TWI687215B - Lower limb exoskeleton robot and aiding method thereof - Google Patents

Lower limb exoskeleton robot and aiding method thereof Download PDF

Info

Publication number
TWI687215B
TWI687215B TW108107304A TW108107304A TWI687215B TW I687215 B TWI687215 B TW I687215B TW 108107304 A TW108107304 A TW 108107304A TW 108107304 A TW108107304 A TW 108107304A TW I687215 B TWI687215 B TW I687215B
Authority
TW
Taiwan
Prior art keywords
exoskeleton
lower limb
axis
joint
signals
Prior art date
Application number
TW108107304A
Other languages
Chinese (zh)
Other versions
TW202033172A (en
Inventor
黃國興
陳冠宏
陳啟鈞
賴仲亮
Original Assignee
國立勤益科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立勤益科技大學 filed Critical 國立勤益科技大學
Priority to TW108107304A priority Critical patent/TWI687215B/en
Application granted granted Critical
Publication of TWI687215B publication Critical patent/TWI687215B/en
Publication of TW202033172A publication Critical patent/TW202033172A/en

Links

Images

Landscapes

  • Rehabilitation Tools (AREA)
  • Manipulator (AREA)

Abstract

A lower limb exoskeleton robot is for at least one lower limb of a user to wear, and includes three motion sensing units, three exoskeleton motors, three motor encoders and a calculation unit and a lower limb aid. The motion sensing units are disposed adjacent to a hip joint, a knee joint and an ankle joint of the lower limb, respectively. Each of the motion sensing units is for providing a plurality of sensing signals of three dimension of the adjacent joint. Each of the motor encodes is for providing at least one encoding signal from the adjacent exoskeleton motor. The calculation unit is for calculating a plurality of output values according to the sensing signals, the encoding signals and 3-link Denavit-Hartenberg parameters. The output values are converted to three exoskeleton motor control signals, respectively. Thus, the lower limb exoskeleton robot according to the invention is advantageous in aiding the user and increasing the popularity thereof.

Description

下肢外骨骼機器人及其輔助方法 Lower limb exoskeleton robot and its auxiliary method

本發明是有關於一種外骨骼機器人及其輔助方法,且特別是有關於一種應用於人體下肢的外骨骼機器人及其輔助方法。 The invention relates to an exoskeleton robot and its auxiliary method, and in particular to an exoskeleton robot applied to the lower limbs of the human body and its auxiliary method.

全球的老年化議題近幾年持續發燒,所衍生出來老人照護中的復健需求則是逐日攀升,若此時有一個智慧化的復健器材甚至是機器人能給予輔助,幫助人的各項復健運動控制,就能減緩復健醫療需求裡醫生、護理師的負擔,給予一定的醫療品質。 Global aging issues have continued to develop in recent years, and the demand for rehabilitation in the care of the elderly is increasing day by day. If there is a smart rehabilitation equipment or even a robot can provide assistance to help people with various rehabilitation Healthy exercise control can alleviate the burden of doctors and nurses in rehabilitation medical needs and give certain medical quality.

然而,在復健的醫療服務中,現階段下肢關節的復健還是需要投入很多人力資源在其中,且這些第一線的物理治療師都會隨著高齡化社會導致人力缺乏及導致超時工作。因此,市場上亟欲發展一種有助於普及的下肢外骨骼機器人及其輔助方法,以有效協助復健人力。 However, in the rehabilitation medical services, at this stage, the rehabilitation of lower limb joints still needs to invest a lot of human resources in it, and these first-line physical therapists will lead to lack of manpower and lead to overtime work with the aging society. Therefore, there is an urgent need to develop a lower extremity exoskeleton robot and its auxiliary methods that are helpful for the rehabilitation of manpower.

本發明提供一種下肢外骨骼機器人及其輔助方法,其用以輔助使用者之左側下肢及右側下肢中至少一下肢,藉由運動感測單元提供之感測信號及馬達編碼器提供之編碼信號,並搭配可有效且精簡演算下肢的前進步態(Gait)及後退步態的運動模型,以提升下肢外骨骼機器人及其輔助方法對使用者的助益及增加普及性。 The invention provides a lower extremity exoskeleton robot and an auxiliary method thereof, which are used to assist at least one of the left lower limb and the right lower limb of the user, through the sensing signal provided by the motion sensing unit and the encoding signal provided by the motor encoder, In addition, it can be used to effectively and streamline the movement model of the lower extremity gait and backward gait, so as to enhance the benefit of the lower extremity exoskeleton robot and its auxiliary methods to the user and increase the popularity.

依據本發明提供一種下肢外骨骼機器人,供使用者之至少一下肢穿戴,下肢外骨骼機器人包含三運動感測單元、三外骨骼馬達、三馬達編碼器、演算單元及下肢輔具。運動感測單元分別鄰設於下肢的髖關節、膝關節及踝關節,各運動感測單元用以提供鄰設的關節的三維空間的複數感測信號。外骨骼馬達分別鄰設於髖關節、膝關節及踝關節。所述三馬達編碼器分別鄰設於所述三外骨骼馬達,各馬達編碼器依據鄰設的外骨骼馬達提供至少一編碼信號。演算單元通信連接運動感測單元及馬達編碼器,演算單元用以依據感測信號、編碼信號及三連動的DH參數運算得到複數輸出值,輸出值分別轉換為三外骨骼馬達控制信號。所述三外骨骼馬達分別依據所述三外骨骼馬達控制信號產生三輔助力矩,下肢輔具受輔助力矩驅動以分別輔助髖關節、膝關節及踝關節。藉此,搭配可有效且精簡演算下肢的前進步態及後退步態的運動模型,以提升本發明之下肢外骨骼機器人對使用者的助益及增加普及性。 According to the present invention, a lower-limb exoskeleton robot is provided for at least one lower-limb wearer of a user. The lower-limb exoskeleton robot includes a three-motion sensing unit, a three-exoskeleton motor, a three-motor encoder, a calculation unit, and a lower-limb assist device. The motion sensing units are respectively adjacent to the hip joint, knee joint and ankle joint of the lower limb, and each motion sensing unit is used to provide a complex sensing signal of the three-dimensional space of the adjacent joint. The exoskeleton motors are adjacent to the hip joint, knee joint and ankle joint. The three motor encoders are respectively adjacent to the three exoskeleton motors, and each motor encoder provides at least one encoding signal according to the adjacent exoskeleton motor. The calculation unit is communicatively connected to the motion sensing unit and the motor encoder. The calculation unit is used to obtain a complex output value based on the sensing signal, the encoding signal and the three-linked DH parameter operation, and the output values are converted into three exoskeleton motor control signals, respectively. The three exoskeleton motors respectively generate three auxiliary torques according to the control signals of the three exoskeleton motors, and the lower limb assistive devices are driven by the auxiliary torques to respectively assist the hip joint, the knee joint and the ankle joint. In this way, a motion model that can effectively and simply calculate the forward and backward gait of the lower limbs is used to enhance the user's benefit and increase the popularity of the lower extremity exoskeleton robot of the present invention.

根據前述的下肢外骨骼機器人,其中各運動感測單元可為三軸加速度計及三軸陀螺儀。 According to the aforementioned extremity exoskeleton robot, each motion sensing unit may be a three-axis accelerometer and a three-axis gyroscope.

