄰的階梯結構之B矩陣;和M1行N-K-M1列的,前記B矩陣之右方相鄰的屬於零矩陣的Z矩陣;和N-K-M1行K+M1列的,前記A矩陣及前記B矩陣之下方相鄰的C矩陣;和N-K-M1行N-K-M1列的,前記C矩陣之右方相鄰的屬於單位矩陣的D矩陣;前記所定值M1係為1440;前記A矩陣及C矩陣,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記A矩陣及C矩陣的1之元素的位置每360列地加以表示的表,係為: The first receiving device of the present technology is a receiving device including: a decoding unit that decodes the LDPC code obtained from the data sent by the sending method; The method includes: an encoding step, based on an inspection matrix of an LDPC code with a code length N of 17280 bits and an encoding rate r of 3/16, and LDPC encoding; and a group-type interleaving step, which performs the previous LDPC code, Group interleaving in 360-bit bit group units; and the mapping step is to map the previous LDPC code to 256 signal points of 256QAM UC (Uniform Constellation) in 8-bit units Any one of the; in the preamble group interleaving, the i+1 bit group from the beginning of the predecessor LDPC code is regarded as the bit group i, and the
於本技術的第1收訊裝置中,從藉由第1送訊方法所被發送過來之資料所得出的前記LDPC碼,係被解碼。In the first receiving device of the present technology, the previous LDPC code obtained from the data transmitted by the first sending method is decoded.
本技術的第2送訊方法,係為一種送訊方法,係含有:編碼步驟,係基於碼長度N為17280位元、編碼率r為5/16之LDPC碼的檢查矩陣,而進行LDPC編碼;和群組式交錯步驟,係進行將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯;和對映步驟,係將前記LDPC碼,以8位元單位,對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者;在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而將前記17280位元之LDPC碼的位元群組0至47之排列,交錯成位元群組
之排列;前記檢查矩陣係含有:以所定值M1、與前記LDPC碼的資訊長度K=N×r而被表示的M1行K列的,前記檢查矩陣之左上的A矩陣;和M1行M1列的,前記A矩陣之右方相鄰的階梯結構之B矩陣;和M1行N-K-M1列的,前記B矩陣之右方相鄰的屬於零矩陣的Z矩陣;和N-K-M1行K+M1列的,前記A矩陣及前記B矩陣之下方相鄰的C矩陣;和N-K-M1行N-K-M1列的,前記C矩陣之右方相鄰的屬於單位矩陣的D矩陣;前記所定值M1係為720;前記A矩陣及C矩陣,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記A矩陣及C矩陣的1之元素的位置每360列地加以表示的表,係為: The second transmission method of this technology is a transmission method, which includes: an encoding step based on an inspection matrix of an LDPC code with a code length N of 17280 bits and an encoding rate r of 5/16 to perform LDPC encoding ; And group interleaving step, the group interleaving is to interleave the predecessor LDPC code in 360-bit bit group units; and the mapping step is to interleave the predecessor LDPC code in 8-bit units, Any one of the 256 signal points of UC (Uniform Constellation) mapped to 256QAM; in the group interleaving of the preamble, the i+1th bit group from the beginning of the preamble LDPC code is regarded as a bit Metagroup i, and the arrangement of the
於本技術的第2送訊方法中,基於碼長度N為17280位元、編碼率r為5/16之LDPC碼的檢查矩陣,LDPC編碼會被進行;將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯,會被進行。然後,前記LDPC碼,係以8位元單位,而被對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者。在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而前記17280位元之LDPC碼的位元群組0至47之排列,會被交錯成位元群組
之排列。前記檢查矩陣係含有:以所定值M1、與前記LDPC碼之資訊長度K=N×r而被表示的M1行K列的,前記檢查矩陣之左上的A矩陣;和M1行M1列的,前記A矩陣之右方相鄰的階梯結構之B矩陣;和M1行N-K-M1列的,前記B矩陣之右方相鄰的屬於零矩陣的Z矩陣;和N-K-M1行K+M1列的,前記A矩陣及前記B矩陣之下方相鄰的C矩陣;和N-K-M1行N-K-M1列的,前記C矩陣之右方相鄰的屬於單位矩陣的D矩陣;前記所定值M1係為720;前記A矩陣及C矩陣,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記A矩陣及C矩陣的1之元素的位置每360列地加以表示的表,係為: In the second transmission method of the present technology, based on the check matrix of the LDPC code with a code length N of 17280 bits and an encoding rate r of 5/16, LDPC coding will be carried out; Group interleaving with bit group units interleaved will be performed. Then, the preceding LDPC code is mapped to any of the 256 signal points of 256QAM UC (Uniform Constellation) in 8-bit units. In the preamble group interleaving, the i+1th bit group from the beginning of the preamble LDPC code is regarded as the bit group i, while the preamble 17280 bit LDPC
本技術的第2收訊裝置係為,一種收訊裝置,係具備:解碼部,係將從藉由送訊方法所被發送過來之資料所得出的LDPC碼,予以解碼;其中,前記送訊方法係含有:編碼步驟,係基於碼長度N為17280位元、編碼率r為5/16之LDPC碼的檢查矩陣,而進行LDPC編碼;和群組式交錯步驟,係進行將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯;和對映步驟,係將前記LDPC碼,以8位元單位,對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者;在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而將前記17280位元之LDPC碼的位元群組0至47之排列,交錯成位元群組
之排列;前記檢查矩陣係含有:以所定值M1、與前記LDPC碼的資訊長度K=N×r而被表示的M1行K列的,前記檢查矩陣之左上的A矩陣;和M1行M1列的,前記A矩陣之右方相鄰的階梯結構之B矩陣;和M1行N-K-M1列的,前記B矩陣之右方相鄰的屬於零矩陣的Z矩陣;和N-K-M1行K+M1列的,前記A矩陣及前記B矩陣之下方相鄰的C矩陣;和N-K-M1行N-K-M1列的,前記C矩陣之右方相鄰的屬於單位矩陣的D矩陣;前記所定值M1係為720;前記A矩陣及C矩陣,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記A矩陣及C矩陣的1之元素的位置每360列地加以表示的表,係為: The second receiving device of the present technology is a receiving device including: a decoding unit that decodes the LDPC code obtained from the data transmitted by the transmitting method; The method includes: an encoding step, which is based on an inspection matrix of an LDPC code with a code length N of 17280 bits and an encoding rate r of 5/16, and LDPC encoding; and a group interleaving step, which is to perform the previous LDPC code, Group interleaving in 360-bit bit group units; and the mapping step is to map the previous LDPC code to 256 signal points of 256QAM UC (Uniform Constellation) in 8-bit units Any one of the; in the preamble group interleaving, the i+1 bit group from the beginning of the predecessor LDPC code is regarded as the bit group i, and the
於本技術的第2收訊裝置中,從藉由第2送訊方法所被發送過來之資料所得出的前記LDPC碼,係被解碼。In the second receiving device of the present technology, the previous LDPC code obtained from the data transmitted by the second sending method is decoded.
本技術的第3送訊方法,係為一種送訊方法,係含有:編碼步驟,係基於碼長度N為17280位元、編碼率r為7/16之LDPC碼的檢查矩陣,而進行LDPC編碼;和群組式交錯步驟,係進行將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯;和對映步驟,係將前記LDPC碼,以8位元單位,對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者;在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而將前記17280位元之LDPC碼的位元群組0至47之排列,交錯成位元群組
之排列;前記LDPC碼係含有資訊位元與同位位元;前記檢查矩陣係含有:對應於前記資訊位元的資訊矩陣部及對應於前記同位位元的同位矩陣部;前記資訊矩陣部,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記資訊矩陣部的1之元素的位置每360列地加以表示的表,係為: The third sending method of this technology is a sending method, which includes: an encoding step, which is based on an inspection matrix of an LDPC code with a code length N of 17280 bits and an encoding rate r of 7/16, and performs LDPC encoding ; And group interleaving step, the group interleaving is to interleave the predecessor LDPC code in 360-bit bit group units; and the mapping step is to interleave the predecessor LDPC code in 8-bit units, Any one of the 256 signal points of UC (Uniform Constellation) mapped to 256QAM; in the group interleaving of the preamble, the i+1th bit group from the beginning of the preamble LDPC code is regarded as a bit Metagroup i, and the arrangement of the
於本技術的第3送訊方法中,基於碼長度N為17280位元、編碼率r為7/16之LDPC碼的檢查矩陣,LDPC編碼會被進行;將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯,會被進行。然後,前記LDPC碼,係以8位元單位,而被對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者。在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而前記17280位元之LDPC碼的位元群組0至47之排列,會被交錯成位元群組
之排列。前記LDPC碼係含有資訊位元與同位位元;前記檢查矩陣係含有:對應於前記資訊位元的資訊矩陣部及對應於前記同位位元的同位矩陣部;前記資訊矩陣部,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記資訊矩陣部的1之元素的位置每360列地加以表示的表,係為: In the third transmission method of the present technology, based on the check matrix of the LDPC code with a code length N of 17280 bits and an encoding rate r of 7/16, LDPC coding will be performed; the previous LDPC code will be Group interleaving with bit group units interleaved will be performed. Then, the preceding LDPC code is mapped to any of the 256 signal points of 256QAM UC (Uniform Constellation) in 8-bit units. In the preamble group interleaving, the i+1th bit group from the beginning of the preamble LDPC code is regarded as the bit group i, while the preamble 17280 bit LDPC
本技術的第3收訊裝置係為,一種收訊裝置,係具備:解碼部,係將從藉由送訊方法所被發送過來之資料所得出的LDPC碼,予以解碼;其中,前記送訊方法係含有:編碼步驟,係基於碼長度N為17280位元、編碼率r為7/16之LDPC碼的檢查矩陣,而進行LDPC編碼;和群組式交錯步驟,係進行將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯;和對映步驟,係將前記LDPC碼,以8位元單位,對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者;在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而將前記17280位元之LDPC碼的位元群組0至47之排列,交錯成位元群組
之排列;前記LDPC碼係含有資訊位元與同位位元;前記檢查矩陣係含有:對應於前記資訊位元的資訊矩陣部及對應於前記同位位元的同位矩陣部;前記資訊矩陣部,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記資訊矩陣部的1之元素的位置每360列地加以表示的表,係為: The third receiving device of the present technology is a receiving device including: a decoding unit that decodes the LDPC code obtained from the data sent by the sending method; The method includes: an encoding step, based on an inspection matrix of an LDPC code with a code length N of 17280 bits and an encoding rate r of 7/16, and LDPC encoding; and a group interleaving step, which performs the previous LDPC code, Group interleaving in 360-bit bit group units; and the mapping step is to map the previous LDPC code to 256 signal points of 256QAM UC (Uniform Constellation) in 8-bit units Any one of the; in the preamble group interleaving, the i+1 bit group from the beginning of the predecessor LDPC code is regarded as the bit group i, and the
於本技術的第3收訊裝置中,從藉由第3送訊方法所被發送過來之資料所得出的前記LDPC碼,係被解碼。In the third receiving device of the present technology, the predecessor LDPC code obtained from the data transmitted by the third sending method is decoded.
本技術的第4送訊方法,係為一種送訊方法,係含有:編碼步驟,係基於碼長度N為17280位元、編碼率r為9/16之LDPC碼的檢查矩陣,而進行LDPC編碼;和群組式交錯步驟,係進行將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯;和對映步驟,係將前記LDPC碼,以8位元單位,對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者;在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而將前記17280位元之LDPC碼的位元群組0至47之排列,交錯成位元群組
之排列;前記LDPC碼係含有資訊位元與同位位元;前記檢查矩陣係含有:對應於前記資訊位元的資訊矩陣部及對應於前記同位位元的同位矩陣部;前記資訊矩陣部,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記資訊矩陣部的1之元素的位置每360列地加以表示的表,係為: The fourth transmission method of the present technology is a transmission method, which includes: an encoding step, which is based on a check matrix of an LDPC code with a code length N of 17280 bits and an encoding rate r of 9/16, and performs LDPC encoding ; And group interleaving step, the group interleaving is to interleave the predecessor LDPC code in 360-bit bit group units; and the mapping step is to interleave the predecessor LDPC code in 8-bit units, Any one of the 256 signal points of UC (Uniform Constellation) mapped to 256QAM; in the group interleaving of the preamble, the i+1th bit group from the beginning of the preamble LDPC code is regarded as a bit Metagroup i, and the arrangement of the
於本技術的第4送訊方法中,基於碼長度N為17280位元、編碼率r為9/16之LDPC碼的檢查矩陣,LDPC編碼會被進行;將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯,會被進行。然後,前記LDPC碼,係以8位元單位,而被對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者。在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而前記17280位元之LDPC碼的位元群組0至47之排列,會被交錯成位元群組
之排列。前記LDPC碼係含有資訊位元與同位位元;前記檢查矩陣係含有:對應於前記資訊位元的資訊矩陣部及對應於前記同位位元的同位矩陣部;前記資訊矩陣部,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記資訊矩陣部的1之元素的位置每360列地加以表示的表,係為: In the fourth transmission method of this technology, based on the check matrix of the LDPC code with a code length N of 17280 bits and an encoding rate r of 9/16, LDPC coding will be performed; the previous LDPC code will be Group interleaving with bit group units interleaved will be performed. Then, the preceding LDPC code is mapped to any of the 256 signal points of 256QAM UC (Uniform Constellation) in 8-bit units. In the preamble group interleaving, the i+1th bit group from the beginning of the preamble LDPC code is regarded as the bit group i, while the preamble 17280 bit LDPC
本技術的第4收訊裝置係為,一種收訊裝置,係具備:解碼部,係將從藉由送訊方法所被發送過來之資料所得出的LDPC碼,予以解碼;其中,前記送訊方法係含有:編碼步驟,係基於碼長度N為17280位元、編碼率r為9/16之LDPC碼的檢查矩陣,而進行LDPC編碼;和群組式交錯步驟,係進行將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯;和對映步驟,係將前記LDPC碼,以8位元單位,對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者;在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而將前記17280位元之LDPC碼的位元群組0至47之排列,交錯成位元群組
之排列;前記LDPC碼係含有資訊位元與同位位元;前記檢查矩陣係含有:對應於前記資訊位元的資訊矩陣部及對應於前記同位位元的同位矩陣部;前記資訊矩陣部,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記資訊矩陣部的1之元素的位置每360列地加以表示的表,係為: The fourth receiving device of the present technology is a receiving device including: a decoding unit that decodes the LDPC code obtained from the data transmitted by the sending method; The method includes: an encoding step, which is based on an inspection matrix of an LDPC code with a code length N of 17280 bits and an encoding rate r of 9/16, and LDPC encoding; and a group interleaving step, which performs the previous LDPC code, Group interleaving with 360-bit bit group units; and the mapping step is to map the previous LDPC code in 8-bit units to 256 signal points of 256QAM UC (Uniform Constellation) Any one of the; in the preamble group interleaving, the i+1 bit group from the beginning of the predecessor LDPC code is regarded as the bit group i, and the
於本技術的第4收訊裝置中,從藉由第4送訊方法所被發送過來之資料所得出的前記LDPC碼,係被解碼。In the fourth receiving device of the present technology, the previous LDPC code obtained from the data transmitted by the fourth sending method is decoded.
本技術的第5送訊方法,係為一種送訊方法,係含有:編碼步驟,係基於碼長度N為17280位元、編碼率r為11/16之LDPC碼的檢查矩陣,而進行LDPC編碼;和群組式交錯步驟,係進行將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯;和對映步驟,係將前記LDPC碼,以8位元單位,對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者;在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而將前記17280位元之LDPC碼的位元群組0至47之排列,交錯成位元群組
之排列;前記LDPC碼係含有資訊位元與同位位元;前記檢查矩陣係含有:對應於前記資訊位元的資訊矩陣部及對應於前記同位位元的同位矩陣部;前記資訊矩陣部,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記資訊矩陣部的1之元素的位置每360列地加以表示的表,係為: The fifth transmission method of this technology is a transmission method, which includes: an encoding step based on an inspection matrix of an LDPC code with a code length N of 17280 bits and an encoding rate r of 11/16 to perform LDPC encoding ; And group interleaving step, the group interleaving is to interleave the predecessor LDPC code in 360-bit bit group units; and the mapping step is to interleave the predecessor LDPC code in 8-bit units, Any one of the 256 signal points of UC (Uniform Constellation) mapped to 256QAM; in the group interleaving of the preamble, the i+1th bit group from the beginning of the preamble LDPC code is regarded as a bit Metagroup i, and the arrangement of the
於本技術的第5送訊方法中,基於碼長度N為17280位元、編碼率r為11/16之LDPC碼的檢查矩陣,LDPC編碼會被進行;將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯,會被進行。然後,前記LDPC碼,係以8位元單位,而被對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者。在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而前記17280位元之LDPC碼的位元群組0至47之排列,會被交錯成位元群組
之排列。前記LDPC碼係含有資訊位元與同位位元;前記檢查矩陣係含有:對應於前記資訊位元的資訊矩陣部及對應於前記同位位元的同位矩陣部;前記資訊矩陣部,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記資訊矩陣部的1之元素的位置每360列地加以表示的表,係為: In the fifth transmission method of this technology, based on the check matrix of the LDPC code with a code length N of 17280 bits and an encoding rate r of 11/16, LDPC coding will be performed; the previous LDPC code will be Group interleaving with bit group units interleaved will be performed. Then, the preceding LDPC code is mapped to any of the 256 signal points of 256QAM UC (Uniform Constellation) in 8-bit units. In the preamble group interleaving, the i+1th bit group from the beginning of the preamble LDPC code is regarded as the bit group i, while the preamble 17280 bit LDPC
本技術的第5收訊裝置係為,一種收訊裝置,係具備:解碼部,係將從藉由送訊方法所被發送過來之資料所得出的LDPC碼,予以解碼;其中,前記送訊方法係含有:編碼步驟,係基於碼長度N為17280位元、編碼率r為11/16之LDPC碼的檢查矩陣,而進行LDPC編碼;和群組式交錯步驟,係進行將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯;和對映步驟,係將前記LDPC碼,以8位元單位,對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者;在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而將前記17280位元之LDPC碼的位元群組0至47之排列,交錯成位元群組
之排列;前記LDPC碼係含有資訊位元與同位位元;前記檢查矩陣係含有:對應於前記資訊位元的資訊矩陣部及對應於前記同位位元的同位矩陣部;前記資訊矩陣部,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記資訊矩陣部的1之元素的位置每360列地加以表示的表,係為: The fifth receiving device of the present technology is a receiving device including: a decoding unit that decodes the LDPC code obtained from the data sent by the sending method; The method includes: an encoding step, based on an inspection matrix of an LDPC code with a code length N of 17280 bits and an encoding rate r of 11/16, and LDPC encoding; and a group-type interleaving step, which performs the previous LDPC code, Group interleaving in 360-bit bit group units; and the mapping step is to map the previous LDPC code to 256 signal points of 256QAM UC (Uniform Constellation) in 8-bit units Any one of the; in the preamble group interleaving, the i+1 bit group from the beginning of the predecessor LDPC code is regarded as the bit group i, and the
於本技術的第5收訊裝置中,從藉由第5送訊方法所被發送過來之資料所得出的前記LDPC碼,係被解碼。In the fifth receiving device of the present technology, the previous LDPC code obtained from the data transmitted by the fifth transmitting method is decoded.
本技術的第6送訊方法,係為一種送訊方法,係含有:編碼步驟,係基於碼長度N為17280位元、編碼率r為13/16之LDPC碼的檢查矩陣,而進行LDPC編碼;和群組式交錯步驟,係進行將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯;和對映步驟,係將前記LDPC碼,以8位元單位,對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者;在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而將前記17280位元之LDPC碼的位元群組0至47之排列,交錯成位元群組
之排列;前記LDPC碼係含有資訊位元與同位位元;前記檢查矩陣係含有:對應於前記資訊位元的資訊矩陣部及對應於前記同位位元的同位矩陣部;前記資訊矩陣部,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記資訊矩陣部的1之元素的位置每360列地加以表示的表,係為: The sixth transmission method of the present technology is a transmission method, which includes: an encoding step based on an inspection matrix of an LDPC code with a code length N of 17280 bits and an encoding rate r of 13/16, and LDPC encoding ; And group interleaving step, the group interleaving is to interleave the predecessor LDPC code in 360-bit bit group units; and the mapping step is to interleave the predecessor LDPC code in 8-bit units, Any one of the 256 signal points of UC (Uniform Constellation) mapped to 256QAM; in the group interleaving of the preamble, the i+1th bit group from the beginning of the preamble LDPC code is regarded as a bit Group i, and the arrangement of
於本技術的第6送訊方法中,基於碼長度N為17280位元、編碼率r為13/16之LDPC碼的檢查矩陣,LDPC編碼會被進行;將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯,會被進行。然後,前記LDPC碼,係以8位元單位,而被對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者。在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而前記17280位元之LDPC碼的位元群組0至47之排列,會被交錯成位元群組
之排列。前記LDPC碼係含有資訊位元與同位位元;前記檢查矩陣係含有:對應於前記資訊位元的資訊矩陣部及對應於前記同位位元的同位矩陣部;前記資訊矩陣部,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記資訊矩陣部的1之元素的位置每360列地加以表示的表,係為: In the sixth transmission method of the present technology, based on the check matrix of the LDPC code with a code length N of 17280 bits and an encoding rate r of 13/16, LDPC coding will be performed; the previous LDPC code will be Group interleaving with bit group units interleaved will be performed. Then, the preceding LDPC code is mapped to any of the 256 signal points of 256QAM UC (Uniform Constellation) in 8-bit units. In the preamble group interleaving, the i+1th bit group from the beginning of the preamble LDPC code is regarded as the bit group i, while the preamble 17280 bit LDPC
本技術的第6收訊裝置係為,一種收訊裝置,係具備:解碼部,係將從藉由送訊方法所被發送過來之資料所得出的LDPC碼,予以解碼;其中,前記送訊方法係含有:編碼步驟,係基於碼長度N為17280位元、編碼率r為13/16之LDPC碼的檢查矩陣,而進行LDPC編碼;和群組式交錯步驟,係進行將前記LDPC碼,以360位元之位元群組單位加以交錯的群組式交錯;和對映步驟,係將前記LDPC碼,以8位元單位,對映至256QAM的UC(Uniform Constellation)的256個訊號點的其中任一者;在前記群組式交錯中,係將前記LDPC碼之開頭起第i+1個位元群組,視為位元群組i,而將前記17280位元之LDPC碼的位元群組0至47之排列,交錯成位元群組
之排列;前記LDPC碼係含有資訊位元與同位位元;前記檢查矩陣係含有:對應於前記資訊位元的資訊矩陣部及對應於前記同位位元的同位矩陣部;前記資訊矩陣部,係藉由檢查矩陣初期值表而被表示;前記檢查矩陣初期值表係為,將前記資訊矩陣部的1之元素的位置每360列地加以表示的表,係為: The sixth receiving device of the present technology is a receiving device including: a decoding unit that decodes the LDPC code obtained from the data sent by the sending method; The method includes: an encoding step, which is based on an inspection matrix of an LDPC code with a code length N of 17280 bits and an encoding rate r of 13/16, and LDPC encoding; and a group interleaving step, which performs the previous LDPC code, Group interleaving with 360-bit bit group units; and the mapping step is to map the previous LDPC code in 8-bit units to 256 signal points of 256QAM UC (Uniform Constellation) Any one of the; in the preamble group interleaving, the i+1 bit group from the beginning of the predecessor LDPC code is regarded as the bit group i, and the
於本技術的第6收訊裝置中,從藉由第6送訊方法所被發送過來之資料所得出的前記LDPC碼,係被解碼。In the sixth receiving device of the present technology, the previous LDPC code obtained from the data transmitted by the sixth sending method is decoded.
此外,實施送訊方法的送訊裝置或收訊裝置係亦可為獨立的裝置,亦可為構成1個裝置的內部區塊。 [發明效果]In addition, the sending device or the receiving device implementing the sending method may be an independent device or an internal block constituting one device. [Effect of the invention]
若依據本技術,則在使用到LDPC碼的資料傳輸中,能夠確保良好的通訊品質。According to this technology, good data quality can be ensured in data transmission using LDPC codes.
此外,並非一定限定於這裡所記載的效果,亦可為本揭露中所記載之任一效果。In addition, it is not necessarily limited to the effect described here, and may be any effect described in this disclosure.
以下說明本技術之實施形態,但在此之前,先說明LDPC碼。The following describes the embodiment of the present technology, but before that, the LDPC code will be described first.
<LDPC碼><LDPC code>
此外,LDPC碼係為線性碼,並不一定要為2元,但此處是假設為2元來做說明。In addition, the LDPC code system is a linear code, and does not necessarily need to be 2 yuan, but here is assumed to be 2 yuan for illustration.
LDPC碼,係定義該LDPC碼的檢查矩陣(parity check matrix)係為稀疏矩陣,為其最大的特徵。此處,所謂的稀疏矩陣,係矩陣的元素的"1"之個數係為非常少的矩陣(大部分的元素係為0的矩陣)。The LDPC code defines the parity check matrix of the LDPC code as a sparse matrix, which is its biggest feature. Here, the so-called sparse matrix means that the number of "1" elements of the matrix is a very small matrix (matrix with most elements being 0).
圖1係為LDPC碼的檢查矩陣H之例子的圖示。FIG. 1 is a diagram of an example of the check matrix H of the LDPC code.
在圖1的檢查矩陣H中,各列的權重(列權重)("1"之數量)(weight)係為"3",且各行的權重(行權重)係為"6"。In the inspection matrix H of FIG. 1, the weight of each column (column weight) (the number of "1") (weight) is "3", and the weight of each row (row weight) is "6".
在LDPC碼所致之編碼(LDPC編碼)中,例如,基於檢查矩陣H而生成生成矩陣G,藉由將該生成矩陣G對2元之資訊位元進行乘算,而生成碼字(LDPC碼)。In the coding (LDPC coding) caused by the LDPC code, for example, a generator matrix G is generated based on the check matrix H, and a codeword (LDPC code is generated by multiplying the generator matrix G by 2 information bits ).
具體而言,進行LDPC編碼的編碼裝置係首先算出,與檢查矩陣H的轉置矩陣HT 之間,式GHT =0為成立的生成矩陣G。此處,若生成矩陣G是K×N矩陣的情況下,則編碼裝置係對生成矩陣G乘算由K位元所成之資訊位元之位元列(向量u),生成由N位元所成之碼字c(=uG)。該已被編碼裝置所生成的碼字(LDPC碼),係透過所定之通訊路而於收訊側中被接收。Specifically, the encoding device that performs LDPC encoding first calculates that between the transpose matrix H T of the check matrix H and the expression GH T =0 is the established generation matrix G. Here, if the generator matrix G is a K×N matrix, the encoding device multiplies the generator matrix G by the bit sequence (vector u) of information bits formed by K bits to generate N bits The resulting codeword c (=uG). The code word (LDPC code) generated by the encoding device is received at the receiving side through the predetermined communication path.
LDPC碼之解碼,係可藉由Gallager所提案的一種稱為機率解碼(Probabilistic Decoding)的演算法,在由可變節點(variable node(亦稱為訊息節點(message node)))、和檢查節點(check node)所成的,所謂的二分圖(Tanner graph)上,藉由機率傳播(belief propagation)所致之訊息傳遞演算法而進行之。此處,以下適宜將可變節點與檢查節點,簡稱為節點。The decoding of LDPC codes can be performed by an algorithm called Probabilistic Decoding proposed by Gallager, which consists of variable nodes (also known as message nodes) and check nodes. (check node), the so-called bipartite graph (Tanner graph) is carried out by a message propagation algorithm caused by probability propagation. Here, in the following, the variable node and the inspection node are suitably referred to as nodes.
圖2係圖示LDPC碼之解碼之程序的流程圖。FIG. 2 is a flowchart illustrating a procedure of decoding LDPC codes.
此外,以下,適宜將收訊側所接收到的LDPC碼(1碼字)的第i個碼位元的,值的像是"0"的程度,以對數似然比(log likelihood ratio)所表現而成的實數值(收訊LLR),亦稱作收訊值u0i 。又,令從檢查節點所被輸出之訊息為uj ,令從可變節點所被輸出之訊息為vi 。In addition, in the following, it is appropriate to determine the value of the i-th code bit of the LDPC code (1 codeword) received by the receiving side as a degree of "0", as indicated by the log likelihood ratio. The real value (received LLR) expressed is also called the received value u 0i . Also, let the message output from the check node be u j and let the message output from the variable node be v i .
首先,於LDPC碼之解碼中,係如圖2所示,於步驟S11中,LDPC碼係被接收,訊息(檢查節點訊息)uj 係被初期化成"0",同時,將作為重複處理之計數器的取整數的變數k初期化成"0",前進至步驟S12。於步驟S12中,基於接收LDPC碼而得的收訊值u0i ,進行式(1)所示的演算(可變節點演算)而求出訊息(可變節點訊息)vi ,然後,基於該訊息vi ,進行式(2)所示的演算(檢查節點演算)而求出訊息uj 。First, in the decoding of the LDPC code, as shown in FIG. 2, in step S11, the LDPC code is received, the message (check node message) u j is initialized to "0", and at the same time, it will be repeated. The integer variable k of the counter is initialized to "0", and the process proceeds to step S12. In step S12, based on the received value u 0i obtained by receiving the LDPC code, the calculation (variable node calculation) shown in equation (1) is performed to obtain the message (variable node information) v i , and then, based on the message v i, for formula (2) calculation (check node calculation) is obtained as shown in the message u j.
此處,式(1)與式(2)中的dv 與dc ,係分別為,表示檢查矩陣H之縱方向(列)與橫方向(行)的"1"之個數的可被任意選擇的參數。例如,對如圖1所示的列權重為3,且行權重為6的檢查矩陣H的LDPC碼((3,6)LDPC碼)的情況下,則dv =3, dc =6。Here, d v and d c in equations (1) and (2) are respectively the number of "1" indicating the longitudinal direction (column) and lateral direction (row) of the inspection matrix H Arbitrarily selected parameters. For example, in the case of the LDPC code ((3, 6) LDPC code) of the check matrix H shown in FIG. 1 with a column weight of 3 and a row weight of 6, then d v =3 and d c =6.
此外,式(1)的可變節點演算,及(2)的檢查節點演算中,係分別,不把從欲輸出訊息的分枝(edge)(可變節點與檢查節點所連結而成的線)所被輸入的訊息視為演算的對象,因此演算的範圍係為1至dv -1或1至dc -1。又,式(2)的檢查節點演算,實際上係預先作成以對2輸入v1 , v2 的1輸出而被定義的式(3)所示的函數R(v1 ,v2 )的表,將其如式(4)所示般地連續性(遞迴性)地使用,而進行之。In addition, in the variable node calculus of formula (1) and the check node calculus of (2), the line from the edge (the variable node and the check node connected to the output message) is not separated. ) The input message is regarded as the object of calculation, so the range of calculation is 1 to d v -1 or 1 to d c -1. In addition, the check node calculation of formula (2) is actually a table of the function R(v 1 , v 2 ) shown in formula (3) defined by outputting 1 to 2 inputs v 1 and v 2 in advance. , Which is used continuously (recursively) as shown in equation (4) and proceeded.
在步驟S12中,變數k係被進一步地增值"1",前進至步驟S13。在步驟S13中,判定變數k是否大於所定之重複解碼次數C。於步驟S13中,若判定為變數k不大於C,則回到步驟S12,以下重複同樣的處理。In step S12, the variable k is further increased by "1", and the process proceeds to step S13. In step S13, it is determined whether the variable k is greater than the predetermined number C of repeated decoding. In step S13, if it is determined that the variable k is not greater than C, the procedure returns to step S12, and the same processing is repeated below.
又,於步驟S13中,若判定為變數k大於C,則前進至步驟S14,藉由進行式(5)所示的演算而求出作為最終輸出之解碼結果的訊息vi 並輸出之,結束LDPC碼之解碼處理。In addition, in step S13, if it is determined that the variable k is greater than C, the process proceeds to step S14, by performing the calculation shown in equation (5), the message v i as the final output decoding result is obtained and output, and ends LDPC code decoding process.
此處,式(5)的演算,係和式(1)的可變節點演算不同,是使用從連接著可變節點的所有分枝所送來的訊息uj 而被進行。Here, the calculation of formula (5) is different from the variable node calculation of formula (1), and is performed using the message u j sent from all branches connected to the variable node.
圖3係為(3,6)LDPC碼(編碼率1/2,碼長度12)的檢查矩陣H之例子的圖示。Fig. 3 is a diagram showing an example of the check matrix H of the (3, 6) LDPC code (
在圖3的檢查矩陣H中,係和圖1同樣地,列的權重為3,行的權重為6。In the inspection matrix H of FIG. 3, as in FIG. 1, the weight of the column is 3, and the weight of the row is 6.
圖4係為圖3的檢查矩陣H的二分圖的圖示。FIG. 4 is a diagram of the bipartite graph of the inspection matrix H of FIG. 3.
此處,於圖4中,以加號"+"所代表的係為檢查節點,以等號"="所代表的係為可變節點。檢查節點與可變節點,係分別對應於檢查矩陣H的行與列。檢查節點與可變節點之間的連結線,係為分枝(edge),相當於檢查矩陣的元素的"1"。Here, in FIG. 4, the system represented by the plus sign “+” is the check node, and the system represented by the equal sign “=" is the variable node. The inspection node and the variable node correspond to the rows and columns of the inspection matrix H, respectively. The connecting line between the check node and the variable node is an edge, which is equivalent to "1" of the elements of the check matrix.
亦即,若檢查矩陣之第j行第i列之元素為1,則在圖4中,從上起算第i個可變節點("="之節點),與從上起算第j個檢查節點("+"之節點),係藉由分枝而被連接。分枝係表示,可變節點所對應之碼位元,具有檢查節點所對應之限制條件。That is, if the element of the j-th row and i-th column of the inspection matrix is 1, in FIG. 4, the i-th variable node (the node of "=") from the top and the j-th inspection node from the top (The "+" node) is connected by branches. The branch system means that the code bits corresponding to the variable nodes have the restriction conditions corresponding to the check nodes.
在LDPC碼之解碼方法的和積演算法(Sum Product Algorithm)中,可變節點演算與檢查節點演算係被重複進行。In the Sum Product Algorithm of the decoding method of the LDPC code, the variable node algorithm and the check node algorithm are repeated.
圖5係為可變節點中所進行的可變節點演算的圖示。FIG. 5 is a diagram of the variable node calculation performed in the variable node.
在可變節點中,所欲計算的分枝所對應之訊息vi ,係藉由從可變節點上所連接的剩餘之分枝而來的訊息u1 及u2 ,與使用了收訊值u0i 的式(1)的可變節點演算,而被求出。其他分枝所對應之訊息也同樣地被求出。In the variable node, the message v i corresponding to the branch to be calculated is the messages u 1 and u 2 from the remaining branches connected to the variable node, and the received value is used The variable node calculation of equation (1) of u 0i is obtained. The information corresponding to other branches is also obtained in the same way.
圖6係為檢查節點中所進行的檢查節點演算的圖示。FIG. 6 is a diagram of the check node calculation performed in the check node.
此處,式(2)的檢查節點演算,係可使用式 a×b=exp{ln(|a|)+ln(|b|)}×sign(a)×sign(b)之關係,而改寫成式(6)。其中,sign(x)係在x≧0時為1,x<0時為-1。Here, the check node calculation of formula (2) can be used a×b=exp{ln(|a|)+ln(|b|)}×sign(a)×sign(b), and rewritten as formula (6). Among them, sign(x) is 1 when x≧0, and -1 when x<0.
x≧0時,若將函數ø(x),定義成式ø(x)=ln(tanh(x/2)),則式ø-1 (x)=2tanh-1 (e-x )會成立,因此式(6)係可變形成式(7)。When x≧0, if the function ø(x) is defined as the formula ø(x)=ln(tanh(x/2)), then the formula ø -1 (x)=2tanh -1 (e -x ) will be established Therefore, formula (6) can be changed to formula (7).
在檢查節點中,式(2)的檢查節點演算,依照式(7)而被進行。Among the check nodes, the check node calculation of formula (2) is performed according to formula (7).
亦即,檢查節點中,如圖6所示,所欲計算的分枝所對應之訊息uj ,係藉由使用了從檢查節點上所連接的剩餘之分枝而來的訊息v1 ,v2 ,v3 ,v4 ,v5 的式(7)的檢查節點演算,而被求出。其他分枝所對應之訊息也同樣地被求出。That is, in the check node, as shown in FIG. 6, the message u j corresponding to the branch to be calculated is by using the message v 1 ,v from the remaining branches connected to the check node 2 , v 3 , v 4 , and v 5 are calculated by the check node calculation of equation (7). The information corresponding to other branches is also obtained in the same way.
此外,式(7)的函數ø(x),係可用式ø(x)=ln((ex +1)/(ex -1))來表示,x>0時,ø(x)=ø-1 (x)。將函數ø(x)及ø-1 (x)實作至硬體之際,係有使用LUT(Look Up Table)而被實作的情況,但兩者皆為相同的LUT。In addition, the function ø(x) of equation (7) can be expressed by the equation ø(x)=ln((e x +1)/(e x -1)). When x>0, ø(x)= ø -1 (x). When the functions ø(x) and ø -1 (x) are implemented to the hardware, there are cases where the LUT (Look Up Table) is implemented, but both are the same LUT.
<適用了本技術的傳輸系統之構成例><Configuration example of transmission system to which this technology is applied>
圖7係為適用了本技術的傳輸系統(所謂系統,係指複數個裝置做邏輯性集合而成的物,至於各構成之裝置是否位於同一框體中則在所不問)之一實施形態之構成例的圖示。FIG. 7 is an embodiment of a transmission system to which this technology is applied (a so-called system refers to a logical collection of a plurality of devices, as to whether the devices of each structure are located in the same frame, it is not asked) Illustration of a configuration example.