根據前述的下肢外骨骼機器人,可更包含肌電感測端,其鄰設下肢的大腿,且肌電感測端用以量測大腿之肌電信號,肌電信號用以控制是否將輸出值分別轉換為外骨骼馬達控制信號。 According to the aforementioned extremity exoskeleton robot, it may further include a myoelectricity measuring end, which is adjacent to the thigh of the lower extremity, and the myoelectricity measuring end is used to measure the myoelectric signal of the thigh, and the myoelectric signal is used to control whether the output values are converted Control signal for exoskeleton motor.

根據前述的下肢外骨骼機器人,其中所述三連動的DH參數中,在第Xi軸觀察到的從第Zi-1軸到第Zi軸的距離為ai,在第Zi軸觀察到的從第Xi-1軸到第Xi軸的距離為di,i的數值為1至3,且ai及di的數值可皆為零。 According to the aforementioned lower extremity exoskeleton robot, in the three-linked DH parameter, the distance from the Z i-1 axis to the Z i axis observed at the X i axis is a i , and the Z i axis is observed The distance from the X i-1 axis to the X i axis is d i , the value of i is 1 to 3, and the values of a i and d i can both be zero.

根據前述的下肢外骨骼機器人,其可供使用者之二下肢穿戴,運動感測單元、外骨骼馬達及馬達編碼器的數量皆為六個並鄰設於二下肢的二髖關節、二膝關節及二踝關節,演算單元通信連接運動感測單元及馬達編碼器,演算單元用以依據感測信號、編碼信號及三連動的DH參數運算得到輸出值,輸出值分別轉換為外骨骼馬達控制信號,外骨骼馬達分別依據外骨骼馬達控制信號產生輔助力矩,下肢輔具受輔助力矩驅動以分別輔助髖關節、膝關節及踝關節。演算單元包含類神經網路模組,類神經網路模組用以運算輸出值且包含輸入層、第一層、第二層、第三層及輸出層。輸入層係以所述二下肢的感測信號及編碼信號作為變數輸入模糊規則,模糊規則依據三連動的DH參數建立。第一層係將模糊規則進行適合度運算,得到複數規則強度。第二層係將規則強度進行正規化運算,得到複數正規化值。第三層係將正規化值與Sugeno模糊模式相乘運算。輸出層係將第三層的運算結果進行總和運算得到輸出值。 According to the aforesaid lower extremity exoskeleton robot, it can be worn by two lower extremities of the user, and the number of motion sensing units, exoskeleton motors and motor encoders are six and are adjacent to the two hip joints and two knee joints of the lower extremities And the two ankle joints, the calculation unit communicates with the motion sensing unit and the motor encoder, the calculation unit is used to obtain the output value based on the sensing signal, the encoding signal and the three-linked DH parameter calculation, and the output value is converted into the exoskeleton motor control signal The exoskeleton motor generates auxiliary torque according to the control signal of the exoskeleton motor respectively, and the lower limb assistive device is driven by the auxiliary torque to assist the hip joint, knee joint and ankle joint respectively. The calculation unit includes a neural network-like module. The neural network-like module is used to calculate output values and includes an input layer, a first layer, a second layer, a third layer, and an output layer. The input layer uses the sensing signals and encoded signals of the two lower limbs as variables to input fuzzy rules, and the fuzzy rules are established based on the three-linked DH parameters. In the first layer, the fuzzy rules are subjected to suitability calculation to obtain the strength of complex rules. The second layer normalizes the rule strength to obtain complex normalized values. The third layer multiplies the normalized value and Sugeno fuzzy mode. The output layer sums the calculation results of the third layer to obtain the output value.

藉由前述的下肢外骨骼機器人,有助於下肢外骨骼機器人有效地掌握及預測使用者的步態。 The aforementioned lower extremity exoskeleton robot helps the lower extremity exoskeleton robot to effectively grasp and predict the gait of the user.

依據本發明提供一種下肢外骨骼機器人輔助方法,其用以輔助使用者之至少一下肢,下肢外骨骼機器人輔助方法包含運動感測步驟、馬達編碼步驟、演算步驟及下肢輔助步驟。運動感測步驟係提供下肢的髖關節、膝關節及踝關節中各關節的三維空間的複數感測信號。馬達編碼步驟係提供分別鄰設於髖關節、膝關節及踝關節的外骨骼馬達中各者的至少一編碼信號。演算步驟係依據感測信號、編碼信號及三連動的DH參數運算得到複數輸出值,並將輸出值分別轉換為三外骨骼馬達控制信號。下肢輔助步驟中,所述三外骨骼馬達分別依據所述三外骨骼馬達控制信號產生三輔助力矩,下肢輔具受輔助力矩驅動以分別輔助髖關節、膝關節及踝關節。藉此,以提升本發明之下肢外骨骼機器人輔助方法對使用者的助益及增加普及性,進一步有效協助復健人力。 According to the present invention, an auxiliary method for a lower extremity exoskeleton robot is provided, which is used to assist at least a lower limb of a user. The auxiliary method for a lower extremity exoskeleton robot includes a motion sensing step, a motor coding step, a calculation step, and a lower extremity assistance step. The motion sensing step is to provide complex sensing signals in the three-dimensional space of the hip, knee, and ankle joints of the lower limbs. The motor coding step provides at least one coding signal for each of the exoskeleton motors adjacent to the hip joint, knee joint, and ankle joint. The calculation step is to obtain a complex output value based on the sensing signal, the encoding signal and the three-linked DH parameter calculation, and convert the output values into three exoskeleton motor control signals, respectively. In the lower limb assisting step, the three exoskeleton motors respectively generate three auxiliary torques according to the three exoskeleton motor control signals, and the lower limb assistive devices are driven by the auxiliary torques to assist the hip joint, knee joint and ankle joint, respectively. In this way, to enhance the user's benefit and increase the popularity of the lower limb exoskeleton robot assisting method of the present invention, and further effectively assist the rehabilitation of manpower.

根據前述的下肢外骨骼機器人輔助方法,其中運動感測步驟中,髖關節、膝關節及踝關節中各關節的感測信號可由三軸加速度計及三軸陀螺儀提供。 According to the aforementioned auxiliary method of the lower extremity exoskeleton robot, in the motion sensing step, the sensing signals of the joints in the hip joint, knee joint and ankle joint can be provided by a three-axis accelerometer and a three-axis gyroscope.

根據前述的下肢外骨骼機器人輔助方法,可更包含肌電感測步驟,量測下肢的大腿之肌電信號。演算步驟中,肌電信號用以控制是否將輸出值分別轉換為外骨骼馬達控制信號。 According to the aforementioned auxiliary method of the lower limb exoskeleton robot, it may further include a myoelectricity measuring step to measure the myoelectric signal of the thigh of the lower limb. In the calculation step, the EMG signal is used to control whether the output value is converted into an exoskeleton motor control signal, respectively.

根據前述的下肢外骨骼機器人輔助方法,其中所述三連動的DH參數中,在第Xi軸觀察到的從第Zi-1軸到第Zi軸的距離為ai,在第Zi軸觀察到的從第Xi-1軸到第Xi軸的距離為di,i的數值為1至3,且ai及di的數值可皆為零。 According to the aforementioned auxiliary method of the lower extremity exoskeleton robot, in the DH parameter of the three linkages, the distance observed from the Z i-1 axis to the Z i axis observed at the X i axis is a i , and at the Z i The distance from the X i-1 axis to the X i axis observed by the axis is d i , the value of i is 1 to 3, and the values of a i and d i can both be zero.