於圖7中,傳輸系統,係由送訊裝置11和收訊裝置12所構成。In FIG. 7, the transmission system is composed of the sending
送訊裝置11係進行例如,電視播送的節目等之送訊(播送)(傳輸)。亦即,送訊裝置11係例如,將作為節目的影像資料或聲音資料等的,屬於送訊之對象的對象資料,編碼成LDPC碼,並透過例如衛星線路、或地表波、纜線(有線線路)等之通訊路13而發送。The
收訊裝置12,係將從送訊裝置11透過通訊路13而被發送過來的LDPC碼予以接收,解碼成對象資料並輸出。The receiving
此處,圖7的傳輸系統中所被使用的LDPC碼,係在AWGN(Additive White Gaussian Noise)通訊路中發揮極高的能力,為人所知。Here, the LDPC code used in the transmission system of FIG. 7 is known to exert extremely high capabilities in the AWGN (Additive White Gaussian Noise) communication path.
另一方面,在通訊路13中,會發生叢發(burst)錯誤或擦除(erasure)。例如,尤其是,當通訊路13是地表波的情況下,在OFDM(Orthogonal Frequency Division Multiplexing)系統中,在D/U(Desired to Undesired Ratio)為0dB(Undesired=echo之功率係與Desired=主要路徑之功率相等)的多重路徑環境下,隨應於回音(echo)(主要路徑以外之路徑)的延遲(delay),特定的符元之功率有時候會變成0(erasure)。On the other hand, in the
又,顫動(flutter)(延遲為0且都卜勒(doppler)頻率所作用的echo會被加算的通訊路)中也是,在D/U為0dB的情況下,隨著都卜勒頻率,會發生特定之時刻的OFDM的符元全體之功率都變成0(erasure)的情況。Also, in flutter (a communication path with a delay of 0 and an echo that is added to the Doppler frequency will be added), when the D/U is 0dB, with the Doppler frequency, The case where the power of all the OFDM symbols at a specific time becomes zero (erasure).
再者,隨著收訊裝置12側的,接收從送訊裝置11而來之訊號的天線等之收訊部(未圖示)到收訊裝置12為止的配線之狀況、或因為收訊裝置12之電源的不穩定性,有時候會發生叢發錯誤。In addition, with the receiving
另一方面,在LDPC碼之解碼中,係於檢查矩陣H的列,乃至於LDPC碼之碼位元所對應之可變節點上,如圖5所示,伴隨著LDPC碼之碼位元(之收訊值u0i )之加算而進行式(1)的可變節點演算,因此若該可變節點演算中所使用的碼位元發生錯誤,則求出的訊息之精度會降低。On the other hand, in the decoding of the LDPC code, it is in the column of the check matrix H, and even on the variable node corresponding to the code bit of the LDPC code, as shown in FIG. 5, accompanied by the code bit of the LDPC code ( The received signal value u 0i ) is added to perform the variable node calculation of equation (1). Therefore, if the code bits used in the variable node calculation are wrong, the accuracy of the obtained message will decrease.
然後,在LDPC碼之解碼中,係於檢查節點上,會使用該檢查節點上所連接的可變節點中所求出的訊息,進行式(7)的檢查節點演算,因此所連接的複數個可變節點(所對應之LDPC碼之碼位元)同時發生錯誤(包含擦除)的檢查節點之數量若變多,則解碼的性能就會劣化。Then, in the decoding of the LDPC code, it is connected to the check node, and the information obtained from the variable node connected to the check node is used to perform the check node calculation of equation (7), so the plurality of connected The variable nodes (corresponding to the code bits of the LDPC code) that simultaneously have errors (including erasure) in the number of check nodes that increase the decoding performance will degrade.
亦即,例如,檢查節點,係若該檢查節點上所連接的可變節點的2個以上同時發生擦除,則在全部可變節點中,會送回值為0的機率與為1的機率係為等機率之訊息。此情況下,送回等機率之訊息的檢查節點,係無法對1次的解碼處理(1組的可變節點演算及檢查節點演算)做出貢獻,其結果為,解碼處理的重複次數需要變多,解碼的性能會劣化,再者,進行LDPC碼之解碼的收訊裝置12的消耗電力會增大。That is, for example, a check node is that if two or more variable nodes connected to the check node are erased at the same time, all the variable nodes will return a probability of 0 and a probability of 1. It is a message of equal probability. In this case, the check node that sends back the message with equal probability cannot contribute to one decoding process (1 set of variable node calculation and check node calculation). As a result, the number of repetitions of the decoding process needs to be changed In many cases, the decoding performance will be degraded. Furthermore, the power consumption of the receiving
於是,在圖7的傳輸系統中,可一面維持在AWGN通訊路(AWGN通道)中的性能,同時可提升對叢發錯誤或擦除之耐性。Therefore, in the transmission system of FIG. 7, the performance in the AWGN communication channel (AWGN channel) can be maintained, while the resistance to burst errors or erasure can be improved.
<送訊裝置11之構成例><Configuration example of the
圖8係為圖7的送訊裝置11之構成例的區塊圖。FIG. 8 is a block diagram of a configuration example of the
在送訊裝置11中,作為對象資料的1個以上之輸入串流(Input Streams),係被供給至模式適應/多工器(Mode Adaptation/Multiplexer)111。In the
模式適應/多工器111,係因應需要而進行模式選擇、及被供給至此的1個以上之輸入串流的多工化等之處理,將其結果所得之資料,供給至補整器(padder) 112。The mode adaptor/
補整器112,係對來自模式適應/多工器111之資料,進行必要的補零(Null之插入),將其結果所得之資料,供給至BB拌碼器(BB Scrambler)113。The
BB拌碼器113,係對來自補整器112之資料,實施BB拌碼(Base-Band Scrambling),將其結果所得之資料,供給至BCH編碼器(BCH encoder)114。The BB
BCH編碼器114,係將來自BB拌碼器113之資料進行BCH編碼,將其結果所得之資料,當作身為LDPC編碼之對象的LDPC對象資料,供給至LDPC編碼器(LDPC encoder)115。The
LDPC編碼器115(編碼部),係針對來自BCH編碼器114的LDPC對象資料,依照例如LDPC碼之同位位元所對應之部分也就是同位矩陣係為階梯(dual diagonal)結構的檢查矩陣等而進行LDPC編碼,輸出把LDPC對象資料當作資訊位元的LDPC碼。The LDPC encoder 115 (encoding unit) refers to the LDPC object data from the
亦即,LDPC編碼器115係進行,將LDPC對象資料,編碼成例如DVB-S.2、或DVB-T.2、DVB-C.2、ATSC3.0等之所定之規格中所被規定的(對應於檢查矩陣的)LDPC碼、其他LDPC碼的LDPC編碼,將其結果所得之LDPC碼予以輸出。That is, the
此處,DVB-S.2或ATSC3.0之規格中所被規定的LDPC碼,係為IRA(Irregular Repeat Accumulate)碼,其LDPC碼的檢查矩陣中的同位矩陣(之一部分或全部),係呈階梯結構。關於同位矩陣、及階梯結構,係於後述。又,關於IRA碼係被記載在例如,"Irregular Repeat-Accumulate Codes," H. Jin, A. Khandekar, and R. J. McEliece, in Proceedings of 2nd International Symposium on Turbo codes and Related Topics, pp. 1-8, Sept. 2000。Here, the LDPC code specified in the specifications of DVB-S.2 or ATSC3.0 is an IRA (Irregular Repeat Accumulate) code. The parity matrix (part or all) of the LDPC code check matrix is It is a stepped structure. The co-location matrix and the ladder structure will be described later. Also, the IRA code system is described in, for example, "Irregular Repeat-Accumulate Codes," H. Jin, A. Khandekar, and RJ McEliece, in Proceedings of 2nd International Symposium on Turbo codes and Related Topics, pp. 1-8, Sept. 2000.
LDPC編碼器115所輸出的LDPC碼,係被供給至位元交錯器(Bit Interleaver)116。The LDPC code output by the
位元交錯器116,係針對來自LDPC編碼器115之LDPC碼,進行後述的位元交錯,將該位元交錯後的LDPC碼,供給至對映器(Mapper)117。The bit interleaver 116 performs bit interleaving described later on the LDPC code from the
對映器117,係來自位元交錯器116之LDPC碼,以該LDPC碼的1位元以上之碼位元的單位(符元單位),對映至表示正交調變之1個符元的訊號點而進行正交調變(多值調變)。The
亦即,對映器117,係將來自位元交錯器116之LDPC碼對映至,藉由表示與載波同相之I成分的I軸、表示與載波正交之Q成分的Q軸而被規定的IQ平面也就是星座上的,隨著進行LDPC碼之正交調變的調變方式而定的訊號點,而進行正交調變。That is, the
對映器117中所進行的正交調變之調變方式中所使用的星座的訊號點之數量若為2m
個的情況,則將LDPC碼的m位元之碼位元,當作符元(1符元),在對映器117中,來自位元交錯器116之LDPC碼,係以符元單位,而被對映至2m
個訊號點之中的,表示符元的訊號點。If the number of signal points of the constellation used in the modulation method of orthogonal modulation performed by the
此處,作為對映器117中所進行的正交調變之調變方式係為例如DVB-S.2或ATSC3.0之規格等中所被規定的調變方式、其他調變方式,亦即,係有例如:BPSK(Binary Phase Shift Keying)、或QPSK(Quadrature Phase Shift Keying)、8PSK(Phase-Shift Keying)、16APSK(Amplitude Phase-Shift Keying)、32APSK、16QAM(Quadrature Amplitude Modulation)、16QAM、64QAM、256QAM、1024QAM、4096QAM、4PAM(Pulse Amplitude Modulation)等。於對映器117中,要進行哪一種調變方式所致之正交調變,係例如依照送訊裝置11的運作者之操作等,而被事前設定。Here, the modulation method as the orthogonal modulation performed by the
藉由對映器117中的處理所得之資料(將符元對映至訊號點而成的對映結果),係被供給至時間交錯器(Time Interleaver)118。The data obtained by the processing in the mapper 117 (the mapping result formed by mapping the symbols to the signal points) is supplied to the
時間交錯器118,係針對來自對映器117之資料,進行符元單位的時間交錯(時間方向之交錯),將其結果所得之資料,供給至SISO/MISO編碼器(SISO/MISO(Single Input Single Output/Multiple Input Single Output) encoder)119。The
SISO/MISO編碼器119,係對來自時間交錯器118之資料,實施時空間編碼,供給至頻率交錯器(Frequency Interleaver)120。The SISO/
頻率交錯器120,係針對來自SISO/MISO編碼器119之資料,進行符元單位的頻率交錯(頻率方向之交錯),供給至訊框建構器/資源分配部(Frame Builder & Resource Allocation)131。The
另一方面,對BCH編碼器121係供給有例如,BB訊令(Base Band Signalling)(BB Header)等之傳輸控制用的控制資料(signalling)。On the other hand, the
BCH編碼器121,係將被供給至此的控制資料,與BCH編碼器114同樣地進行BCH編碼,將其結果所得之資料,供給至LDPC編碼器122。The BCH encoder 121 carries out the control data supplied thereto, performs BCH encoding in the same manner as the
LDPC編碼器122,係將來自BCH編碼器121之資料,當作LDPC對象資料,與LDPC編碼器115同樣地進行LDPC編碼,將其結果所得之LDPC碼,供給至對映器123。The
對映器123,係和對映器117同樣地,將來自LDPC編碼器122之LDPC碼,以該LDPC碼的1位元以上之碼位元的單位(符元單位),對映至表示正交調變之1個符元的訊號點而進行正交調變,將其結果所得之資料,供給至頻率交錯器124。The
頻率交錯器124,係和頻率交錯器120同樣地,針對來自對映器123之資料,進行符元單位的頻率交錯,供給至訊框建構器/資源分配部131。The
訊框建構器/資源分配部131,係在來自頻率交錯器120及124之資料(符元)的必要之位置,插入導頻(Pilot)之符元,從其結果所得之資料(符元),構成由所定數量之符元所構成的訊框(例如PL(Physical Layer)訊框、或T2訊框、C2訊框等),供給至OFDM生成部(OFDM generation)132。The frame builder/
OFDM生成部132,係從來自訊框建構器/資源分配部131之訊框,生成對應於該訊框的OFDM訊號,透過通訊路13(圖7)而予以發送。The
此外,送訊裝置11係亦可例如,不設置:時間交錯器118、SISO/MISO編碼器119、頻率交錯器120、及頻率交錯器124等,圖8中所圖示的區塊之一部分而構成。In addition, the
<位元交錯器116之構成例><Configuration example of bit interleaver 116>
圖9係圖8的位元交錯器116之構成例的區塊圖。9 is a block diagram of a configuration example of the bit interleaver 116 of FIG.
位元交錯器116,係具有將資料進行交錯之機能,是由:同位交錯器(Parity Interleaver)23、群組式交錯器(Group-Wise Interleaver)24、及區塊交錯器(Block Interleaver)25所構成。The bit interleaver 116 has the function of interleaving data, and is composed of: a
同位交錯器23,係將來自LDPC編碼器115的LDPC碼之同位位元,進行對其他同位位元之位置做交錯的同位交錯,將該同位交錯後的LDPC碼,供給至群組式交錯器24。The
群組式交錯器24,係針對來自同位交錯器23的LDPC碼,進行群組式交錯,將該群組式交錯後的LDPC碼,供給至區塊交錯器25。The group interleaver 24 performs group interleaving on the LDPC code from the
此處,在群組式交錯中,係將1碼份的LDPC碼,從其開頭起,區分成和後述的平行因子P相等的360位元單位,將該1區分的360位元,視為位元群組,來自同位交錯器23的LDPC碼,係以位元群組單位而被交錯。Here, in group interleaving, the LDPC code of 1 code is divided from the beginning into 360-bit units equal to the parallel factor P described later, and the 360-bit divided by 1 is regarded as The bit group, the LDPC code from the
在進行群組式交錯的情況下,相較於不進行群組式交錯的情況,可改善錯誤率,其結果為,於資料傳輸中,可確保良好的通訊品質。When group interleaving is performed, the error rate can be improved compared to the case where group interleaving is not performed. As a result, in data transmission, good communication quality can be ensured.
區塊交錯器25,係藉由進行將來自群組式交錯器24的LDPC碼予以逆多工化所需之區塊交錯,例如,將1碼份的LDPC碼,符元化成為對映之單位也就是m位元的符元,並供給至對映器117(圖8)。The
此處,在區塊交錯中,例如,在縱列
(column)(縱)方向上將所定之位元數加以記憶的作為記憶領域之縱列,是對於在橫行(row)(橫)方向上,排列了相等於符元之位元數m之數量的記憶領域,有來自群組式交錯器24的LDPC碼,是在縱列方向上被寫入,在橫行方向上被讀出,藉此,LDPC碼係被符元化成為m位元的符元。Here, in block interleaving, for example, in the column
The (column) (vertical) direction memorizes the specified number of bits as the column of the memory field, which is the number of bits in the row (horizontal) direction equal to the number of bits m of the symbol In the memory field, there is the LDPC code from the
<LDPC碼的檢查矩陣><Check matrix of LDPC code>
圖10係圖8的LDPC編碼器115中被使用於LDPC編碼的檢查矩陣H之例子的圖示。FIG. 10 is a diagram of an example of the check matrix H used for LDPC encoding in the
檢查矩陣H,係為LDGM(Low-Density Generation Matrix)結構,藉由LDPC碼的碼位元之中的,資訊位元所對應之部分的資訊矩陣HA 、與同位位元所對應之同位矩陣HT ,而可用式H=[HA |HT ](將資訊矩陣HA 之元素視為左側之元素,將同位矩陣HT 之元素視為右側之元素的矩陣)加以表示。The check matrix H is of the LDGM (Low-Density Generation Matrix) structure. Among the code bits of the LDPC code, the information matrix H A corresponding to the information bit and the co-location matrix corresponding to the co-location bits H T , and can be expressed by the formula H=[H A |H T ] (the elements of the information matrix H A are regarded as the elements on the left and the elements of the homology matrix H T are regarded as the matrix of the elements on the right).
此處,將1碼的LDPC碼(1碼字)的碼位元之中的資訊位元之位元數、與同位位元之位元數,分別稱為資訊長度K、與同位長度M,同時,將1個(1碼字)的LDPC碼之碼位元之位元數,稱為碼長度N(=K+M)。Here, the number of bits of the information bit and the number of bits of the parity bit among the code bits of the LDPC code of 1 code (1 codeword) are referred to as the information length K and the parity length M, respectively. At the same time, the number of code bits of one (1 codeword) LDPC code is called code length N (=K+M).
針對某個碼長度N之LDPC碼的資訊長度K與同位長度M,係藉由編碼率而決定。又,檢查矩陣H,係行×列為M×N之矩陣(M行N列之矩陣)。然後,資訊矩陣HA ,係為M×K之矩陣,同位矩陣HT ,係為M×M之矩陣。The information length K and parity length M of an LDPC code for a certain code length N are determined by the coding rate. In addition, the check matrix H is a matrix in which the rows × columns are M × N (M rows and N columns). Then, the information matrix H A is a matrix of M×K, and the homology matrix H T is a matrix of M×M.
圖11係圖8的LDPC編碼器115中被使用於LDPC編碼的檢查矩陣H的同位矩陣HT
之例子的圖示。FIG 11 based
作為LDPC編碼器115中被使用於LDPC編碼的檢查矩陣H的同位矩陣HT
係可採用例如,與DVB-T.2等之規格中所被規定的LDPC碼的檢查矩陣H相同的同位矩陣HT
。As the parity matrix H T used as the check matrix H used for the LDPC encoding in the
DVB-T.2等之規格中所被規定的LDPC碼的檢查矩陣H的同位矩陣HT ,係如圖11所示,1個元素,是以所謂階梯狀而做排列的階梯結構之矩陣(lower bidiagonal matrix)。同位矩陣HT 之行權重,關於第1行係為1,關於剩餘的全部的行皆為2。又,列權重,關於最後之1列係為1,關於剩餘的全部的列皆為2。The parity matrix H T of the inspection matrix H of the LDPC code specified in the specifications of DVB-T.2, etc., is shown in FIG. 11, and one element is a matrix of a staircase structure arranged in a so-called staircase ( lower bidiagonal matrix). The row weight of the homeomorphic matrix H T is 1 for the first row and 2 for all the remaining rows. In addition, the column weight is 1 for the last column and 2 for all the remaining columns.
如以上,同位矩陣HT 是呈階梯結構的檢查矩陣H之LDPC碼,係使用該檢查矩陣H,就可容易地生成。As described above, the parity matrix H T of the parity check matrix H is as a stepped structure LDPC code, the parity check matrix H using the system, can be easily generated.
亦即,將LDPC碼(1碼字),以行向量c來表示,同時,將該行向量轉置所得的列向量,表示成cT 。又,將LDPC碼也就是行向量c之中的資訊位元之部分,以行向量A來表示,同時,將同位位元之部分,以行向量T來表示。That is, the LDPC code (1 codeword) is expressed as a row vector c, and at the same time, the column vector obtained by transposing the row vector is expressed as c T. Furthermore, the LDPC code, which is the portion of the information bits in the row vector c, is represented by the row vector A, and at the same time, the portion of the co-located bits is represented by the row vector T.
此情況下,行向量c,係藉由作為資訊位元的行向量A、與作為同位位元的行向量T,而可以用式c =[A|T](將行向量A之元素視為左側之元素,將行向量T之元素視為右側之元素的行向量)來表示。In this case, the row vector c is defined by the row vector A as the information bit and the row vector T as the co-located bit, and the expression c = [A|T] (the elements of the row vector A can be regarded as The elements on the left are represented by the elements of the row vector T as the row vector of the elements on the right).
檢查矩陣H、與作為LDPC碼的行向量c=[A|T],係必須要滿足式HcT =0,將滿足所述式HcT =0的行向量c=[A|T]予以構成的作為同位位元的行向量T,係在檢查矩陣H=[HA |HT ]的同位矩陣HT ,是呈現圖11所示的階梯結構的情況下,則從式HcT =0中的列向量HcT 之第1行之元素起,依序將各行之元素逐一變成0,藉此就可逐次(依序)地加以求出。The inspection matrix H and the row vector c=[A|T] as the LDPC code must satisfy the formula Hc T =0, and the row vector c=[A|T] satisfying the formula Hc T =0 parity bits as the row vector T, based on the parity check matrix H = [H a | H T ] with the bit matrix H T, is presented a case where the stepped structure shown in FIG. 11, from the formula Hc T = 0 From the elements of the first row of the column vector Hc T , the elements of each row are sequentially changed to 0 one by one, by which they can be obtained one by one (sequentially).
圖12係DVB-T.2等之規格中所被規定的LDPC碼的檢查矩陣H的說明圖。FIG. 12 is an explanatory diagram of the check matrix H of the LDPC code specified in the specifications such as DVB-T.2.
關於從DVB-T.2等之規格中所被規定的LDPC碼的檢查矩陣H之第1列而來的KX列,係列權重為X,關於其後的K3列,係列權重為3,關於其後的M-1列,係列權重為2,關於最後的1列,係列權重為1。For the KX column from the first column of the check matrix H of the LDPC code specified in the DVB-T.2 and other specifications, the series weight is X, and for the subsequent K3 column, the series weight is 3. After the M-1 column, the series weight is 2, and for the last column, the series weight is 1.
此處,KX+K3+M-1+1,係等於碼長度N。Here, KX+K3+M-1+1 is equal to the code length N.
圖13係為DVB-T.2等之規格中所被規定的LDPC碼之關於各編碼率r的,列數KX、K3、及M、以及列權重X的圖示。13 is a diagram showing the number of columns KX, K3, and M, and the column weight X for each coding rate r of the LDPC code specified in the DVB-T.2 and other specifications.
在DVB-T.2等之規格中,係被規定有64800位元與16200位元之碼長度N的LDPC碼。In the specifications of DVB-T.2, etc., an LDPC code with a code length N of 64800 bits and 16200 bits is specified.
然後,針對碼長度N為64800位元的LDPC碼,係規定有11個編碼率(nominal rate)1/4、1/3、2/5、1/2、3/5、2/3、3/4、4/5、5/6、8/9、及9/10,針對碼長度N為16200位元的LDPC碼,係規定有10個編碼率1/4、1/3、2/5、1/2、3/5、2/3、3/4、4/5、5/6、及8/9。Then, for an LDPC code with a code length N of 64800 bits, there are 11 coding rates (nominal rate) 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3 /4, 4/5, 5/6, 8/9, and 9/10, for LDPC codes with a code length N of 16,200 bits, there are 10 coding rates of 1/4, 1/3, 2/5 , 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, and 8/9.
此處,以下,將64800位元的碼長度N,稱作64k位元,將16200位元的碼長度N,稱作16k位元。Here, in the following, the code length N of 64800 bits is referred to as 64k bits, and the code length N of 16200 bits is referred to as 16k bits.
關於LDPC碼係有,檢查矩陣H之列權重越大的列所對應之碼位元,錯誤率越低之傾向。Regarding the LDPC code, there is a tendency that the error rate of the code bit corresponding to the column with the larger column weight of the check matrix H is lower.
在圖12及圖13所示的,DVB-T.2等之規格中所被規定的檢查矩陣H中,越靠近開頭側(左側)的列,列權重會有越大之傾向,因此,關於該檢查矩陣H所對應之LDPC碼係有,越靠開頭之碼位元,對錯誤就越強(對錯誤較具耐性),越靠近尾端的碼位元,對錯誤就越弱的傾向。In the inspection matrix H specified in the DVB-T.2 and other specifications shown in FIGS. 12 and 13, the closer the column to the beginning (left side), the greater the column weight tends to be. Therefore, regarding The LDPC code corresponding to the check matrix H has the more code bits at the beginning, the stronger the error (more resistant to errors), and the code bits closer to the end, the weaker the error.
<同位交錯><Co-located>
參照圖14至圖16,說明圖9的同位交錯器23所致之同位交錯。14 to 16, the co-located interleaving caused by the
圖14係為LDPC碼的檢查矩陣的二分圖(之一部分)之例子的圖示。Fig. 14 is a diagram showing an example of a bipartite graph (part of) of the check matrix of the LDPC code.
檢查節點,係如圖14所示,該檢查節點上所連接的可變節點(所對應之碼位元)的2個等之複數若同時成為擦除等之錯誤,則對該檢查節點上所連接的全部可變節點,會回覆值為0的機率與為1的機率係為等機率之訊息。因此,同一檢查節點上所連接的複數個可變節點若同時成為擦除等,則解碼之性能會劣化。The inspection node is as shown in FIG. 14. If two complex numbers of variable nodes (corresponding code bits) connected to the inspection node become errors such as erasure at the same time, the inspection node All the variable nodes connected will reply to the message that the probability of 0 and the probability of 1 are equal probabilities. Therefore, if multiple variable nodes connected to the same inspection node become erased at the same time, the performance of decoding will deteriorate.
可是,圖8的LDPC編碼器115所輸出的LDPC碼係例如,與DVB-T.2等之規格中所被規定的LDPC碼同樣地,係為IRA碼,檢查矩陣H的同位矩陣HT
,係如圖11所示,是呈階梯結構。However, the LDPC code output by the
圖15係為,如圖11所示,呈階梯結構的同位矩陣HT 、和對應於該同位矩陣HT 的二分圖之例子的圖示。FIG. 15 is a diagram showing an example of a bipartite graph of a collocation matrix H T in a staircase structure and a collocation matrix H T as shown in FIG. 11.
圖15的A係表示呈階梯結構的同位矩陣HT 之例子,圖15的B係表示圖15的A的同位矩陣HT 所對應之二分圖。A line of FIG. 15 showing the same position as a stepped structure matrix H T of example, B line in FIG. 15 showing the same bits of A of FIG. 15 the matrix H T of the corresponding bipartite graph.
在呈階梯結構的同位矩陣HT
中,係於各行中,1之元素係為相鄰(第1行除外)。因此,於同位矩陣HT
的二分圖中,同位矩陣HT
之值為1的相鄰的2個元素的列所對應的,相鄰的2個可變節點,係被連接至同一檢查節點。In the homeostasis matrix H T in a staircase structure, tied in each row, the elements of 1 are adjacent (except the first row). Thus, in FIG bipartite matrix H T of the parity, the parity matrix H T corresponding to the value of a column of two
因此,若因為叢發錯誤或擦除等,導致上述的相鄰之2個可變節點所對應之同位位元同時都變成錯誤,則該變成錯誤的2個同位位元所對應之2個可變節點(使用同位位元而可求出訊息的可變節點)上所連接的檢查節點,係會將值為0的機率與為1的機率係為等機率之訊息,回覆給該檢查節點上所連接的可變節點,因此解碼的性能會劣化。然後,若叢發長度(連續發生錯誤的同位位元之位元數)變大,則回覆等機率之訊息的檢查節點會增加,解碼的性能就會更加劣化。Therefore, if the parity bits corresponding to the two adjacent variable nodes at the same time become errors at the same time due to cluster errors or erasures, the two corresponding bits of the parity bits that become errors The inspection node connected to the variable node (the variable node that can use the same bit to find the message) will reply the inspection node with the message that the probability of 0 is equal to the probability of 1 The connected variable node, so the decoding performance will be degraded. Then, if the burst length (the number of bits of consecutive bits with errors that occur continuously) becomes larger, the number of check nodes that reply to messages of equal probability will increase, and the performance of decoding will be further deteriorated.
於是,同位交錯器23(圖9),係為了防止上述的解碼性能之劣化,而進行將來自LDPC編碼器115的,LDPC碼之同位位元,對其他同位位元之位置做交錯的同位交錯。Therefore, the co-located interleaver 23 (FIG. 9) performs co-located interleaving of the co-located bits of the LDPC code from the
圖16係圖9的同位交錯器23所進行的同位交錯後的LDPC碼所對應之檢查矩陣H的同位矩陣HT
的圖示。Corresponding to the same bits of the LDPC code after parity interleaving lines in FIG. 16 with FIG. 9
此處,LDPC編碼器115所輸出的LDPC碼所對應之檢查矩陣H之資訊矩陣HA
,係和DVB-T.2等之規格中所被規定的LDPC碼所對應之檢查矩陣H之資訊矩陣同樣地,係為巡迴結構。Here, the information matrix H A of the check matrix H corresponding to the LDPC code output by the
所謂巡迴結構係指,某個列是與將其他列做循環位移而成者為一致的結構,也包含例如:每P列地,該P列之各行的1之位置,是將該P列的最初之列,以與將同位長度M進行除算所得的值q成比例的值等的所定之值,在列方向上做了循環位移的位置的結構。以下,適宜將巡迴結構中的P列,稱作平行因子。The so-called touring structure refers to a structure in which a certain column is the same as that obtained by cyclically shifting other columns, and also includes, for example: every P column, the position of 1 in each row of the P column is the column P In the first column, a cyclic displacement position is formed in the column direction with a predetermined value such as a value proportional to the value q obtained by dividing the parity length M. Hereinafter, it is appropriate to refer to the P column in the tour structure as a parallel factor.
作為DVB-T.2等之規格中所被規定的LDPC碼,係如圖12及圖13所說明,係有碼長度N為64800位元與16200位元的2種類之LDPC碼,關於該2種類之LDPC碼之任一者,平行因子P是被規定成,同位長度M的因數之中的,1與M除外的因數之1個,也就是360。The LDPC codes specified in the specifications such as DVB-T.2 are as shown in FIGS. 12 and 13, and there are two types of LDPC codes with a code length N of 64800 bits and 16200 bits. For any of the types of LDPC codes, the parallel factor P is defined as one of the factors except 1 and M, which is 360, among the factors of the parity length M.
又,同位長度M,係使用隨著編碼率而不同的值q,係為以式M=q×P=q×360所表示的質數以外之值。因此,值q,也是和平行因子P同樣地,同位長度M的因數之中的,1與M除外的因數的另外1個,將同位長度M,除以平行因子P,而被獲得(同位長度M之因數也就是P及q之積,係為同位長度M)。In addition, the parity length M uses a value q that differs according to the coding rate, and is a value other than the prime number expressed by the formula M=q×P=q×360. Therefore, the value q is also the same as the parallel factor P. Among the factors of the parity length M, the other one of the factors except 1 and M is obtained by dividing the parity length M by the parallel factor P (parity length The factor of M, which is the product of P and q, is the parity length M).
同位交錯器23,係如上述,令資訊長度為K,又,令0以上且未滿P之整數為x,同時,令0以上且未滿q之整數為y,則作為同位交錯,是將N位元的LDPC碼的碼位元之中的,第K+qx+y+1個碼位元,對第K+Py+x+1個碼位元之位置,進行交錯。The
第K+qx+y+1個碼位元、及第K+Py+x+1個碼位元,係皆為第K+1個以後的碼位元,因此係為同位位元,因此,隨著同位交錯,LDPC碼的同位位元之位置會被移動。The K+qx+y+1 code bit and the K+Py+x+1 code bit are all the K+1th and subsequent code bits, so they are co-located bits, therefore, With the co-location interleaving, the position of the co-location bits of the LDPC code will be shifted.
若依據如此的同位交錯,則同一檢查節點上所被連接的可變節點(所對應之同位位元),係會遠離達平行因子P,亦即,此處係遠離達360位元,因此若叢發長度為未滿360位元,則可避免同一檢查節點上所連接的可變節點會複數同時發生錯誤的事態,其結果為,可改善對叢發錯誤的耐性。According to such co-located interleaving, the variable nodes (corresponding co-located bits) connected to the same check node will be far away from the parallel factor P, that is, here is far away from 360 bits, so if If the burst length is less than 360 bits, the variable node connected to the same check node can avoid multiple errors at the same time. As a result, the tolerance to burst errors can be improved.
此外,將第K+qx+y+1個碼位元,對第K+Py+x+1個碼位元之位置做交錯的同位交錯後的LDPC碼,係與將原本的檢查矩陣H的,第K+qx+y+1列,置換成第K+Py+x+1列,進行如此列置換所得的檢查矩陣(以下亦稱作轉換檢查矩陣)的LDPC碼一致。In addition, the LDPC code after the K+qx+y+1 code bit and the K+Py+x+1 code bit are interleaved and co-interleaved is the same as the original check matrix H The K+qx+y+1 column is replaced with the K+Py+x+1 column, and the LDPC code of the check matrix (hereinafter also referred to as conversion check matrix) obtained by performing such column replacement is the same.
又,在轉換檢查矩陣的同位矩陣中,係如圖16所示,會出現以P列(圖16中係為360列)為單位的擬似巡迴結構。In addition, in the parity matrix of the conversion check matrix, as shown in FIG. 16, a pseudo tour structure in units of P columns (360 columns in FIG. 16) appears.
此處,所謂擬似巡迴結構係意味著,除了一部分以外其餘部分是呈現巡迴結構的結構。Here, the so-called quasi-tourism structure system means that, except for a part, the rest is a structure that exhibits a tour structure.
對於DVB-T.2等之規格中所被規定的LDPC碼的檢查矩陣,實施相當於同位交錯的列置換所得的轉換檢查矩陣,係在轉換檢查矩陣之右上角部分的360行×360列之部分(後述的位移矩陣),只少了1個1之元素(變成0之元素),就這點來說,其並非(完全的)巡迴結構,而是成為所謂的擬似巡迴結構。For the check matrix of the LDPC code specified in the specifications of DVB-T.2, etc., the conversion check matrix corresponding to the co-located interleaved column replacement is implemented, which is 360 rows × 360 columns in the upper right corner of the conversion check matrix In the part (displacement matrix described later), only one element of 1 (the element that becomes 0) is missing. In this regard, it is not a (complete) tour structure, but a so-called pseudo tour structure.
LDPC編碼器115所輸出的LDPC碼的檢查矩陣所相對的轉換檢查矩陣,係例如,與DVB-T.2等之規格中所被規定的LDPC碼的檢查矩陣所相對的轉換檢查矩陣同樣地,是呈擬似巡迴結構。The conversion check matrix relative to the check matrix of the LDPC code output by the
此外,圖16的轉換檢查矩陣,係對原本的檢查矩陣H,除了實施相當於同位交錯的列置換以外,還實施了,用來使轉換檢查矩陣,變成由後述的構成矩陣所構成所需之行的置換(行置換),而成的矩陣。In addition, the conversion check matrix of FIG. 16 is implemented on the original check matrix H in addition to performing column replacement equivalent to co-located interleaving, and is used to make the conversion check matrix into what is required by the configuration matrix described later. Row replacement (row replacement), the resulting matrix.
圖17係圖8的LDPC編碼器115、位元交錯器116、及對映器117中所被進行之處理的說明用流程圖。FIG. 17 is a flowchart for explaining the processing performed in the
LDPC編碼器115,係等待從BCH編碼器114,被供給LDPC對象資料,於步驟S101中,基於檢查矩陣,而將LDPC對象資料,編碼成LDPC碼,將該LDPC碼,供給至位元交錯器116,處理係前進至步驟S102。The
位元交錯器116,係於步驟S102中,以來自LDPC編碼器115的LDPC碼為對象,進行位元交錯,將藉由該位元交錯所得的符元,供給至對映器117,處理係前進至步驟S103。The bit interleaver 116, in step S102, performs bit interleaving on the LDPC code from the
亦即,在步驟S102中,係於位元交錯器116(圖9)中,同位交錯器23以,來自LDPC編碼器115的LDPC碼為對象,進行同位交錯,將該同位交錯後的LDPC碼,供給至群組式交錯器24。That is, in step S102, in the bit interleaver 116 (FIG. 9), the
群組式交錯器24,係以來自同位交錯器23的LDPC碼為對象,進行群組式交錯,供給至區塊交錯器25。The group interleaver 24 takes the LDPC code from the
區塊交錯器25,係以群組式交錯器24所做的群組式交錯後的LDPC碼為對象,進行區塊交錯,將其結果所得之m位元的符元,供給至對映器117。The
對映器117,係於步驟S103中,將來自區塊交錯器25的符元,對映至由對映器117中所進行的正交調變之調變方式而決定的2m
個訊號點之任一者而進行正交調變,將其結果所得之資料,供給至時間交錯器118。The
如以上,藉由進行同位交錯、或群組式交錯,可以改善將LDPC碼的複數個碼位元當作1個符元而予以發送時的錯誤率。As described above, by performing co-located interleaving or group interleaving, the error rate when transmitting a plurality of code bits of the LDPC code as one symbol can be improved.
此處,在圖9中,為了說明的方便,而將進行同位交錯的區塊也就是同位交錯器23、與進行群組式交錯的區塊也就是群組式交錯器24,畫成個別地構成,但同位交錯器23與群組式交錯器24係亦可為一體地構成。Here, in FIG. 9, for the convenience of explanation, the block performing the co-interleaving is the co-locating
亦即,同位交錯、與群組式交錯,係都是可藉由對記憶體的碼位元之寫入、及讀出而進行,可藉由將進行碼位元之寫入的位址(寫入位址),轉換成進行碼位元之讀出的位址(讀出位址)的矩陣來表示。That is to say, co-located interleaving and group interleaving can be performed by writing and reading out code bits of the memory, and by writing addresses of code bits ( Write address), which is converted into a matrix of addresses (read addresses) for reading out code bits.
因此,若事前求出表示同位交錯的矩陣、與表示群組式交錯的矩陣進行乘算所得的矩陣,則藉由這些矩陣,將碼位元進行轉換,就可進行同位交錯,然後,還可獲得將該同位交錯後的LDPC碼進行了群組式交錯之結果。Therefore, if the matrix representing the co-located interlace and the matrix obtained by multiplying the matrix representing the group interlace are obtained in advance, the code bits can be converted by these matrices to perform co-located interlace. The result of group interleaving the LDPC code after interleaving the same bit is obtained.
又,除了同位交錯器23與群組式交錯器24以外,區塊交錯器25,也可一體地構成。In addition to the co-located interleaver 23 and the group-
亦即,區塊交錯器25中所進行的區塊交錯也是可以藉由,將記憶LDPC碼的記憶體之寫入位址,轉換成讀出位址的矩陣,而加以表示。That is, the block interleaving performed by the
因此,若事前求出將表示同位交錯的矩陣、表示群組式交錯的矩陣、及表示區塊交錯的矩陣進行乘算所得的矩陣,則藉由這些矩陣,就可一口氣進行同位交錯、群組式交錯、及區塊交錯。Therefore, if the matrix obtained by multiplying the matrix representing the interlace interlace, the matrix representing the group interlace, and the matrix representing the block interlace is obtained in advance, then these matrices can be used to perform the interlace interlace and group at a stretch. Group interleaving, and block interleaving.
此外,同位交錯及群組式交錯之中的一方或量,係亦可不被進行。In addition, one or the amount of co-located interleaving and group interleaving may not be performed.
<LDPC編碼器115之構成例><Configuration example of
圖18係圖8的LDPC編碼器115之構成例的區塊圖。FIG. 18 is a block diagram of a configuration example of the
此外,圖8的LDPC編碼器122,也是被同樣地構成。In addition, the
如圖12及圖13所說明,在DVB-T.2等之規格中係被規定有,64800位元與16200位元之2種碼長度N的LDPC碼。As explained in FIGS. 12 and 13, DVB-T.2 and other specifications are defined as LDPC codes of two code lengths N of 64800 bits and 16200 bits.
然後,針對碼長度N為64800位元的LDPC碼,係規定有11個編碼率1/4、1/3、2/5、1/2、3/5、2/3、3/4、4/5、5/6、8/9、及9/10,針對碼長度N為16200位元的LDPC碼,係規定有10個編碼率1/4、1/3、2/5、1/2、3/5、2/3、3/4、4/5、5/6、及8/9(圖12及圖13)。Then, for an LDPC code with a code length N of 64800 bits, there are 11 coding rates of 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4 /5, 5/6, 8/9, and 9/10, for LDPC codes with a code length N of 16,200 bits, there are 10 coding rates of 1/4, 1/3, 2/5, 1/2 , 3/5, 2/3, 3/4, 4/5, 5/6, and 8/9 (Figures 12 and 13).
LDPC編碼器115係例如,將如此的碼長度N為64800位元或16200位元之各編碼率的LDPC碼所致之編碼(錯誤訂正編碼),基於按照每一種碼長度N、及每一種編碼率而被準備的檢查矩陣H,就可進行之。The
又,LDPC編碼器115,係可基於碼長度N為17280位元以外其他任意碼長度N的,編碼率為2/16、3/16、4/16、5/16、6/16、7/16、8/16、9/16、10/16、11/16、12/16、13/16、14/16的其他任意編碼率r的LDPC碼的檢查矩陣H,來進行LDPC編碼。In addition, the
LDPC編碼器115,係由編碼處理部601與記憶部602所構成。The
編碼處理部601,係由:編碼率設定部611、初期值表讀出部612、檢查矩陣生成部613、資訊位元讀出部614、編碼同位演算部615、及控制部616所構成,進行被供給至LDPC編碼器115的LDPC對象資料之LDPC編碼,將其結果所得之LDPC碼,供給至位元交錯器116(圖8)。The
亦即,編碼率設定部611係隨應於例如操作員的操作等,而將LDPC碼之碼長度N或編碼率r,此外還有將LDPC碼予以特定之特定資訊,加以設定。That is, the coding
初期值表讀出部612,係將表示藉由編碼率設定部611所設定之特定資訊而被特定的LDPC碼的檢查矩陣的,後述的檢查矩陣初期值表,從記憶部602予以讀出。The initial value
檢查矩陣生成部613,係基於初期值表讀出部612所讀出的檢查矩陣初期值表,而生成檢查矩陣H,並儲存在記憶部602中。例如,檢查矩陣生成部613,係將編碼率設定部611所設定之碼長度N及編碼率r所相應之資訊長度K(=碼長度N-同位長度M)所對應之資訊矩陣HA
的1之元素,朝列方向以每360列(平行因子P)之週期加以配置而生成檢查矩陣H,並儲存在記憶部602中。The inspection
資訊位元讀出部614,係從被供給至LDPC編碼器115的LDPC對象資料中,讀出(抽出)資訊長度K份的資訊位元。The information
編碼同位演算部615,係將檢查矩陣生成部613所生成的檢查矩陣H,從記憶部602予以讀出,使用該檢查矩陣H,將針對資訊位元讀出部614所讀出之資訊位元的同位位元,基於所定之式子而予以算出,藉此而生成碼字(LDPC碼)。The coded
控制部616,係控制構成編碼處理部601的各區塊。The
記憶部602中係記憶有,例如:針對64800位元或16200位元等之各個碼長度N的,圖12及圖13所示的複數編碼率等所分別對應之複數檢查矩陣初期值表、或針對碼長度N為17280位元的,編碼率為2/16、3/16、4/16、5/16、6/16、7/16、8/16、9/16、10/16、11/16、12/16、13/16、14/16所分別對應的檢查矩陣初期值表、其他任意碼長度N、且任意編碼率r的LDPC碼的檢查矩陣H的檢查矩陣初期值表。又,記憶部602,係將編碼處理部601之處理上所必須的資料,予以暫時記憶。The
圖19係為圖18的LDPC編碼器115之處理之例子的說明用流程圖。FIG. 19 is a flowchart for explaining an example of processing of the
於步驟S201中,編碼率設定部611,係將進行LDPC編碼的碼長度N及編碼率r、其他的將LDPC碼予以特定之特定資訊,加以設定。In step S201, the coding
於步驟S202中,初期值表讀出部612,係將藉由作為已被編碼率設定部611所設定之特定資訊的碼長度N及編碼率r等而被特定的,已被預先決定之檢查矩陣初期值表,從記憶部602予以讀出。In step S202, the initial value
於步驟S203中,檢查矩陣生成部613,係使用初期值表讀出部612從記憶部602所讀出的檢查矩陣初期值表,求出(生成)已被編碼率設定部611所設定之碼長度N及編碼率r的LDPC碼的檢查矩陣H,供給至記憶部602並儲存之。In step S203, the inspection
於步驟S204中,資訊位元讀出部614,係從被供給至LDPC編碼器115的LDPC對象資料,將已被編碼率設定部611所設定之碼長度N及編碼率r所對應之資訊長度K(=N×r)之資訊位元予以讀出,並且,將檢查矩陣生成部613所求出的檢查矩陣H,從記憶部602予以讀出,供給至編碼同位演算部615。In step S204, the information
於步驟S205中,編碼同位演算部615,係使用來自資訊位元讀出部614的資訊位元與檢查矩陣H,依序演算出滿足式(8)的碼字c之同位位元。In step S205, the coding
式(8)中,c係表示作為碼字(LDPC碼)的行向量,cT 係表示行向量c的轉置。In equation (8), the c system represents a row vector as a codeword (LDPC code), and the c T system represents a transposition of the row vector c.
此處,如上述,將作為LDPC碼(1碼字)的行向量c之中的資訊位元之部分,以行向量A來表示,同時,將同位位元之部分,以行向量T來表示的情況下,則行向量c,係可藉由作為資訊位元的行向量A、與作為同位位元的行向量T,而以式c =[A|T]來表示。Here, as described above, the portion of the information bit in the row vector c of the LDPC code (1 codeword) is represented by the row vector A, and at the same time, the portion of the co-located bit is represented by the row vector T In the case of, the row vector c can be expressed by the formula c = [A|T] by the row vector A as the information bit and the row vector T as the co-location bit.
檢查矩陣H、與作為LDPC碼的行向量c=[A|T],係必須要滿足式HcT =0,將滿足所述式HcT =0的行向量c=[A|T]予以構成的作為同位位元的行向量T,係在檢查矩陣H=[HA |HT ]的同位矩陣HT ,是呈現圖11所示的階梯結構的情況下,則從式HcT =0中的列向量HcT 之第1行之元素起,依序將各行之元素逐一變成0,藉此就可逐次地加以求出。The inspection matrix H and the row vector c=[A|T] as the LDPC code must satisfy the formula Hc T =0, and the row vector c=[A|T] satisfying the formula Hc T =0 parity bits as the row vector T, based on the parity check matrix H = [H a | H T ] with the bit matrix H T, is presented a case where the stepped structure shown in FIG. 11, from the formula Hc T = 0 Starting from the element of the first row of the column vector Hc T , the elements of each row are sequentially changed to 0 one by one, which can be obtained one by one.
編碼同位演算部615,係對來自資訊位元讀出部614的資訊位元A,求出同位位元T,將藉由該資訊位元A與同位位元T而被表示的碼字c =[A|T],當作資訊位元A的LDPC編碼結果而予以輸出。The coded
其後,於步驟S206中,控制部616,係判定LDPC編碼是否結束。於步驟S206中,若判定為不結束LDPC編碼,亦即,例如,還有應做LDPC編碼的LDPC對象資料存在的情況下,則處理係回到步驟S201(或步驟S204),以下,反覆進行步驟S201(或步驟S204)至S206之處理。Thereafter, in step S206, the
又,於步驟S206中,若判定為要結束LDPC編碼,亦即,例如,沒有應進行LDPC編碼之LDPC對象資料的情況下,則LDPC編碼器115就結束處理。In addition, in step S206, if it is determined that the LDPC encoding is to be ended, that is, for example, if there is no LDPC target data to be LDPC encoded, the
針對LDPC編碼器115,係可事前準備各式各樣的碼長度N或編碼率r之LDPC碼的(表示檢查矩陣的)檢查矩陣初期值表。在LDPC編碼器115中,係可使用從事前準備的檢查矩陣初期值表所生成之檢查矩陣H,來進行往各式各樣之碼長度N或編碼率r之LDPC碼的LDPC編碼。For the
<檢查矩陣初期值表之例子><Example of initial value table of inspection matrix>
檢查矩陣初期值表係為例如,將檢查矩陣H的,LDPC碼(藉由檢查矩陣H而被定義的LDPC碼)的碼長度N及編碼率r所相應之資訊長度K所對應之資訊矩陣HA
(圖10)的1之元素的位置,以每360列(平行因子P)的方式加以表示的表,是針對各碼長度N及各編碼率r的每一檢查矩陣H,而被事前作成。The check matrix initial value table is, for example, the check matrix H, the information matrix H corresponding to the information length K corresponding to the code length N and the coding rate r of the LDPC code (LDPC code defined by the check matrix H) The position of the
亦即,檢查矩陣初期值表,係至少將資訊矩陣HA
的1之元素的位置,每360列(平行因子P)地加以表示。That is, the initial value table of the check matrix is to represent at least the position of the
又,在檢查矩陣H中係有:同位矩陣HT 的全部都是呈階梯結構的檢查矩陣,或同位矩陣HT 的一部分是呈階梯結構、剩餘的部分是呈對角矩陣(單位矩陣)的檢查矩陣。In addition, in the inspection matrix H, all of the homology matrix H T are inspection matrices in a staircase structure, or a part of the homology matrix H T is in a ladder structure, and the remaining part is a diagonal matrix (unit matrix) Check the matrix.
以下,將表示同位矩陣HT 的一部分是呈階梯結構、剩餘的部分是呈對角矩陣的檢查矩陣的檢查矩陣初期值表之表現方式,亦稱作類型A方式。又,將表示同位矩陣HT 的全部都是呈階梯結構的檢查矩陣的檢查矩陣初期值表之表現方式,亦稱作類型B方式。Hereinafter, the expression method of the initial value table of the inspection matrix indicating that a part of the co-location matrix H T has a staircase structure and the remaining portion is a diagonal inspection matrix is also referred to as a type A method. In addition, the expression system of the initial value table of the inspection matrix indicating that all of the co-location matrix H T is an inspection matrix having a staircase structure is also referred to as a type B system.
又,將對於類型A方式的檢查矩陣初期值表所表示的檢查矩陣的LDPC碼,亦稱作類型A碼,將對於類型B方式的檢查矩陣初期值表所表示的檢查矩陣的LDPC碼,亦稱作類型B碼。In addition, the LDPC code for the check matrix represented by the initial value table of the check matrix of type A method is also called type A code, and the LDPC code for the check matrix represented by the initial value table of the check matrix of type B method is also Called type B code.
「類型A」及「類型B」之稱呼,係為依據ATSC 3.0之規格的稱呼。例如,在ATSC3.0中,類型A碼及類型B碼之雙方都會被採用。The terms "Type A" and "Type B" are based on ATSC 3.0 specifications. For example, in ATSC3.0, both type A code and type B code will be used.
此外,在DVB-T.2等中,係採用類型B碼。In addition, in DVB-T.2, etc., type B codes are used.
圖20係為類型B方式的檢查矩陣初期值表之例子的圖示。FIG. 20 is a diagram showing an example of the initial value table of the inspection matrix of the type B method.
亦即,圖20係圖示了,DVB-T.2之規格中所被規定的,碼長度N為16200位元的,編碼率(DVB-T.2之表示上的編碼率)r為1/4的類型B碼的(表示檢查矩陣H的)檢查矩陣初期值表。That is, FIG. 20 illustrates that, as specified in the DVB-T.2 specification, the code length N is 16200 bits, and the coding rate (DVB-T.2 representation coding rate) r is 1 /4 type B code (indicating the check matrix H) check matrix initial value table.
檢查矩陣生成部613(圖18),係使用類型B方式的檢查矩陣初期值表,而如以下所示,求出檢查矩陣H。The inspection matrix generation unit 613 (FIG. 18) uses the inspection matrix initial value table of the type B method, and obtains the inspection matrix H as shown below.
圖21係為從類型B方式的檢查矩陣初期值表求出檢查矩陣H之方法的說明圖。FIG. 21 is an explanatory diagram of a method of obtaining the inspection matrix H from the initial value table of the inspection matrix of the type B method.
亦即,圖21係圖示了,DVB-T.2之規格中所被規定的,碼長度N為16200位元的,編碼率r為2/3的類型B碼的檢查矩陣初期值表。That is, FIG. 21 illustrates the initial value table of the check matrix of the type B code specified in the DVB-T.2 specification and having a code length N of 16,200 bits and an encoding rate r of 2/3.
類型B方式的檢查矩陣初期值表,係將LDPC碼的碼長度N及編碼率r所相應之資訊長度K所對應之資訊矩陣HA
之全體的1之元素的位置,每360列(平行因子P)地加以表示的表,在其第i行,係有檢查矩陣H的第1+360×(i-1)列的1之元素的行號碼(令檢查矩陣H的第1行之行號碼為0時的行號碼),被排列達到該第1+360×(i-1)列的列所具有的列權重之數量。The initial value table of the check matrix of the type B method is the position of the total 1 element of the information matrix H A corresponding to the information length K corresponding to the code length N and the coding rate r of the LDPC code, every 360 rows (parallel factor P) The table represented by the line i is the row number of the
此處,類型B方式的檢查矩陣H的,對應於同位長度M的同位矩陣HT (圖10),係如圖15所示般地被決定成階梯結構,因此若可藉由檢查矩陣初期值表,而可求出對應於資訊長度K的資訊矩陣HA (圖10),就可求出檢查矩陣H。Here, for the inspection matrix H of the type B method, the co-location matrix H T (FIG. 10) corresponding to the co-location length M is determined as a staircase structure as shown in FIG. 15, so if the initial value of the inspection matrix can be used Table, and the information matrix H A (FIG. 10) corresponding to the information length K can be obtained, and the check matrix H can be obtained.
類型B方式的檢查矩陣初期值表的行數k+1,係隨著資訊長度K而不同。The number of rows k+1 of the initial value table of the check matrix of the type B method varies with the information length K.
資訊長度K、與檢查矩陣初期值表的行數k+1之間,係成立式(9)的關係。The relationship between the information length K and the number of rows k+1 of the initial value table of the check matrix is the relationship of formula (9).
此處,式(9)的360,係為圖16中所說明的平行因子P。Here, 360 in equation (9) is the parallel factor P described in FIG. 16.
在圖21的檢查矩陣初期值表中,在第1行至第3行中,係排列有13個數值,在第4行至第k+1行(圖21中係為第30行)中,係排列有3個數值。In the initial value table of the inspection matrix in FIG. 21, 13 values are arranged in
因此,從圖21的檢查矩陣初期值表所被求出的檢查矩陣H的列權重,係從第1列,到第1+360×(3-1)-1列為止,係為13;從第1+360×(3-1)列,到第K列為止,係為3。Therefore, the column weight of the inspection matrix H obtained from the initial value table of the inspection matrix in FIG. 21 is from the first column to the first +360×(3-1)-1 column, and the system is 13;
圖21的檢查矩陣初期值表的第1行,係為0、2084、1613、1548、1286、1460、3196、4297、2481、3369、3451、4620、2622,這是表示了,於檢查矩陣H的第1列中,行號碼為0、2084、1613、1548、1286、1460、3196、4297、2481、3369、3451、4620、2622之行的元素係為1(且其他元素係為0)。The first row of the initial value table of the inspection matrix in FIG. 21 is 0, 2084, 1613, 1548, 1286, 1460, 3196, 4297, 2481, 3369, 3451, 4620, and 2622. This is shown in the inspection matrix H In the first column, the row number is 0, 2084, 1613, 1548, 1286, 1460, 3196, 4297, 2481, 3369, 3451, 4620, 2622. The element system of the row is 1 (and the other element systems are 0).
又,圖21的檢查矩陣初期值表的第2行,係為1、122、1516、3448、2880、1407、1847、3799、3529、373、971、4358、3108,這是表示了,於檢查矩陣H的第361(=1+360×(2-1))列中,行號碼為1、122、1516、3448、2880、1407、1847、3799、3529、373、971、4358、3108之行的元素係為1。In addition, the second row of the initial value table of the inspection matrix of FIG. 21 is 1, 122, 1516, 3448, 2880, 1407, 1847, 3799, 3529, 373, 971, 4358, 3108. Elements in row 361 (=1+360×(2-1)) of matrix H with
如以上,檢查矩陣初期值表,係將檢查矩陣H的資訊矩陣HA
的1之元素的位置,每360列地加以表示。As described above, the initial value table of the inspection matrix indicates the position of the
檢查矩陣H的第1+360×(i-1)列以外的列,亦即,從第2+360×(i-1)列、至第360×i列為止的各列,係將藉由檢查矩陣初期值表而決定的第1+360×(i-1)列的1之元素,依照同位長度M而朝下方向(列的下方向),週期性地做循環位移所配置而成。The columns other than the 1+360×(i-1) column of the inspection matrix H, that is, the columns from the 2+360×(i-1) column to the 360×i column will be determined by The
亦即,例如,第2+360×(i-1)列,係將第1+360×(i-1)列,朝下方向做M/360(=q)的循環位移而成,接著的第3+360×(i-1)列,係將第1+360×(i-1)列,朝下方向做2×M/360(=2×q)的循環位移而成(將第2+360×(i-1)列,朝下方向做M/360(=q)的循環位移而成)。That is, for example, the 2+360×(i-1) column is formed by cyclically shifting the 1+360×(i-1) column in the downward direction by M/360 (=q), followed by
現在,將檢查矩陣初期值表的第i行(從上起算第i個)的第j列(從左起算第j個)之數值,以hi,j
來表示,同時,將檢查矩陣H的第w列的,第j個的1之元素的行號碼,以Hw-j
來表示,則檢查矩陣H的第1+360×(i-1)列以外的列也就是第w列的,1之元素的行號碼Hw-j
,係可用式(10)加以求出。Now, the value of the jth column (jth from the left) of the i-th row (i-th from the top) of the initial value table of the matrix will be checked and expressed as h i,j . At the same time, the matrix H In the w column, the row number of the element of the
此處,mod(x, y)係意味著,x除以y之後的餘數。Here, mod(x, y) means that the remainder after dividing x by y.
又,P係為上述的平行因子,在本實施形態中係為例如,和DVB-T.2等或ATSC3.0之規格同樣地,為360。再者,q係為,將同位長度M,除以平行因子P(=360)所得到的值M/360。In addition, the P system is the above-mentioned parallel factor. In the present embodiment, it is, for example, 360 as in the specifications of DVB-T.2 or the like or ATSC3.0. Furthermore, q is the value M/360 obtained by dividing the parity length M by the parallel factor P (=360).
檢查矩陣生成部613(圖18),係藉由檢查矩陣初期值表,而將檢查矩陣H的第1+360×(i-1)列的1之元素的行號碼,加以特定。The inspection matrix generation unit 613 (FIG. 18) specifies the row number of the
然後,檢查矩陣生成部613(圖18),係將檢查矩陣H的第1+360×(i-1)列以外的列也就是第w列的,1之元素的行號碼Hw-j ,依照式(10)而予以求出,生成將以上所得的行號碼之元素設成1的檢查矩陣H。Then, the check matrix generation unit 613 (FIG. 18) sets the row number H wj of the element of 1 in the column other than the 1+360×(i-1) column of the check matrix H, which is the w column, according to the formula (10) It is obtained, and a check matrix H with the element of the row number obtained above set to 1 is generated.
圖22係為類型A方式的檢查矩陣H的結構的圖示。22 is a diagram showing the structure of the inspection matrix H of the type A method.
類型A方式的檢查矩陣,係由A矩陣、B矩陣、C矩陣、D矩陣、及Z矩陣所構成。The type A inspection matrix is composed of A matrix, B matrix, C matrix, D matrix, and Z matrix.
A矩陣係為,藉由所定值M1、與LDPC碼的資訊長度K=碼長度N×編碼率r而被表示的M1行K列的,檢查矩陣H的左上的矩陣。The A matrix is a matrix of M1 rows and K columns represented by the predetermined value M1 and the information length K of the LDPC code K=code length N×encoding rate r, and the upper left matrix of the check matrix H.
B矩陣係為,M1行M1列的,A矩陣之右方相鄰的階梯結構之矩陣。The B matrix is a matrix of ladder structures adjacent to the right of the A matrix in the M1 row and M1 column.
C矩陣係為,N-K-M1行K+M1列的,A矩陣及B矩陣之下方相鄰的矩陣。The C matrix is an N-K-M1 row with K+M1 columns, and an adjacent matrix below the A matrix and the B matrix.
D矩陣係為,N-K-M1行N-K-M1列的,C矩陣之右方相鄰的單位矩陣。The D matrix is a unit matrix adjacent to the right of the C matrix in rows N-K-M1 and columns N-K-M1.
Z矩陣係為,M1行N-K-M1列的,B矩陣之右方相鄰的零矩陣(0矩陣)。The Z matrix is a zero matrix (matrix 0) adjacent to the right of the B matrix in M1 rows and N-K-M1 columns.
如以上的A矩陣至D矩陣、及Z矩陣所構成的類型A方式的檢查矩陣H中,A矩陣、及C矩陣之一部分,係構成了資訊矩陣;B矩陣、C矩陣之剩餘的部分、D矩陣、及Z矩陣,係構成了同位矩陣。As in the inspection matrix H of type A composed of the A matrix to the D matrix and the Z matrix above, a part of the A matrix and the C matrix constitute the information matrix; the remaining parts of the B matrix and the C matrix, D The matrix, and the Z matrix, constitute the co-location matrix.
此外,B矩陣係為階梯結構之矩陣,D矩陣係為單位矩陣,因此類型A方式的檢查矩陣H的同位矩陣,係一部分(B矩陣之部分)是階梯結構,剩餘之部分(D矩陣之部分)是對角矩陣(單位矩陣)。In addition, the B matrix is a matrix with a staircase structure, and the D matrix is an identity matrix. Therefore, a part of the parity matrix of the inspection matrix H of type A (part of the B matrix) is a staircase structure, and the rest (part of the D matrix) ) Is a diagonal matrix (identity matrix).
A矩陣及C矩陣,係與類型B方式的檢查矩陣H的資訊矩陣同樣地,係為每平行因子P之列(例如360列)的巡迴結構,類型A方式的檢查矩陣初期值表,係將A矩陣及C矩陣的1之元素的位置每360列地加以表示。The A matrix and the C matrix are the same as the information matrix of the inspection matrix H of the type B method, which is a tour structure for each parallel factor P column (such as 360 columns). The initial value table of the inspection matrix of the type A method will be The positions of the 1 elements of the A matrix and the C matrix are shown every 360 columns.
此處,如上述,A矩陣、及C矩陣之一部分,係構成了資訊矩陣,因此將A矩陣及C矩陣的1之元素的位置每360列地加以表示的類型A方式的檢查矩陣初期值表,係至少可將資訊矩陣的1之元素的位置,每360列地加以表示。Here, as described above, a part of the A matrix and the C matrix constitute the information matrix, so the initial value table of the type A method inspection matrix is represented by the position of the
此外,類型A方式的檢查矩陣初期值表,係將A矩陣及C矩陣的1之元素的位置每360列地加以表示,因此可將檢查矩陣之一部分(C矩陣的剩餘之部分)的1之元素的位置,每360列地加以表示。In addition, the initial value table of the inspection matrix of the type A method represents the position of the
圖23係為類型A方式的檢查矩陣初期值表之例子的圖示。23 is a diagram showing an example of the initial value table of the inspection matrix of the type A method.
亦即,圖23係圖示了,表示碼長度N為35位元的,編碼率r為2/7的檢查矩陣H的檢查矩陣初期值表之例子。That is, FIG. 23 is a diagram showing an example of a check matrix initial value table showing a check matrix H with a code length N of 35 bits and a coding rate r of 2/7.
類型A方式的檢查矩陣初期值表,係將A矩陣及C矩陣的1之元素的位置,每平行因子P地加以表示的表,在其第i行,係有檢查矩陣H的第1+P×(i-1)列的1之元素的行號碼(令檢查矩陣H的第1行之行號碼為0時的行號碼),被排列達該第1+P×(i-1)列的列所具有的列權重之數量。The initial value table of the inspection matrix of type A method is a table that represents the position of the
此外,此處係為了簡化說明,而將平行因子P假設為例如5。In addition, in order to simplify the description here, the parallel factor P is assumed to be 5, for example.
關於類型A方式的檢查矩陣H,作為參數,係有M1、M2、Q1、及Q2。Regarding the inspection matrix H of the type A method, as parameters, there are M1, M2, Q1, and Q2.
M1(圖22),係為決定B矩陣之大小的參數,是取平行因子P之倍數的值。藉由調整M1,LDPC碼的性能就會改變,在決定檢查矩陣H,會被調整成所定之值。此處,作為M1,假設採用平行因子P=5之3倍的15。M1 (Figure 22) is a parameter that determines the size of the B matrix and is a value that is a multiple of the parallel factor P. By adjusting M1, the performance of the LDPC code will change, and the decision check matrix H will be adjusted to the predetermined value. Here, as M1, it is assumed that the parallel factor P=15 which is 3 times of 5 is used.
M2(圖22)係取,從同位長度M,減去M1後的值M-M1。M2 (Fig. 22) is taken from the parity length M and subtracted from M1 to the value M-M1.
此處,資訊長度K係為N×r=35×2/7=10,同位長度M係為N-K=35-10=25,因此M2係為M-M1=25-15=10。Here, the information length K system is N×r=35×2/7=10, and the parity length M system is N-K=35-10=25, so the M2 system is M-M1=25-15=10.
Q1,係依照式Q1=M1/P而被求出,係表示A矩陣中的循環位移之位移數(行數)。Q1 is obtained according to the formula Q1=M1/P, and represents the displacement number (row number) of the cyclic displacement in the A matrix.
亦即,類型A方式的檢查矩陣H的A矩陣的第1+P×(i-1)列以外的列,亦即,從第2+P×(i-1)列至第P×i列為止的各列,係將藉由檢查矩陣初期值表而決定的第1+P×(i-1)列的1之元素,朝下方向(列的下方向),週期性地做循環位移所配置而成,Q1係表示A矩陣中的該循環位移之位移數。That is, columns other than the 1+P×(i-1) column of the A matrix of the inspection matrix H of the type A method, that is, from the 2+P×(i-1) column to the P×i column Each column up to this point is to periodically shift the element of the 1 in the 1+P×(i-1) column determined by checking the matrix initial value table in the downward direction (downward direction of the column) Configured, Q1 represents the displacement number of the cyclic displacement in the A matrix.
Q2,係依照式Q2=M2/P而被求出,係表示C矩陣中的循環位移之位移數(行數)。Q2 is obtained according to the formula Q2=M2/P, and represents the displacement number (row number) of the cyclic displacement in the C matrix.
亦即,類型A方式的檢查矩陣H的C矩陣的第1+P×(i-1)列以外的列,亦即,從第2+P×(i-1)列至第P×i列為止的各列,係將藉由檢查矩陣初期值表而決定的第1+P×(i-1)列的1之元素,朝下方向(列的下方向),週期性地做循環位移所配置而成,Q2係表示C矩陣中的該循環位移之位移數。That is, columns other than the 1+P×(i-1) column of the C matrix of the inspection matrix H of the type A method, that is, from the 2+P×(i-1) column to the P×i column Each column up to this point is to periodically shift the element of the 1 in the 1+P×(i-1) column determined by checking the matrix initial value table in the downward direction (downward direction of the column) Configured, Q2 represents the displacement number of the cyclic displacement in the C matrix.
此處,Q1係為M1/P=15/5=3,Q2係為M2/P=10/5=2。Here, for the Q1 system, M1/P=15/5=3, and for the Q2 system, M2/P=10/5=2.
在圖23的檢查矩陣初期值表中,在第1行與第2行中,係排列有3個數值,在第3行至第5行中,係排列有1個數值,若依據所述的數值之排列,則從圖23的檢查矩陣初期值表所被求出的檢查矩陣H的A矩陣及C矩陣之部分的列權重,從第1=1+5×(1-1)列、至第10=5×2列為止,係為3;從第11=1+5×(3-1)列、至第25=5×5列為止,係為1。In the initial value table of the inspection matrix of FIG. 23, in the first and second rows, three values are arranged, and in the third to fifth rows, one value is arranged. For the arrangement of the numerical values, the column weights of the A matrix and the C matrix of the inspection matrix H obtained from the initial value table of the inspection matrix in FIG. 23 are from the first column = 1 + 5 × (1-1) to It is 3 until the 10th column = 5 × 2 columns; it is 1 from the 11th column = 1 + 5 × (3-1) to the 25th column = 5 × 5 columns.
亦即,圖23的檢查矩陣初期值表的第1行,係為2、6、18,這是表示了,於檢查矩陣H的第1列中,行號碼為2、6、18之行的元素係為1(且其他元素係為0)。That is, the first row of the initial value table of the inspection matrix of FIG. 23 is 2, 6, 18, which means that in the first column of the inspection matrix H, the row numbers are 2, 6, 18 The element system is 1 (and the other element systems are 0).
此處,在目前的情況下,A矩陣(圖22)係為15行10列(M1行K列)之矩陣,C矩陣(圖22)係為10行25列(N-K-M1行K+M1列)之矩陣,因此,檢查矩陣H的行號碼0至14之行,係為A矩陣的行,檢查矩陣H的行號碼15至24之行,係為C矩陣的行。Here, in the current situation, the A matrix (Figure 22) is a matrix of 15 rows and 10 columns (M1 row and K columns), and the C matrix (Figure 22) is a matrix of 10 rows and 25 columns (NK-M1 row K+M1 Column) matrix, therefore, the row of the check matrix H with
因此,行號碼為2、6、18之行(以下記載成行#2、#6、#18)之中的,行#2及#6,係為A矩陣的行,行#18,係為C矩陣的行。Therefore, among the rows with
圖23的檢查矩陣初期值表的第2行,係為2、10、19,這是表示了,於檢查矩陣H的第6(=1+5×(2-1))列中,行#2、#10、#19的元素係為1。The second row of the initial value table of the inspection matrix in FIG. 23 is 2, 10, and 19, which is shown in the sixth (=1+5×(2-1)) column of the inspection matrix H,
此處,檢查矩陣H的第6(=1+5×(2-1))列中,行#2、#10、#19之中的,行#2及#10,係為A矩陣的行,行#19,係為C矩陣的行。Here, in the sixth (=1+5×(2-1)) column of the inspection matrix H, among the
圖23的檢查矩陣初期值表的第3行,係為22,這是表示了,於檢查矩陣H的第11(=1+5×(3-1))列中,行#22的元素係為1。The third row of the initial value table of the inspection matrix of FIG. 23 is 22, which shows that in the 11th (=1+5×(3-1)) column of the inspection matrix H, the element system of
此處,檢查矩陣H的第11(=1+5×(3-1))列中,行#22,係為C矩陣的行。Here, in the 11th (=1+5×(3-1)) column of the inspection matrix H,
以下同樣地,圖23的檢查矩陣初期值表的第4行的19,係表示檢查矩陣H的第16(=1+5×(4-1))列中,行#19的元素係為1,圖23的檢查矩陣初期值表的第5行的15,係表示檢查矩陣H的第21(=1+5×(5-1))列中,行#15的元素係為1。Similarly in the following, 19 in the 4th row of the initial value table of the inspection matrix of FIG. 23 indicates that the element system of
如以上,檢查矩陣初期值表,係將檢查矩陣H的A矩陣及C矩陣的1之元素的位置,每平行因子P=5列地加以表示。As described above, the initial value table of the inspection matrix shows the positions of the elements of the A matrix and the
檢查矩陣H的A矩陣及C矩陣的第1+5×(i-1)列以外的列,亦即,從第2+5×(i-1)列、至第5×i列為止的各列,係將藉由檢查矩陣初期值表而決定的第1+5×(i-1)列的1之元素,依照參數Q1及Q2而朝下方向(列的下方向),週期性地做循環位移所配置而成。Check the columns other than the 1+5×(i-1) column of the A matrix and C matrix of the check matrix H, that is, the columns from the 2+5×(i-1) column to the 5×i column The column is the element of
亦即,例如,A矩陣的第2+5×(i-1)列,係將第1+5×(i-1)列,朝下方向做Q1(=3)的循環位移而成,接著的第3+5×(i-1)列,係將第1+5×(i-1)列,朝下方向做2×Q1(=2×3)的循環位移而成(將第2+5×(i-1)列,朝下方向做Q1的循環位移而成)。That is, for example, the 2+5×(i-1) column of the A matrix is formed by cyclically shifting the 1+5×(i-1) column downward by Q1 (=3), and then
又,例如,C矩陣的第2+5×(i-1)列,係將第1+5×(i-1)列,朝下方向做Q2(=2)的循環位移而成,接著的第3+5×(i-1)列,係將第1+5×(i-1)列,朝下方向做2×Q2(=2×2)的循環位移而成(將第2+5×(i-1)列,朝下方向做Q2的循環位移而成)。Also, for example, the 2+5×(i-1) column of the C matrix is obtained by cyclically shifting the 1+5×(i-1) column downward by Q2 (=2), followed by
圖24係為圖23的從檢查矩陣初期值表所生成之A矩陣的圖示。FIG. 24 is a diagram of the A matrix generated from the initial value table of the inspection matrix of FIG. 23.
在圖24的A矩陣中,依照圖23的檢查矩陣初期值表的第1行,第1(=1+5×(1-1))列的行#2及#6之元素係為1。In the A matrix of FIG. 24, according to the first row of the initial value table of the inspection matrix of FIG. 23, the element system of
然後,從第2(=2+5×(1-1))列至第5(=5+5×(1-1))列為止的各列,係將前一列,做Q1=3的往下方向之循環位移而成。Then, from the 2nd column (=2+5×(1-1)) to the 5th column (=5+5×(1-1)), the previous column is Q1=3. Cyclic displacement in the downward direction.
然後,在圖24的A矩陣中,依照圖23的檢查矩陣初期值表的第2行,第6(=1+5×(2-1))列的行#2及#10之元素係為1。Then, in the A matrix of FIG. 24, according to the second row of the initial value table of the check matrix of FIG. 23, the elements of
然後,從第7(=2+5×(2-1))列至第10(=5+5×(2-1))列為止的各列,係將前一列,做Q1=3的往下方向之循環位移而成。Then, from the 7th (=2+5×(2-1)) column to the 10th (=5+5×(2-1)) column, the previous column is Q1=3. Cyclic displacement in the downward direction.
圖25係為B矩陣之同位交錯的圖示。Fig. 25 is a diagram showing the co-interleaving of the B matrix.
檢查矩陣生成部613(圖18),係使用檢查矩陣初期值表,生成A矩陣,在該A矩陣之右鄰,配置階梯結構的B矩陣。然後,檢查矩陣生成部613,係將B矩陣視為同位矩陣,以使得階梯結構的B矩陣之相鄰的1之元素,會在行方向上,遠離達平行因子P=5的方式,進行同位交錯。The inspection matrix generating unit 613 (FIG. 18) generates an A matrix using the initial value table of the inspection matrix, and arranges the B matrix in a staircase structure to the right of the A matrix. Then, the check
圖25係圖示了圖24的B矩陣之同位交錯後的A矩陣及B矩陣。FIG. 25 is a diagram illustrating the A matrix and the B matrix of the B matrix of FIG. 24 after being co-interleaved.
圖26係為圖23的從檢查矩陣初期值表所生成之C矩陣的圖示。FIG. 26 is a diagram of the C matrix generated from the check matrix initial value table of FIG. 23.
在圖26的C矩陣中,依照圖23的檢查矩陣初期值表的第1行,檢查矩陣H的第1(=1+5×(1-1))列的行#18之元素係為1。In the C matrix of FIG. 26, according to the first row of the initial value table of the inspection matrix of FIG. 23, the element system of
然後,C矩陣的從第2(=2+5×(1-1))列至第5(=5+5×(1-1))列為止的各列,係將前一列,做Q2=2的往下方向之循環位移而成。Then, from the 2nd (=2+5×(1-1)) column to the 5th (=5+5×(1-1)) column of the C matrix, the previous column is taken as Q2= 2 cyclic displacement of the downward direction.