根據前述的下肢外骨骼機器人輔助方法,其可用以輔助使用者之二下肢。運動感測步驟中,提供二下肢的二髖關節、二膝關節及二踝關節中各關節的三維空間的感測信號。馬達編碼步驟中,提供分別鄰設於髖關節、膝關節及踝關節的所述六外骨骼馬達中各者的編碼信號。演算步驟中,以類神經網路模組依據感測信號、編碼信號及三連動的DH參數運算得到輸出值,並將輸出值分別轉換為所述六外骨骼馬達控制信號。下肢輔助步驟中,所述六外骨骼馬達分別依據所述六外骨骼馬達控制信號產生所述六輔助力矩,下肢輔具受輔助力矩驅動以分別輔助髖關節、膝關節及踝關節。類神經網路模組包含輸入層、第一層、第二層、第三層及輸出層。輸入層係以所述二下肢的感測信號及編碼信號作為變數輸入模糊規則,模糊規則依據三連動的DH參數建立。第一層係將模糊規則進行適合度運算,得到複數規則強度。第二層係將規則強度進行正規化運算,得到複數正規化值。第三層係將正規化值與Sugeno模糊模式相乘運算。輸出層係將第三層的運算結果進行總和運算得到輸出值。 According to the aforementioned method of assisting the lower limb exoskeleton robot, it can be used to assist the second lower limb of the user. In the motion sensing step, the three-dimensional sensing signals of the two hip joints, the two knee joints, and the two ankle joints of the lower limbs are provided. In the motor encoding step, encoding signals for each of the six exoskeleton motors adjacent to the hip joint, knee joint, and ankle joint are provided. In the calculation step, the neural network module is used to calculate the output value according to the sensing signal, the encoding signal and the three-linked DH parameter, and the output value is converted into the six exoskeleton motor control signals, respectively. In the lower limb assisting step, the six exoskeleton motors respectively generate the six assist torques according to the six exoskeleton motor control signals, and the lower limb assistive devices are driven by the assist torques to assist the hip joint, knee joint, and ankle joint, respectively. The neural network-like module includes an input layer, a first layer, a second layer, a third layer, and an output layer. The input layer uses the sensing signals and encoded signals of the two lower limbs as variables to input fuzzy rules, and the fuzzy rules are established based on the three-linked DH parameters. In the first layer, the fuzzy rules are subjected to suitability calculation to obtain the strength of complex rules. The second layer normalizes the rule strength to obtain complex normalized values. The third layer multiplies the normalized value and Sugeno fuzzy mode. The output layer sums the calculation results of the third layer to obtain the output value.

藉由前述的下肢外骨骼機器人輔助方法,有助於下肢外骨骼機器人輔助方法學習並即時輔助不同的使用者。 The aforementioned auxiliary method of the lower limb exoskeleton robot helps the lower limb exoskeleton robot auxiliary method to learn and assist different users in real time.

100‧‧‧下肢外骨骼機器人 100‧‧‧Lower limb exoskeleton robot

131、132、133、134、135、136‧‧‧運動感測單元 131, 132, 133, 134, 135, 136‧‧‧ motion sensing unit

141、142、143、144、145、146‧‧‧外骨骼馬達 141, 142, 143, 144, 145, 146

151、152、153、154、155、156‧‧‧馬達編碼器 151, 152, 153, 154, 155, 156

167、168‧‧‧肌電感測端 167, 168‧‧‧ muscle inductance measuring terminal

170‧‧‧演算單元 170‧‧‧Calculation unit

190‧‧‧下肢輔具 190‧‧‧Lower limb aids

80‧‧‧使用者 80‧‧‧ user

97、98‧‧‧大腿 97, 98‧‧‧ thigh

91、92‧‧‧髖關節 91、92‧‧‧ hip joint

93、94‧‧‧膝關節 93, 94‧‧‧ Knee

95、96‧‧‧踝關節 95, 96‧‧‧ ankle

177‧‧‧類神經網路模組 177‧‧‧ neural network module

180‧‧‧輸入層 180‧‧‧ input layer

181‧‧‧第一層 181‧‧‧First floor

182‧‧‧第二層 182‧‧‧Second floor

183‧‧‧第三層 183‧‧‧ third floor

184‧‧‧輸出層 184‧‧‧ output layer

A0‧‧‧感測信號 A0‧‧‧sensing signal

B0‧‧‧編碼信號 B0‧‧‧ coded signal

P0,11、P0,12、P0,21、P0,22、P1,1、P1,2、P2,1、P2,2、P3,1、P3,2‧‧‧運算值 P 0,11 , P 0,12 , P 0,21 , P 0,22 , P 1,1 , P 1,2 , P 2,1 , P 2,2 , P 3,1 , P 3,2 ‧ ‧‧Calculated value

Poutput‧‧‧輸出值 P output ‧‧‧ output value

200‧‧‧下肢外骨骼機器人輔助方法 200‧‧‧Auxiliary method of lower limb exoskeleton robot

230‧‧‧運動感測步驟 230‧‧‧Motion sensing steps

250‧‧‧馬達編碼步驟 250‧‧‧Motor coding steps

260‧‧‧肌電感測步驟 260‧‧‧Measuring procedure

270‧‧‧演算步驟 270‧‧‧Calculation steps

290‧‧‧下肢輔助步驟 290‧‧‧Lower limb auxiliary steps

第1圖繪示本發明第一實施例的下肢外骨骼機器人的方塊圖;第2圖繪示第一實施例的下肢外骨骼機器人的使用示意圖;第3圖繪示第一實施例中類神經網路模組的示意圖;以及第4圖繪示本發明第二實施例的下肢外骨骼機器人輔助方法的流程圖。 Figure 1 shows a block diagram of a lower extremity exoskeleton robot of the first embodiment of the present invention; Figure 2 shows a schematic diagram of the lower extremity exoskeleton robot of the first embodiment; Figure 3 shows a nerve-like model of the first embodiment A schematic diagram of a network module; and FIG. 4 is a flowchart of a method for assisting a lower extremity exoskeleton robot according to a second embodiment of the present invention.

以下將參照圖式說明本發明之複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之;並且重複之元件將可能使用相同的編號表示之。 Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. For clarity, many practical details will be explained in the following description. However, it should be understood that these practical details should not be used to limit the present invention. That is to say, in some embodiments of the present invention, these practical details are unnecessary. In addition, for the sake of simplifying the drawings, some conventionally used structures and elements will be shown in a simple schematic manner in the drawings; and repeated elements may be indicated by the same number.

請參照第1圖及第2圖,第1圖繪示本發明第一實施例的下肢外骨骼機器人100的方塊圖,第2圖繪示第一實施例的下肢外骨骼機器人100的使用示意圖。由第1圖及第2圖可知,下肢外骨骼機器人100供使用者80之左側下肢及右側下肢中至少一下肢(未另標號)穿戴。就下肢外骨骼機器人100供使用者80之右側下肢穿戴而言,下肢外骨骼機器 人100包含運動感測單元131、133、135、外骨骼馬達141、143、145、馬達編碼器151、153、155、演算單元170及下肢輔具190。依據本發明的其他實施例中(圖未揭示),下肢外骨骼機器人可依使用者所需設計為僅供左側下肢穿戴、僅供右側下肢穿戴、或是同時供二下肢穿戴(如本發明之第一實施例的下肢外骨骼機器人100)。 Please refer to FIGS. 1 and 2. FIG. 1 is a block diagram of the lower extremity exoskeleton robot 100 according to the first embodiment of the present invention, and FIG. 2 is a schematic diagram of the lower extremity exoskeleton robot 100 according to the first embodiment. As can be seen from FIG. 1 and FIG. 2, the lower extremity exoskeleton robot 100 is intended to be worn by at least one lower limb (not otherwise labeled) of the left lower limb and the right lower limb of the user 80. As far as the lower extremity exoskeleton robot 100 is provided for the right lower extremity of the user 80 to wear, the lower extremity exoskeleton machine The person 100 includes motion sensing units 131, 133, 135, exoskeleton motors 141, 143, 145, motor encoders 151, 153, 155, a calculation unit 170, and a lower limb assistive device 190. According to other embodiments of the present invention (not shown), the lower extremity exoskeleton robot can be designed to be worn only on the left lower limb, only on the right lower limb, or both lower limbs (as the The lower extremity exoskeleton robot 100 of the first embodiment.

運動感測單元131、133、135分別鄰設於下肢的髖關節91、膝關節93及踝關節95,運動感測單元131、133、135中各者用以提供鄰設的關節的三維空間的複數感測信號A0。外骨骼馬達141、143、145分別鄰設於髖關節91、膝關節93及踝關節95。馬達編碼器151、153、155分別鄰設於外骨骼馬達141、143、145,馬達編碼器151、153、155中各者依據鄰設的外骨骼馬達141、143、145提供至少一編碼信號B0。演算單元170通信連接運動感測單元131、133、135及馬達編碼器151、153、155,演算單元170用以依據感測信號A0、編碼信號B0及三連動的DH參數(3-link Denavit-Hartenberg Parameters)運算得到複數輸出值Poutput,輸出值Poutput分別轉換為外骨骼馬達控制信號。外骨骼馬達141、143、145分別依據外骨骼馬達控制信號產生三輔助力矩,下肢輔具190受輔助力矩驅動以分別輔助髖關節91、膝關節93及踝關節95。藉此,下肢外骨骼機器人100使用可有效且精簡演算下肢的前進步態及後退步態的三連動的DH參數之運動模型,以輔助或帶動使用者 80行走等動作,並能增加下肢外骨骼機器人100的普及性,進而有效協助復健人力。 The motion sensing units 131, 133, and 135 are adjacent to the hip joint 91, the knee joint 93, and the ankle joint 95 of the lower limb, respectively, and each of the motion sensing units 131, 133, and 135 is used to provide a three-dimensional space of the adjacent joints. Complex sensing signal A0. The exoskeleton motors 141, 143, and 145 are adjacent to the hip joint 91, knee joint 93, and ankle joint 95, respectively. The motor encoders 151, 153, and 155 are adjacent to the exoskeleton motors 141, 143, and 145, respectively. Each of the motor encoders 151, 153, and 155 provides at least one encoded signal B0 according to the adjacent exoskeleton motors 141, 143, and 145. . The calculation unit 170 is communicatively connected to the motion sensing units 131, 133, 135 and the motor encoders 151, 153, 155. The calculation unit 170 is used to determine the sensing signal A0, the encoding signal B0, and the three-link DH parameters (3-link Denavit- Hartenberg Parameters) operation obtains a complex output value P output , and the output value P output is converted into an exoskeleton motor control signal, respectively. The exoskeleton motors 141, 143, and 145 generate three auxiliary torques according to the exoskeleton motor control signals, respectively, and the lower limb assistive device 190 is driven by the auxiliary torque to assist the hip joint 91, the knee joint 93, and the ankle joint 95, respectively. In this way, the lower extremity exoskeleton robot 100 uses a three-linked DH parameter motion model that can efficiently and streamline the forward and backward gait of the lower limb to assist or drive the user 80 to walk and other actions, and can increase the lower extremity exoskeleton The popularity of the robot 100 effectively assists the rehabilitation of manpower.

進一步而言,演算單元170中的三連動的DH參數係為三個DH轉換矩陣(Denavit-Hartenberg Conversion Matrix)0M11M22M3中的參數,其中DH轉換矩陣i-1Mi如以下式(1)所示。本發明第一實施例的下肢外骨骼機器人100的三連動的DH參數如以下表1所示,其中係以使用者80的上半身為參考基座(第0軸),i的數值為1至3,i為1代表髖關節91(一連動,第1軸),i為2代表膝關節93(二連動,第2軸),i為3代表踝關節95(三連動,第3軸),第Zi軸描述使用者80的下肢中各關節朝前轉動或朝後轉動等主要轉動,第Xi軸描述使用者80的下肢朝上運動、朝下運動、朝左運動或朝右運動,在第Xi軸觀察到的從第Zi-1軸到第Zi軸的角度為αi,在第Xi軸觀察到的從第Zi-1軸到第Zi軸的距離為ai,在第Zi軸觀察到的從第Xi-1軸到第Xi軸的距離為di,在第Zi軸觀察到的從第Xi-1軸到第Xi軸的角度為θi。再者,踝關節95相對於使用者80的上半身的相對運動可以下列式(2)表示。敬請參照以下式(1)及式(2):

Figure 108107304-A0101-12-0008-1
;以及0 M 3=0 M 1 1 M 2 2 M 3 式(2)。 Further, the three-linked DH parameters in the calculation unit 170 are the parameters in the three DH conversion matrices (Denavit-Hartenberg Conversion Matrix) 0 M 1 , 1 M 2 , and 2 M 3 , where the DH conversion matrix i-1 M i is represented by the following formula (1). The three-link DH parameters of the lower extremity exoskeleton robot 100 of the first embodiment of the present invention are shown in Table 1 below, where the upper body of the user 80 is used as a reference base (axis 0), and the value of i is 1 to 3 , I is 1 for hip joint 91 (first linkage, first axis), i is 2 for knee joint 93 (second linkage, second axis), i is 3 for ankle joint 95 (three linkage, third axis), The Z i axis describes the main rotations of the joints in the lower limbs of the user 80, such as forward rotation or backward rotation, and the X i axis describes the movement of the lower limbs of the user 80 upward, downward, left, or right. the first X i axis viewed from the angle of the shaft to the second Z i axis is a first Z-1 i is α i, at the X i axis is observed distance from Z i-1 axis to the second Z i axis is a i , the distance of the Z i axis observed from the X i-1 axis to the second X i axis is d i, the angle of the Z i axis observed from the X i-1 axis to the second X i axis is θ i . Furthermore, the relative movement of the ankle joint 95 relative to the upper body of the user 80 can be expressed by the following formula (2). Please refer to the following formula (1) and formula (2):
Figure 108107304-A0101-12-0008-1
; And 0 M 3 = 0 M 1 1 M 2 2 M 3 formula (2).