然後,在圖26的C矩陣中,依照圖23的檢查矩陣初期值表的第2行至第5行,檢查矩陣H的第6(=1+5×(2-1))列的行#19、第11(=1+5×(3-1))列的行#22、第16(=1+5×(4-1))列的行#19、及第21(=1+5×(5-1))列的行#15之元素係為1。Then, in the C matrix of FIG. 26, according to the second row to the fifth row of the initial value table of the inspection matrix of FIG. 23, the row #6 (=1+5×(2-1)) of the matrix H is checked. 19.
然後,從第7(=2+5×(2-1))列至第10(=5+5×(2-1))列為止的各列、從第12(=2+5×(3-1))列至第15(=5+5×(3-1))列為止的各列、從第17(=2+5×(4-1))列至第20(=5+5×(4-1))列為止的各列、及從第22(=2+5×(5-1))列至第25(=5+5×(5-1))列為止的各列,係將前一列,做Q2=2的往下方向之循環位移而成。Then, from the 7th (=2+5×(2-1)) column to the 10th (=5+5×(2-1)) column, the 12th (=2+5×(3) -1)) to the 15th column (=5+5×(3-1)), from the 17th (=2+5×(4-1)) column to the 20th (=5+5 ×(4-1)) columns and columns from the 22nd (=2+5×(5-1)) column to the 25th (=5+5×(5-1)) column , Which is formed by circularly displacing the previous column in the downward direction with Q2=2.
檢查矩陣生成部613(圖18),係使用檢查矩陣初期值表,生成C矩陣,並將該C矩陣,配置在A矩陣及(同位交錯後的)B矩陣之下。The inspection matrix generation unit 613 (FIG. 18) uses the initial value table of the inspection matrix to generate the C matrix, and arranges the C matrix under the A matrix and the B matrix (after the same-position interleaving).
然後,檢查矩陣生成部613,係在B矩陣之右鄰,配置Z矩陣,同時,在C矩陣之右鄰,配置D矩陣,生成圖26所示的檢查矩陣H。Then, the inspection
圖27係為D矩陣之同位交錯的圖示。Fig. 27 is a diagram showing the co-interleaving of the D matrix.
檢查矩陣生成部613,係在生成了圖26的檢查矩陣H之後,將D矩陣視為同位矩陣,以使得單位矩陣的D矩陣的奇數行與下一個偶數行的1之元素,會在行方向上,遠離達平行因子P=5的方式,進行(只有D矩陣的)同位交錯。The inspection
圖27係圖示了,針對圖26的檢查矩陣H,進行了D矩陣之同位交錯後的檢查矩陣H。FIG. 27 illustrates the inspection matrix H after the parity interleaving of the D matrix is performed on the inspection matrix H of FIG. 26.
LDPC編碼器115(的編碼同位演算部615(圖18))係例如,使用圖27的檢查矩陣H,來進行LDPC編碼(LDPC碼之生成)。The LDPC encoder 115 (the coding parity calculation unit 615 (FIG. 18 )) performs LDPC coding (generation of LDPC code) using the check matrix H of FIG. 27, for example.
此處,使用圖27的檢查矩陣H而被生成的LDPC碼,係為進行過同位交錯的LDPC碼,因此,關於使用圖27的檢查矩陣H而被生成的LDPC碼,係於同位交錯器23(圖9)中,不需要進行同位交錯。亦即,使用進行過D矩陣之同位交錯後的檢查矩陣H而被生成的LDPC碼,係變成進行過同位交錯的LDPC碼,因此關於所述的LDPC碼,同位交錯器23中的同位交錯,係被略過。Here, the LDPC code generated using the check matrix H of FIG. 27 is an LDPC code that has been co-interleaved. Therefore, the LDPC code generated using the check matrix H of FIG. 27 is tied to the
圖28係為,對圖27的檢查矩陣H的B矩陣、C矩陣之一部分(C矩陣之中的,被配置在B矩陣之下的部分)、及D矩陣,進行了作為將同位交錯予以還原之同位去交錯的列置換(column permutation)而成的檢查矩陣H的圖示。FIG. 28 is a part of the B matrix and the C matrix of the inspection matrix H of FIG. 27 (the part arranged under the B matrix among the C matrix), and the D matrix, which are restored as the interlaced An illustration of the check matrix H formed by column permutation of the same-position deinterleaved columns.
在LDPC編碼器115中,係使用圖28的檢查矩陣H,就可進行LDPC編碼(LDPC碼之生成)。In the
使用圖28的檢查矩陣H,來進行LDPC編碼的情況下,若依據該LDPC編碼,則可獲得未進行同位交錯的LDPC碼。因此,使用圖28的檢查矩陣H,來進行LDPC編碼的情況下,在同位交錯器23(圖9)中,進行同位交錯。When the LDPC coding is performed using the check matrix H of FIG. 28, according to the LDPC coding, an LDPC code that is not co-interleaved can be obtained. Therefore, when LDPC encoding is performed using the check matrix H of FIG. 28, the co-located interleaver 23 (FIG. 9) performs co-located interleaving.
圖29係為,對圖27的檢查矩陣H,進行了行置換(row permutation)所得的轉換檢查矩陣H的圖示。FIG. 29 is a diagram of the conversion inspection matrix H obtained by performing row permutation on the inspection matrix H of FIG. 27.
轉換檢查矩陣,係如後述,是使用:P×P之單位矩陣、該單位矩陣的1之中有1個以上變成0的準單位矩陣、將單位矩陣或準單位矩陣做了循環位移而成的位移矩陣、單位矩陣、準單位矩陣、或位移矩陣之中的2者以上之和的和矩陣、及P×P之0矩陣之組合,而被表示的矩陣。The conversion check matrix, as described later, is obtained by using: an identity matrix of P×P, one or more quasi-identity matrices that become 0 among the ones of the identity matrix, and a cyclic shift of the identity matrix or quasi-identity matrix A matrix represented by a combination of a displacement matrix, an identity matrix, a quasi-unit matrix, or a sum matrix of two or more of the displacement matrix and a P×P zero matrix.
藉由將轉換檢查矩陣,使用於LDPC碼之解碼,在LDPC碼的解碼時,如後述,可以採用,將檢查節點演算、及可變節點演算,同時進行P個的架構。The conversion check matrix is used to decode the LDPC code. In the decoding of the LDPC code, as will be described later, it is possible to adopt an architecture in which the check node calculation and the variable node calculation are performed simultaneously.
<新LDPC碼><New LDPC code>
使用到LDPC碼的資料傳輸中,作為確保良好通訊品質的方法之1,係有使用性能良好的LDPC碼之方法。In data transmission using LDPC codes, as a method of ensuring good communication quality, there is a method of using LDPC codes with good performance.
以下說明,性能良好的新的LDPC碼(以下亦稱為新LDPC碼)。The following describes a new LDPC code with good performance (hereinafter also referred to as a new LDPC code).
作為新LDPC碼係可採用例如,平行因子P是和DVB-T.2或ATSC3.0等相同的360,而為巡迴結構的檢查矩陣H所對應的類型A碼或類型B碼。As the new LDPC code system, for example, the parallel factor P is the same 360 as DVB-T.2 or ATSC3.0, and the type A code or type B code corresponding to the inspection matrix H of the tour structure.
LDPC編碼器115(圖8、圖18),係可以使用碼長度N是比64k位元還長,例如為69120位元,且編碼率r為例如2/16、3/16、4/16、5/16、6/16、7/16、8/16、9/16、10/16、11/16、12/16、13/16、或14/16之中的任一者的新LDPC碼的檢查矩陣初期值表(從其所求出的檢查矩陣H),來進行往LDPC碼的LDPC編碼。LDPC encoder 115 (Figures 8 and 18), the code length N can be longer than 64k bits, for example 69120 bits, and the coding rate r is for example 2/16, 3/16, 4/16, New LDPC code for any of 5/16, 6/16, 7/16, 8/16, 9/16, 10/16, 11/16, 12/16, 13/16, or 14/16 The initial value table of the check matrix (the check matrix H obtained from it) is used to perform LDPC encoding to the LDPC code.
又,LDPC編碼器115,係如以下所示,可以基於碼長度N是比64k位元還短,例如為17280位元(17k位元),且編碼率r為例如2/16、3/16、4/16、5/16、6/16、7/16、8/16、9/16、10/16、11/16、12/16、13/16、或14/16之中的任一者的新LDPC碼的檢查矩陣初期值表(從其所求出的檢查矩陣H),來進行往新LDPC碼的LDPC編碼。Also, the
往碼長度N為17280位元的新LDPC碼進行LDPC編碼的情況下,LDPC編碼器115(圖8)的記憶部602中,係記憶有新LDPC碼的檢查矩陣初期值表。When LDPC encoding is performed on a new LDPC code having a code length N of 17280 bits, the
圖30係為,將碼長度N為17280位元,且編碼率r為2/16的作為新LDPC碼的類型A碼(以下亦稱為r=2/16的類型A碼)的檢查矩陣H加以表示的(類型A方式的)檢查矩陣初期值表之例子的圖示。FIG. 30 is a check matrix H of a type A code (hereinafter also referred to as a type A code with r=2/16) whose code length N is 17280 bits and code rate r is 2/16 as a new LDPC code A diagram showing an example of the initial value table of the inspection matrix (of type A method).
圖31係為,將碼長度N為17280位元,且編碼率r為3/16的作為新LDPC碼的類型A碼(以下亦稱為r=3/16的類型A碼)的檢查矩陣H加以表示的檢查矩陣初期值表之例子的圖示。FIG. 31 is a check matrix H of a type A code (hereinafter also referred to as a type A code with r=3/16) that has a code length N of 17280 bits and an encoding rate r of 3/16 as a new LDPC code An illustration of an example of the initial value table of the inspection matrix shown.
圖32係為,將碼長度N為17280位元,且編碼率r為4/16的作為新LDPC碼的類型A碼(以下亦稱為r=4/16的類型A碼)的檢查矩陣H加以表示的檢查矩陣初期值表之例子的圖示。FIG. 32 is a check matrix H of a type A code (hereinafter also referred to as a type A code with r=4/16) that has a code length N of 17280 bits and an encoding rate r of 4/16 as a new LDPC code An illustration of an example of the initial value table of the inspection matrix shown.
圖33係為,將碼長度N為17280位元,且編碼率r為5/16的作為新LDPC碼的類型A碼(以下亦稱為r=5/16的類型A碼)的檢查矩陣H加以表示的檢查矩陣初期值表之例子的圖示。FIG. 33 is a check matrix H of a type A code (hereinafter also referred to as a type A code with r=5/16) that has a code length N of 17280 bits and an encoding rate r of 5/16 as a new LDPC code An illustration of an example of the initial value table of the inspection matrix shown.
圖34係為,將碼長度N為17280位元,且編碼率r為6/16的作為新LDPC碼的類型A碼(以下亦稱為r=6/16的類型A碼)的檢查矩陣H加以表示的檢查矩陣初期值表之例子的圖示。FIG. 34 is a check matrix H of a type A code (hereinafter also referred to as a type A code with r=6/16) that has a code length N of 17280 bits and an encoding rate r of 6/16 as a new LDPC code An illustration of an example of the initial value table of the inspection matrix shown.
圖35係為,將碼長度N為17280位元,且編碼率r為7/16的作為新LDPC碼的類型A碼(以下亦稱為r=7/16的類型A碼)的檢查矩陣H加以表示的檢查矩陣初期值表之例子的圖示。FIG. 35 is a check matrix H of a type A code (hereinafter also referred to as a type A code with r=7/16) that has a code length N of 17280 bits and an encoding rate r of 7/16 as a new LDPC code An illustration of an example of the initial value table of the inspection matrix shown.
圖36係為,將碼長度N為17280位元,且編碼率r為7/16的作為新LDPC碼的類型B碼(以下亦稱為r=7/16的類型B碼)的檢查矩陣H加以表示的(類型B方式的)檢查矩陣初期值表之例子的圖示。FIG. 36 is a check matrix H of a type B code (hereinafter also referred to as a type B code of r=7/16) with a code length N of 17280 bits and a coding rate r of 7/16 as a new LDPC code A diagram showing an example of the initial value table of the inspection matrix (of type B method).
圖37係為,將碼長度N為17280位元,且編碼率r為8/16的作為新LDPC碼的類型B碼(以下亦稱為r=8/16的類型B碼)的檢查矩陣H加以表示的檢查矩陣初期值表之例子的圖示。FIG. 37 is a check matrix H of a type B code (hereinafter also referred to as a type B code with r=8/16) that has a code length N of 17280 bits and an encoding rate r of 8/16 as a new LDPC code An illustration of an example of the initial value table of the inspection matrix shown.
圖38係為,將碼長度N為17280位元,且編碼率r為9/16的作為新LDPC碼的類型B碼(以下亦稱為r=9/16的類型B碼)的檢查矩陣H加以表示的檢查矩陣初期值表之例子的圖示。FIG. 38 is a check matrix H of a type B code (hereinafter also referred to as a type B code with r=9/16) as a new LDPC code with a code length N of 17280 bits and an encoding rate r of 9/16 An illustration of an example of the initial value table of the inspection matrix shown.
圖39係為,將碼長度N為17280位元,且編碼率r為10/16的作為新LDPC碼的類型B碼(以下亦稱為r=10/16的類型B碼)的檢查矩陣H加以表示的檢查矩陣初期值表之例子的圖示。FIG. 39 is a check matrix H for a type B code (hereinafter also referred to as a type B code with r=10/16) that has a code length N of 17280 bits and an encoding rate r of 10/16 as a new LDPC code An illustration of an example of the initial value table of the inspection matrix shown.
圖40係為,將碼長度N為17280位元,且編碼率r為11/16的作為新LDPC碼的類型B碼(以下亦稱為r=11/16的類型B碼)的檢查矩陣H加以表示的檢查矩陣初期值表之例子的圖示。FIG. 40 is a check matrix H for a type B code (hereinafter also referred to as a type B code with r=11/16) as a new LDPC code with a code length N of 17280 bits and an encoding rate r of 11/16 An illustration of an example of the initial value table of the inspection matrix shown.
圖41係為,將碼長度N為17280位元,且編碼率r為12/16的作為新LDPC碼的類型B碼(以下亦稱為r=12/16的類型B碼)的檢查矩陣H加以表示的檢查矩陣初期值表之例子的圖示。FIG. 41 is a check matrix H of a type B code (hereinafter also referred to as a type B code with r=12/16) as a new LDPC code with a code length N of 17280 bits and an encoding rate r of 12/16 An illustration of an example of the initial value table of the inspection matrix shown.
圖42係為,將碼長度N為17280位元,且編碼率r為13/16的作為新LDPC碼的類型B碼(以下亦稱為r=13/16的類型B碼)的檢查矩陣H加以表示的檢查矩陣初期值表之例子的圖示。FIG. 42 is a check matrix H for a type B code (hereinafter also referred to as a type B code with r=13/16) that has a code length N of 17280 bits and an encoding rate r of 13/16 as a new LDPC code An illustration of an example of the initial value table of the inspection matrix shown.
圖43係為,將碼長度N為17280位元,且編碼率r為14/16的作為新LDPC碼的類型B碼(以下亦稱為r=14/16的類型B碼)的檢查矩陣H加以表示的檢查矩陣初期值表之例子的圖示。FIG. 43 is a check matrix H of a type B code (hereinafter also referred to as a type B code with r=14/16) that has a code length N of 17280 bits and an encoding rate r of 14/16 as a new LDPC code An illustration of an example of the initial value table of the inspection matrix shown.
新LDPC碼,係為性能良好的LDPC碼。The new LDPC code is an LDPC code with good performance.
此處,所謂性能良好的LDPC碼,係為從適切的檢查矩陣H所得的LDPC碼。Here, the LDPC code with good performance is an LDPC code obtained from an appropriate check matrix H.
所謂適切的檢查矩陣H係為例如,將從檢查矩陣H所得的LDPC碼,以低Es /N0 、或Eb /No (每1位元的訊號功率對雜音功率比)予以發送時,使BER(bit error rate)(及FER(frame error rate))變得較小的,滿足所定之條件的檢查矩陣。The so-called appropriate check matrix H system is, for example, when the LDPC code obtained from the check matrix H is transmitted at a low E s /N 0 or E b /N o (signal power per one bit to noise power ratio) To make the BER (bit error rate) (and FER (frame error rate)) smaller, and the check matrix that meets the specified conditions.
適切的檢查矩陣H係可藉由例如,進行計測將從滿足所定之條件的各式各樣的檢查矩陣所得的LDPC碼,以低Es /No 予以發送時的BER的模擬,就可求出。The appropriate inspection matrix H can be obtained by, for example, measuring LDPC codes obtained from various inspection matrices that satisfy the specified conditions and BER simulation when transmitting at a low E s /N o Out.
作為適切的檢查矩陣H所應滿足的所定之條件係有例如:藉由一種被稱為密度演化(Density Evolution)的碼之性能之解析法所得的解析結果係為良好、一種被稱為循環4的1之元素的迴圈係為不存在等。The predetermined conditions that should be satisfied as the appropriate check matrix H are, for example: the analytical result obtained by the analytical method of the performance of a code called density evolution (Density Evolution) is good, and the other is called
此處,於資訊矩陣HA
中,已知若像是循環4般地1之元素為密集存在,則LDPC碼的解碼性能會劣化,因此,在檢查矩陣H係沒有循環4存在,較為理想。Here, in the information matrix H A , it is known that if the elements of 1 are densely distributed like the
於檢查矩陣H中,由1之元素所構成的迴圈之長度(迴圈長)之最小值,係被稱為圍長(girth)。循環4不存在,係意味著圍長大於4。In the inspection matrix H, the minimum value of the loop length (loop length) composed of the elements of 1 is called the girth.
此外,適切的檢查矩陣H所應滿足的所定之條件,係可從LDPC碼之解碼性能之提升、或LDPC碼之解碼處理之容易化(單純化)等之觀點,來做適宜決定。In addition, the predetermined conditions that the appropriate inspection matrix H should satisfy can be appropriately determined from the viewpoint of improvement of the decoding performance of the LDPC code or ease of decoding processing of the LDPC code (simplification).
圖44及圖45,係作為適切的檢查矩陣H所應滿足的所定之條件的解析結果所被獲得的密度演化的說明圖。FIGS. 44 and 45 are explanatory diagrams of density evolution obtained as an analysis result of a predetermined condition that the appropriate inspection matrix H should satisfy.
所謂密度演化,係對後述的以度數序列(degree sequence)而被賦予特徵的碼長度N為∞的LDPC碼全體(整體(ensemble)),計算其錯誤機率之期待值的一種碼的解析法。The so-called density evolution is a code analysis method that calculates the expected value of the error probability of the entire LDPC code (ensemble) whose code length N, which is a feature of a degree sequence described later, is ∞.
例如,在AWGN通道上,若使雜訊的分散值從0漸漸變大,則某個整體的錯誤機率之期待值,雖然最初為0,但是一旦雜訊的分散值達到某個閾值(threshold)以上,就不再是0。For example, on the AWGN channel, if the dispersion value of the noise is gradually increased from 0, the expected value of the overall error probability, although initially 0, but once the dispersion value of the noise reaches a certain threshold (threshold) Above, it is no longer 0.
若依據密度演化,則藉由將該錯誤機率之期待值變成不是0的,雜訊的分散值之閾值(以下亦稱為性能閾值)進行比較,就可決定整體的性能(檢查矩陣之適切度)之好壞。According to the density evolution, the overall performance can be determined by comparing the expected value of the error probability to a value other than 0, and the threshold of the dispersion value of the noise (hereinafter also referred to as the performance threshold). ) Good or bad.
此外,對於具體的LDPC碼,決定該LDPC碼所隸屬之整體,對該整體進行密度演化,就可預測該LDPC碼的大致的性能。In addition, for a specific LDPC code, the overall performance of the LDPC code can be predicted by determining the entirety to which the LDPC code belongs and performing density evolution on the entirety.
因此,性能良好的LDPC碼,係若能找到性能良好的整體,就可從該整體中所屬之LDPC碼之中找到。Therefore, if the LDPC code with good performance can be found in the whole with good performance, it can be found from the LDPC code to which the whole belongs.
此處,上述所謂的度數序列係表示,相對於LDPC碼的碼長度N,具有各值之權重的可變節點或檢查節點是佔有多少的比率。Here, the so-called frequency sequence system indicates the ratio of the variable node or the check node having the weight of each value to the code length N of the LDPC code.
例如,編碼率為1/2的regular(3,6)LDPC碼係隸屬於,所有的可變節點之權重(列權重)為3,且所有的檢查節點之權重(行權重)為6的藉由此一度數序列而被賦予特徵的整體中。For example, the regular(3,6) LDPC code system with a coding rate of 1/2 is subordinated to it. The weight of all variable nodes (column weight) is 3, and the weight of all inspection nodes (row weight) is 6. The whole feature is given by this one-degree sequence.
圖44係圖示了此種整體的二分圖(Tanner graph)。Fig. 44 illustrates such an overall biner graph (Tanner graph).
在圖44的二分圖中,圖中圓圈記號(○記號)所示的可變節點,係存在有恰好等於碼長度N的N個,圖中四角形(□記號)所示的檢查節點,存在有恰好等於對碼長度N乘算編碼率1/2所得之乘算值的N/2個。In the bipartite graph of FIG. 44, there are N variable nodes indicated by the circle marks (○ marks) in the figure, which are exactly equal to the code length N, and there are check nodes shown by squares (□ marks) in the figure. It is exactly equal to N/2 of the multiplied value obtained by multiplying the code length N by the
在各可變節點上,係被連接有相等於列權重的3根分枝(edge),因此,N個可變節點上所連接的分枝,係全部只存在有3N根。On each variable node, the system is connected with three branches equal to the column weights. Therefore, all the branches connected to the N variable nodes only have 3N branches.
又,在各檢查節點上,係被連接有相等於行權重的6根分枝,因此,N/2個檢查節點上所連接的分枝,係全部只存在有3N根。In addition, at each inspection node, the system is connected with 6 branches equal to the row weight. Therefore, for the branches connected to the N/2 inspection nodes, there are only 3N branches.
然後,在圖44的二分圖中,係存在有1個交錯器。Then, in the bipartite graph of FIG. 44, there is one interleaver.
交錯器,係將N個可變節點上所連接的3N根分枝予以隨機排序,將該排序後的各分枝,連接至N/2個檢查節點上所連接的3N根分枝之中的任一者。The interleaver randomly sorts the 3N branches connected to the N variable nodes, and connects the sorted branches to the 3N branches connected to the N/2 check nodes. Any one.
交錯器中的,將N個可變節點上所連接的3N根分枝予以排序的排序型樣,係有(3N)!(=(3N)×(3N-1)×・・・×1)種。因此,藉由所有的可變節點的權重為3、且所有的檢查節點的權重為6的此種度數序列而被賦予特徵的整體,係為(3N)!個LDPC碼之集合。The sorting pattern in the interleaver that sorts the 3N branches connected to the N variable nodes is (3N)! (=(3N)×(3N-1)×・・・×1) Species. Therefore, the totality of features given by such a degree sequence in which the weight of all variable nodes is 3 and the weight of all check nodes is 6 is a set of (3N)! LDPC codes.
在求出性能良好的LDPC碼(適切的檢查矩陣)的模擬中,係於密度演化中,使用了多分枝類型(multi-edge type)之整體。In the simulation for obtaining a good performance LDPC code (suitable check matrix), it is used in the evolution of density, and the entire multi-edge type is used.
在多分枝類型中,可變節點上所連接的分枝、與檢查節點上所連接的分枝所經由的交錯器,係被分割成複數(multi edge),藉此,整體的特徵賦予,係可較嚴謹地被進行。In the multi-branch type, the branch connected to the variable node and the branch connected to the branch connected to the check node are divided into multiple edges, by which the overall characteristics are given Can be carried out more rigorously.
圖45係圖示了多分枝類型之整體的二分圖之例子。Fig. 45 is a diagram illustrating an example of a bipartite graph of the entire multi-branched type.
在圖45的二分圖中,係存在有第1交錯器與第2交錯器的2個交錯器。In the bipartite graph of FIG. 45, there are two interleavers including a first interleaver and a second interleaver.
又,在圖45的二分圖中,第1交錯器上所連接的分枝為1根、且第2交錯器上所連接的分枝為0根的可變節點係只有v1個,第1交錯器上所連接的分枝為1根、且第2交錯器上所連接的分枝為2根的可變節點係只有v2個,第1交錯器上所連接的分枝為0根、且第2交錯器上所連接的分枝為2根的可變節點係只有v3個,而分別存在。Also, in the bipartite graph of FIG. 45, there are only one variable node system with one branch connected to the first interleaver and zero branch connected to the second interleaver, and the first interleaved The number of branches connected to the interleaver is one, and the number of branches connected to the second interleaver is two. There are only v2 variable nodes. The number of branches connected to the first interleaver is zero, and the number of
然後,在圖45的二分圖中,第1交錯器上所連接的分枝為2根、且第2交錯器上所連接的分枝為0根的檢查節點係只有c1個,第1交錯器上所連接的分枝為2根、且第2交錯器上所連接的分枝為2根的檢查節點係只有c2個,第1交錯器上所連接的分枝為0根、且第2交錯器上所連接的分枝為3根的檢查節點係只有c3個,而分別存在。Then, in the bipartite graph of FIG. 45, there are only two inspection nodes connected to the first interleaver and two branches connected to the second interleaver, and there are only c1 inspection nodes, and the first interleaver There are only two branches connected to the branch on the second interleaver, and there are only c2 inspection nodes connected to the branch on the second interleaver. There are 0 branches connected to the first interleaver and the second interleaved There are only three c3 inspection nodes connected to the device, which exist separately.
此處,關於密度演化及其實作,係被揭露於例如:"On the Design of Low-Density Parity-Check Codes within 0.0045 dB of the Shannon Limit", S.Y.Chung, G.D.Forney, T.J.Richardson,R.Urbanke, IEEE Communications Leggers, VOL.5, NO.2, Feb 2001。Here, regarding the evolution of density and the actual work, it was revealed, for example: "On the Design of Low-Density Parity-Check Codes within 0.0045 dB of the Shannon Limit", SYChung, GDForney, TJ Richardson, R. Urbanke, IEEE Communications Leggers, VOL.5, NO.2, Feb 2001.
在求出新LDPC碼(的檢查矩陣)的模擬中,藉由多分枝類型的密度演化,找出BER開始衰落(逐漸變小)的Eb /N0 (每1位元的訊號功率對雜音功率比)也就是性能閾值變成所定值以下的整體,從該整體中所屬之LDPC碼之中,將使用了QPSK等之1以上之正交調變時的BER變小的LDPC碼,選擇成為性能良好的LDPC碼。In the simulation of finding a new LDPC code (check matrix), the density evolution of the multi-branch type is used to find the E b /N 0 (signal power per 1 bit vs. noise) at which the BER begins to fade (it gradually decreases) Power ratio), that is, the whole whose performance threshold becomes below a predetermined value, from the LDPC codes to which the whole belongs, select the LDPC code whose BER becomes smaller when using orthogonal modulation of 1 or more such as QPSK, and select it as performance Good LDPC code.
新LDPC碼(將其檢查矩陣加以表示的檢查矩陣初期值表),係藉由如以上的模擬而被求出。The new LDPC code (table of initial values of the check matrix representing the check matrix) is obtained by the above simulation.
因此,若依據新LDPC碼,則於資料傳輸中,可確保良好的通訊品質。Therefore, if the new LDPC code is used, good communication quality can be ensured during data transmission.
圖46係為,作為新LDPC碼的類型A碼的檢查矩陣H的列權重的說明圖。FIG. 46 is an explanatory diagram of the column weight of the check matrix H as the type A code of the new LDPC code.
關於類型A碼的檢查矩陣H,係如圖46所示,將A矩陣及C矩陣的第1列至K1列的列權重表示為X1,將A矩陣及C矩陣的其後之K2列的列權重表示為X2,將A矩陣及C矩陣的再其後之K3列的列權重表示為X3,將C矩陣的再其後之M1列的列權重表示為XM1。Regarding the check matrix H of the type A code, as shown in FIG. 46, the column weights of the first column to the K1 column of the A matrix and the C matrix are expressed as X1, and the subsequent K2 column of the A matrix and the C matrix The weight is expressed as X2, the column weight of the subsequent K3 column of the A matrix and the C matrix is expressed as X3, and the column weight of the subsequent M1 column of the C matrix is expressed as XM1.
此外,K1+K2+K3,係等於資訊長度K,M1+M2,係等於同位長度M。因此,K1+K2+K3+M1+M2,係等於碼長度N=17280位元。In addition, K1+K2+K3 is equal to the information length K, and M1+M2 is equal to the parity length M. Therefore, K1+K2+K3+M1+M2 is equal to the code length N=17280 bits.
又,關於類型A碼的檢查矩陣H,B矩陣的第1列至第M1-1列的列權重係為2,B矩陣的第M1列(最後一列)的列權重係為1。再者,D矩陣的列權重係為1,Z矩陣的列權重係為0。Further, regarding the check matrix H of the type A code, the column weight system of the first column to the M1-1 column of the B matrix is 2, and the column weight system of the M1 column (the last column) of the B matrix is 1. Furthermore, the column weight system of the D matrix is 1, and the column weight system of the Z matrix is 0.
圖47係為圖30至圖35的(檢查矩陣初期值表所表示的)類型A碼的檢查矩陣H的參數的圖示。Fig. 47 is a diagram showing the parameters of the inspection matrix H of the type A code (shown in the initial value table of the inspection matrix) of Figs. 30 to 35.
r=2/16、3/16、4/16、5/16、6/16、7/16的類型A碼的檢查矩陣H的作為參數的K、X1、K1、X2、K2、X3、K3、XM1、M1、M2,係如同圖47所示。r=2/16, 3/16, 4/16, 5/16, 6/16, 7/16 Type A code check matrix H as parameters K, X1, K1, X2, K2, X3, K3 , XM1, M1, M2, as shown in Figure 47.
參數X1、K1、X2、K2、X3、K3、XM1、M1(或M2),係被設定成使得LDPC碼之性能(例如錯誤率等)會更加提升。The parameters X1, K1, X2, K2, X3, K3, XM1, M1 (or M2) are set so that the performance (such as error rate, etc.) of the LDPC code will be more improved.
圖48係為,作為新LDPC碼的類型B碼的檢查矩陣H的列權重的說明圖。FIG. 48 is an explanatory diagram of the column weights of the check matrix H as the type B code of the new LDPC code.
關於類型B碼的檢查矩陣H,係如圖48所示,將第1列至KX1列的列權重表示為X1,將其後的KX2列的列權重表示為X2,將其後的KX3列的列權重表示為X3,將其後的KX4列的列權重表示為X4,將其後的KY1列的列權重表示為Y1。Regarding the check matrix H of the type B code, as shown in FIG. 48, the column weights from the first column to the KX1 column are represented as X1, the column weights of the subsequent KX2 column are represented as X2, and the subsequent KX3 column The column weight is expressed as X3, the column weight of the subsequent KX4 column is expressed as X4, and the column weight of the subsequent KY1 column is expressed as Y1.
此外,KX1+KX2+KX3+KX4+KY1,係等於資訊長度K,KX1+KX2+KX3+KX4+KY1+M,係等於碼長度N=17280位元。In addition, KX1+KX2+KX3+KX4+KY1 is equal to the information length K, and KX1+KX2+KX3+KX4+KY1+M is equal to the code length N=17280 bits.
又,關於類型B碼的檢查矩陣H,最後之M列之中的,最後之1列以外的M-1列的列權重係為2,最後之1列的列權重係為1。As for the check matrix H of the type B code, among the last M columns, the column weight of the M-1 column other than the last column is 2 and the column weight of the last column is 1.
圖49係為圖36至圖43的(檢查矩陣初期值表所表示的)類型B碼的檢查矩陣H的參數的圖示。FIG. 49 is a diagram showing the parameters of the inspection matrix H of the type B code (shown in the initial value table of the inspection matrix) of FIGS. 36 to 43.
r=7/16、8/16、9/16、10/16、11/16、12/16、13/16、14/16的類型B碼的檢查矩陣H的作為參數的K、X1、KX1、X2、KX2、X3、KX3、X4、KX4、Y1、KY1、M,係如同圖49所示。r=7/16, 8/16, 9/16, 10/16, 11/16, 12/16, 13/16, 14/16 Type K code check matrix H as parameters K, X1, KX1 , X2, KX2, X3, KX3, X4, KX4, Y1, KY1, M, as shown in Figure 49.
參數X1、KX1、X2、KX2、X3、KX3、X4、KX4、Y1、KY1,係被設定成使得LDPC碼之性能會更加提升。The parameters X1, KX1, X2, KX2, X3, KX3, X4, KX4, Y1, KY1 are set so that the performance of the LDPC code will be further improved.
若依據新LDPC碼,則除了可實現良好的BER/FER,還可實現接近薛農極限的容量(通訊路容量)。According to the new LDPC code, in addition to a good BER/FER, a capacity close to the limit of Xuenong (communication path capacity) can also be achieved.
圖50至圖53係為新LDPC碼的其他例的說明圖。50 to 53 are explanatory diagrams of other examples of new LDPC codes.
亦即,圖50係為,將碼長度N為17280位元,且編碼率r為4/16的作為新LDPC碼的,由日本放送協會所提供的類型A碼(以下亦稱為r=4/16的新類型A碼)的檢查矩陣H加以表示的檢查矩陣初期值表之例子的圖示。That is, FIG. 50 is a type A code provided by the Japan Broadcasting Association (hereinafter also referred to as r=4) with a code length N of 17280 bits and an encoding rate r of 4/16 as a new LDPC code. / New type A code of 16) is an illustration of an example of the initial value table of the inspection matrix represented by the inspection matrix H.
圖51係為,由日本放送協會所提供的r=7/16的新類型A碼的檢查矩陣H之參數的圖示。FIG. 51 is a diagram showing the parameters of the check matrix H of the new type A code of r=7/16 provided by the Japan Broadcasting Association.
參數K、X1、K1、X2、K2、X3、K3、XM1、M1、M2,係為圖46中所説明的參數,r=4/16的新類型A碼的檢查矩陣H的參數K、X1、K1、X2、K2、X3、K3、XM1、M1、M2,係如同圖51所示。The parameters K, X1, K1, X2, K2, X3, K3, XM1, M1, M2 are the parameters described in Figure 46, and the parameters K, X1 of the check matrix H of the new type A code for r=4/16 , K1, X2, K2, X3, K3, XM1, M1, M2, as shown in Figure 51.
圖52係為,將碼長度N為17280位元,且編碼率r為9/16的作為新LDPC碼的,由日本放送協會所提供的類型B碼(以下亦稱為r=9/16的新類型B碼)的檢查矩陣H加以表示的檢查矩陣初期值表之例子的圖示。Fig. 52 is a type B code provided by the Japan Broadcasting Association (hereinafter also referred to as r=9/16) with a code length N of 17280 bits and an encoding rate r of 9/16 as a new LDPC code A diagram of an example of the initial value table of the inspection matrix represented by the inspection matrix H of the new type B code).
圖53係為,由日本放送協會所提供的r=9/16的新類型B碼的檢查矩陣H之參數的圖示。FIG. 53 is a diagram showing the parameters of the check matrix H of the new type B code of r=9/16 provided by the Japan Broadcasting Association.
參數K、X1、KX1、X2、KX2、X3、KX3、X4、KX4、Y1、KY1、M,係為圖48中所説明的參數,r=9/16的新類型B碼的檢查矩陣H的參數K、X1、KX1、X2、KX2、X3、KX3、X4、KX4、Y1、KY1、M,係如同圖52所示。The parameters K, X1, KX1, X2, KX2, X3, KX3, X4, KX4, Y1, KY1, M are the parameters described in Figure 48, and the inspection matrix H of the new type B code with r=9/16 The parameters K, X1, KX1, X2, KX2, X3, KX3, X4, KX4, Y1, KY1, M are as shown in Figure 52.
<星座><Constellation>
圖54至圖78係為圖7的傳輸系統中所能採用的星座之例子的圖示。54 to 78 are diagrams of examples of constellations that can be used in the transmission system of FIG. 7.
圖7的傳輸系統中,例如,對於調變方式(MODulation)與LDPC碼(CODe)之組合也就是MODCOD,可設定在該MODCOD中所使用的星座。In the transmission system of FIG. 7, for example, for a combination of modulation method (MODulation) and LDPC code (CODe), that is, MODCOD, the constellation used in the MODCOD can be set.
對1個MODCOD,可設定1個以上的星座。For one MODCOD, more than one constellation can be set.
星座中係有,訊號點之配置呈均勻的UC(Uniform Constellation),和呈不均勻的NUC(Non Uniform Constellation)。In the constellation, there are uniform UC (Uniform Constellation) and non-uniform NUC (Non Uniform Constellation).
又,NUC中係有例如:被稱為1D-NUC(1-dimensional (M2 -QAM) non-uniform constellation)的星座、或被稱為2D-NUC(2-dimensional (QQAM) non-uniform constellation)的星座等。In addition, NUC includes, for example, a constellation called 1D-NUC (1-dimensional (M 2 -QAM) non-uniform constellation) or a 2D-NUC (2-dimensional (QQAM) non-uniform constellation) ) Constellation, etc.
一般來說,相較於UC,1D-NUC的BER是較為改善的;而且,相較於1D-NUC,2D-NUC的BER是較為改善的。Generally speaking, the BER of 1D-NUC is better than that of UC; moreover, the BER of 2D-NUC is better than that of 1D-NUC.