Figure 108107304-A0101-12-0009-2
Figure 108107304-A0101-12-0009-2

具體而言,第一實施例的下肢外骨骼機器人100可供使用者80之二下肢穿戴,下肢外骨骼機器人100包含運動感測單元131、132、133、134、135、136(分別提供感測信號A0)、外骨骼馬達141、142、143、144、145、146及馬達編碼器151、152、153、154、155、156(分別提供編碼信號B0),即運動感測單元、外骨骼馬達及馬達編碼器的數量皆為六個,其中運動感測單元131、132、外骨骼馬達141、142、馬達編碼器151、152鄰設於髖關節91、92,運動感測單元133、134、外骨骼馬達143、144、馬達編碼器153、154鄰設於膝關節93、94,運動感測單元135、136、外骨骼馬達145、146、馬達編碼器155、156鄰設於踝關節95、96。演算單元170通信連接運動感測單元131、132、133、134、135、136及馬達編碼器151、152、153、154、155、156,演算單元170用以依據感測信號A0、編碼信號B0及三連動的DH參數運算得到輸出值Poutput,輸出值Poutput分別轉換為外骨骼馬達控制信號,外骨骼馬達141、142、143、144、145、146分別依據外骨骼馬達控制信號產生輔助力矩,下肢輔具190受輔助力矩驅動以分別輔助髖關節91、92、膝關節93、94及踝關節95、96。藉此, 下肢外骨骼機器人100可提供二下肢皆有輔助需求的使用者80穿戴。 Specifically, the lower extremity exoskeleton robot 100 of the first embodiment can be worn by the lower limbs of the user 80. The lower extremity exoskeleton robot 100 includes motion sensing units 131, 132, 133, 134, 135, and 136 (respectively providing sensing Signal A0), exoskeleton motors 141, 142, 143, 144, 145, 146 and motor encoders 151, 152, 153, 154, 155, 156 (providing the encoded signal B0, respectively), namely motion sensing unit, exoskeleton motor The number of motor encoders is six. Among them, motion sensing units 131, 132, exoskeleton motors 141, 142, motor encoders 151, 152 are adjacent to hip joints 91, 92, and motion sensing units 133, 134, Exoskeleton motors 143, 144, motor encoders 153, 154 are adjacent to the knee joints 93, 94, motion sensing units 135, 136, exoskeleton motors 145, 146, motor encoders 155, 156 are adjacent to the ankle joint 95, 96. The arithmetic unit 170 is communicatively connected to the motion sensing units 131, 132, 133, 134, 135, 136 and the motor encoders 151, 152, 153, 154, 155, 156. The arithmetic unit 170 is used to detect the sensing signal A0 and the encoding signal B0 And the three-linked DH parameter operation to obtain the output value P output , the output value P output is converted into an exoskeleton motor control signal, and the exoskeleton motors 141, 142, 143, 144, 145, and 146 generate auxiliary torques according to the exoskeleton motor control signals, respectively The lower limb assistive device 190 is driven by an assisting torque to assist the hip joint 91, 92, the knee joint 93, 94, and the ankle joint 95, 96, respectively. In this way, the lower extremity exoskeleton robot 100 can provide users 80 with assistance needs for both lower limbs to wear.

第一實施例中,運動感測單元131、132、133、134、135、136、外骨骼馬達141、142、143、144、145、146及馬達編碼器151、152、153、154、155、156的設置位置皆不僅限於第2圖中的示意位置。再者,演算單元170用以依據感測信號A0、編碼信號B0及三連動的DH參數運算得到三個輸出值Poutput,其中三維空間的感測信號A0可進一步轉換為四元數(Quaternion),再轉換為歐拉角(Eulerian Angles)以供運算。三個輸出值Poutput分別轉換為三個外骨骼馬達控制信號,即外骨骼馬達141、142(對應髖關節91、92)依據其一外骨骼馬達控制信號,外骨骼馬達143、144(對應膝關節93、94)依據其二外骨骼馬達控制信號,外骨骼馬達145、146(對應踝關節95、96)依據其三外骨骼馬達控制信號。 In the first embodiment, the motion sensing units 131, 132, 133, 134, 135, 136, exoskeleton motors 141, 142, 143, 144, 145, 146 and motor encoders 151, 152, 153, 154, 155, The installation positions of 156 are not limited to the schematic positions in FIG. 2. Furthermore, the calculation unit 170 is used to obtain three output values P output according to the sensing signal A0, the encoding signal B0, and the three-linked DH parameter operation, wherein the sensing signal A0 in the three-dimensional space can be further converted into a quaternion (Quaternion) , And then converted to Euler Angles (Eulerian Angles) for calculation. The three output values P output are converted into three exoskeleton motor control signals, namely, exoskeleton motors 141, 142 (corresponding to hip joints 91, 92) according to one of the exoskeleton motor control signals, exoskeleton motors 143, 144 (corresponding to the knee The joints 93 and 94) are based on the control signals of the two exoskeleton motors, and the exoskeleton motors 145 and 146 (corresponding to the ankle joints 95 and 96) are based on the control signals of the three exoskeleton motors.

運動感測單元131、132、133、134、135、136中各者可為三軸加速度計及三軸陀螺儀。藉此,有助於下肢外骨骼機器人100有效地掌握及預測使用者80的步態。 Each of the motion sensing units 131, 132, 133, 134, 135, and 136 may be a three-axis accelerometer and a three-axis gyroscope. This helps the lower exoskeleton robot 100 to effectively grasp and predict the gait of the user 80.

下肢外骨骼機器人100可更包含肌電感測端167、168,其分別鄰設下肢的大腿97、98,且肌電感測端167、168用以分別量測大腿97、98之肌電信號(Electromyographic Signal,EMG signal),肌電信號用以控制是否將輸出值Poutput分別轉換為外骨骼馬達控制信號。藉此,有助於下肢外骨骼機器人100即時依據使用者80 的動作需求啟動或暫停輔助模式。再者,肌電感測端167、168可為非侵入式的電極貼片並可連接放大器,肌電感測端167、168可分別設置於大腿97、98的肌肉纖維最多之處,如大腿股四頭肌,以提高肌電信號的強度及準確度。 The lower extremity exoskeleton robot 100 may further include myoelectric measuring terminals 167 and 168, which are adjacent to the thighs 97 and 98 respectively, and the myoelectric measuring terminals 167 and 168 are used to measure the electromyographic signals of the thighs 97 and 98, respectively. Signal, EMG signal), the EMG signal is used to control whether the output value P output is converted into an exoskeleton motor control signal, respectively. In this way, it helps the lower extremity exoskeleton robot 100 to activate or suspend the assist mode immediately according to the user 80's movement requirements. In addition, the myoelectricity measuring terminals 167 and 168 can be non-invasive electrode patches and can be connected to the amplifier. The myoelectricity measuring terminals 167 and 168 can be set at the places where the thigh 97 and 98 have the most muscle fibers, such as the thigh Head muscles to improve the strength and accuracy of EMG signals.

請參照前述式(1)及表1,所述三連動的DH參數中,在第Xi軸觀察到的從第Zi-1軸到第Zi軸的距離為ai,在第Zi軸觀察到的從第Xi-1軸到第Xi軸的距離為di,i的數值為1至3,且ai及di的數值可皆為零。藉此,有助於精簡演算單元170的運算數據量,並可有效避免過於龐雜的運算數據量而導致下肢外骨骼機器人100延誤輔助時機或產生誤動作。進一步而言,第一實施例的下肢外骨骼機器人100中,係應用正逆向運動學理論、下肢前進步態及後退步態的零力矩點(Zero Moment Point,ZMP)理論推算出穩定行走的步態模型或步態週期(Gait Cycle),進而精簡所述三連動的DH參數。 Please refer to the aforementioned formula (1) and Table 1. In the DH parameters of the three linkages, the distance from the Z i-1 axis to the Z i axis observed on the X i axis is a i , and on the Z i The distance from the X i-1 axis to the X i axis observed by the axis is d i , the value of i is 1 to 3, and the values of a i and d i can both be zero. In this way, it helps to simplify the amount of calculation data of the calculation unit 170, and can effectively avoid the excessively complicated amount of calculation data, which causes the lower extremity exoskeleton robot 100 to delay the assist timing or generate a malfunction. Further, in the lower extremity exoskeleton robot 100 of the first embodiment, the forward and backward kinematics theory, the zero-moment point (ZMP) theory of the forward and backward gait of the lower limb are used to calculate the stable walking step State model or gait cycle (Gait Cycle) to further simplify the DH parameters of the three linkages.

請參照第3圖,其繪示第一實施例中類神經網路模組177的示意圖。由第1圖及第3圖可知,演算單元170包含類神經網路模組177,類神經網路模組177用以運算三個輸出值Poutput且可為適應性網路模糊推論系統(Adaptive-Network-based Fuzzy Inference System,ANFIS),類神經網路模組177包含輸入層180、第一層181、第二層182、第三層183及輸出層184。輸入層180係以所述二下肢的感測信號A0及編碼信號B0作為變數輸入模糊規則,模糊規則依據三連動的DH參數建立。第一層181 係將模糊規則進行適合度運算,得到複數規則強度。第二層182係將規則強度進行正規化運算,得到複數正規化值。第三層183係將正規化值與Sugeno模糊模式相乘運算。輸出層184係將第三層183的運算結果進行總和運算得到輸出值Poutput。藉此,有助於下肢外骨骼機器人100學習並即時輔助不同的使用者。 Please refer to FIG. 3, which illustrates a schematic diagram of the neural network module 177 in the first embodiment. As can be seen from FIGS. 1 and 3, the calculation unit 170 includes a neural network-like module 177. The neural network-like module 177 is used to calculate three output values P output and can be an adaptive network fuzzy inference system (Adaptive -Network-based Fuzzy Inference System (ANFIS), the neural network-like module 177 includes an input layer 180, a first layer 181, a second layer 182, a third layer 183, and an output layer 184. The input layer 180 inputs fuzzy rules using the sensing signal A0 and the encoded signal B0 of the two lower limbs as variables, and the fuzzy rules are established based on the three-linked DH parameters. The first layer 181 performs the suitability calculation on the fuzzy rules to obtain the strength of the complex rules. The second layer 182 system normalizes the rule strength to obtain complex normalization values. The third layer 183 is to multiply the normalized value and Sugeno fuzzy mode. The output layer 184 sums the calculation results of the third layer 183 to obtain the output value P output . In this way, it helps the lower limb exoskeleton robot 100 to learn and assist different users in real time.

第一實施例中,前段所述的類神經網路模組177依據以下式(3)至式(7),其中j的數值為1至2,k的數值為1表示感測信號A0作為變數輸入,k的數值為2表示編碼信號B0作為變數輸入,且運算出三個輸出值Poutput(分別輔助髖關節91、92、膝關節93、94、踝關節95、96)的類神經網路模組177中的參數數值(包含三連動的DH參數)可能不同。 In the first embodiment, the neural network-like module 177 described in the previous paragraph is based on the following equations (3) to (7), where the value of j is 1 to 2, and the value of k is 1 indicating that the sensing signal A0 is a variable Input, the value of k is 2 indicates that the encoded signal B0 is used as a variable input, and the three output values P output (respectively assisting the hip joint 91, 92, knee joint 93, 94, ankle joint 95, 96) are calculated. The parameter values in module 177 (including the three-linked DH parameters) may be different.

參照以下式(3),輸入層180係以二下肢的感測信號A0及編碼信號B0作為變數輸入模糊規則,得到運算值P0,kj,其中x表示感測信號A0或編碼信號B0,且其隸屬函數為高斯函數uAj,學習參數為aj、bj、cj

Figure 108107304-A0101-12-0012-3
Referring to the following equation (3), the input layer 180 inputs fuzzy rules using the sensing signal A0 of the lower limbs and the encoded signal B0 as variables to obtain the calculated value P 0,kj , where x represents the sensing signal A0 or the encoded signal B0, and Its membership function is Gaussian function u Aj , and the learning parameters are a j , b j , c j :
Figure 108107304-A0101-12-0012-3

參照以下式(4),第一層181係將模糊規則進行適合度運算(即wj),得到複數規則強度,即是運算值P1,j

Figure 108107304-A0101-12-0012-4
Referring to the following formula (4), the first layer 181 performs the suitability calculation of the fuzzy rules (that is, w j ) to obtain the strength of the complex number rule, which is the calculated value P 1,j :
Figure 108107304-A0101-12-0012-4

參照以下式(5),第二層182係將規則強度進行正規化運算,得到複數正規化值,即是運算值P2,j,其中運算值P2,j介於0與1之間:

Figure 108107304-A0101-12-0013-5
Referring to the following formula (5), the second layer 182 normalizes the rule strength to obtain the complex normalized value, which is the calculated value P 2,j , where the calculated value P 2,j is between 0 and 1:
Figure 108107304-A0101-12-0013-5

參照以下式(6),第三層183係將正規化值與Sugeno模糊模式(即fj)相乘運算,得到運算值P3,j,其中pj、qj及rj為Sugeno模糊模式的參數:

Figure 108107304-A0101-12-0013-6
Referring to the following formula (6), the third layer 183 multiplies the normalized value with the Sugeno fuzzy mode (ie, f j ) to obtain the calculated value P 3,j , where p j , q j, and r j are Sugeno fuzzy modes Of parameters:
Figure 108107304-A0101-12-0013-6

參照以下式(7),輸出層184係將第三層183的運算值P3,j進行總和運算得到類神經網路模組177的輸出值Poutput

Figure 108107304-A0101-12-0013-7
Referring to the following equation (7), the output layer 184 performs the sum operation of the calculated values P 3,j of the third layer 183 to obtain the output value P output of the neural network-like module 177:
Figure 108107304-A0101-12-0013-7

此外,本發明之下肢外骨骼機器人100能在人機介面中提供選擇復健醫療模式或是自主行走人體信號控制模式,使下肢外骨骼機器人100智慧多功能化。再者,下肢外骨骼機器人100還可實現智慧控制及監控,應用物聯網之概念,運用雲端技術將每個使用者80的數值保留,利用簡單的上網裝置就能做出復健行為的動作,且還能將使用者80的數據備存後利用大數據分析加以應用。 In addition, the lower extremity exoskeleton robot 100 of the present invention can provide a choice of rehabilitation medical mode or autonomous walking human signal control mode in the human-machine interface, so that the lower extremity exoskeleton robot 100 is intelligent and multifunctional. In addition, the lower extremity exoskeleton robot 100 can also realize intelligent control and monitoring, apply the concept of the Internet of Things, use cloud technology to retain the value of 80 for each user, and use a simple Internet device to make rehabilitation actions. Moreover, the data of the user 80 can be stored and applied using big data analysis.