調變方式為QPSK之星座,係成為UC。作為調變方式為16QAM、或64QAM、256QAM等之星座,係可採用例如UC或2D-NUC,作為調變方式為1024QAM或4096QAM等之星座,係可採用例如UC或1D-NUC。The modulation method is the constellation of QPSK, which becomes UC. As a constellation with a modulation method of 16QAM, or 64QAM, 256QAM, etc., for example, UC or 2D-NUC can be used, and as a constellation with a modulation method of 1024QAM or 4096QAM, for example, UC or 1D-NUC can be used.
在圖7的傳輸系統中係可使用例如,ATSC3.0或DVB-C.2等中所被規定的星座等,其他可使錯誤率變為良好的各式各樣的星座。In the transmission system of FIG. 7, for example, constellations specified in ATSC3.0 or DVB-C.2, etc. can be used, and other constellations that can make the error rate good can be used.
亦即,調變方式為QPSK的情況下,針對LDPC碼的各編碼率r,例如,可使用同一UC。That is, when the modulation method is QPSK, for each coding rate r of the LDPC code, for example, the same UC can be used.
又,調變方式為16QAM、64QAM、或256QAM的情況下,關於LDPC碼的各編碼率r,例如,可使用同一UC。甚至,調變方式為16QAM、64QAM、或256QAM的情況下,例如,可隨著LDPC碼的各個編碼率r而使用不同的2D-NUC。In addition, when the modulation method is 16QAM, 64QAM, or 256QAM, for each coding rate r of the LDPC code, for example, the same UC can be used. Furthermore, in the case where the modulation method is 16QAM, 64QAM, or 256QAM, for example, different 2D-NUC may be used with each coding rate r of the LDPC code.
又,調變方式為1024QAM或4096QAM的情況下,關於LDPC碼的各編碼率r,例如,可使用同一UC。再者,調變方式為1024QAM或4096QAM的情況下,例如,可隨著LDPC碼的各個編碼率r而使用不同的1D-NUC。In addition, when the modulation method is 1024QAM or 4096QAM, for each coding rate r of the LDPC code, for example, the same UC can be used. In addition, when the modulation method is 1024QAM or 4096QAM, for example, different 1D-NUC may be used according to each coding rate r of the LDPC code.
此處,亦將QPSK的UC記載成QPSK-UC,亦將2m QAM的UC記載成2m QAM-UC。又,亦將2m QAM的1D-NUC及2D-NUC,分別記載成2m QAM-1D-NUC及2m QAM-2D-NUC。Here, the UC of QPSK is also described as QPSK-UC, and the UC of 2 m QAM is also described as 2 m QAM-UC. Further, a 2 m QAM will also 1D-NUC and 2D-NUC, respectively, according to a 2 m QAM-1D-NUC and 2 m QAM-2D-NUC.
以下說明,ATSC3.0中所被規定的數種星座。The following explains several constellations specified in ATSC3.0.
圖54係調變方式為QPSK的情況下,針對ATSC3.0中所被規定的LDPC碼之所有的編碼率而被使用的QPSK-UC的訊號點之座標的圖示。Fig. 54 is a diagram showing the coordinates of the signal points of QPSK-UC used for all the coding rates of the LDPC codes specified in ATSC3.0 when the modulation method is QPSK.
於圖54中,"Input Data cell y"係表示QPSK-UC上所對映的2位元之符元,"Constellation point zs "係表示訊號點zs 之座標。此外,訊號點zs 的索引s(後述的訊號點zq 的索引q亦同),係表示符元的離散時間(某個符元與下個符元之間的時間間隔)。In Figure 54, "Input Data cell y" represents the 2-bit symbol mapped on QPSK-UC, and "Constellation point z s " represents the coordinate of the signal point z s . In addition, the index signal point z s s (described later point signal index q q likewise Z), represented by symbol-based discrete-time (the time between a symbol and the next symbol interval).
在圖54中,訊號點zs 之座標,係以複數(complex number)的形式來表示,j係表示虛數單位(√(-1))。In FIG. 54, the coordinates of the signal point z s are expressed in the form of complex numbers, and j is the imaginary unit (√(-1)).
圖55係調變方式為16QAM的情況下,針對ATSC3.0中所被規定的LDPC碼之編碼率r(CR)=2/15、3/15、4/15、5/15、6/15、7/15、8/15、9/15、10/15、11/15、12/15、13/15而被使用的16QAM-2D-NUC的訊號點之座標的圖示。Figure 55 shows that when the modulation method is 16QAM, the coding rate r(CR) for the LDPC code specified in ATSC3.0 is 2/15, 3/15, 4/15, 5/15, 6/15 , 7/15, 8/15, 9/15, 10/15, 11/15, 12/15, 13/15 are used to show the coordinates of the signal points of 16QAM-2D-NUC.
在圖55中,係和圖54同樣地,訊號點zs 之座標,係以複數(complex number)的形式來表示,j係表示虛數單位。In FIG. 55, as in FIG. 54, the coordinates of the signal point z s are expressed in the form of complex numbers, and j is the imaginary unit.
於圖55中,w#k係表示星座的第1象限的訊號點之座標。In FIG. 55, w#k represents the coordinates of the signal point of the first quadrant of the constellation.
於2D-NUC中,星座的第2象限的訊號點係被配置在,將第1象限的訊號點,對Q軸做了對稱移動的位置,星座的第3象限的訊號點係被配置在,將第1象限的訊號點,對原點做了對稱移動的位置。然後,星座的第4象限的訊號點係被配置在,將第1象限的訊號點,對I軸做了對稱移動的位置。In 2D-NUC, the signal points of the second quadrant of the constellation are arranged at the position where the signal points of the first quadrant are symmetrically moved about the Q axis, and the signal points of the third quadrant of the constellation are arranged at, The signal point of the first quadrant is symmetrically moved to the origin. Then, the signal point of the fourth quadrant of the constellation is arranged at a position where the signal point of the first quadrant is moved symmetrically to the I axis.
此處,調變方式為2m QAM的情況下,係將m位元當作1個符元,該1個符元係被對映至,該符元所對應之訊號點。Here, when the modulation method is 2 m QAM, m bits are regarded as one symbol, and the one symbol is mapped to the signal point corresponding to the symbol.
m位元的符元,係可用例如0至2m -1之整數值來表現,但現在若假設b=2m /4,用0至2m -1之整數值而被表現的符元y(0)、y(1)、・・・、y(2m -1),係可分類成符元y(0)至y(b-1)、y(b)至y(2b-1)、y(2b)至y(3b-1)、及y(3b)至y(4b-1)之4種。The m-bit symbol can be represented by an integer value such as 0 to 2 m -1, but now assuming b = 2 m /4, the symbol y represented by the integer value of 0 to 2 m -1 (0), y(1), ..., y(2 m -1) can be classified into symbols y(0) to y(b-1), y(b) to y(2b-1) , Y(2b) to y(3b-1), and y(3b) to y(4b-1).
於圖55中,w#k的字尾k,係取0至b-1之範圍的整數值,w#k係表示,符元y(0)至y(b-1)之範圍的符元y(k)所對應的訊號點之座標。In FIG. 55, the suffix k of w#k is an integer value in the range of 0 to b-1, and w#k is the symbol element in the range of symbol elements y(0) to y(b-1) The coordinates of the signal point corresponding to y(k).
然後,符元y(b)至y(2b-1)之範圍的符元y(k+b)所對應的訊號點之座標,係以-conj(w#k)而被表示,符元y(2b)至y(3b-1)之範圍的符元y(k+2b)所對應的訊號點之座標,係以conj(w#k)而被表示。又,符元y(3b)至y(4b-1)之範圍的符元y(k+3b)所對應的訊號點之座標,係以-w#k而被表示。Then, the coordinates of the signal point corresponding to the symbol y(k+b) in the range of symbol y(b) to y(2b-1) are represented by -conj(w#k), symbol y The coordinates of the signal point corresponding to the symbol y(k+2b) in the range of (2b) to y(3b-1) are represented by conj(w#k). In addition, the coordinates of the signal points corresponding to the symbols y(k+3b) in the range of symbols y(3b) to y(4b-1) are represented by -w#k.
此處,conj(w#k)係表示w#k的共軛複數。Here, the conj(w#k) system represents the conjugate complex number of w#k.
例如,調變方式為16QAM的情況下,m=4位元的符元y(0)、y(1)、・・・、y(15),係作為b=24 /4=4,而被分類成符元y(0)至y(3)、y(4)至y(7)、y(8)至y(11)、及y(12)至y(15)之4種。For example, when the modulation method is 16QAM, m=4-bit symbols y(0), y(1), ..., y(15) are regarded as b=2 4 /4=4, and It is classified into four types: symbol elements y(0) to y(3), y(4) to y(7), y(8) to y(11), and y(12) to y(15).
然後,符元y(0)至y(15)之中的例如符元y(12),係為符元y(3b)至y(4b-1)之範圍的符元y(k+3b)=y(0+3×4),由於k=0,因此符元y(12)所對應的訊號點之座標,係為-w#k=-w0。Then, for example, the symbol element y(12) among the symbol elements y(0) to y(15) is the symbol element y(k+3b) in the range of symbol elements y(3b) to y(4b-1) =y(0+3×4), since k=0, the coordinate of the signal point corresponding to the symbol y(12) is -w#k=-w0.
現在,假設LDPC碼之編碼率r(CR)係為例如9/15,若根據圖55,則調變方式為16QAM,且編碼率r為9/15時的w0,係為0.2386+j0.5296,因此符元y(12)所對應的訊號點之座標-w0,係為-(0.2386+j0.5296)。Now, assuming that the coding rate r(CR) of the LDPC code is 9/15, for example, according to FIG. 55, the modulation method is 16QAM, and w0 when the coding rate r is 9/15 is 0.2386+j0.5296 Therefore, the coordinate -w0 of the signal point corresponding to the symbol y(12) is -(0.2386+j0.5296).
圖56係調變方式為1024QAM的情況下,針對ATSC3.0中所被規定的LDPC碼之編碼率r(CR)=2/15、3/15、4/15、5/15、6/15、7/15、8/15、9/15、10/15、11/15、12/15、13/15而被使用的1024QAM-1D-NUC的訊號點之座標之例子的圖示。Fig. 56 is the modulation rate r(CR) = 2/15, 3/15, 4/15, 5/15, 6/15 for the LDPC code specified in ATSC3.0 when the modulation method is 1024QAM , 7/15, 8/15, 9/15, 10/15, 11/15, 12/15, and 13/15 are examples of the coordinates of the signal point of 1024QAM-1D-NUC used.
於圖56中,u#k係表示1D-NUC的作為訊號點zs 之座標的複數(complex number)之實部Re(zs )及虛部Im(zs ),係為一種被稱為位置向量的向量u=(u0, u1,..., u#V-1)的分量。位置向量u的分量u#k之數量V,係由式V=√(2m )/2而被給定。In Figure 56, u#k represents the real part Re(z s ) and the imaginary part Im(z s ) of the complex number of 1D-NUC as the coordinate of the signal point z s , which is a kind of so-called The vector u=(u0, u1,..., u#V-1) component of the position vector. The quantity V of the component u#k of the position vector u is given by the formula V=√(2 m )/2.
圖57係為1024QAM的符元y、與位置向量u(的分量u#k)之關係的圖示。FIG. 57 is a diagram showing the relationship between the symbol y of 1024QAM and the position vector u (component u#k).
現在,假設將1024QAM的10位元之符元y,從其開頭的位元(最上位位元)起,表示成y0,s 、y1,s 、y2,s 、y3,s 、y4,s 、y5,s 、y6,s 、y7,s 、y8,s 、y9,s 。Now, suppose that the 10-bit symbol y of 1024QAM, from its beginning bit (the highest bit), is expressed as y 0,s , y 1,s , y 2,s , y 3,s , y 4,s , y 5,s , y 6,s , y 7,s , y 8,s , y 9,s .
圖57的A係表示了,符元y的第偶數個的5位元y1,s 、y3,s 、y5,s 、y7,s 、y9,s ,與將該符元y所對應之訊號點zs 之(座標之)實部Re(zs )加以表示的u#k的對應關係。The A-line of Fig. 57 shows that the even-numbered 5-bit y 1,s , y 3,s , y 5,s , y 7,s , y 9,s of the symbol y, and the symbol y Correspondence relationship of u#k represented by the real part Re(z s ) of the corresponding signal point z s (of the coordinates).
圖57的B係表示了,符元y的第奇數個的5位元y0,s 、y2,s 、y4,s 、y6,s 、y8,s ,與將該符元y所對應之訊號點zs 之虛部Im(zs )加以表示的u#k的對應關係。The B system of FIG. 57 shows that the odd-numbered 5-bit y 0,s , y 2,s , y 4,s , y 6,s , y 8,s of the symbol y, and the symbol y The corresponding relationship of u#k is represented by the imaginary part Im(z s ) of the corresponding signal point z s .
在1024QAM的10位元之符元y=(y0,s 、y1,s 、y2,s 、y3,s 、y4,s 、y5,s 、y6,s 、y7,s 、y8,s 、y9,s )係為例如(0、0、1、0、0、1、1、1、0、0)的情況下,則第奇數個的5位元(y0,s 、y2,s 、y4,s 、y6,s 、y8,s ),係為(0、1、0、1、0),第偶數個的5位元(y1,s 、y3,s 、y5,s 、y7,s 、y9,s ),係為(0、0、1、1、0)。In the 1024QAM 10-bit symbol y = (y 0, s , y 1, s , y 2, s , y 3, s , y 4, s , y 5, s , y 6, s , y 7, s , y 8, s , y 9, s ) is for example (0, 0, 1, 0, 0, 1, 1 , 1, 0, 0), then the odd-numbered 5-bit (y 0, s , y 2, s , y 4, s , y 6, s , y 8, s ), the system is (0, 1, 0, 1, 0), the even-numbered 5-bit (y 1, s , y 3, s , y 5, s , y 7, s , y 9, s ), the system is (0, 0, 1 , 1, 0).
在圖57的A中,第偶數個的5位元(0、0、1、1、0),係與u11建立對應,因此,符元y=(0、0、1、0、0、1、1、1、0、0)所對應的訊號點zs 之實部Re(zs ),係為u11。In A of Fig. 57, the even-numbered 5-bits (0, 0, 1, 1, 0) correspond to u11, so the symbol y = (0, 0, 1, 0, 0, 1 , 1, 1, 0, 0) the real part Re(z s ) of the signal point z s is u11.
在圖57的B中,第奇數個的5位元(0、1、0、1、0),係與u3建立對應,因此,符元y=(0、0、1、0、0、1、1、1、0、0)所對應的訊號點zs 之虛部Im(zs ),係為u3。In B of Fig. 57, the odd-numbered 5-bit (0, 1, 0, 1, 0) corresponds to u3, therefore, the symbol y = (0, 0, 1, 0, 0, 1 , 1, 1, 0, 0) The imaginary part Im(z s ) of the signal point z s is u3.
另一方面,假設LDPC碼之編碼率r為例如6/15,若依據上述的圖56,則關於調變方式為1024QAM,且LDPC碼之編碼率r(CR)=6/15的情況下所被使用的1D-NUC,u3係為0.1295,u11係為0.7196。On the other hand, assuming that the coding rate r of the LDPC code is 6/15, for example, according to FIG. 56 above, the modulation method is 1024QAM, and the coding rate r(CR) of the LDPC code = 6/15. The 1D-NUC used is 0.1295 for the u3 system and 0.7196 for the u11 system.
因此,符元y=(0、0、1、0、0、1、1、1、0、0)所對應的訊號點zs 之實部Re(zs )係為u11=0.7196,虛部Im(zs )係為u3=0.1295。其結果為,符元y=(0、0、1、0、0、1、1、1、0、0)所對應的訊號點zs 之座標,係以0.7196+j0.1295而被表示。Therefore, the real part Re(z s ) of the signal point z s corresponding to the symbol y = (0, 0, 1, 0, 0, 1, 1, 1, 0, 0) is u11 = 0.7196, the imaginary part Im(z s ) system is u3 = 0.1295. As a result, the coordinate of the signal point z s corresponding to the symbol y=(0, 0, 1, 0, 0, 1, 1, 1, 0, 0) is expressed as 0.7196+j0.1295.
此外,1D-NUC的訊號點,係於星座中,在平行於I軸的直線上或平行於Q軸的直線上,排列成格子狀。但是,訊號點彼此的間隔,係並非一定。又,訊號點(上所被對映之資料)的送訊時,星座上的訊號點之平均功率係可進行正規化。正規化,係若假設將關於星座上的所有訊號點(之座標)的絕對值之自乘平均值表示成Pave ,則將該自乘平均值Pave 的平方根√Pave 之倒數1/(√Pave ),對星座上的各訊號點zs 進行乘算,藉此就可進行之。In addition, the signal points of the 1D-NUC are tied in a constellation and arranged in a lattice on a line parallel to the I axis or a line parallel to the Q axis. However, the distance between the signal points is not constant. In addition, the average power of the signal points on the constellation can be normalized when transmitting the signal points (the data mapped on it). Normalization, assuming that based on the squared average of all signal points (the coordinates) on the absolute values of the constellation represented as P ave, then the reciprocal square root of the squared average √P ave 1 P ave / ( √P ave ), multiplying each signal point z s on the constellation, which can be carried out.
在圖7的傳輸系統中係可使用,如以上的ATSC3.0中所被規定的星座。It can be used in the transmission system of FIG. 7, such as the constellation specified in ATSC3.0 above.
圖58至圖69,係為DVB-C.2中所被規定的UC的訊號點之座標的圖示。Figures 58 to 69 are diagrams of the coordinates of the signal points of UC specified in DVB-C.2.
亦即,圖58係為DVB-C.2中所被規定的QPSK-UC(QPSK之UC)的訊號點之座標zq 的實部Re(zq )的圖示。圖59係為DVB-C.2中所被規定的QPSK-UC的訊號點之座標zq 的虛部Im(zq )的圖示。That is, FIG. 58 is a diagram of the real part Re(z q ) of the coordinate z q of the signal point of QPSK-UC (UC of QPSK) defined in DVB-C.2. Fig. 59 is an illustration of the imaginary part Im(z q ) of the coordinate z q of the signal point of QPSK-UC defined in DVB-C.2.
圖60係為DVB-C.2中所被規定的16QAM-UC(16QAM之UC)的訊號點之座標zq 的實部Re(zq )的圖示。圖61係為DVB-C.2中所被規定的16QAM-UC的訊號點之座標zq 的虛部Im(zq )的圖示。FIG. 60 is a diagram of the real part Re(z q ) of the coordinate z q of the signal point of 16QAM-UC (UC of 16QAM) specified in DVB-C.2. Fig. 61 is an illustration of the imaginary part Im(z q ) of the coordinate z q of the signal point of 16QAM-UC specified in DVB-C.2.
圖62係為DVB-C.2中所被規定的64QAM-UC(64QAM之UC)的訊號點之座標zq 的實部Re(zq )的圖示。圖63係為DVB-C.2中所被規定的64QAM-UC的訊號點之座標zq 的虛部Im(zq )的圖示。Fig. 62 is a diagram of the real part Re(z q ) of the coordinate z q of the signal point of 64QAM-UC (64QAM UC) specified in DVB-C.2. Fig. 63 is an illustration of the imaginary part Im(z q ) of the coordinate z q of the signal point of 64QAM-UC specified in DVB-C.2.
圖64係為DVB-C.2中所被規定的256QAM-UC(256QAM之UC)的訊號點之座標zq 的實部Re(zq )的圖示。圖65係為DVB-C.2中所被規定的256QAM-UC的訊號點之座標zq 的虛部Im(zq )的圖示。FIG. 64 is a diagram of the real part Re(z q ) of the coordinate z q of the signal point of 256QAM-UC (UC of 256QAM) specified in DVB-C.2. Fig. 65 is an illustration of the imaginary part Im(z q ) of the coordinate z q of the signal point of 256QAM-UC specified in DVB-C.2.
圖66係為DVB-C.2中所被規定的1024QAM-UC(1024QAM之UC)的訊號點之座標zq 的實部Re(zq )的圖示。圖67係為DVB-C.2中所被規定的1024QAM-UC的訊號點之座標zq 的虛部Im(zq )的圖示。FIG. 66 is a diagram of the real part Re(z q ) of the coordinate z q of the signal point of 1024QAM-UC (UC of 1024QAM) specified in DVB-C.2. Fig. 67 is an illustration of the imaginary part Im(z q ) of the coordinate z q of the signal point of 1024QAM-UC specified in DVB-C.2.
圖68係為DVB-C.2中所被規定的4096QAM-UC(4096QAM之UC)的訊號點之座標zq 的實部Re(zq )的圖示。圖69係為DVB-C.2中所被規定的4096QAM-UC的訊號點之座標zq 的虛部Im(zq )的圖示。FIG. 68 is a diagram of the real part Re(z q ) of the coordinate z q of the signal point of 4096QAM-UC (4096QAM UC) specified in DVB-C.2. Fig. 69 is a diagram of the imaginary part Im(z q ) of the coordinate z q of the signal point 4096QAM-UC specified in DVB-C.2.
此外,於圖58至圖69中,yi,q 係表示,從2m QAM的m位元(例如在QPSK中係為2位元)的符元之開頭起,第i+1位元。又,UC的訊號點(上所被對映之資料)的送訊時,星座上的訊號點之平均功率係可進行正規化。正規化,係若假設將關於星座上的所有訊號點(之座標)的絕對值之自乘平均值表示成Pave ,則將該自乘平均值Pave 的平方根√Pave 之倒數1/(√Pave ),對星座上的各訊號點zq 進行乘算,藉此就可進行之。In addition, in FIGS. 58 to 69, y i,q represents the i+1 bit from the beginning of the symbol of m bits of 2 m QAM (for example, 2 bits in QPSK). In addition, the average power of the signal points on the constellation can be normalized when sending signals from UC signal points (data mapped on the UC). Normalization, assuming that based on the squared average of all signal points (the coordinates) on the absolute values of the constellation represented as P ave, then the reciprocal square root of the squared average √P ave 1 P ave / ( √P ave ), by multiplying each signal point z q on the constellation, which can be carried out.
在圖7的傳輸系統中係可使用,如以上的DVB-C.2中所被規定的UC。It can be used in the transmission system of FIG. 7, such as the UC specified in DVB-C.2 above.
亦即,關於圖30至圖43、圖50、及圖52的,碼長度N為17280位元,且編碼率r為2/16、3/16、4/16、5/16、6/16、7/16、8/16、9/16、10/16、11/16、12/16、13/16、及14/16各自的(檢查矩陣初期值表所對應的)新LDPC碼,係可使用圖58至圖69所示的UC。That is, regarding FIGS. 30 to 43, 50, and 52, the code length N is 17280 bits, and the coding rate r is 2/16, 3/16, 4/16, 5/16, 6/16 , 7/16, 8/16, 9/16, 10/16, 11/16, 12/16, 13/16, and 14/16 respectively (corresponding to the check matrix initial value table) new LDPC codes, The UC shown in FIGS. 58 to 69 can be used.
圖70至圖78係為,針對圖30至圖43、圖50、及圖52的,碼長度N為17280位元,且編碼率r為2/16、3/16、4/16、5/16、6/16、7/16、8/16、9/16、10/16、11/16、12/16、13/16、及14/16各自的新LDPC碼所能使用的NUC的訊號點之座標之例子的圖示。Figures 70 to 78 are for Figures 30 to 43, 50, and 52, the code length N is 17280 bits, and the coding rate r is 2/16, 3/16, 4/16, 5/ NUC signals that can be used with the new LDPC codes of 16, 6/16, 7/16, 8/16, 9/16, 10/16, 11/16, 12/16, 13/16, and 14/16 Illustration of examples of point coordinates.
亦即,圖70係為,針對新LDPC碼所能使用的16QAM-2D-NUC的訊號點之座標之例子的圖示。That is, FIG. 70 is a diagram showing an example of the coordinates of the signal point of 16QAM-2D-NUC that can be used for the new LDPC code.
圖71係為,針對新LDPC碼所能使用的64QAM-2D-NUC的訊號點之座標之例子的圖示。Fig. 71 is a diagram showing an example of the coordinates of the 64QAM-2D-NUC signal point that can be used for the new LDPC code.
圖72及圖73係為,針對新LDPC碼所能使用的256QAM-2D-NUC的訊號點之座標之例子的圖示。72 and 73 are diagrams showing examples of the coordinates of the 256QAM-2D-NUC signal point that can be used for the new LDPC code.
此外,圖73係為接續於圖72的圖。In addition, FIG. 73 is a figure continued from FIG. 72.
在圖70至圖73中,係和圖55同樣地,訊號點zs 之座標,係以複數(complex number)的形式來表示,j係表示虛數單位。In FIGS. 70 to 73, the coordinates of the signal point z s are represented in the form of a complex number as in FIG. 55, and j represents an imaginary unit.
於圖70至圖73中,w#k係和圖55同樣地,是表示星座的第1象限的訊號點之座標。In FIGS. 70 to 73, w#k is the coordinate of the signal point representing the first quadrant of the constellation, as in FIG. 55.
此處,如圖55所說明,將m位元的符元,以0至2m -1之整數值來表現,若假設b=2m /4,則用0至2m -1之整數值而被表現的符元y(0)、y(1)、・・・、y(2m -1),係可分類成符元y(0)至y(b-1)、y(b)至y(2b-1)、y(2b)至y(3b-1)、及y(3b)至y(4b-1)之4種。Here, as illustrated in FIG. 55, the m-bit symbol is expressed as an integer value of 0 to 2 m -1. If b=2 m /4 is assumed, the integer value of 0 to 2 m -1 is used. The represented symbols y(0), y(1), ..., y(2 m -1) can be classified into symbols y(0) to y(b-1), y(b) There are 4 types from y(2b-1), y(2b) to y(3b-1), and y(3b) to y(4b-1).
在圖70至圖73中,係和圖55同樣地,w#k的字尾k,係取0至b-1之範圍的整數值,w#k係表示,符元y(0)至y(b-1)之範圍的符元y(k)所對應的訊號點之座標。In FIGS. 70 to 73, the same as in FIG. 55, the suffix k of w#k takes an integer value in the range of 0 to b-1, and w#k represents the symbol element y(0) to y The coordinates of the signal point corresponding to the symbol y(k) in the range of (b-1).
亦即,在圖70至圖73中,係和圖55同樣地,符元y(3b)至y(4b-1)之範圍的符元y(k+3b)所對應的訊號點之座標,係以-w#k而被表示。That is, in FIGS. 70 to 73, as in FIG. 55, the coordinates of the signal point corresponding to the symbol element y(k+3b) in the range of symbol elements y(3b) to y(4b-1), It is represented by -w#k.
但是,在圖55中,符元y(b)至y(2b-1)之範圍的符元y(k+b)所對應的訊號點之座標,係以-conj(w#k)而被表示,符元y(2b)至y(3b-1)之範圍的符元y(k+2b)所對應的訊號點之座標,係以conj(w#k)而被表示,但在圖70至圖73中,conj的符號係為相反。However, in FIG. 55, the coordinates of the signal point corresponding to the symbol y(k+b) in the range of symbols y(b) to y(2b-1) are treated as -conj(w#k) Indicates that the coordinate of the signal point corresponding to the symbol y(k+2b) in the range of symbol y(2b) to y(3b-1) is represented by conj(w#k), but it is shown in Figure 70 In Fig. 73, the symbol system of conj is reversed.
亦即,在圖70至圖73中,符元y(b)至y(2b-1)之範圍的符元y(k+b)所對應的訊號點之座標,係以conj(w#k)而被表示,符元y(2b)至y(3b-1)之範圍的符元y(k+2b)所對應的訊號點之座標,係以-conj(w#k)而被表示。That is, in Figures 70 to 73, the coordinates of the signal points corresponding to the symbols y(k+b) in the range of symbols y(b) to y(2b-1) are conj(w#k ) Is expressed, the coordinates of the signal point corresponding to the symbol element y(k+2b) in the range of symbol elements y(2b) to y(3b-1) are represented by -conj(w#k).
圖74係為,針對新LDPC碼所能使用的1024QAM-1D-NUC的訊號點之座標之例子的圖示。Fig. 74 is a diagram showing an example of the coordinates of the signal point of 1024QAM-1D-NUC that can be used for the new LDPC code.
亦即,圖74係為,1024QAM-1D-NUC的作為訊號點zs 之座標的複數(complex number)之實部Re(zs )及虛部Im(zs ),與位置向量u(的分量u#k)之關係的圖示。That is, Fig. 74 is the real part Re(z s ) and the imaginary part Im(z s ) of the complex number of 1024QAM-1D-NUC as the coordinate of the signal point z s , and the position vector u( Illustration of the relationship of components u#k).
圖75係為1024QAM的符元y、與圖74的位置向量u(的分量u#k)之關係的圖示。FIG. 75 is a diagram showing the relationship between the symbol y of 1024QAM and the position vector u (component u#k) of FIG. 74.
亦即,現在,假設將1024QAM的10位元之符元y,從其開頭的位元(最上位位元)起,表示成y0,s 、y1,s 、y2,s 、y3,s 、y4,s 、y5,s 、y6,s 、y7,s 、y8,s 、y9,s 。That is, now, suppose that the 10-bit symbol y of 1024QAM is represented as y 0, s , y 1, s , y 2, s , y 3 from the beginning bit (the highest bit) , s , y 4, s , y 5, s , y 6, s , y 7, s , y 8, s , y 9, s .
圖75的A係表示了,10位元的符元y的(開頭起算)第奇數個的5位元y0,s 、y2,s 、y4,s 、y6,s 、y8,s ,與將該符元y所對應之訊號點zs (的座標)之實部Re(zs )的位置向量u#k的對應關係。The A system in FIG. 75 shows that the odd-numbered 5-bit y 0,s , y 2,s , y 4,s , y 6,s , y 8, of the 10-bit symbol y (from the beginning) s corresponds to the position vector u#k of the real part Re(z s ) of the signal point z s (coordinates) corresponding to the symbol y.
圖75的B係表示了,10位元的符元y的第偶數個的5位元y1,s 、y3,s 、y5,s 、y7,s 、y9,s ,與將該符元y所對應之訊號點zs 的虛部Im(zs )加以表示的位置向量u#k的對應關係。The B system in FIG. 75 shows that the even-numbered 5-bit y 1,s , y 3,s , y 5,s , y 7,s , y 9,s of the 10-bit symbol y, and the The correspondence relationship of the position vector u#k represented by the imaginary part Im(z s ) of the signal point z s corresponding to the symbol y.
1024QAM的10位元的符元y被對映至圖74及圖75所規定的1024QAM-1D-NUC之訊號點zs 時,該訊號點zs 之座標的求出方法,係和圖56及圖57所說明的情況相同,因此省略說明。When the 10-bit symbol y of 1024QAM is mapped to the signal point z s of 1024QAM-1D-NUC as specified in Fig. 74 and Fig. 75, the method of finding the coordinates of the signal point z s is shown in Fig. 56 and The situation explained in FIG. 57 is the same, so the explanation is omitted.
圖76係為,針對新LDPC碼所能使用的4096QAM-1D-NUC的訊號點之座標之例子的圖示。Fig. 76 is a diagram showing an example of the coordinates of the 4096QAM-1D-NUC signal point that can be used for the new LDPC code.
亦即,圖76係為,4096QAM-1D-NUC的作為訊號點zs 之座標的複數(complex number)之實部Re(zs )及虛部Im(zs ),與位置向量u(u#k)之關係的圖示。That is, Figure 76 shows the real part Re(z s ) and the imaginary part Im(z s ) of the complex number of 4096QAM-1D-NUC as the coordinate of the signal point z s , and the position vector u(u #k) illustration of the relationship.
圖77及圖78係為,4096QAM的符元y、與圖76的位置向量u(的分量u#k)之關係的圖示。77 and 78 are diagrams showing the relationship between the symbol y of 4096QAM and the position vector u (component u#k) of FIG. 76.
亦即,現在,假設將4096QAM的12位元之符元y,從其開頭的位元(最上位位元)起,表示成y0,s 、y1,s 、y2,s 、y3,s 、y4,s 、y5,s 、y6,s 、y7,s 、y8,s 、y9,s 、y10,s 、y11,s 。That is, now, suppose that the 12-bit symbol y of 4096QAM is represented as y 0, s , y 1, s , y 2, s , y 3 from the beginning bit (the highest bit) ,s ,y 4,s ,y 5,s ,y 6,s ,y 7,s ,y 8,s ,y 9,s ,y 10,s ,y 11,s .
圖77係表示了,12位元的符元y的第奇數個的6位元y0,s 、y2,s 、y4,s 、y6,s 、y8,s 、y10,s ,與將該符元y所對應之訊號點zs 之實部Re(zs )加以表示的位置向量u#k的對應關係。Figure 77 shows that the odd-numbered 6-bit y 0,s , y 2,s , y 4,s , y 6,s , y 8,s , y 10,s of the 12th symbol y , Corresponding to the position vector u#k representing the real part Re(z s ) of the signal point z s corresponding to the symbol y.
圖78係表示了,12位元的符元y的第偶數個的6位元y1,s 、y3,s 、y5,s 、y7,s 、y9,s 、y11,s ,與將該符元y所對應之訊號點zs 的虛部Im(zs )加以表示的位置向量u#k的對應關係。Figure 78 shows that the even-numbered 6-bit y 1,s , y 3,s , y 5,s , y 7,s , y 9,s , y 11,s of the 12th symbol y , Corresponding to the position vector u#k representing the imaginary part Im(z s ) of the signal point z s corresponding to the symbol y.
4096QAM的12位元的符元y被對映至圖76至圖78所規定的4096QAM-1D-NUC之訊號點zs 時,該訊號點zs 之座標的求出方法,係和圖56及圖57所說明的情況相同,因此省略說明。When the 12-bit symbol y of 4096QAM is mapped to the signal point z s of the 4096QAM-1D-NUC specified in FIGS. 76 to 78, the method of finding the coordinates of the signal point z s is shown in FIG. 56 and The situation explained in FIG. 57 is the same, so the explanation is omitted.
此外,圖70至圖78的NUC的訊號點(上所被對映之資料)的送訊時,星座上的訊號點之平均功率係可進行正規化。正規化,係若假設將關於星座上的所有訊號點(之座標)的絕對值之自乘平均值表示成Pave ,則將該自乘平均值Pave 的平方根√Pave 之倒數1/(√Pave ),對星座上的各訊號點zs 進行乘算,藉此就可進行之。又,在上述的圖57中,符元y的第奇數個位元是與表示訊號點zs 之虛部Im(zs )的位置向量u#k建立對應,同時,符元y的第偶數個位元是與表示訊號點zs 之實部Re(zs )的位置向量u#k建立對應,但在圖75、以及圖77及圖78中,係相反地,符元y的第奇數個位元是與表示訊號點zs 之實部Re(zs )的位置向量u#k建立對應,同時,符元y的第偶數個位元是與表示訊號點zs 之虛部Im(zs )的位置向量u#k建立對應。In addition, when transmitting the signal points of NUC in Figs. 70 to 78 (data mapped on the above), the average power of the signal points on the constellation can be normalized. Normalization, assuming that based on the squared average of all signal points (the coordinates) on the absolute values of the constellation represented as P ave, then the reciprocal square root of the squared average √P ave 1 P ave / ( √P ave ), multiplying each signal point z s on the constellation, which can be carried out. In addition, in the above-mentioned FIG. 57, the odd-numbered bit of the symbol y is associated with the position vector u#k representing the imaginary part Im(z s ) of the signal point z s , and at the same time, the even-number of the symbol y The one bit corresponds to the position vector u#k representing the real part Re(z s ) of the signal point z s , but in FIG. 75, and FIG. 77 and FIG. 78, on the contrary, the odd number of the symbol y bytes is in association with the real part Re (z s) of the position vector represents the signal point z s u # k, while the even-numbered symbol bit y is the imaginary part of the signal representing the point z s Im ( The position vector u#k of z s ) establishes a correspondence.
<區塊交錯器25><
圖79係為,圖9的區塊交錯器25中所進行的區塊交錯的說明圖。FIG. 79 is an explanatory diagram of block interleaving performed by the
區塊交錯,係將1碼字的LDPC碼,從其開頭起,分成被稱為部分1(part 1)之部分、與被稱為部分2(part 2)之部分,而被進行。Block interleaving is performed by dividing the LDPC code of 1 codeword from the beginning into a part called part 1 (part 1) and a part called part 2 (part 2).
若將部分1之長度(位元數)表示為Npart1,同時,將部分2之長度表示為Npart2,則Npart1+Npart2係等於碼長度N。If the length of part 1 (number of bits) is expressed as Npart1, and at the same time, the length of
在觀念上,在區塊交錯中,作為1方向的縱列(縱)方向上,作為將Npart1/m位元加以記憶之記憶領域的縱列(column),是在與縱列方向正交之橫行方向上,排列達到與符元之位元數m相等之數量m,各縱列係從上而下,被切割成平行因子P也就是360位元之小單位。此縱列之小單位,亦稱為縱列單元。Conceptually, in block interleaving, the column as a memory area that stores Npart1/m bits in the column (vertical) direction of one direction is orthogonal to the column direction. In the horizontal direction, the arrangement reaches a number m equal to the number of bits m of the symbol, and each column is cut from top to bottom to be parallel factor P, which is a small unit of 360 bits. The small units in this column are also called column units.