請參照第4圖,其繪示本發明第二實施例的下肢外骨骼機器人輔助方法200的流程圖。請一併參考第1圖至第4圖,係以第一實施例的下肢外骨骼機器人100輔助說明第二實施例的下肢外骨骼機器人輔助方法200,下肢外骨骼機器人輔助方法200用以輔助使用者80之左側下肢及右側下肢中至少一下肢,下肢外骨骼機器人輔助方法200包含運動感測步驟230、馬達編碼步驟250、演算步驟270及下肢輔助步驟290。就下肢外骨骼機器人輔助方法200輔助使用者80之右側下肢而言,運動感測步驟230係提供下肢的髖關節91、膝關節93及踝關節95中各關節的三維空間的複數感測信號A0。馬達編碼步驟250係提供分別鄰設於髖關節91、膝關節93及踝關節95的外骨骼馬達141、143、145中各者的至少一編碼信號B0。演算步驟270係依據感測信號A0、編碼信號B0及三連動的DH參數運算得到複數輸出值Poutput,並將輸出值分別轉換為三外骨骼馬達控制信號。下肢輔助步驟290中,所述三外骨骼馬達141、143、145分別依據所述三外骨骼馬達控制信號產生三輔助力矩,下肢輔具190受輔助力矩驅動以分別輔助髖關節91、膝關節93及踝關節95。藉此,搭配可有效且精簡演算下肢的前進步態及後退步態的三連動的DH參數之運動模型,以增進下肢外骨骼機器人輔助方法200協助復健人力。 Please refer to FIG. 4, which illustrates a flowchart of a method 200 for assisting a lower extremity exoskeleton robot according to a second embodiment of the present invention. Please refer to FIG. 1 to FIG. 4 together, the lower extremity exoskeleton robot 100 of the first embodiment is used to help explain the lower extremity exoskeleton robot assistance method 200 of the second embodiment, and the lower extremity exoskeleton robot assistance method 200 is used to assist the use At least one of the left lower limb and the right lower limb of the person 80, the lower limb exoskeleton robot assisting method 200 includes a motion sensing step 230, a motor encoding step 250, a calculation step 270, and a lower limb assisting step 290. For the lower limb exoskeleton robot assisting method 200 to assist the right lower limb of the user 80, the motion sensing step 230 provides a complex sensing signal A0 in the three-dimensional space of each of the hip joint 91, knee joint 93 and ankle joint 95 of the lower limb . The motor encoding step 250 provides at least one encoded signal B0 of the exoskeleton motors 141, 143, and 145 adjacent to the hip joint 91, knee joint 93, and ankle joint 95, respectively. The calculation step 270 is based on the sensing signal A0, the encoding signal B0, and the three-linked DH parameter operation to obtain a complex output value P output , and convert the output values into three exoskeleton motor control signals, respectively. In the lower limb assisting step 290, the three exoskeleton motors 141, 143, and 145 respectively generate three auxiliary torques according to the three exoskeleton motor control signals, and the lower extremity assistive device 190 is driven by the auxiliary torque to assist the hip joint 91 and the knee joint 93, respectively And ankle joint 95. In this way, a three-linked DH parameter motion model that can efficiently and simply calculate the forward and backward gait of the lower limbs is used to enhance the lower limb exoskeleton robot assisted method 200 to assist the rehabilitation of manpower.

進一步而言,下肢外骨骼機器人輔助方法200可用以輔助使用者80之二下肢。運動感測步驟230中,提供二下肢的髖關節91、92、膝關節93、94及踝關節95、96 中各關節的三維空間的感測信號A0。馬達編碼步驟250中,提供分別鄰設於髖關節91、92、膝關節93、94及踝關節95、96的所述六外骨骼馬達141、142、143、144、145、146中各者的編碼信號B0。演算步驟270中,以類神經網路模組177依據感測信號A0、編碼信號B0及三連動的DH參數運算得到輸出值Poutput,並將輸出值Poutput分別轉換為所述六外骨骼馬達控制信號。下肢輔助步驟290中,所述六外骨骼馬達141、142、143、144、145、146分別依據所述六外骨骼馬達控制信號產生所述六輔助力矩,下肢輔具190受輔助力矩驅動以分別輔助髖關節91、92、膝關節93、94及踝關節95、96。 Further, the lower limb exoskeleton robot assisting method 200 can be used to assist the lower limb of the user 80. In the motion sensing step 230, three-dimensional sensing signals A0 of the hip joints 91, 92, knee joints 93, 94, and ankle joints 95, 96 of the lower limbs are provided. In the motor coding step 250, the six exoskeleton motors 141, 142, 143, 144, 145, 146 adjacent to the hip joints 91, 92, knee joints 93, 94, and ankle joints 95, 96 are provided, respectively. Encoded signal B0. In the calculation step 270, the neural network module 177 calculates the output value P output according to the sensing signal A0, the encoding signal B0 and the three-linked DH parameters, and converts the output value P output to the six exoskeleton motors, respectively control signal. In the lower limb assisting step 290, the six exoskeleton motors 141, 142, 143, 144, 145, and 146 generate the six auxiliary torques according to the six exoskeleton motor control signals, respectively, and the lower extremity assistive device 190 is driven by the auxiliary torque to respectively Auxiliary hip joint 91, 92, knee joint 93, 94 and ankle joint 95, 96.

下肢外骨骼機器人輔助方法200的運動感測步驟230中,髖關節91、92、膝關節93、94及踝關節95、96中各關節的感測信號A0可由三軸加速度計及三軸陀螺儀提供。藉此,有助於下肢外骨骼機器人輔助方法200有效地掌握及預測使用者80的步態。 In the motion sensing step 230 of the lower extremity exoskeleton robot assisting method 200, the sensing signals A0 of the hip joints 91, 92, the knee joints 93, 94, and the ankle joints 95, 96 can be controlled by a three-axis accelerometer and a three-axis gyroscope provide. This helps the lower limb exoskeleton robot assisting method 200 to effectively grasp and predict the gait of the user 80.

下肢外骨骼機器人輔助方法200可更包含肌電感測步驟260,係量測下肢的大腿97、98之肌電信號。演算步驟270中,肌電信號用以控制是否將輸出值Poutput分別轉換為外骨骼馬達控制信號。藉此,有助於下肢外骨骼機器人輔助方法200即時依據使用者80的動作需求啟動或暫停輔助模式。 The lower limb exoskeleton robot assisting method 200 may further include a myoelectric measurement step 260, which measures the myoelectric signals of the thighs 97 and 98 of the lower limb. In the calculation step 270, the EMG signal is used to control whether the output value P output is converted into an exoskeleton motor control signal, respectively. In this way, the assisting method 200 for the lower limb exoskeleton robot assists the user 80 to activate or suspend the assisting mode in real time.

請參照前述式(1)及表1,下肢外骨骼機器人輔助方法200的三連動的DH參數中,在第Xi軸觀察到的從第 Zi-1軸到第Zi軸的距離為ai,在第Zi軸觀察到的從第Xi-1軸到第Xi軸的距離為di,i的數值為1至3,且ai及di的數值可皆為零。藉此,有助於精簡演算步驟270的運算數據量,並可有效避免過於龐雜的運算數據量而導致下肢外骨骼機器人輔助方法200延誤輔助時機或產生誤動作。 Please refer to the aforementioned formula (1) and Table 1. In the three-link DH parameter of the lower extremity exoskeleton robot assist method 200, the distance observed from the Z i-1 axis to the Z i axis on the X i axis is a i, Z i axis at the distance from the observed X i axis to the axis of the first X-1 i is a value of d i, i is 1 to 3, and the value a i and d i can be both zero. In this way, it helps to simplify the calculation data amount of the calculation step 270, and can effectively avoid the excessively complicated calculation data amount, which causes the lower limb exoskeleton robot assisting method 200 to delay the assisting timing or generate a malfunction.