在區塊交錯中,係如圖79所示,將1碼字的LDPC碼的部分1,對縱列的第1個縱列單元的從上往下方向(縱列方向)進行寫入這件事情,是從左往右方向之縱列而被進行。In block interleaving, as shown in FIG. 79,
然後,一旦對右端之縱列之第1個縱列單元的寫入結束,則如圖79所示,回到左端之縱列,對縱列之第2個縱列單元的從上往下方向進行寫入這件事情,是從左往右方向之縱列而被進行,以下同樣地,1碼字的LDPC碼的部分1之寫入會被進行。Then, once the writing to the first column of the right column is completed, as shown in FIG. 79, it returns to the column at the left end, and from the top to the bottom of the second column of columns The writing is performed in a column from left to right. In the same manner below, the writing of
1碼字的LDPC碼的部分1之寫入一旦結束,則如圖79所示,從m個所有的縱列之第1行起,朝橫行方向,以m位元單位,讀出LDPC碼的部分1。Once the writing of
此部分1的m位元單位,係作為m位元的符元,而從區塊交錯器25被供給至對映器117(圖8)。The m-bit unit of this
以m位元單位進行的部分1之讀出,係朝m個縱列的下方的行而被依序進行,一旦部分1之讀出結束,則部分2,係從開頭起,被分割成m位元單位,作為m位元的符元,從區塊交錯器25被供給至對映器117。The reading of
因此,部分1係一面被交錯而一面被符元化,部分2係不被交錯,是被依序切割成m位元而被符元化。Therefore, the
縱列之長度也就是Npart1/m,係為平行因子P也就是360的倍數,以如此Npart1/m係為360之倍數的方式,1碼字的LDPC碼,係被劃分成部分1與部分2。The length of the column is Npart1/m, which is the parallel factor P, which is a multiple of 360. In such a way that Npart1/m is a multiple of 360, the LDPC code of 1 codeword is divided into
圖80係為,調變方式是QPSK、16QAM、64QAM、及256QAM之各情況下的,碼長度N為17280位元的LDPC碼的部分1及部分2之例子的圖示。Fig. 80 is a diagram showing an example of
調變方式是QPSK、16QAM、64QAM、及256QAM時,任一情況下,部分1係為17280位元,部分2係為0位元。When the modulation method is QPSK, 16QAM, 64QAM, and 256QAM, in any case,
<群組式交錯><Group Interlace>
圖81係為圖9的群組式交錯器24中所進行的群組式交錯的說明圖。FIG. 81 is an explanatory diagram of group interleaving performed in the
在群組式交錯中,係如圖81所示,將1碼字之LDPC碼,從其開頭起,區分成等於平行因子P的360位元單位,將該1區分的360位元,當作位元群組,1碼字之LDPC碼,係以位元群組單位,依照所定之型樣(以下亦稱為GW型樣)而被交錯。In group interleaving, as shown in FIG. 81, the LDPC code of 1 codeword is divided from the beginning into 360-bit units equal to the parallel factor P, and the 360-bit divided by 1 is regarded as The bit group, an LDPC code of 1 codeword, is interleaved in units of bit groups according to a predetermined pattern (hereinafter also referred to as GW pattern).
此處,將1碼字之LDPC碼區分成位元群組時的從開頭起第i+1個位元群組,以下亦記載成位元群組i。Here, when the LDPC code of 1 codeword is divided into bit groups, the i+1th bit group from the beginning is also described as bit group i below.
平行因子P為360的情況下,例如,碼長度N為1800位元之LDPC碼,係被區分成位元群組0,1,2,3,4的5(=1800/360)個位元群組。再者,例如,碼長度N為69120位元之LDPC碼,係被區分成位元群組0,1,・・・,191的192(=69120/360)個位元群組。又,例如,碼長度N為17280位元之LDPC碼,係被區分成位元群組0,1,・・・,47的48(=17280/360)個位元群組。When the parallel factor P is 360, for example, an LDPC code with a code length N of 1800 bits is divided into 5 (=1800/360) bits of the
以下假設將GW型樣,以表示位元群組的數字之排列來加以表示。例如,關於碼長度N為1800位元的5個位元群組0,1,2,3,4的LDPC碼,例如,GW型樣4,2,0,3,1係表示,將位元群組0,1,2,3,4之排列,交錯(排序)成位元群組4,2,0,3,1之排列。此外,關於位元群組之排列或GW型樣,係除了用表示位元群組之號碼的逗點分隔之排列(例如4,2,0,3,1)來表示以外,亦使用表示位元群組之號碼的空白分隔之排列(例如4 2 0 3 1)來表示。The following assumes that the GW pattern is represented by the arrangement of numbers representing bit groups. For example, regarding the LDPC code of 5
例如,現在,將碼長度N為1800位元的LDPC碼的從開頭起第i+1個碼位元,以xi 來表示。For example, for the LDPC code whose code length N is 1800 bits, the i+1th code bit from the beginning is represented by x i .
此情況下,若依據GW型樣4,2,0,3,1的群組式交錯,則1800位元的LDPC碼{x0 ,x1 ,...,x1799 }係被交錯成{x1440 ,x1441 ,...,x1799 }, {x720 ,x721 ,...,x1079 }, {x0 ,x1 ,...,x359 }, {x1080 ,x1081 ,...,x1439 }, {x360 ,x361 ,...,x719 }之排列。In this case, if group interleaving based on the GW pattern of 4 , 2 , 0 , 3 , 1 , the 1800-bit LDPC code {x 0 , x 1 ,..., x 1799 } is interleaved into { x 1440 ,x 1441 ,...,x 1799 }, {x 720 ,x 721 ,...,x 1079 }, {x 0 ,x 1 ,...,x 359 }, {x 1080 ,x 1081 ,...,x 1439 }, {x 360 ,x 361 ,...,x 719 }.
GW型樣,係可隨著LDPC碼的每種碼長度N、或每種編碼率r、每種調變方式、每種星座、甚至隨碼長度N、編碼率r、調變方式、及星座之2以上者的每種組合,來做設定。The GW pattern can vary with each code length N of the LDPC code, or each coding rate r, each modulation method, each constellation, and even with the code length N, coding rate r, modulation method, and constellation Each combination of 2 or more is used for setting.
<對LDPC碼的GW型樣之例子><Example of GW pattern for LDPC code>
圖82係針對碼長度N為17280位元之LDPC碼的GW型樣之第1例的圖示。Fig. 82 is a diagram showing the first example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖82的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 82, the arrangement of
圖83係針對碼長度N為17280位元之LDPC碼的GW型樣之第2例的圖示。Fig. 83 is a diagram showing a second example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖83的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 83, the arrangement of
圖84係針對碼長度N為17280位元之LDPC碼的GW型樣之第3例的圖示。Fig. 84 is a diagram showing a third example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖84的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 84, the arrangement of
圖85係針對碼長度N為17280位元之LDPC碼的GW型樣之第4例的圖示。Fig. 85 is a diagram showing a fourth example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖85的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 85, the arrangement of
圖86係針對碼長度N為17280位元之LDPC碼的GW型樣之第5例的圖示。Fig. 86 is a diagram showing a fifth example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖86的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 86, the arrangement of the
圖87係針對碼長度N為17280位元之LDPC碼的GW型樣之第6例的圖示。Fig. 87 is a diagram showing a sixth example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖87的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 87, the arrangement of the
圖88係針對碼長度N為17280位元之LDPC碼的GW型樣之第7例的圖示。Fig. 88 is a diagram showing a seventh example of the GW pattern of an LDPC code having a code length N of 17280 bits.
若依據圖88的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 88, the arrangement of
圖89係針對碼長度N為17280位元之LDPC碼的GW型樣之第8例的圖示。Fig. 89 is a diagram showing an eighth example of the GW pattern for an LDPC code having a code length N of 17280 bits.
若依據圖89的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 89, the arrangement of the
圖90係針對碼長度N為17280位元之LDPC碼的GW型樣之第9例的圖示。Fig. 90 is a diagram showing a ninth example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖90的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 90, the arrangement of
圖91係針對碼長度N為17280位元之LDPC碼的GW型樣之第10例的圖示。Fig. 91 is a diagram showing a tenth example of the GW pattern of an LDPC code having a code length N of 17280 bits.
若依據圖91的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 91, the arrangement of
圖92係針對碼長度N為17280位元之LDPC碼的GW型樣之第11例的圖示。Fig. 92 is a diagram showing an eleventh example of the GW pattern of an LDPC code having a code length N of 17280 bits.
若依據圖92的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 92, the arrangement of
圖93係針對碼長度N為17280位元之LDPC碼的GW型樣之第12例的圖示。Fig. 93 is a diagram showing a twelfth example of the GW pattern for an LDPC code having a code length N of 17280 bits.
若依據圖93的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 93, the arrangement of the
圖94係針對碼長度N為17280位元之LDPC碼的GW型樣之第13例的圖示。Fig. 94 is a diagram showing a thirteenth example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖94的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 94, the arrangement of the
圖95係針對碼長度N為17280位元之LDPC碼的GW型樣之第14例的圖示。Fig. 95 is a diagram showing a 14th example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖95的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 95, the arrangement of
圖96係針對碼長度N為17280位元之LDPC碼的GW型樣之第15例的圖示。Fig. 96 is a diagram showing a fifteenth example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖96的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 96, the arrangement of
圖97係針對碼長度N為17280位元之LDPC碼的GW型樣之第16例的圖示。Fig. 97 is a diagram showing the 16th example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖97的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 97, the arrangement of the
圖98係針對碼長度N為17280位元之LDPC碼的GW型樣之第17例的圖示。Fig. 98 is a diagram showing the 17th example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖98的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 98, the arrangement of the
圖99係針對碼長度N為17280位元之LDPC碼的GW型樣之第18例的圖示。Fig. 99 is a diagram showing an eighteenth example of the GW pattern for an LDPC code having a code length N of 17280 bits.
若依據圖99的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 99, the arrangement of
圖100係針對碼長度N為17280位元之LDPC碼的GW型樣之第19例的圖示。FIG. 100 is a diagram showing a nineteenth example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖100的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 100, the arrangement of
圖101係針對碼長度N為17280位元之LDPC碼的GW型樣之第20例的圖示。FIG. 101 is a diagram of the twentieth example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖101的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 101, the arrangement of the
圖102係針對碼長度N為17280位元之LDPC碼的GW型樣之第21例的圖示。Fig. 102 is a diagram showing a twenty-first example of the GW pattern of an LDPC code having a code length N of 17280 bits.
若依據圖102的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 102, the arrangement of the
圖103係針對碼長度N為17280位元之LDPC碼的GW型樣之第22例的圖示。Fig. 103 is a diagram showing the 22nd example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖103的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 103, the arrangement of the
圖104係針對碼長度N為17280位元之LDPC碼的GW型樣之第23例的圖示。Fig. 104 is a diagram showing the 23rd example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖104的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 104, the arrangement of the
圖105係針對碼長度N為17280位元之LDPC碼的GW型樣之第24例的圖示。Fig. 105 is a diagram showing the 24th example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖105的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 105, the arrangement of the
圖106係針對碼長度N為17280位元之LDPC碼的GW型樣之第25例的圖示。Fig. 106 is a diagram showing the 25th example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖106的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 106, the arrangement of the
圖107係針對碼長度N為17280位元之LDPC碼的GW型樣之第26例的圖示。Fig. 107 is a diagram showing the 26th example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖107的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 107, the arrangement of the
圖108係針對碼長度N為17280位元之LDPC碼的GW型樣之第27例的圖示。Fig. 108 is a diagram showing the 27th example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖108的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 108, the arrangement of the
圖109係針對碼長度N為17280位元之LDPC碼的GW型樣之第28例的圖示。FIG. 109 is a diagram of the 28th example of the GW pattern for the LDPC code whose code length N is 17280 bits.
若依據圖109的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 109, the arrangement of the
圖110係針對碼長度N為17280位元之LDPC碼的GW型樣之第29例的圖示。Fig. 110 is a diagram showing the 29th example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖110的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 110, the arrangement of the
圖111係針對碼長度N為17280位元之LDPC碼的GW型樣之第30例的圖示。FIG. 111 is a diagram of the 30th example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖111的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 111, the arrangement of the
圖112係針對碼長度N為17280位元之LDPC碼的GW型樣之第31例的圖示。Fig. 112 is a diagram showing the 31st example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖112的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 112, the arrangement of the
圖113係針對碼長度N為17280位元之LDPC碼的GW型樣之第32例的圖示。FIG. 113 is a diagram of the 32nd example of the GW pattern for the LDPC code whose code length N is 17280 bits.
若依據圖113的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 113, the arrangement of
圖114係針對碼長度N為17280位元之LDPC碼的GW型樣之第33例的圖示。FIG. 114 is a diagram of the 33rd example of the GW pattern for the LDPC code whose code length N is 17280 bits.
若依據圖114的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 114, the arrangement of the
圖115係針對碼長度N為17280位元之LDPC碼的GW型樣之第34例的圖示。FIG. 115 is a diagram of the 34th example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖115的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 115, the arrangement of the
圖116係針對碼長度N為17280位元之LDPC碼的GW型樣之第35例的圖示。FIG. 116 is a diagram showing the 35th example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖116的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 116, the arrangement of
圖117係針對碼長度N為17280位元之LDPC碼的GW型樣之第36例的圖示。FIG. 117 is a diagram of the 36th example of the GW pattern for the LDPC code whose code length N is 17280 bits.
若依據圖117的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 117, the arrangement of
圖118係針對碼長度N為17280位元之LDPC碼的GW型樣之第37例的圖示。Fig. 118 is a diagram showing a 37th example of the GW pattern for an LDPC code having a code length N of 17280 bits.
若依據圖118的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 118, the arrangement of
圖119係針對碼長度N為17280位元之LDPC碼的GW型樣之第38例的圖示。FIG. 119 is a diagram showing the 38th example of the GW pattern for the LDPC code whose code length N is 17280 bits.
若依據圖119的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 119, the arrangement of
圖120係針對碼長度N為17280位元之LDPC碼的GW型樣之第39例的圖示。Fig. 120 is a diagram showing the 39th example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖120的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 120, the arrangement of
圖121係針對碼長度N為17280位元之LDPC碼的GW型樣之第40例的圖示。FIG. 121 is a diagram of the 40th example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖121的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 121, the arrangement of the
圖122係針對碼長度N為17280位元之LDPC碼的GW型樣之第41例的圖示。FIG. 122 is a diagram showing the 41st example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖122的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 122, the arrangement of the
圖123係針對碼長度N為17280位元之LDPC碼的GW型樣之第42例的圖示。Fig. 123 is a diagram showing the 42nd example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖123的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 123, the arrangement of the
圖124係針對碼長度N為17280位元之LDPC碼的GW型樣之第43例的圖示。Fig. 124 is a diagram showing the 43rd example of the GW pattern for the LDPC code whose code length N is 17280 bits.
若依據圖124的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 124, the arrangement of the
圖125係針對碼長度N為17280位元之LDPC碼的GW型樣之第44例的圖示。FIG. 125 is a diagram showing the 44th example of the GW pattern of the LDPC code whose code length N is 17280 bits.
若依據圖125的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 125, the arrangement of the
圖126係針對碼長度N為17280位元之LDPC碼的GW型樣之第45例的圖示。FIG. 126 is a diagram of the 45th example of the GW pattern for the LDPC code whose code length N is 17280 bits.
若依據圖126的GW型樣,則17280位元的LDPC碼的位元群組0至47之排列,係被交錯成位元群組
之排列。According to the GW pattern of FIG. 126, the arrangement of
以上對碼長度N為17280位元的LDPC碼的GW型樣的第1至第45之例子,係對於碼長度N為17280位元的,任意編碼率r的LDPC碼、任意的調變方式、及任意的星座之組合,均可適用。The first to 45th examples of the GW pattern of the LDPC code with a code length N of 17280 bits are the LDPC codes with an arbitrary coding rate r and arbitrary modulation methods for the code length N with 17280 bits. Any combination of constellations can be applied.
但是,關於群組式交錯,係藉由將所適用的GW型樣,按照LDPC碼之碼長度N、LDPC碼之編碼率r、調變方式、及星座之每種組合來做設定,就可針對各組合,較為改善錯誤率。However, the group interleaving can be set by setting the applicable GW pattern according to each combination of the code length N of the LDPC code, the coding rate r of the LDPC code, the modulation method, and the constellation. For each combination, the error rate is more improved.
圖82的GW型樣係例如,藉由對圖31的(對應於檢查矩陣初期值表的)r=3/16的類型A碼、QPSK、以及圖58及圖59的QPSK-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 82 is, for example, by combining the type A code of FIG. 31 (corresponding to the initial value table of the check matrix) with r=3/16, QPSK, and QPSK-UC of FIGS. 58 and 59. If applicable, a particularly good error rate can be achieved.
圖83的GW型樣係例如,藉由對圖33的r=5/16的類型A碼、QPSK、以及圖58及圖59的QPSK-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 83 is, for example, by applying a combination of type A code of r=5/16 of FIG. 33, QPSK, and QPSK-UC of FIGS. 58 and 59, a particularly good error rate can be achieved .
圖84的GW型樣係例如,藉由對圖36的r=7/16的類型B碼、QPSK、以及圖58及圖59的QPSK-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 84 is, for example, a particularly good error rate can be achieved by applying a combination of type B code of r=7/16 of FIG. 36, QPSK, and QPSK-UC of FIGS. 58 and 59. .
圖85的GW型樣係例如,藉由對圖52的r=9/16的新類型B碼、QPSK、以及圖58及圖59的QPSK-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 85 is, for example, a particularly good error can be achieved by applying a combination of the new type B code of r=9/16 of FIG. 52, QPSK, and QPSK-UC of FIGS. 58 and 59. rate.
圖86的GW型樣係例如,藉由對圖40的r=11/16的類型B碼、QPSK、以及圖58及圖59的QPSK-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 86 is, for example, a particularly good error rate can be achieved by applying the combination of the type B code of r=11/16 of FIG. 40, QPSK, and QPSK-UC of FIGS. 58 and 59. .
圖87的GW型樣係例如,藉由對圖42的r=13/16的類型B碼、QPSK、以及圖58及圖59的QPSK-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 87 is, for example, by applying a combination of type B code of r=13/16 of FIG. 42, QPSK, and QPSK-UC of FIGS. 58 and 59, a particularly good error rate can be achieved .
圖88的GW型樣係例如,藉由對圖31的r=3/16的類型A碼、16QAM、以及圖60及圖61的16QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW type pattern of FIG. 88 is, for example, a particularly good error rate can be achieved by applying the combination of type A code of r=3/16 of FIG. 31, 16QAM, and 16QAM-UC of FIGS. 60 and 61. .
圖89的GW型樣係例如,藉由對圖33的r=5/16的類型A碼、16QAM、以及圖60及圖61的16QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 89 is, for example, a particularly good error rate can be achieved by applying the combination of type A code of r=5/16 of FIG. 33, 16QAM, and 16QAM-UC of FIGS. 60 and 61. .
圖90的GW型樣係例如,藉由對圖36的r=7/16的類型B碼、16QAM、以及圖60及圖61的16QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 90 is, for example, by applying a combination of type B code of r=7/16 of FIG. 36, 16QAM, and 16QAM-UC of FIGS. 60 and 61, a particularly good error rate can be achieved .
圖91的GW型樣係例如,藉由對圖52的r=9/16的新類型B碼、16QAM、以及圖60及圖61的16QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 91 is, for example, a particularly good error can be achieved by applying the combination of the new type B code of r=9/16 of FIG. 52, 16QAM, and 16QAM-UC of FIGS. 60 and 61. rate.
圖92的GW型樣係例如,藉由對圖40的r=11/16的類型B碼、16QAM、以及圖60及圖61的16QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 92 is, for example, a particularly good error rate can be achieved by applying the combination of the type B code of r=11/16 of FIG. 40, 16QAM, and 16QAM-UC of FIGS. 60 and 61. .
圖93的GW型樣係例如,藉由對圖42的r=13/16的類型B碼、16QAM、以及圖60及圖61的16QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 93 is, for example, a particularly good error rate can be achieved by applying the combination of the type B code of r=13/16 of FIG. 42, 16QAM, and 16QAM-UC of FIGS. 60 and 61. .
圖94的GW型樣係例如,藉由對圖30的r=2/16的類型A碼、16QAM、以及圖70的16QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 94 is, for example, suitable for the combination of the type A code of r=2/16 of FIG. 30, 16QAM, and 16QAM-2D-NUC of FIG. 70 to achieve a particularly good error rate.
圖95的GW型樣係例如,藉由對圖50的r=4/16的新類型A碼、16QAM、以及圖70的16QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 95 is, for example, a particularly good error rate can be achieved by applying a combination of the new type A code of r=4/16 of FIG. 50, 16QAM, and 16QAM-2D-NUC of FIG. 70. .
圖96的GW型樣係例如,藉由對圖34的r=6/16的類型A碼、16QAM、以及圖70的16QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 96 is, for example, suitable for the combination of the type A code of r=6/16 of FIG. 34, 16QAM, and 16QAM-2D-NUC of FIG. 70 to achieve a particularly good error rate.
圖97的GW型樣係例如,藉由對圖37的r=8/16的類型B碼、16QAM、以及圖70的16QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 97 is, for example, suitable for the combination of the type B code of r=8/16 of FIG. 37, 16QAM, and 16QAM-2D-NUC of FIG. 70 to achieve a particularly good error rate.
圖98的GW型樣係例如,藉由對圖39的r=10/16的類型B碼、16QAM、以及圖70的16QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 98 is, for example, a particularly good error rate can be achieved by applying a combination of type B code of r=10/16 of FIG. 39, 16QAM, and 16QAM-2D-NUC of FIG. 70.
圖99的GW型樣係例如,藉由對圖41的r=12/16的類型B碼、16QAM、以及圖70的16QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 99 is, for example, suitable for the combination of the type B code of r=12/16 of FIG. 41, 16QAM, and 16QAM-2D-NUC of FIG. 70 to achieve a particularly good error rate.
圖100的GW型樣係例如,藉由對圖43的r=14/16的類型B碼、16QAM、以及圖70的16QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 100 is, for example, suitable for the combination of the type B code of r=14/16 of FIG. 43, 16QAM, and 16QAM-2D-NUC of FIG. 70 to achieve a particularly good error rate.
圖101的GW型樣係例如,藉由對圖30的r=2/16的類型A碼、64QAM、以及圖62及圖63的64QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW type pattern of FIG. 101 is, for example, a particularly good error rate can be achieved by applying a combination of type A code of r=2/16 of FIG. 30, 64QAM, and 64QAM-UC of FIGS. 62 and 63. .
圖102的GW型樣係例如,藉由對圖50的r=4/16的新類型A碼、64QAM、以及圖62及圖63的64QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 102 is, for example, a particularly good error can be achieved by applying a combination of the new type A code of r=4/16 of FIG. 50, 64QAM, and 64QAM-UC of FIGS. 62 and 63. rate.
圖103的GW型樣係例如,藉由對圖34的r=6/16的類型A碼、64QAM、以及圖62及圖63的64QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 103 is, for example, a particularly good error rate can be achieved by applying a combination of type A code of r=6/16 of FIG. 34, 64QAM, and 64QAM-UC of FIGS. 62 and 63. .
圖104的GW型樣係例如,藉由對圖37的r=8/16的類型B碼、64QAM、以及圖62及圖63的64QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 104 is, for example, a particularly good error rate can be achieved by applying the combination of type B code of r=8/16 of FIG. 37, 64QAM, and 64QAM-UC of FIGS. 62 and 63. .
圖105的GW型樣係例如,藉由對圖39的r=10/16的類型B碼、64QAM、以及圖62及圖63的64QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 105 is, for example, by applying a combination of type B code of r=10/16 of FIG. 39, 64QAM, and 64QAM-UC of FIGS. 62 and 63, a particularly good error rate can be achieved .
圖106的GW型樣係例如,藉由對圖41的r=12/16的類型B碼、64QAM、以及圖62及圖63的64QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 106 is, for example, a particularly good error rate can be achieved by applying a combination of type B code of r=12/16 of FIG. 41, 64QAM, and 64QAM-UC of FIGS. 62 and 63. .
圖107的GW型樣係例如,藉由對圖43的r=14/16的類型B碼、64QAM、以及圖62及圖63的64QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 107 is, for example, a particularly good error rate can be achieved by applying a combination of type B code of r=14/16 of FIG. 43, 64QAM, and 64QAM-UC of FIGS. 62 and 63. .
圖108的GW型樣係例如,藉由對圖31的r=3/16的類型A碼、64QAM、以及圖71的64QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 108 is, for example, suitable for the combination of type A code with r=3/16 of FIG. 31, 64QAM, and 64QAM-2D-NUC of FIG. 71 to achieve a particularly good error rate.
圖109的GW型樣係例如,藉由對圖33的r=5/16的類型A碼、64QAM、以及圖71的64QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 109 is, for example, suitable for the combination of the type A code with r=5/16 of FIG. 33, 64QAM, and 64QAM-2D-NUC of FIG. 71 to achieve a particularly good error rate.
圖110的GW型樣係例如,藉由對圖36的r=7/16的類型B碼、64QAM、以及圖71的64QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 110 is, for example, suitable for the combination of the type B code of r=7/16 of FIG. 36, 64QAM, and 64QAM-2D-NUC of FIG. 71 to achieve a particularly good error rate.
圖111的GW型樣係例如,藉由對圖52的r=9/16的新類型B碼、64QAM、以及圖71的64QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 111 is, for example, by applying the combination of the new type B code of r=9/16 of FIG. 52, 64QAM, and 64QAM-2D-NUC of FIG. 71, a particularly good error rate can be achieved .
圖112的GW型樣係例如,藉由對圖40的r=11/16的類型B碼、64QAM、以及圖71的64QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 112 is, for example, suitable for the combination of the type B code of r=11/16 of FIG. 40, 64QAM, and 64QAM-2D-NUC of FIG. 71 to achieve a particularly good error rate.
圖113的GW型樣係例如,藉由對圖42的r=13/16的類型B碼、64QAM、以及圖71的64QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 113 is, for example, suitable for the combination of the type B code of r=13/16 of FIG. 42, 64QAM, and 64QAM-2D-NUC of FIG. 71 to achieve a particularly good error rate.
圖114的GW型樣係例如,藉由對圖31的r=3/16的類型A碼、256QAM、以及圖64及圖65的256QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 114 is, for example, a particularly good error rate can be achieved by applying the combination of the type A code of r=3/16 of FIG. 31, 256QAM, and 256QAM-UC of FIGS. 64 and 65. .
圖115的GW型樣係例如,藉由對圖33的r=5/16的類型A碼、256QAM、以及圖64及圖65的256QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 115 is, for example, a particularly good error rate can be achieved by applying a combination of type A code of r=5/16 of FIG. 33, 256QAM, and 256QAM-UC of FIGS. 64 and 65. .
圖116的GW型樣係例如,藉由對圖36的r=7/16的類型B碼、256QAM、以及圖64及圖65的256QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 116 is, for example, a particularly good error rate can be achieved by applying a combination of type B code of r=7/16 of FIG. 36, 256QAM, and 256QAM-UC of FIGS. 64 and 65. .
圖117的GW型樣係例如,藉由對圖52的r=9/16的新類型B碼、256QAM、以及圖64及圖65的256QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 117 is, for example, a particularly good error can be achieved by applying a combination of the new type B code of r=9/16 of FIG. 52, 256QAM, and 256QAM-UC of FIGS. 64 and 65. rate.
圖118的GW型樣係例如,藉由對圖40的r=11/16的類型B碼、256QAM、以及圖64及圖65的256QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 118 is, for example, a particularly good error rate can be achieved by applying the combination of the type B code of r=11/16 of FIG. 40, 256QAM, and 256QAM-UC of FIGS. 64 and 65. .
圖119的GW型樣係例如,藉由對圖42的r=13/16的類型B碼、256QAM、以及圖64及圖65的256QAM-UC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 119 is, for example, a particularly good error rate can be achieved by applying a combination of type B code of r=13/16 of FIG. 42, 256QAM, and 256QAM-UC of FIGS. 64 and 65. .
圖120的GW型樣係例如,藉由對圖30的r=2/16的類型A碼、256QAM、以及圖72及圖73的256QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 120 is, for example, suitable for the combination of the type A code with r=2/16 of FIG. 30, 256QAM, and the 256QAM-2D-NUC of FIGS. 72 and 73, to achieve particularly good Error rate.
圖121的GW型樣係例如,藉由對圖50的r=4/16的新類型A碼、256QAM、以及圖72及圖73的256QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW-type pattern of FIG. 121 is, for example, suitable for a combination of the new type A code of r=4/16 of FIG. 50, 256QAM, and 256QAM-2D-NUC of FIGS. 72 and 73, which is particularly good Error rate.
圖122的GW型樣係例如,藉由對圖34的r=6/16的類型A碼、256QAM、以及圖72及圖73的256QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 122 is, for example, by applying a combination of type A code of r=6/16 of FIG. 34, 256QAM, and 256QAM-2D-NUC of FIGS. 72 and 73, a particularly good result can be achieved Error rate.
圖123的GW型樣係例如,藉由對圖37的r=8/16的類型B碼、256QAM、以及圖72及圖73的256QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 123 is, for example, suitable for the combination of the type B code of r=8/16 of FIG. 37, 256QAM, and 256QAM-2D-NUC of FIGS. 72 and 73, and particularly good Error rate.
圖124的GW型樣係例如,藉由對圖39的r=10/16的類型B碼、256QAM、以及圖72及圖73的256QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 124 is, for example, by applying a combination of the type B code of r=10/16 of FIG. 39, 256QAM, and 256QAM-2D-NUC of FIGS. 72 and 73, particularly good Error rate.
圖125的GW型樣係例如,藉由對圖41的r=12/16的類型B碼、256QAM、以及圖72及圖73的256QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW pattern of FIG. 125 is, for example, suitable for the combination of the type B code of r=12/16 of FIG. 41, 256QAM, and 256QAM-2D-NUC of FIGS. 72 and 73, to achieve particularly good Error rate.
圖126的GW型樣係例如,藉由對圖43的r=14/16的類型B碼、256QAM、以及圖72及圖73的256QAM-2D-NUC之組合做適用,就可達成尤其良好的錯誤率。The GW-type pattern of FIG. 126 is, for example, suitable for the combination of the type B code of r=14/16 of FIG. 43, 256QAM, and 256QAM-2D-NUC of FIGS. 72 and 73, to achieve particularly good Error rate.
<收訊裝置12之構成例><Configuration example of the receiving
圖127係為圖7的收訊裝置12之構成例的區塊圖。FIG. 127 is a block diagram of a configuration example of the receiving
OFDM處理部(OFDM operation)151,係將來自送訊裝置11(圖7)的OFDM訊號予以接收,進行該OFDM訊號的訊號處理。藉由OFDM處理部151進行訊號處理所得的資料,係被供給至訊框管理部(Frame Management)152。The OFDM operation unit (OFDM operation) 151 receives the OFDM signal from the transmission device 11 (FIG. 7) and performs signal processing of the OFDM signal. The data obtained by the signal processing by the
訊框管理部152,係進行由從OFDM處理部151所被供給之資料所被構成的訊框之處理(訊框解譯),將其結果所得之對象資料之訊號、與控制資料之訊號,分別供給至頻率去交錯器(Frequency Deinterleaver)161與153。The
頻率去交錯器153,係針對來自訊框管理部152之資料,以符元單位進行頻率去交錯,供給至解對映器(Demapper)154。The
解對映器154,係將來自頻率去交錯器153之資料(星座上之資料),基於送訊裝置11側中所進行的正交調變所決定的訊號點之配置(星座)而進行解對映(訊號點配置解碼)並進行正交解調,將其結果所得之資料(LDPC碼(之似然度)),供給至LDPC解碼器(LDPC decoder)155。The de-emitter 154 decodes the data from the frequency deinterleaver 153 (data on the constellation) based on the signal point arrangement (constellation) determined by the orthogonal modulation performed on the side of the transmitting
LDPC解碼器155(解碼部),係進行來自解對映器154的LDPC碼之LDPC解碼,將其結果所得之LDPC對象資料(此處係為BCH碼),供給至BCH解碼器(BCH decoder)156。The LDPC decoder 155 (decoding unit) performs LDPC decoding of the LDPC code from the de-encoder 154, and supplies the resulting LDPC object data (here BCH code) to the BCH decoder (BCH decoder) 156.
BCH解碼器156,係進行來自LDPC解碼器155的LDPC對象資料之BCH解碼,將其結果所得之控制資料(訊令),予以輸出。The
另一方面,頻率去交錯器161,係針對來自訊框管理部152之資料,以符元單位進行頻率去交錯,供給至SISO/MISO解碼器(SISO/MISO decoder)162。On the other hand, the
SISO/MISO解碼器162,係進行來自頻率去交錯器161之資料的時空間解碼,供給至時間去交錯器(Time Deinterleaver)163。The SISO/
時間去交錯器163,係針對來自SISO/MISO解碼器162之資料,以符元單位進行時間去交錯,供給至解對映器(Demapper)164。The
解對映器164,係將來自時間去交錯器163之資料(星座上之資料),基於送訊裝置11側中所進行的正交調變所決定的訊號點之配置(星座)而進行解對映(訊號點配置解碼)並進行正交解調,將其結果所得之資料,供給至位元去交錯器(Bit Deinterleaver)165。The de-emitter 164 decodes the data from the time deinterleaver 163 (data on the constellation) based on the signal point arrangement (constellation) determined by the orthogonal modulation performed on the side of the transmitting
位元去交錯器165,係進行來自解對映器164之資料的位元去交錯,將該位元去交錯後的資料也就是LDPC碼(之似然度),供給至LDPC解碼器166。The bit deinterleaver 165 performs bit deinterleaving of the data from the
LDPC解碼器166,係進行來自位元去交錯器165的LDPC碼之LDPC解碼,將其結果所得之LDPC對象資料(此處係為BCH碼),供給至BCH解碼器167。The
BCH解碼器167,係進行來自LDPC解碼器155的LDPC對象資料之BCH解碼,將其結果所得之資料,供給至BB解拌碼器(BB DeScrambler)168。The
BB解拌碼器168,係對來自BCH解碼器167之資料,實施BB解拌碼,將其結果所得之資料,供給至空值刪除部(Null Deletion)169。The
空值刪除部169,係從來自BB解拌碼器168之資料,刪除掉在圖8的補整器112中所被插入的Null,供給至解多工器(Demultiplexer)170。The null
解多工器170,係將來自空值刪除部169之資料中所被多工化的1個以上之串流(對象資料)分別予以分離,實施必要的處理,作為輸出串流(Output stream)而予以輸出。The
此外,收訊裝置12,係可不設置圖127中所圖示的區塊之一部分而構成。亦即,例如,送訊裝置11(圖8),係在沒有設置時間交錯器118、SISO/MISO編碼器119、頻率交錯器120、及頻率交錯器124就被構成的情況下,則收訊裝置12,係可不設置送訊裝置11的時間交錯器118、SISO/MISO編碼器119、頻率交錯器120、及頻率交錯器124所分別對應之區塊也就是時間去交錯器163、SISO/MISO解碼器162、頻率去交錯器161、及頻率去交錯器153而被構成。In addition, the receiving
<位元去交錯器165之構成例><Configuration example of bit deinterleaver 165>
圖128係圖127的位元去交錯器165之構成例的區塊圖。FIG. 128 is a block diagram of a configuration example of the bit deinterleaver 165 of FIG. 127.
位元去交錯器165,係由區塊去交錯器54、及群組式去交錯器55所構成,進行來自解對映器164(圖127)之資料也就是符元的符元位元的(位元)去交錯。The bit deinterleaver 165 is composed of a
亦即,區塊去交錯器54,係以來自解對映器164之符元的符元位元為對象,進行圖9的區塊交錯器25所進行的區塊交錯所對應之區塊去交錯(區塊交錯的逆處理),亦即,將藉由區塊交錯而被排序過的LDPC碼之碼位元(之似然度)的位置還原成原本之位置的區塊去交錯,將其結果所得之LDPC碼,供給至群組式去交錯器55。That is, the
群組式去交錯器55,係以來自區塊去交錯器54之LDPC碼為對象,進行圖9的群組式交錯器24所進行的群組式交錯所對應之群組式去交錯(群組式交錯的逆處理),亦即,例如,將藉由圖81所說明的群組式交錯而以位元群組單位而被變更過排列的LDPC碼之碼位元,以位元群組單位進行排序,以還原成原本之排列的群組式去交錯。The group deinterleaver 55 takes the LDPC code from the
此處,對從解對映器164被供給至位元去交錯器165的LDPC碼,有被實施過同位交錯、群組式交錯、及區塊交錯的情況,則在位元去交錯器165中,係可進行同位交錯所對應之同位去交錯(同位交錯的逆處理,亦即將藉由同位交錯而已被變更過排列的LDPC碼之碼位元,還原成原本之排列的同位去交錯)、區塊交錯所對應之區塊去交錯、及群組式交錯所對應之群組式去交錯的全部。Here, for the LDPC code supplied from the de-emitter 164 to the
但是,在圖128的位元去交錯器165中,雖然有設置進行區塊交錯所對應之區塊去交錯的區塊去交錯器54、及進行群組式交錯所對應之群組式去交錯的群組式去交錯器55,但進行同位交錯所對應之同位去交錯區塊,係亦可不被設置,而不進行同位去交錯。However, in the bit deinterleaver 165 of FIG. 128, there is a
因此,從位元去交錯器165(的群組式去交錯器55)往LDPC解碼器166係供給著,有被進行區塊去交錯、及群組式去交錯,且沒有被進行同位去交錯的LDPC碼。Therefore, the bit deinterleaver 165 (group deinterleaver 55) is supplied to the
LDPC解碼器166,係將來自位元去交錯器165的LDPC碼之LDPC解碼,基於:對於圖8的LDPC編碼器115在LDPC編碼時所用過的類型B方式的檢查矩陣H,至少進行相當於同位交錯的列置換所得的轉換檢查矩陣、或對類型A方式的檢查矩陣(圖27)進行行置換所得的轉換檢查矩陣(圖29),而進行之,將其結果所得之資料,作為LDPC對象資料之解碼結果而予以輸出。The
圖129係為圖128的解對映器164、位元去交錯器165、及LDPC解碼器166所進行之處理的說明用流程圖。FIG. 129 is a flowchart for explaining the processing performed by the de-emitter 164, bit deinterleaver 165, and
於步驟S111中,解對映器164,係將來自時間去交錯器163之資料(已被對映至訊號點的星座上之資料)進行解對映並進行正交解調,供給至位元去交錯器165,處理係前進至步驟S112。In step S111, the de-enumerator 164 de-maps the data from the time deinterleaver 163 (the data on the constellation that has been mapped to the signal point) and performs quadrature demodulation to supply the bit With the
在步驟S112中,位元去交錯器165,係進行來自解對映器164之資料的去交錯(位元去交錯),處理係前進至步驟S113。In step S112, the
亦即,在步驟S112中,係於位元去交錯器165中,區塊去交錯器54,是以來自解對映器164之資料(符元)為對象,進行區塊去交錯,將其結果所得之LDPC碼之碼位元,供給至群組式去交錯器55。That is, in step S112, in the
群組式去交錯器55,係以來自區塊去交錯器54的LDPC碼為對象,進行群組式去交錯,將其結果所得之LDPC碼(之似然度),供給至LDPC解碼器166。The group deinterleaver 55 takes the LDPC code from the
在步驟S113中,LDPC解碼器166,係將來自群組式去交錯器55之LDPC碼的LDPC解碼,基於圖8的LDPC編碼器115在LDPC編碼時所用過的檢查矩陣H來進行之,亦即,例如,基於從檢查矩陣H所得的轉換檢查矩陣來進行之,將其結果所得之資料,作為LDPC對象資料之解碼結果,輸出至BCH解碼器167。In step S113, the
此外,在圖128中也是,和圖9的情況相同,為了說明的方便,而將進行區塊去交錯的區塊去交錯器54、與進行群組式去交錯的群組式去交錯器55,畫成個別地構成,但區塊去交錯器54與群組式去交錯器55係亦可為一體地構成。In addition, in FIG. 128, as in the case of FIG. 9, for descriptive convenience, the
又,於送訊裝置11中,未進行群組式交錯的情況下,則收訊裝置12係亦可不設置進行群組式去交錯的群組式去交錯器55而被構成。In addition, in the case where the transmitting
<LDPC解碼><LDPC decoding>
關於圖127的LDPC解碼器166中所進行的LDPC解碼,再加以說明。The LDPC decoding performed by the
在圖127的LDPC解碼器166中,如上述,來自群組式去交錯器55的,有被進行區塊去交錯、及群組式去交錯,且未被進行同位去交錯的LDPC碼之LDPC解碼,是使用:對於圖8的LDPC編碼器115在LDPC編碼時所用過的類型B方式的檢查矩陣H,至少進行相當於同位交錯的列置換所得的轉換檢查矩陣、或對類型A方式的檢查矩陣(圖27)進行行置換所得的轉換檢查矩陣(圖29),而被進行。In the
此處,藉由使用轉換檢查矩陣來進行LDPC解碼,而抑制電路規模,同時,可將動作頻率抑制在可充分實現之範圍內的LDPC解碼,是在先前已被提案(例如參照日本專利第4224777號)。Here, the LDPC decoding is performed by using a conversion check matrix to suppress the circuit scale, and at the same time, the LDPC decoding that can suppress the operating frequency within a sufficiently achievable range has been previously proposed (for example, refer to Japanese Patent No. 4224777 number).
於是,首先,參照圖130至圖133,說明先前所被提案的,使用轉換檢查矩陣的LDPC解碼。Therefore, first, referring to FIGS. 130 to 133, the LDPC decoding using the conversion check matrix proposed earlier will be described.
圖130係為,碼長度N為90,且編碼率為2/3之LDPC碼的檢查矩陣H的例子的圖示。FIG. 130 is a diagram of an example of a check matrix H of an LDPC code having a code length N of 90 and an encoding rate of 2/3.
此外,在圖130中(後述的圖131及圖132中也是同樣地),將0以英文句點(.)來加以表現。In addition, in FIG. 130 (the same applies to FIGS. 131 and 132 described later), 0 is expressed as an English period (.).
在圖130的檢查矩陣H中,同位矩陣是呈階梯結構。In the inspection matrix H of FIG. 130, the parity matrix has a staircase structure.
圖131係為,對圖130的檢查矩陣H,實施式(11)的行置換、與式(12)的列置換所得的檢查矩陣H'的圖示。FIG. 131 is a diagram of the inspection matrix H′ obtained by performing the row replacement of equation (11) and the column replacement of equation (12) on the inspection matrix H of FIG. 130.
行置換:第6s+t+1行→第5t+s+1行 ・・・(11)Line replacement: line 6s+t+1→line 5t+s+1 ・・・(11)
列置換:第6x+y+61列→第5y+x+61列 ・・・(12)Column replacement: column 6x+y+61 → column 5y+x+61 ・・・(12)
其中,於式(11)及(12)中,s、t、x、y係分別為0≦s<5、0≦t<6、0≦x<5、0≦t<6之範圍的整數。In equations (11) and (12), s, t, x, and y are integers in the range of 0≦s<5, 0≦t<6, 0≦x<5, 0≦t<6, respectively. .
若依據式(11)的行置換,則會進行把除以6的餘數為1的第1、7、13、19、25行,分別置換成第1、2、3、4、5行,把除以6的餘數為2的第2、8、14、20、26行,分別置換成第6、7、8、9、10行,會進行如此方式的置換。If the line replacement according to equation (11) is performed, the first, seventh, thirteenth, nineteenth, and twenty-fifth lines with the remainder divided by six being 1 will be replaced with the first, second, third, fourth, and fifth lines, respectively.
又,若依據式(12)的列置換,則對第61列以後(同位矩陣),會進行把除以6的餘數為1的第61、67、73、79、85列,分別置換成第61、62、63、64、65列,把除以6的餘數為2的第62、68、74、80、86列,分別置換成第66、67、68、69、70列,會進行如此方式的置換。Also, if the column replacement according to equation (12) is performed, the 61st, 67th, 73rd, 79th, and 85th columns with the remainder divided by 6 as 1 and the 61st column (collocation matrix) are replaced by the
如此一來,對於圖130的檢查矩陣H,進行了行與列之置換所得到的矩陣(matrix),係為圖131的檢查矩陣H'。In this way, the inspection matrix H shown in FIG. 130 is a matrix obtained by permuting rows and columns, which is the inspection matrix H′ shown in FIG. 131.
此處,即使進行檢查矩陣H的行置換,也不影響到LDPC碼之碼位元的排列。Here, even if the row replacement of the check matrix H is performed, the arrangement of the code bits of the LDPC code is not affected.
又,式(12)的列置換係相當於,將上述的第K+qx+y+1個碼位元,對第K+Py+x+1個碼位元之位置做交錯的同位交錯的,令資訊長度K為60,令平行因子P為5,令同位長度M(此處係為30)之因數q(=M/P)為6時的同位交錯。In addition, the column permutation system of equation (12) is equivalent to the above-mentioned K+qx+y+1 code bit, interleaved to the position of the K+Py+x+1 code bit, and interleaved , Let the information length K be 60, let the parallel factor P be 5, and let the factor q (=M/P) of the parity length M (here 30) be 6 when the parity is interleaved.
因此,圖131的檢查矩陣H'係為,至少進行了將圖130的檢查矩陣(以下適宜稱作原本的檢查矩陣)H的,第K+qx+y+1列,置換成第K+Py+x+1列的列置換,所得的轉換檢查矩陣。Therefore, the inspection matrix H′ of FIG. 131 is at least the inspection matrix H of FIG. 130 (hereinafter appropriately referred to as the original inspection matrix) H, and the K+qx+y+1 column is replaced with the K+Py +x+1 column replacement, resulting conversion check matrix.
對於圖131的轉換檢查矩陣H',若對圖130的原本的檢查矩陣H的LDPC碼,乘上進行過與式(12)相同之置換者,則會輸出0向量。亦即,對原本的檢查矩陣H的作為LDPC碼(1碼字)的行向量c,實施式(12)的列置換而得的行向量若表示成c',則根據檢查矩陣之性質,HcT 係為0向量,因此H'c'T 也當然是0向量。Regarding the conversion check matrix H′ of FIG. 131, if the original LDPC code of the check matrix H of FIG. 130 is multiplied by the same replacement as in equation (12), a 0 vector is output. That is, if the row vector c of the original inspection matrix H as the LDPC code (1 codeword) is subjected to column replacement of equation (12) and expressed as c′, then according to the nature of the inspection matrix, Hc The T system is a 0 vector, so H'c' T is of course a 0 vector.
根據以上,圖131的轉換檢查矩陣H'係為,對原本的檢查矩陣H的LDPC碼c,進行式(12)的列置換而得的LDPC碼c'的檢查矩陣。Based on the above, the conversion check matrix H′ of FIG. 131 is the check matrix of the LDPC code c′ obtained by performing column replacement of equation (12) on the original LDPC code c of the check matrix H.
因此,對原本的檢查矩陣H的LDPC碼c,進行式(12)的列置換,將該列置換後的LDPC碼c',使用圖131的轉換檢查矩陣H'而進行解碼(LDPC解碼),對該解碼結果,實施式(12)的列置換之逆置換,藉此可以獲得,與將原本的檢查矩陣H的LDPC碼使用該檢查矩陣H進行解碼時相同的解碼結果。Therefore, the original LDPC code c of the check matrix H is subjected to column replacement of equation (12), and the LDPC code c′ after the column replacement is decoded using the conversion check matrix H′ of FIG. 131 (LDPC decoding). By performing the inverse replacement of the column replacement of equation (12) on this decoding result, the same decoding result as when the original LDPC code of the check matrix H is decoded using the check matrix H can be obtained.
圖132係為,以5×5之矩陣之單位而空出間隔的,圖131的轉換檢查矩陣H'的圖示。FIG. 132 is a diagram of the conversion check matrix H′ of FIG. 131 with intervals in units of 5×5 matrices.
於圖132中,轉換檢查矩陣H',是使用:單元大小P也就是5×5(=P×P)之單位矩陣、該單位矩陣的1之中有1個以上變成0的矩陣(以下適宜稱作準單位矩陣)、將單位矩陣或準單位矩陣作為循環位移(cyclic shift)而成的矩陣(以下適宜稱作位移矩陣)、單位矩陣、準單位矩陣、或位移矩陣之中的2者以上之和(以下適宜稱作和矩陣)、5×5之0矩陣的組合,而被表示。In FIG. 132, the conversion check matrix H'is used: the unit size P is a unit matrix of 5×5 (=P×P), and more than one of the
圖132的轉換檢查矩陣H',係可由:5×5之單位矩陣、準單位矩陣、位移矩陣、和矩陣、0矩陣所構成。於是,構成轉換檢查矩陣H'的,這些5×5之矩陣(單位矩陣、準單位矩陣、位移矩陣、和矩陣、0矩陣),以下適宜稱作構成矩陣。The conversion check matrix H'of FIG. 132 can be composed of: a 5×5 unit matrix, a quasi-unit matrix, a displacement matrix, a sum matrix, and a 0 matrix. Therefore, the 5×5 matrices (unit matrix, quasi-unit matrix, displacement matrix, sum matrix, and 0 matrix) that constitute the conversion check matrix H′ are hereinafter appropriately referred to as constituent matrices.
以P×P之構成矩陣而被表示的檢查矩陣之LDPC碼之解碼,係可採用將檢查節點演算、及可變節點演算,同時進行P個的架構(architecture)。The decoding of the LDPC code of the inspection matrix represented by the P×P composition matrix can adopt an architecture in which the inspection node calculation and variable node calculation are performed simultaneously.
圖133係為,進行如此解碼的解碼裝置之構成例的區塊圖。FIG. 133 is a block diagram of a configuration example of a decoding device that performs such decoding.
亦即,圖133係圖示,使用對圖130的原本的檢查矩陣H,至少進行式(12)的列置換而得的圖132的轉換檢查矩陣H',來進行LDPC碼之解碼的解碼裝置之構成例。That is, FIG. 133 illustrates a decoding apparatus for decoding an LDPC code using the original check matrix H of FIG. 130 and at least the conversion check matrix H′ of FIG. 132 obtained by column replacement of equation (12). Examples of the structure.
圖133的解碼裝置,係由:由6個FIFO3001
至3006
所成之分枝資料儲存用記憶體300、將FIFO3001
至3006
加以選擇的選擇器301、檢查節點計算部302、2個循環位移電路303及308、由18個FIFO3041
至30418
所成之分枝資料儲存用記憶體304、將FIFO3041
至30418
加以選擇的選擇器305、將收訊資料加以儲存的收訊資料用記憶體306、可變節點計算部307、解碼字計算部309、收訊資料排序部310、解碼資料排序部311,所構成。FIG decoding apparatus 133, the line: into the
首先說明,往分枝資料儲存用記憶體300與304的資料之儲存方法。First, the method of storing data in the
分枝資料儲存用記憶體300,係由:將圖132的轉換檢查矩陣H'之行數30除以構成矩陣之行數(平行因子P)5而得的數量也就是6個FIFO3001
至3006
所構成。FIFO300y
(y=1、2、・・・、6),係由複數之段數的記憶領域所構成,關於各段的記憶領域,係可將構成矩陣的行數及列數(平行因子P)也就是5個分枝所對應之訊息予以同時讀出及寫入。又,FIFO300y
的記憶領域之段數,係為圖132的轉換檢查矩陣的行方向的1之數量(漢民權重)的最大數也就是9。The
在FIFO3001
中,圖132的轉換檢查矩陣H'的第1行至第5行為止的1之位置所對應之資料(來自可變節點之訊息vi
),是以在各行都是朝橫方向靠攏的形式(以忽視0的形式),而被儲存。亦即,若將第j行第i列,表示成(j,i),則在FIFO3001
的第1段的記憶領域中,轉換檢查矩陣H'的(1,1)到(5,5)的5×5之單位矩陣的1之位置所對應之資料,係被儲存。在第2段的記憶領域中,轉換檢查矩陣H'的(1,21)至(5,25)之位移矩陣(將5×5之單位矩陣朝右方向做了3個的循環位移而成的位移矩陣)的1之位置所對應之資料,係被儲存。第3至第8段的記憶領域也是同樣地,與轉換檢查矩陣H'建立對應而儲存資料。然後,在第9段的記憶領域中,轉換檢查矩陣H'的(1,86)至(5,90)之位移矩陣(將5×5之單位矩陣之中的第1行的1置換成0並往左做了1個的循環位移而成的位移矩陣)的1之位置所對應之資料,係被儲存。In the FIFO300 1 , the data corresponding to the
在FIFO3002
中,圖132的轉換檢查矩陣H'的第6行至第10行為止的1之位置所對應之資料,係被儲存。亦即,在FIFO3002
的第1段的記憶領域中,將轉換檢查矩陣H'的(6,1)至(10,5)之和矩陣(將5×5之單位矩陣往右做了1個循環位移而成的第1位移矩陣、與往右做了2個循環位移而成的第2位移矩陣之和也就是和矩陣)予以構成的第1位移矩陣的1之位置所對應之資料,係被儲存。又,在第2段的記憶領域中,將轉換檢查矩陣H'的(6,1)至(10,5)之和矩陣予以構成的第2位移矩陣的1之位置所對應之資料,係被儲存。In the
亦即,關於權重為2以上的構成矩陣,係以該構成矩陣、權重為1的P×P之單位矩陣、單位矩陣之元素的1之中有1個以上變成0的準單位矩陣、或將單位矩陣或者準單位矩陣做了循環位移而成的位移矩陣之中的複數者的和的形式加以表現時,該權重為1之單位矩陣、準單位矩陣、或位移矩陣的1之位置所對應之資料(單位矩陣、準單位矩陣、或位移矩陣中所屬之分枝所對應之訊息),係被儲存在同一位址(FIFO3001
至3006
之中的同一FIFO)。That is, for a constituent matrix with a weight of 2 or more, one or more of the constituent matrix, the P×P unit matrix with a weight of 1, and the quasi-unit matrix with 1 or more of the elements of the unit matrix becoming 0, or When the unit matrix or the quasi-unit matrix is cyclically shifted and expressed in the form of the sum of complex numbers in the displacement matrix, the position of the unit matrix, quasi-unit matrix, or displacement matrix with a weight of 1 corresponds to the position of 1. The data (information corresponding to the branch in the identity matrix, quasi-identity matrix, or displacement matrix) is stored at the same address (the same FIFO in
以下,關於第3至第9段的記憶領域也是,與轉換檢查矩陣H'建立對應而儲存資料。In the following, the memory areas of
FIFO3003
至3006
也同樣地與轉換檢查矩陣H'建立對應而儲存資料。The
分枝資料儲存用記憶體304,係由:將轉換檢查矩陣H'之列數90,除以構成矩陣之列數(平行因子P)也就是5而得的18個FIFO3041
至30418
所構成。FIFO304x
(x=1、2、・・・、18),係由複數之段數的記憶領域所構成,關於各段的記憶領域,係可將構成矩陣的行數及列數(平行因子P)也就是5個分枝所對應之訊息予以同時讀出及寫入。The
在FIFO3041
中,圖132的轉換檢查矩陣H'的第1列至第5列為止的1之位置所對應之資料(來自檢查節點之訊息uj
),是以在各列都是朝縱方向靠攏的形式(以忽視0的形式),而被儲存。亦即,在FIFO3041
的第1段的記憶領域中,轉換檢查矩陣H'的(1,1)至(5,5)的5×5之單位矩陣的1之位置所對應之資料,係被儲存。在第2段的記憶領域中,將轉換檢查矩陣H'的(6,1)至(10,5)之和矩陣(將5×5之單位矩陣往右做了1個循環位移而成的第1位移矩陣、與往右做了2個循環位移而成的第2位移矩陣之和也就是和矩陣)予以構成的第1位移矩陣的1之位置所對應之資料,係被儲存。又,在第3段的記憶領域中,將轉換檢查矩陣H'的(6,1)至(10,5)之和矩陣予以構成的第2位移矩陣的1之位置所對應之資料,係被儲存。In the FIFO304 1 , the data corresponding to the
亦即,關於權重為2以上的構成矩陣,係以該構成矩陣、權重為1的P×P之單位矩陣、單位矩陣之元素的1之中有1個以上變成0的準單位矩陣、或將單位矩陣或者準單位矩陣做了循環位移而成的位移矩陣之中的複數者的和的形式加以表現時,該權重為1之單位矩陣、準單位矩陣、或位移矩陣的1之位置所對應之資料(單位矩陣、準單位矩陣、或位移矩陣中所屬之分枝所對應之訊息),係被儲存在同一位址(FIFO3041 至30418 之中的同一FIFO)。That is, for a constituent matrix with a weight of 2 or more, one or more of the constituent matrix, the P×P unit matrix with a weight of 1, and the quasi-unit matrix with 1 or more of the elements of the unit matrix becoming 0, or When the unit matrix or the quasi-unit matrix is cyclically shifted and expressed in the form of the sum of complex numbers in the displacement matrix, the position of the unit matrix, quasi-unit matrix, or displacement matrix with a weight of 1 corresponds to the position of 1. Data (messages corresponding to the branches in the identity matrix, quasi-identity matrix, or displacement matrix) are stored at the same address (the same FIFO in FIFO304 1 to 304 18 ).
以下,關於第4及第5段的記憶領域也是,與轉換檢查矩陣H'建立對應而儲存資料。該FIFO3041
的記憶領域之段數,係為轉換檢查矩陣H'的第1列至第5列中的行方向的1之數量(漢民權重)的最大數也就是5。In the following, the memory areas of the fourth and fifth paragraphs are also stored in correspondence with the conversion check matrix H'. The number of segments in the memory area of the
FIFO3042
與3043
也同樣地與轉換檢查矩陣H'建立對應而儲存資料,各自的長度(段數)係皆為5。FIFO3044
至30412
也同樣地與轉換檢查矩陣H'建立對應而儲存資料,各自的長度係皆為3。FIFO30413
至30418
也同樣地與轉換檢查矩陣H'建立對應而儲存資料,各自的長度係皆為2。The
接著說明圖133的解碼裝置之動作。Next, the operation of the decoding device of FIG. 133 will be described.
分枝資料儲存用記憶體300,係由6個
FIFO3001
至3006
所成,依照從前段的循環位移電路308所被供給的5個訊息D311,是隸屬於圖132的轉換檢查矩陣H'之哪一行的資訊(Matrix資料)D312,而將儲存資料的FIFO,從FIFO3001
至3006
之中加以選出,向已選出的FIFO將5個訊息D311批次依序逐一儲存。又,分枝資料儲存用記憶體300,係在資料讀出之際,從FIFO3001
依序讀出5個訊息D3001
,供給至下一段的選擇器301。分枝資料儲存用記憶體300,係在從FIFO3001
的訊息之讀出結束後,從FIFO3002
至3006
也是依序地讀出訊息,供給至選擇器301。The
選擇器301,係依照選擇訊號D301,在FIFO3001
至3006
之中,選擇出從現在正在讀出資料的FIFO而來的5個訊息,作為訊息D302,供給至檢查節點計算部302。The
檢查節點計算部302,係由5個檢查節點計算器3021
至3025
所成,使用透過選擇器301而被供給的訊息D302(D3021
至D3025
)(式(7)的訊息vi
),依照式(7)而進行檢查節點演算,將該檢查節點演算之結果所得的5個訊息D303(D3031
至D3035
)(式(7)的訊息uj
),供給至循環位移電路303。Check
循環位移電路303,係將檢查節點計算部302中所求出的5個訊息D3031
至D3035
,根據表示所對應之分枝是於轉換檢查矩陣H'中把原本的單位矩陣(或準單位矩陣)進行了幾個循環位移而成者的資訊(Matrix資料)D305,進行循環位移,將其結果作為訊息D304,供給至分枝資料儲存用記憶體304。The
分枝資料儲存用記憶體304,係由18個FIFO3041
至30418
所成,依照從前段的循環位移電路303所被供給的5個訊息D304是隸屬於轉換檢查矩陣H'之哪一行的資訊D305,而將儲存資料的FIFO,從FIFO3041
至30418
之中加以選出,向已選出的FIFO將5個訊息D304批次依序逐一儲存。又,分枝資料儲存用記憶體304,係在資料讀出之際,從FIFO3041
依序讀出5個訊息D3061
,供給至下一段的選擇器305。分枝資料儲存用記憶體304,係在從FIFO3041
的資料之讀出結束後,從FIFO3042
至30418
也是依序地讀出訊息,供給至選擇器305。The branch
選擇器305,係依照選擇訊號D307,在
FIFO3041
至30418
之中,選擇出從現在正在讀出資料的FIFO而來的5個訊息,作為訊息D308,供給至可變節點計算部307與解碼字計算部309。The
另一方面,收訊資料排序部310,係將透過通訊路13所接收到的,圖130的檢查矩陣H所對應之LDPC碼D313,進行式(12)的列置換而加以排序,作為收訊資料D314,供給至收訊資料用記憶體306。收訊資料用記憶體306,係根據從收訊資料排序部310所被供給的收訊資料D314,計算出收訊LLR(對數似然比)並記憶之,將該收訊LLR每5個地加以集結而作為收訊值D309,供給至可變節點計算部307與解碼字計算部309。On the other hand, the received
可變節點計算部307,係由5個可變節點計算器3071
至3075
所成,使用透過選擇器305而被供給的訊息D308(D3081
至D3085
)(式(1)的訊息uj
)、與從收訊資料用記憶體306所被供給的5個收訊值D309(式(1)的收訊值u0i
),依照式(1)而進行可變節點演算,將該演算之結果所得的訊息D310(D3101
至D3105
)(式(1)的訊息vi
),供給至循環位移電路308。The variable
循環位移電路308,係將可變節點計算部307中所被計算出來的訊息D3101
至D3105
,根據表示所對應之分枝是於轉換檢查矩陣H'中把原本的單位矩陣(或準單位矩陣)進行了幾個循環位移而成者的資訊,進行循環位移,將其結果作為訊息D311,供給至分枝資料儲存用記憶體300。The
藉由將以上之動作進行1輪,就可進行LDPC碼的1次之解碼(可變節點演算及檢查節點演算)。圖133的解碼裝置,係進行所定之次數的LDPC碼之解碼後,於解碼字計算部309及解碼資料排序部311中,求出最終的解碼結果並輸出。By performing the above operations for one round, the LDPC code can be decoded once (variable node calculation and check node calculation). The decoding device of FIG. 133 performs the decoding of the LDPC code a predetermined number of times, and then obtains and outputs the final decoding result in the decoded
亦即,解碼字計算部309,係由5個解碼字計算器3091
至3095
所成,使用選擇器305所輸出的5個訊息D308(D3081
至D3085
)(式(5)的訊息uj
)、與從收訊資料用記憶體306所被供給的5個收訊值D309(式(5)的收訊值u0i
),作為複數次之解碼的最終段,基於式(5),而計算解碼結果(解碼字),將其結果所得之解碼資料D315,供給至解碼資料排序部311。That is, the decoded
解碼資料排序部311,係以從解碼字計算部309所被供給的解碼資料D315為對象,進行式(12)的列置換之逆置換,以將其順序加以排序,作為最終的解碼結果D316而予以輸出。The decoded
如以上,對於檢查矩陣(原本的檢查矩陣),實施行置換與列置換之中的一方或雙方,並轉換成P×P之單位矩陣、其元素的1之中有1個以上變成0的準單位矩陣、將單位矩陣或是準單位矩陣做了循環位移的位移矩陣、單位矩陣、準單位矩陣、或是位移矩陣之複數者的和也就是和矩陣、P×P之0矩陣之組合,亦即,可以用構成矩陣之組合來表示的檢查矩陣(轉換檢查矩陣),藉此,將LDPC碼之解碼係可採用,可同時進行比檢查矩陣之行數或列數還小之數量的P個檢查節點演算與可變節點演算的架構。在採用可同時進行比檢查矩陣之行數或列數還小之數量的P個節點演算(檢查節點演算與可變節點演算)之架構的情況下,相較於可同時進行等於檢查矩陣之行數或列數之數量的節點演算,可將動作頻率抑制在可實現之範圍內,可進行多數的重複解碼。As described above, for the inspection matrix (original inspection matrix), one or both of row replacement and column replacement are performed and converted into a unit matrix of P×P, and more than one of its elements becomes 0. The sum of the identity matrix, the displacement matrix that made the identity matrix or the quasi-unit matrix cyclically shifted, the identity matrix, the quasi-unit matrix, or the complex number of the displacement matrix is the combination of the matrix and the P×
將圖127的收訊裝置12予以構成的LDPC解碼器166係例如,和圖133的解碼裝置同樣地,藉由同時進行P個檢查節點演算與可變節點演算,而進行LDPC解碼。The
亦即,現在,為了簡化說明,假設將圖8的送訊裝置11予以構成的LDPC編碼器115所輸出的LDPC碼的檢查矩陣,例如,若是如圖130所示的,同位矩陣是呈階梯結構的檢查矩陣H,則送訊裝置11的同位交錯器23中,將第K+qx+y+1個碼位元,對第K+Py+x+1個碼位元之位置做交錯的同位交錯,係將資訊長度K設定成60,將平行因子P設定成5,將同位長度M之因數q(=M/P)設定成6,而被進行。That is, for the sake of simplifying the description, it is assumed that the check matrix of the LDPC code output by the
該同位交錯,係如上述,相當於式(12)的列置換,因此在LDPC解碼器166中,不需要進行式(12)的列置換。This co-located interleaving corresponds to the column replacement of equation (12) as described above. Therefore, the
因此,在圖127的收訊裝置12中,如上述,從群組式去交錯器55,對LDPC解碼器166,係供給未被進行同位去交錯的LDPC碼,亦即,有被進行式(12)之列置換之狀態的LDPC碼,在LDPC解碼器166中,除了未進行式(12)的列置換這點以外,其餘進行和圖133的解碼裝置相同之處理。Therefore, in the receiving
亦即,圖134係為圖127的LDPC解碼器166之構成例的圖示。That is, FIG. 134 is a diagram of a configuration example of the
於圖134中,LDPC解碼器166,係除了未設置圖133的收訊資料排序部310這點以外,其餘是和圖133的解碼裝置相同地被構成,除了不進行式(12)的列置換這點以外,其餘進行與圖133的解碼裝置相同之處理,因此省略其說明。In FIG. 134, the
如以上,LDPC解碼器166,係可不設置收訊資料排序部310就構成,因此相較於圖133的解碼裝置,可削減規模。As described above, the
此外,在圖130至圖134中,為了簡化說明,而將LDPC碼之碼長度N設成90,將資訊長度K設成60,將平行因子(構成矩陣的行數及列數)P設成5,將同位長度M之因數q(=M/P)設成6,但碼長度N、資訊長度K、平行因子P、及因數q(=M/P)之每一者,係不限定於上述的值。In addition, in FIGS. 130 to 134, in order to simplify the description, the code length N of the LDPC code is set to 90, the information length K is set to 60, and the parallel factor (the number of rows and columns constituting the matrix) P is set to 5. Set the factor q (=M/P) of the parity length M to 6, but each of the code length N, the information length K, the parallel factor P, and the factor q (=M/P) is not limited to The above value.
亦即,於圖8的送訊裝置11中,LDPC編碼器115所輸出的係為例如,將碼長度N設成64800、或16200、69120、17280等,將資訊長度K設成N-Pq(=N-M),將平行因子P設成360,將因數q設成M/P的LDPC碼,但是,圖134的LDPC解碼器166係可適用於,以如此的LDPC碼為對象,藉由同時進行P個檢查節點演算與可變節點演算,來進行LDPC解碼的情況。That is, in the
又,LDPC解碼器166中的LDPC碼的解碼後,其解碼結果的同位之部分係為不需要,而只將解碼結果之資訊位元予以輸出的情況下,則可沒有解碼資料排序部311,就構成LDPC解碼器166。In addition, after decoding the LDPC code in the
<區塊去交錯器54之構成例><Configuration example of
圖135係為,圖128的區塊去交錯器54中所進行的區塊去交錯的說明圖。FIG. 135 is an explanatory diagram of block deinterleaving performed by the
在區塊去交錯中,藉由進行與圖79中所說明的區塊交錯器25之區塊交錯相反之處理,LDPC碼的碼位元之排列就會恢復成原本之排列(被復原)。In the block deinterleaving, by performing the reverse processing of the block interleaving of the
亦即,在區塊去交錯中,例如,與區塊交錯同樣地,對於相等於符元之位元數m的m個縱列,將LDPC碼予以寫入讀出,LDPC碼的碼位元之排列就會恢復成原本之排列。That is, in block deinterleaving, for example, in the same way as block interleaving, for m columns equal to the number of bits of symbols m, the LDPC code is written and read, and the code bits of the LDPC code The arrangement will be restored to the original arrangement.
但是,在區塊去交錯中,LDPC碼之寫入,係按照於區塊交錯中LDPC碼的讀出順序而被進行。再者,在區塊去交錯中,LDPC碼之讀出,係按照區塊交錯中LDPC碼的寫入順序,而被進行。However, in block deinterleaving, the LDPC code is written in accordance with the order in which the LDPC code is read in block interleaving. Furthermore, in block deinterleaving, the reading of the LDPC code is performed in accordance with the order in which the LDPC code is written in the block interleaving.
亦即,關於LDPC碼的部分1,係如圖135所示,從m個所有的縱列的第1行,朝橫行方向,寫入已經變成m位元之符元單位的LDPC碼的部分1。亦即,已經變成m位元之符元的LDPC碼的碼位元,係朝橫行方向而被寫入。That is, as shown in FIG. 135, the
以m位元單位進行的部分1之寫入,係朝m個縱列的下方的行而被依序進行,一旦部分1的寫入結束,則如圖135所示,對縱列的第1個縱列單元的從上往下方向讀出部分1的這件事情,係從左往右方向之縱列而被進行。The writing of the
到右端的縱列為止的讀出一旦結束,則如圖135所示,回到左端的縱列,對縱列的第2個縱列單元的從上往下方向讀出部分1的這件事情,係從左往右方向之縱列而被進行,以下同樣地,進行1碼字的LDPC碼的部分1之讀出。Once the reading up to the right column is completed, as shown in FIG. 135, return to the left column and read the
一旦1碼字的LDPC碼的部分1之讀出結束,則針對已經變成m位元之符元單位的部分2,係其m位元之符元單位,會被依序連結在部分1之後,藉此,符元單位的LDPC碼,係被恢復成原本的1碼字之LDPC碼(區塊交錯前的LDCP碼)的碼位元之排列。Once the reading of
<位元去交錯器165之其他構成例><Other configuration examples of bit deinterleaver 165>
圖136係圖127的位元去交錯器165之其他構成例的區塊圖。FIG. 136 is a block diagram of another configuration example of the bit deinterleaver 165 of FIG. 127.
此外,圖中,與圖128相對應的部分,係標示同一符號,以下係適宜省略其說明。In addition, in the figure, the part corresponding to FIG. 128 is denoted by the same symbol, and the description thereof is appropriately omitted below.
亦即,圖136的位元去交錯器165,係除了新增設置同位去交錯器1011以外,其餘係和圖128同樣地被構成。That is, the bit deinterleaver 165 of FIG. 136 is constructed in the same manner as FIG. 128 except that the
在圖136中,位元去交錯器165,係由區塊去交錯器54、群組式去交錯器55、及同位去交錯器1011所構成,進行來自解對映器164的LDPC碼的碼位元之位元去交錯。In FIG. 136, the
亦即,區塊去交錯器54,係以來自解對映器164的LDPC碼為對象,進行送訊裝置11的區塊交錯器25所進行的區塊交錯所對應之區塊去交錯(區塊交錯的逆處理),亦即,將藉由區塊交錯而被替換過的碼位元的位置還原成原本之位置的區塊去交錯,將其結果所得之LDPC碼,供給至群組式去交錯器55。That is, the
群組式去交錯器55,係以來自區塊去交錯器54的LDPC碼為對象,進行送訊裝置11的群組式交錯器24所進行之作為排序處理的群組式交錯所對應之群組式去交錯。The group-
群組式去交錯之結果所得的LDPC碼,係從群組式去交錯器55被供給至同位去交錯器1011。The LDPC code obtained as a result of group deinterleaving is supplied from
同位去交錯器1011,係以群組式去交錯器55中的群組式去交錯後的碼位元為對象,進行將送訊裝置11的同位交錯器23所進行的同位交錯所對應之同位去交錯(同位交錯的逆處理),亦即,藉由同位交錯而被變更過排列的LDPC碼之碼位元,還原成原本之排列的同位去交錯。The parity deinterleaver 1011 uses the grouped deinterleaved code bits in the
同位去交錯之結果所得的LDPC碼,係從同位去交錯器1011被供給至LDPC解碼器166。The LDPC code obtained as a result of co-located deinterleaving is supplied from the co-located deinterleaver 1011 to the
因此,在圖136的位元去交錯器165中,係對LDPC解碼器166供給著,進行過區塊去交錯、群組式去交錯、及同位去交錯的LDPC碼,亦即,依照檢查矩陣H藉由LDPC編碼所得的LDPC碼。Therefore, in the bit deinterleaver 165 of FIG. 136, the
LDPC解碼器166,係將來自位元去交錯器165的LDPC碼之LDPC解碼,使用送訊裝置11的LDPC編碼器115在LDPC編碼時所用過的檢查矩陣H,而進行之。The
亦即,LDPC解碼器166,係針對類型B方式,將來自位元去交錯器165的LDPC碼之LDPC解碼,使用送訊裝置11的LDPC編碼器115在LDPC編碼時所用過的(類型B方式)檢查矩陣H本身、或對該檢查矩陣H至少進行相當於同位交錯的列置換而得的轉換檢查矩陣,而進行之。又,LDPC解碼器166,係針對類型A方式,將來自位元去交錯器165的LDPC碼之LDPC解碼,使用對送訊裝置11的LDPC編碼器115在LDPC編碼時所用過的(類型A方式之)檢查矩陣(圖27)實施列置換而得的檢查矩陣(圖28)、或對LDPC編碼時所用過的檢查矩陣(圖27)實施行置換而得的轉換檢查矩陣(圖29),來進行之。That is, the
此處,在圖136中,係從位元去交錯器165(的同位去交錯器1011)對LDPC解碼器166,供給著藉由依照檢查矩陣H之LDPC編碼而得的LDPC碼,因此將該LDPC碼的LDPC解碼,使用送訊裝置11的LDPC編碼器115在LDPC編碼時所用過的類型B方式的檢查矩陣H本身,或是對在LDPC編碼時所用過的類型A方式的檢查矩陣(圖27)實施列置換而得的檢查矩陣(圖28)來加以進行的情況下,LDPC解碼器166係可由例如:進行將訊息(檢查節點訊息、可變節點訊息)之演算每次針對1個節點依序進行的全序列式解碼(full serial decoding)方式所致之LDPC解碼的解碼裝置、或進行將訊息之演算針對全部節點同時(平行)地進行的全平行式解碼(full parallel decoding)方式所致之LDPC解碼的解碼裝置所構成。Here, in FIG. 136, from the bit deinterleaver 165 (co-located deinterleaver 1011) to the
又,於LDPC解碼器166中,將LDPC碼的LDPC解碼,使用:對於送訊裝置11的LDPC編碼器115在LDPC編碼時所用過的類型B方式的檢查矩陣H,至少進行相當於同位交錯的列置換而得的轉換檢查矩陣、或是對在LDPC編碼時所用過的類型A方式的檢查矩陣(圖27)實施行置換而得的轉換檢查矩陣(圖29)來加以進行的情況下,則LDPC解碼器166係可藉由;同時進行P(或P的1以外之因數)個檢查節點演算、及可變節點演算之架構的解碼裝置,且為具有藉由對LDPC碼實施與用來獲得轉換檢查矩陣所需之列置換(同位交錯)相同的列置換,以將該LDPC碼的碼位元予以排序的收訊資料排序部310的解碼裝置(圖133)所構成。In addition, the
此外,在圖136中,為了說明的方便,而將進行區塊去交錯的區塊去交錯器54、進行群組式去交錯的群組式去交錯器55、及進行同位去交錯的同位去交錯器1011,分別畫成是個別地構成,但區塊去交錯器54、群組式去交錯器55、及同位去交錯器1011之2個以上,係可和送訊裝置11的同位交錯器23、群組式交錯器24、及區塊交錯器25同樣地一體地構成。In addition, in FIG. 136, for convenience of description, the
<收訊系統之構成例><Configuration example of the receiving system>
圖137係可適用收訊裝置12的收訊系統之第1構成例的區塊圖。FIG. 137 is a block diagram of a first configuration example of a receiving system to which the receiving
於圖137中,收訊系統係由:取得部1101、傳輸路解碼處理部1102、及資訊源解碼處理部1103所構成。In FIG. 137, the receiving system is composed of an
取得部1101,係將含有把節目的影像資料或聲音資料等之LDPC對象資料,至少進行LDPC編碼所得的LDPC碼的訊號,例如,透過地表數位播送、衛星數位播送、CATV網、網際網路或其他網路等未圖示的傳輸路(通訊路),加以取得,供給至傳輸路解碼處理部1102。The
此處,取得部1101所取得的訊號係例如,從播送台,透過地表波、或衛星波、CATV(Cable Television)網等而被播送過來的情況下,則取得部1101係由選台器或STB(Set Top Box)等所構成。又,取得部1101所取得的訊號係例如,從web伺服器,以IPTV(Internet Protocol Television)這類多播方式而被發送過來的情況下,則取得部1101係由例如NIC(Network Interface Card)等之網路I/F(Inter face)所構成。Here, if the signal acquired by the
傳輸路解碼處理部1102,係相當於收訊裝置12。傳輸路解碼處理部1102,係對取得部1101透過傳輸路所取得的訊號,實施至少包含將傳輸路中所發生之錯誤予以訂正之處理的傳輸路解碼處理,將其結果所得之訊號,供給至資訊源解碼處理部1103。The transmission path
亦即,取得部1101透過傳輸路所取得的訊號係為,至少進行將傳輸路中所發生之錯誤予以訂正所需之錯誤訂正編碼所得到的訊號,傳輸路解碼處理部1102,係對如此的訊號,實施例如錯誤訂正處理等之傳輸路解碼處理。That is, the signal acquired by the
此處,作為錯誤訂正編碼係有例如:LDPC編碼、或BCH編碼等。此處,作為錯誤訂正編碼,至少會進行LDPC編碼。Here, the error correction coding system includes, for example, LDPC coding, BCH coding, or the like. Here, as error correction coding, at least LDPC coding is performed.
又,傳輸路解碼處理中,有時會包含有調變訊號之解調等。In addition, the decoding process of the transmission path may include demodulation of the modulation signal.
資訊源解碼處理部1103,係對已被實施過傳輸路解碼處理的訊號,實施至少包含將已被壓縮之資訊解壓縮成原本之資訊的處理的資訊源解碼處理。The information source
亦即,有的時候,對於取得部1101透過傳輸路所取得的訊號,為了減少身為資訊的影像或聲音等之資料量,而會實施將資訊予以壓縮的壓縮編碼,此時,資訊源解碼處理部1103,係對已被實施過傳輸路解碼處理的訊號,實施將已被壓縮之資訊解壓縮成原本之資訊的處理(解壓縮處理)等之資訊源解碼處理。That is, sometimes, for the signal acquired by the
此外,對取得部1101透過傳輸路所取得的訊號,沒有實施過壓縮編碼的情況下,則在資訊源解碼處理部1103中,不會進行將已被壓縮之資訊解壓縮成原本之資訊的處理。In addition, if the signal acquired by the
此處,作為解壓縮處理係有例如MPEG解碼等。又,傳輸路解碼處理中,係除了解壓縮處理以外,有時候還會包含解拌碼等。Here, as the decompression processing system, there is, for example, MPEG decoding. In addition, in the decoding process of the transmission path, in addition to understanding the compression process, it may sometimes include a descrambling code.
在如以上而被構成的收訊系統中,係於取得部1101中,例如,對影像或聲音等之資料,實施MPEG編碼等之壓縮編碼,然後,實施過LDPC編碼等之錯誤訂正編碼後的訊號,透過傳輸路而被取得,被供給至傳輸路解碼處理部1102。In the receiving system configured as described above, in the
在傳輸路解碼處理部1102中,對於來自取得部1101之訊號,例如,與收訊裝置12所進行的相同之處理等,是被當作傳輸路解碼處理而被實施,其結果所得之訊號,係被供給至資訊源解碼處理部1103。In the transmission channel
在資訊源解碼處理部1103中,對來自傳輸路解碼處理部1102之訊號,實施MPEG解碼等之資訊源解碼處理,其結果所得之影像、或聲音,係被輸出。The information source
如以上的圖137的收訊系統係可適用於例如,將作為數位播送的電視播送予以接收的電視選台器等。The receiving system of FIG. 137 as described above can be applied to, for example, a TV tuner that receives a TV broadcast as a digital broadcast.
此外,取得部1101、傳輸路解碼處理部1102、及資訊源解碼處理部1103,係可分別以1個獨立的裝置(硬體(IC(Integrated Circuit)等))、或軟體模組)的方式而加以構成。In addition, the
又,關於取得部1101、傳輸路解碼處理部1102、及資訊源解碼處理部1103,係可將取得部1101與傳輸路解碼處理部1102之集合、或傳輸路解碼處理部1102與資訊源解碼處理部1103之集合、取得部1101、傳輸路解碼處理部1102、及資訊源解碼處理部1103之集合,以1個獨立的裝置的方式而加以構成。Further, regarding the
圖138係可適用收訊裝置12的收訊系統之第2構成例的區塊圖。FIG. 138 is a block diagram of a second configuration example of a receiving system to which the receiving
此外,圖中,與圖137相對應的部分,係標示同一符號,以下係適宜省略其說明。In addition, in the figure, the part corresponding to FIG. 137 is denoted by the same symbol, and its description is appropriately omitted below.
圖138的收訊系統,係在具有取得部1101、傳輸路解碼處理部1102、及資訊源解碼處理部1103這點上,是和圖137相同,而在新設置了輸出部1111的這點上,是與圖137不同。The receiving system of FIG. 138 is the same as that of FIG. 137 in that it has the
輸出部1111係為例如,顯示影像的顯示裝置、或輸出聲音的揚聲器,將作為從資訊源解碼處理部1103所被輸出之訊號的影像或聲音等,予以輸出。亦即,輸出部1111係顯示影像,或者輸出聲音。The
如以上的圖138的收訊系統係可適用於例如,將作為數位播送的電視播送予以接收的TV(電視受像機)、或接收電台播送的電台收訊機等。The reception system as shown in FIG. 138 above can be applied to, for example, a TV (television receiver) that receives a television broadcast as a digital broadcast, or a radio receiver that receives a radio broadcast.
此外,於取得部1101中所被取得的訊號,未被實施壓縮編碼的情況下,則傳輸路解碼處理部1102所輸出的訊號,係被供給至輸出部1111。In addition, when the signal acquired by the
圖139係可適用收訊裝置12的收訊系統之第3構成例的區塊圖。FIG. 139 is a block diagram of a third configuration example of the receiving system to which the receiving
此外,圖中,與圖137相對應的部分,係標示同一符號,以下係適宜省略其說明。In addition, in the figure, the part corresponding to FIG. 137 is denoted by the same symbol, and its description is appropriately omitted below.
圖139的收訊系統,係在具有取得部1101、及傳輸路解碼處理部1102這點上,與圖137相同。The receiving system of FIG. 139 is the same as FIG. 137 in that it has an
但是,圖139的收訊系統,係未設置資訊源解碼處理部1103,而新設置了記錄部1121這點上,是與圖137不同。However, the receiving system of FIG. 139 is different from FIG. 137 in that the information source
記錄部1121,係將傳輸路解碼處理部1102所輸出的訊號(例如MPEG之TS的TS封包),記錄(記憶)在光碟、或硬碟(磁碟)、快閃記憶體等之記錄(記憶)媒體中。The
如以上的圖139的收訊系統係可適用於,將電視播送進行錄影的錄影機等。The receiving system as shown in Fig. 139 above can be applied to a video recorder that broadcasts a TV for recording.
此外,於圖139中,收訊系統,係設有資訊源解碼處理部1103而構成,在資訊源解碼處理部1103中,係可將實施了資訊源解碼處理後的訊號,亦即,解碼所得的影像或聲音,以記錄部1121加以記錄。In addition, in FIG. 139, the receiving system is configured with an information source
<電腦的一實施形態><An embodiment of a computer>
其次,上述一連串處理,係可藉由的硬體來進行,也可藉由軟體來進行。在以軟體來進行一連串之處理時,構成該軟體的程式,係可安裝至通用的電腦等。Secondly, the above series of processing can be performed by hardware or software. When a series of processing is performed by software, the program constituting the software can be installed on a general-purpose computer, etc.
此處,圖140係圖示了執行上述一連串處理的程式所被安裝之電腦的一實施形態之構成例。Here, FIG. 140 illustrates a configuration example of an embodiment of a computer on which a program that executes the above-mentioned series of processing is installed.
程式是可預先被記錄在內建於電腦中的做為記錄媒體之硬碟705或ROM703。The program is a
又或者,程式係可暫時性或永久性地預先儲存(記錄)在軟碟、CD-ROM(Compact Disc Read Only Memory)、MO(Magneto Optical)碟、DVD(Digital Versatile Disc)、磁碟、半導體記憶體等可移除式記錄媒體711中。此種可移除式記錄媒體711,係可以所謂套裝軟體的方式來提供。Alternatively, the program system can be temporarily or permanently pre-stored (recorded) on a floppy disk, CD-ROM (Compact Disc Read Only Memory), MO (Magneto Optical) disk, DVD (Digital Versatile Disc), magnetic disk, semiconductor A removable recording medium 711 such as a memory. Such a removable recording medium 711 can be provided as so-called package software.
此外,程式係除了如上述般地從可移除式記錄媒體711安裝至電腦以外,還可從下載網站、透過數位衛星播送用人造衛星,以無線傳輸至電腦,或透過LAN(Local Area Network)、網際網路等網路以有線方式傳輸至電腦,在電腦中係將如此傳輸來的程式,以通訊部708加以接收,就可安裝至內建的硬碟705中。In addition to installing the program from the removable recording medium 711 to the computer as described above, the program can also be downloaded from a download site, digital satellite broadcasting artificial satellite, wirelessly transmitted to the computer, or via LAN (Local Area Network) , The Internet and other networks are transmitted to the computer in a wired manner. In the computer, the program thus transmitted is received by the
電腦係內建有CPU(Central Processing Unit)702
。對CPU702,係透過匯流排701,而被連接有輸出入介面710,CPU702,係一旦透過輸出入介面710,而藉由使用者,進行了由鍵盤、或滑鼠、麥克風等所構成的輸入部707之操作等而被輸入了指令,就會聽從之,而執行ROM(Read Only Memory)703中所被儲存的程式。又或者,CPU702,係將硬碟705中所被儲存之程式、從衛星或網路所被傳輸,被通訊部708所接收而被安裝至硬碟705之程式、或從被裝著於驅動器709的可移除式記錄媒體711所被讀出而被安裝至硬碟705之程式,載入至RAM(Random Access Memory)704中而加以執行。藉此,CPU702係會進行依照上述流程圖之處理,或是由上述區塊圖之構成所進行之處理。然後,CPU702係將其處理結果,因應需要,例如,透過輸出入介面710而從由LCD(Liquid Crystal Display)或揚聲器等所構成的輸出部706加以輸出,或者從通訊部708進行送訊,或甚至記錄在硬碟705中等。The computer department has a built-in CPU (Central Processing Unit) 702
. The
此處,於本說明書中,用來讓電腦執行各種處理所需之程式加以描述的處理步驟,並不一定要按照流程圖所記載的順序來進行時間序列上的處理,而是也包含了平行或個別執行之處理(例如平行處理或物件所致之處理)。Here, in this specification, the processing steps described by the program used to allow the computer to perform various processes do not necessarily need to be processed in time series in the order described in the flowchart, but also include parallel Or individual processing (such as parallel processing or processing caused by objects).
又,程式係可被1個電腦所處理,也可被複數電腦分散處理。甚至,程式係亦可被傳輸至遠方的電腦而執行之。In addition, the program system can be processed by one computer or distributed by multiple computers. Even, the program system can be transferred to a remote computer and executed.
此外,本技術的實施形態係不限定於上述實施形態,在不脫離本技術主旨的範圍內可做各種變更。In addition, the embodiment of the present technology is not limited to the above-mentioned embodiment, and various changes can be made without departing from the gist of the present technology.
例如,上述的新LDPC碼(的檢查矩陣初期值表)或GW型樣,係針對衛星線路、或地表波、纜線(有線線路)、其他通訊路13(圖7),都可使用。甚至,新LDPC碼或GW型樣係亦可使用於數位播送以外的資料傳輸。For example, the above-mentioned new LDPC code (check matrix initial value table) or GW pattern is applicable to satellite lines, surface waves, cables (wire lines), and other communication paths 13 (FIG. 7). Even the new LDPC code or GW type system can be used for data transmission other than digital broadcasting.
又,在本說明書中,為了便於理解說明,而假設LDPC編碼器115(圖8),是基於檢查矩陣而進行往LDPC碼之編碼,但由於檢查矩陣、與檢查矩陣初期值表係為等價的資訊,因此基於檢查矩陣而進行往LDPC碼之編碼這件事情,係包含了基於檢查矩陣初期值表而進行往LDPC碼之編碼這件事情。同樣地,於LDPC解碼器166(圖127)中,基於檢查矩陣而進行往LDPC碼之解碼這件事情,係包含了基於檢查矩陣初期值表而進行往LDPC碼之解碼這件事情。In this specification, for ease of understanding, it is assumed that the LDPC encoder 115 (FIG. 8) encodes the LDPC code based on the check matrix, but the check matrix is equivalent to the check matrix initial value table. The information, therefore, the encoding of the LDPC code based on the check matrix includes the encoding of the LDPC code based on the check matrix initial value table. Similarly, in the LDPC decoder 166 (FIG. 127), the decoding of the LDPC code based on the check matrix includes the decoding of the LDPC code based on the check matrix initial value table.
此外,本說明書中所記載之效果僅為例示並非限定,亦可還有其他的效果。In addition, the effects described in this specification are only examples and are not limited, and may have other effects.
11‧‧‧送訊裝置 12‧‧‧收訊裝置 23‧‧‧同位交錯器 24‧‧‧群組式交錯器 25‧‧‧區塊交錯器 54‧‧‧區塊去交錯器 55‧‧‧群組式去交錯器 111‧‧‧模式適應/多工器 112‧‧‧補整器 113‧‧‧BB拌碼器 114‧‧‧BCH編碼器 115‧‧‧LDPC編碼器 116‧‧‧位元交錯器 117‧‧‧對映器 118‧‧‧時間交錯器 119‧‧‧SISO/MISO編碼器 120‧‧‧頻率交錯器 121‧‧‧BCH編碼器 122‧‧‧LDPC編碼器 123‧‧‧對映器 124‧‧‧頻率交錯器 131‧‧‧訊框建構器/資源分配部 132‧‧‧OFDM生成部 151‧‧‧OFDM處理部 152‧‧‧訊框管理部 153‧‧‧頻率去交錯器 154‧‧‧解對映器 155‧‧‧LDPC解碼器 156‧‧‧BCH解碼器 161‧‧‧頻率去交錯器 162‧‧‧SISO/MISO解碼器 163‧‧‧時間去交錯器 164‧‧‧解對映器 165‧‧‧位元去交錯器 166‧‧‧LDPC解碼器 167‧‧‧BCH解碼器 168‧‧‧BB解拌碼器 169‧‧‧空值刪除部 170‧‧‧解多工器 300‧‧‧分枝資料儲存用記憶體 301‧‧‧選擇器 302‧‧‧檢查節點計算部 303‧‧‧循環位移電路 304‧‧‧分枝資料儲存用記憶體 305‧‧‧選擇器 306‧‧‧收訊資料用記憶體 307‧‧‧可變節點計算部 308‧‧‧循環位移電路 309‧‧‧解碼字計算部 310‧‧‧收訊資料排序部 311‧‧‧解碼資料排序部 601‧‧‧編碼處理部 602‧‧‧記憶部 611‧‧‧編碼率設定部 612‧‧‧初期值表讀出部 613‧‧‧檢查矩陣生成部 614‧‧‧資訊位元讀出部 615‧‧‧編碼同位演算部 616‧‧‧控制部 701‧‧‧匯流排 702‧‧‧CPU 703‧‧‧ROM 704‧‧‧RAM 705‧‧‧硬碟 706‧‧‧輸出部 707‧‧‧輸入部 708‧‧‧通訊部 709‧‧‧驅動器 710‧‧‧輸出入介面 711‧‧‧可移除式記錄媒體 1001‧‧‧逆排序部 1002‧‧‧記憶體 1011‧‧‧同位去交錯器 1101‧‧‧取得部 1102‧‧‧傳輸路解碼處理部 1103‧‧‧資訊源解碼處理部 1111‧‧‧輸出部 1121‧‧‧記錄部11‧‧‧Sending device 12‧‧‧Receiving device 23‧‧‧ Parity interleaver 24‧‧‧Group interleaver 25‧‧‧ block interleaver 54‧‧‧block deinterleaver 55‧‧‧Group deinterleaver 111‧‧‧Mode adaptation/multiplexer 112‧‧‧Finisher 113‧‧‧BB code mixer 114‧‧‧BCH encoder 115‧‧‧LDPC encoder 116‧‧‧bit interleaver 117‧‧‧Antipode 118‧‧‧Interleaver 119‧‧‧SISO/MISO encoder 120‧‧‧ Frequency interleaver 121‧‧‧BCH encoder 122‧‧‧LDPC encoder 123‧‧‧Antipode 124‧‧‧ Frequency interleaver 131‧‧‧Frame Builder/Resource Allocation Department 132‧‧‧OFDM generation 151‧‧‧OFDM Processing Department 152‧‧‧ Frame Management Department 153‧‧‧ frequency deinterleaver 154‧‧‧De-emitter 155‧‧‧LDPC decoder 156‧‧‧BCH decoder 161‧‧‧ frequency deinterleaver 162‧‧‧SISO/MISO decoder 163‧‧‧Deinterleaver 164‧‧‧De-emitter 165‧‧‧bit deinterleaver 166‧‧‧LDPC decoder 167‧‧‧BCH decoder 168‧‧‧BB demixer 169‧‧‧Deletion of null value 170‧‧‧Demultiplexer 300‧‧‧Memory for branch data storage 301‧‧‧selector 302‧‧‧ Check Node Computing Department 303‧‧‧Circulation displacement circuit 304‧‧‧Memory for branch data storage 305‧‧‧selector 306‧‧‧Memory for receiving data 307‧‧‧ Variable Node Computing Department 308‧‧‧Circulation displacement circuit 309‧‧‧Decoded word calculation department 310‧‧‧Receiving data sorting department 311‧‧‧Decoding data sorting department 601‧‧‧Encoding Processing Department 602‧‧‧ Memory Department 611‧‧‧ coding rate setting section 612‧‧‧ Initial value table reading section 613‧‧‧Check matrix generation section 614‧‧‧ Information bit readout department 615‧‧‧Coincidence Calculation Department 616‧‧‧Control Department 701‧‧‧Bus 702‧‧‧CPU 703‧‧‧ROM 704‧‧‧RAM 705‧‧‧Hard Disk 706‧‧‧ Output 707‧‧‧ Input 708‧‧‧Ministry of Communications 709‧‧‧Drive 710‧‧‧I/O interface 711‧‧‧removable recording media 1001‧‧‧Reverse Sorting Department 1002‧‧‧Memory 1011‧‧‧Parallel deinterleaver 1101‧‧‧ Acquisition Department 1102‧‧‧Transmission Decoding Processing Department 1103‧‧‧ Information Source Decoding Processing Department 1111‧‧‧ Output 1121‧‧‧Recording Department
[圖1]LDPC碼的檢查矩陣H的說明圖。
[圖2]LDPC碼之解碼程序的說明用流程圖。
[圖3]LDPC碼的檢查矩陣之例子的圖示。
[圖4]檢查矩陣的二分圖之例子的圖示。
[圖5]可變節點之例子的圖示。
[圖6]檢查節點之例子的圖示。
[圖7]適用了本技術的傳輸系統之一實施形態之構成例的圖示。
[圖8]送訊裝置11之構成例的區塊圖。
[圖9]位元交錯器116之構成例的區塊圖。
[圖10]檢查矩陣之例子的圖示。
[圖11]同位矩陣之例子的圖示。
[圖12]DVB-T.2之規格中所被規定的LDPC碼的檢查矩陣的說明圖。
[圖13]DVB-T.2之規格中所被規定的LDPC碼的檢查矩陣的說明圖。
[圖14]關於LDPC碼之解碼的二分圖之例子的圖示。
[圖15]呈階梯結構的同位矩陣HT
、和對應於該同位矩陣HT
的二分圖之例子的圖示。
[圖16]同位交錯後的LDPC碼所對應之檢查矩陣H的同位矩陣HT
之例子的圖示。
[圖17]位元交錯器116、及對映器117中所被進行之處理之例子的說明用流程圖。
[圖18]LDPC編碼器115之構成例的區塊圖。
[圖19]LDPC編碼器115之處理之例子的說明用流程圖。
[圖20]編碼率1/4,碼長度16200的檢查矩陣初期值表之例子的圖示。
[圖21]從檢查矩陣初期值表求出檢查矩陣H之方法的說明圖。
[圖22]檢查矩陣之結構的圖示。
[圖23]檢查矩陣初期值表之例子的圖示。
[圖24]從檢查矩陣初期值表所生成之A矩陣的說明圖。
[圖25]B矩陣之同位交錯的說明圖。
[圖26]從檢查矩陣初期值表所生成之C矩陣的說明圖。
[圖27]D矩陣之同位交錯的說明圖。
[圖28]對檢查矩陣,進行了作為將同位交錯予以還原之同位去交錯的列置換(column permutation)而成的檢查矩陣的圖示。
[圖29]對檢查矩陣,進行了行置換(row permutation)所得的轉換檢查矩陣的圖示。
[圖30]N=17280位元,且r=2/16的類型A碼的檢查矩陣初期值表之例子的圖示。
[圖31]N=17280位元,且r=3/16的類型A碼的檢查矩陣初期值表之例子的圖示。
[圖32]N=17280位元,且r=4/16的類型A碼的檢查矩陣初期值表之例子的圖示。
[圖33]N=17280位元,且r=5/16的類型A碼的檢查矩陣初期值表之例子的圖示。
[圖34]N=17280位元,且r=6/16的類型A碼的檢查矩陣初期值表之例子的圖示。
[圖35]N=17280位元,且r=7/16的類型A碼的檢查矩陣初期值表之例子的圖示。
[圖36]N=17280位元,且r=7/16的類型B碼的檢查矩陣初期值表之例子的圖示。
[圖37]N=17280位元,且r=8/16的類型B碼的檢查矩陣初期值表之例子的圖示。
[圖38]N=17280位元,且r=9/16的類型B碼的檢查矩陣初期值表之例子的圖示。
[圖39]N=17280位元,且r=10/16的類型B碼的檢查矩陣初期值表之例子的圖示。
[圖40]N=17280位元,且r=11/16的類型B碼的檢查矩陣初期值表之例子的圖示。
[圖41]N=17280位元,且r=12/16的類型B碼的檢查矩陣初期值表之例子的圖示。
[圖42]N=17280位元,且r=13/16的類型B碼的檢查矩陣初期值表之例子的圖示。
[圖43]N=17280位元,且r=14/16的類型B碼的檢查矩陣初期值表之例子的圖示。
[圖44]列權重為3,且行權重為6的度數序列之整體的二分圖之例子的圖示。
[圖45]多分枝類型之整體的二分圖之例子的圖示。
[圖46]類型A方式的檢查矩陣的說明圖。
[圖47]類型A方式的檢查矩陣的說明圖。
[圖48]類型B方式的檢查矩陣的說明圖。
[圖49]類型B方式的檢查矩陣的說明圖。
[圖50]N=17280位元,且r=4/16的新類型A碼的檢查矩陣初期值表之例子的圖示。
[圖51]r=4/16的新類型A碼的檢查矩陣H之參數的圖示。
[圖52]N=17280位元,且r=9/16的新類型B碼的檢查矩陣初期值表之例子的圖示。
[圖53]r=9/16的新類型B碼的檢查矩陣H之參數的圖示。
[圖54]調變方式為QPSK時的UC的訊號點之座標之例子的圖示。
[圖55]調變方式為16QAM時的2D-NUC的訊號點之座標之例子的圖示。
[圖56]調變方式為1024QAM時的1D-NUC的訊號點之座標之例子的圖示。
[圖57]1024QAM的符元y、與位置向量u之關係的圖示。
[圖58]QPSK-UC的訊號點之座標zq
之例子的圖示。
[圖59]QPSK-UC的訊號點之座標zq
之例子的圖示。
[圖60]16QAM-UC的訊號點之座標zq
之例子的圖示。
[圖61]16QAM-UC的訊號點之座標zq
之例子的圖示。
[圖62]64QAM-UC的訊號點之座標zq
之例子的圖示。
[圖63]64QAM-UC的訊號點之座標zq
之例子的圖示。
[圖64]256QAM-UC的訊號點之座標zq
之例子的圖示。
[圖65]256QAM-UC的訊號點之座標zq
之例子的圖示。
[圖66]1024QAM-UC的訊號點之座標zq
之例子的圖示。
[圖67]1024QAM-UC的訊號點之座標zq
之例子的圖示。
[圖68]4096QAM-UC的訊號點之座標zq
之例子的圖示。
[圖69]4096QAM-UC的訊號點之座標zq
之例子的圖示。
[圖70]16QAM-2D-NUC的訊號點之座標zs
之例子的圖示。
[圖71]64QAM-2D-NUC的訊號點之座標zs
之例子的圖示。
[圖72]256QAM-2D-NUC的訊號點之座標zs
之例子的圖示。
[圖73]256QAM-2D-NUC的訊號點之座標zs
之例子的圖示。
[圖74]1024QAM-1D-NUC的訊號點之座標zs
之例子的圖示。
[圖75]1024QAM的符元y、與位置向量u之關係的圖示。
[圖76]4096QAM-1D-NUC的訊號點之座標zs
之例子的圖示。
[圖77]4096QAM的符元y、與位置向量u之關係的圖示。
[圖78]4096QAM的符元y、與位置向量u之關係的圖示。
[圖79]區塊交錯器25中所進行的區塊交錯的說明圖。
[圖80]區塊交錯器25中所進行的區塊交錯的說明圖。
[圖81]群組式交錯器24中所進行的群組式交錯的說明圖。
[圖82]針對碼長度N為17280位元之LDPC碼的GW型樣之第1例的圖示。
[圖83]針對碼長度N為17280位元之LDPC碼的GW型樣之第2例的圖示。
[圖84]針對碼長度N為17280位元之LDPC碼的GW型樣之第3例的圖示。
[圖85]針對碼長度N為17280位元之LDPC碼的GW型樣之第4例的圖示。
[圖86]針對碼長度N為17280位元之LDPC碼的GW型樣之第5例的圖示。
[圖87]針對碼長度N為17280位元之LDPC碼的GW型樣之第6例的圖示。
[圖88]針對碼長度N為17280位元之LDPC碼的GW型樣之第7例的圖示。
[圖89]針對碼長度N為17280位元之LDPC碼的GW型樣之第8例的圖示。
[圖90]針對碼長度N為17280位元之LDPC碼的GW型樣之第9例的圖示。
[圖91]針對碼長度N為17280位元之LDPC碼的GW型樣之第10例的圖示。
[圖92]針對碼長度N為17280位元之LDPC碼的GW型樣之第11例的圖示。
[圖93]針對碼長度N為17280位元之LDPC碼的GW型樣之第12例的圖示。
[圖94]針對碼長度N為17280位元之LDPC碼的GW型樣之第13例的圖示。
[圖95]針對碼長度N為17280位元之LDPC碼的GW型樣之第14例的圖示。
[圖96]針對碼長度N為17280位元之LDPC碼的GW型樣之第15例的圖示。
[圖97]針對碼長度N為17280位元之LDPC碼的GW型樣之第16例的圖示。
[圖98]針對碼長度N為17280位元之LDPC碼的GW型樣之第17例的圖示。
[圖99]針對碼長度N為17280位元之LDPC碼的GW型樣之第18例的圖示。
[圖100]針對碼長度N為17280位元之LDPC碼的GW型樣之第19例的圖示。
[圖101]針對碼長度N為17280位元之LDPC碼的GW型樣之第20例的圖示。
[圖102]針對碼長度N為17280位元之LDPC碼的GW型樣之第21例的圖示。
[圖103]針對碼長度N為17280位元之LDPC碼的GW型樣之第22例的圖示。
[圖104]針對碼長度N為17280位元之LDPC碼的GW型樣之第23例的圖示。
[圖105]針對碼長度N為17280位元之LDPC碼的GW型樣之第24例的圖示。
[圖106]針對碼長度N為17280位元之LDPC碼的GW型樣之第25例的圖示。
[圖107]針對碼長度N為17280位元之LDPC碼的GW型樣之第26例的圖示。
[圖108]針對碼長度N為17280位元之LDPC碼的GW型樣之第27例的圖示。
[圖109]針對碼長度N為17280位元之LDPC碼的GW型樣之第28例的圖示。
[圖110]針對碼長度N為17280位元之LDPC碼的GW型樣之第29例的圖示。
[圖111]針對碼長度N為17280位元之LDPC碼的GW型樣之第30例的圖示。
[圖112]針對碼長度N為17280位元之LDPC碼的GW型樣之第31例的圖示。
[圖113]針對碼長度N為17280位元之LDPC碼的GW型樣之第32例的圖示。
[圖114]針對碼長度N為17280位元之LDPC碼的GW型樣之第33例的圖示。
[圖115]針對碼長度N為17280位元之LDPC碼的GW型樣之第34例的圖示。
[圖116]針對碼長度N為17280位元之LDPC碼的GW型樣之第35例的圖示。
[圖117]針對碼長度N為17280位元之LDPC碼的GW型樣之第36例的圖示。
[圖118]針對碼長度N為17280位元之LDPC碼的GW型樣之第37例的圖示。
[圖119]針對碼長度N為17280位元之LDPC碼的GW型樣之第38例的圖示。
[圖120]針對碼長度N為17280位元之LDPC碼的GW型樣之第39例的圖示。
[圖121]針對碼長度N為17280位元之LDPC碼的GW型樣之第40例的圖示。
[圖122]針對碼長度N為17280位元之LDPC碼的GW型樣之第41例的圖示。
[圖123]針對碼長度N為17280位元之LDPC碼的GW型樣之第42例的圖示。
[圖124]針對碼長度N為17280位元之LDPC碼的GW型樣之第43例的圖示。
[圖125]針對碼長度N為17280位元之LDPC碼的GW型樣之第44例的圖示。
[圖126]針對碼長度N為17280位元之LDPC碼的GW型樣之第45例的圖示。
[圖127]收訊裝置12之構成例的區塊圖。
[圖128]位元去交錯器165之構成例的區塊圖。
[圖129]解對映器164、位元去交錯器165、及LDPC解碼器166所進行之處理之例子的說明用流程圖。
[圖130]LDPC碼的檢查矩陣之例子的圖示。
[圖131]對檢查矩陣實施了行置換與列置換而成的矩陣(轉換檢查矩陣)之例子的圖示。
[圖132]分割成5×5單位的轉換檢查矩陣之例子的圖示。
[圖133]將節點演算以P個而加以批次進行的解碼裝置之構成例的區塊圖。
[圖134]LDPC解碼器166之構成例的區塊圖。
[圖135]區塊去交錯器54中所進行的區塊去交錯的說明圖。
[圖136]位元去交錯器165之其他構成例的區塊圖。
[圖137]可適用收訊裝置12的收訊系統之第1構成例的區塊圖。
[圖138]可適用收訊裝置12的收訊系統之第2構成例的區塊圖。
[圖139]可適用收訊裝置12的收訊系統之第3構成例的區塊圖。
[圖140]適用了本技術的電腦之一實施形態之構成例的區塊圖。[Fig. 1] An explanatory diagram of the check matrix H of the LDPC code. [Figure 2] A flowchart for explaining the decoding procedure of the LDPC code. [Fig. 3] An illustration of an example of the check matrix of the LDPC code. [Fig. 4] An illustration of an example of a bipartite graph of a check matrix. [FIG. 5] An illustration of an example of a variable node. [Fig. 6] An illustration of an example of a check node. [Fig. 7] A diagram showing a configuration example of an embodiment of a transmission system to which the present technology is applied. [Fig. 8] A block diagram of a configuration example of the
Claims (12)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018006029 | 2018-01-18 | ||
JP2018-006029 | 2018-01-18 | ||
JP2018-038305 | 2018-03-05 | ||
JP2018038305A JP7135343B2 (en) | 2018-01-18 | 2018-03-05 | Transmitting device, transmitting method, receiving device, and receiving method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201933789A TW201933789A (en) | 2019-08-16 |
TWI688221B true TWI688221B (en) | 2020-03-11 |
Family
ID=67398782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108100619A TWI688221B (en) | 2018-01-18 | 2019-01-08 | Sending method and receiving device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7135343B2 (en) |
PH (1) | PH12020500593A1 (en) |
TW (1) | TWI688221B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150046765A1 (en) * | 2013-02-08 | 2015-02-12 | Sony Corporation | Data processing apparatus and data processing method |
US9577790B2 (en) * | 2015-01-20 | 2017-02-21 | Electronics And Telecommunications Research Institute | Bit interleaver for low-density parity check codeword having length of 64800 and code rate of 4/15 and quadrature phase shift keying, and bit interleaving method using same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101350625B (en) | 2007-07-18 | 2011-08-31 | 北京泰美世纪科技有限公司 | High-efficiency all-purpose decoder for QC-LDPC code and decoding method thereof |
US10425110B2 (en) | 2014-02-19 | 2019-09-24 | Samsung Electronics Co., Ltd. | Transmitting apparatus and interleaving method thereof |
JP2015156530A (en) | 2014-02-19 | 2015-08-27 | ソニー株式会社 | Data processor and data processing method |
JP2015170911A (en) | 2014-03-05 | 2015-09-28 | ソニー株式会社 | Data processor and data processing method |
US9602136B2 (en) | 2014-03-06 | 2017-03-21 | Electronics And Telecommunications Research Institute | Bit interleaver for low-density parity check codeword having length of 64800 and code rate of 4/15 and 256-symbol mapping, and bit interleaving method using same |
JP6628124B2 (en) | 2014-05-30 | 2020-01-08 | パナソニックIpマネジメント株式会社 | Transmitting device, receiving device, transmitting method and receiving method |
WO2015182102A1 (en) | 2014-05-30 | 2015-12-03 | パナソニックIpマネジメント株式会社 | Transmission apparatus, reception apparatus, transmission method and reception method |
-
2018
- 2018-03-05 JP JP2018038305A patent/JP7135343B2/en active Active
-
2019
- 2019-01-08 TW TW108100619A patent/TWI688221B/en active
-
2020
- 2020-07-09 PH PH12020500593A patent/PH12020500593A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150046765A1 (en) * | 2013-02-08 | 2015-02-12 | Sony Corporation | Data processing apparatus and data processing method |
US9577790B2 (en) * | 2015-01-20 | 2017-02-21 | Electronics And Telecommunications Research Institute | Bit interleaver for low-density parity check codeword having length of 64800 and code rate of 4/15 and quadrature phase shift keying, and bit interleaving method using same |
Also Published As
Publication number | Publication date |
---|---|
PH12020500593A1 (en) | 2021-06-14 |
TW201933789A (en) | 2019-08-16 |
JP2019126016A (en) | 2019-07-25 |
JP7135343B2 (en) | 2022-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2021121133A (en) | Transmission device, transmission method, reception device, and reception method | |
JP7052911B2 (en) | Transmitter, transmitter, receiver, and receiver | |
TWI683545B (en) | Sending method and receiving device | |
TWI683546B (en) | Sending method and receiving device | |
TW201834431A (en) | Transmission method and reception device | |
JP7022361B2 (en) | Transmitter, transmitter, receiver, and receiver | |
TWI672031B (en) | Sending method and receiving device | |
TWI677197B (en) | Sending method and receiving device | |
TWI685212B (en) | Sending method and receiving device | |
TWI685213B (en) | Sending method and receiving device | |
TWI772543B (en) | Transmission device, transmission method, reception device, and reception method | |
TWI778153B (en) | Transmission device, transmission method, reception device, and reception method | |
TWI780198B (en) | Transmission method and reception device | |
JP7052905B2 (en) | Transmitter, transmitter, receiver, and receiver | |
TWI683544B (en) | Sending method and receiving device | |
TWI685215B (en) | Sending method and receiving device | |
TWI688221B (en) | Sending method and receiving device | |
TW201924236A (en) | Transmission device, transmission method, receiving device, and receiving method | |
JP7022362B2 (en) | Transmitter, transmitter, receiver, and receiver | |
TW201836280A (en) | Transmission method and reception device | |
TWI765110B (en) | Transmission device, transmission method, reception device, and reception method | |
TWI773842B (en) | Transmission device, transmission method, reception device, and reception method | |
TWI675556B (en) | Sending method and receiving device | |
JP2022097641A (en) | Transmission device, transmission method, reception device, and reception method | |
JP2022097640A (en) | Transmission device, transmission method, reception device, and reception method |