演算步驟270中的類神經網路模組177包含輸入層180、第一層181、第二層182、第三層183及輸出層184。輸入層180係以所述二下肢的感測信號A0及編碼信號B0作為變數輸入模糊規則,模糊規則依據三連動的DH參數建立。第一層181係將模糊規則進行適合度運算,得到複數規則強度。第二層182係將規則強度進行正規化運算,得到複數正規化值。第三層183係將正規化值與Sugeno模糊模式相乘運算。輸出層184係將第三層183的運算結果進行總和運算得到輸出值Poutput。藉此,有助於下肢外骨骼機器人輔助方法200學習並即時輔助不同的使用者。有關類神經網路模組177的細節請參照前述式(3)至式(7)的相關內容,在此不另贅述。 The neural network module 177 in the calculation step 270 includes an input layer 180, a first layer 181, a second layer 182, a third layer 183, and an output layer 184. The input layer 180 inputs fuzzy rules using the sensing signal A0 and the encoded signal B0 of the two lower limbs as variables, and the fuzzy rules are established based on the three-linked DH parameters. The first layer 181 performs the suitability calculation on the fuzzy rules to obtain the strength of the complex rules. The second layer 182 system normalizes the rule strength to obtain complex normalization values. The third layer 183 is to multiply the normalized value and Sugeno fuzzy mode. The output layer 184 sums the calculation results of the third layer 183 to obtain the output value P output . In this way, it helps the lower limb exoskeleton robot assisting method 200 to learn and assist different users in real time. For details of the neural network-like module 177, please refer to the related contents of the foregoing equations (3) to (7), and no further description is provided here.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明的精神和範圍內,當可作各種的更動與潤飾,因此本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above in the embodiments, it is not intended to limit the present invention. Any person who is familiar with this art can make various changes and modifications within the spirit and scope of the present invention, so the protection of the present invention The scope shall be determined by the scope of the attached patent application.

100‧‧‧下肢外骨骼機器人 100‧‧‧Lower limb exoskeleton robot

131、136‧‧‧運動感測單元 131、136‧‧‧Motion sensing unit

141、146‧‧‧外骨骼馬達 141、146‧‧‧Exoskeleton motor

151、156‧‧‧馬達編碼器 151, 156‧‧‧ Motor encoder

167、168‧‧‧肌電感測端 167, 168‧‧‧ muscle inductance measuring terminal

170‧‧‧演算單元 170‧‧‧Calculation unit

177‧‧‧類神經網路模組 177‧‧‧ neural network module

190‧‧‧下肢輔具 190‧‧‧Lower limb aids

Claims (10)

一種下肢外骨骼機器人,供一使用者之至少一下肢穿戴,該下肢外骨骼機器人包含:三運動感測單元,其分別鄰設於該下肢的一髖關節、一膝關節及一踝關節,各該運動感測單元用以提供鄰設的該關節的三維空間的複數感測信號;三外骨骼馬達,其分別鄰設於該髖關節、該膝關節及該踝關節;三馬達編碼器,其分別鄰設於該三外骨骼馬達,各該馬達編碼器依據鄰設的該外骨骼馬達提供至少一編碼信號;一演算單元,其通信連接該三運動感測單元及該三馬達編碼器,該演算單元用以依據該些感測信號、該些編碼信號及三連動的DH參數運算得到複數輸出值,該些輸出值分別轉換為三外骨骼馬達控制信號;以及一下肢輔具,其中該三外骨骼馬達分別依據該三外骨骼馬達控制信號產生三輔助力矩,該下肢輔具受該三輔助力矩驅動以分別輔助該髖關節、該膝關節及該踝關節。 A lower limb exoskeleton robot for at least one lower limb of a user to wear, the lower limb exoskeleton robot includes: three motion sensing units, which are respectively adjacent to a hip joint, a knee joint and an ankle joint of the lower limb, each The motion sensing unit is used to provide a complex sensing signal of the three-dimensional space adjacent to the joint; a three-exoskeleton motor, which is adjacent to the hip joint, the knee joint, and the ankle joint; and a three-motor encoder, which Adjacent to the three exoskeleton motors respectively, each of the motor encoders provides at least one encoding signal according to the adjacent exoskeleton motors; an arithmetic unit that communicates with the three motion sensing units and the three motor encoders, the The arithmetic unit is used to obtain complex output values based on the sensing signals, the encoding signals, and the three-linked DH parameters, and the output values are converted into three exoskeleton motor control signals; and the lower limb assistive device, wherein the three The exoskeleton motors respectively generate three auxiliary torques according to the three exoskeleton motor control signals, and the lower limb assistive devices are driven by the three auxiliary torques to respectively assist the hip joint, the knee joint and the ankle joint. 如申請專利範圍第1項所述的下肢外骨骼機器人,其中各該運動感測單元為三軸加速度計及三軸陀螺儀。 The lower extremity exoskeleton robot as described in item 1 of the patent application scope, wherein each of the motion sensing units is a three-axis accelerometer and a three-axis gyroscope. 如申請專利範圍第1項所述的下肢外骨骼機器人,更包含:一肌電感測端,其鄰設該下肢的一大腿,且該肌電感測端用以量測該大腿之一肌電信號,該肌電信號用以控制是否將該些輸出值分別轉換為該三外骨骼馬達控制信號。 The lower extremity exoskeleton robot as described in item 1 of the patent application scope further includes: a muscle inductance measuring end, which is adjacent to the thigh of the lower limb, and the muscle inductance measuring end is used to measure an EMG signal of one of the thighs The EMG signal is used to control whether the output values are converted into the three exoskeleton motor control signals. 如申請專利範圍第1項所述的下肢外骨骼機器人,其中該三連動的DH參數中,在第Xi軸觀察到的從第Zi-1軸到第Zi軸的距離為ai,在第Zi軸觀察到的從第Xi-1軸到第Xi軸的距離為di,i的數值為1至3,且ai及di的數值皆為零。 The lower extremity exoskeleton robot as described in item 1 of the scope of the patent application, wherein in the three-linkage DH parameter, the distance from the Z i-1 axis to the Z i axis observed on the X i axis is a i , in the Z i axis is observed from the first distance from the axis to the X i axis of the first X-1 i is a value of d i, i is 1 to 3, and a i and a value of d i are both zero. 如申請專利範圍第1項所述的下肢外骨骼機器人,其中該下肢外骨骼機器人供該使用者之二下肢穿戴,該些運動感測單元、該些外骨骼馬達及該些馬達編碼器的數量皆為六個並鄰設於該二下肢的該二髖關節、該二膝關節及該二踝關節,該演算單元通信連接該六運動感測單元及該六馬達編碼器,該演算單元用以依據該些感測信號、該些編碼信號及該三連動的DH參數運算得到該些輸出值,該些輸出值分別轉換為該六外骨骼馬達控制信號,該六外骨骼馬達分別依據該六外骨骼馬達控制信號產生該六 輔助力矩,該下肢輔具受該六輔助力矩驅動以分別輔助該二髖關節、該二膝關節及該二踝關節;其中,該演算單元包含一類神經網路模組,該類神經網路模組用以運算該些輸出值且包含:一輸入層,以該二下肢的該些感測信號及該些編碼信號作為變數輸入一模糊規則,該模糊規則依據該三連動的DH參數建立;一第一層,將該模糊規則進行適合度運算,得到複數規則強度;一第二層,將該些規則強度進行正規化運算,得到複數正規化值;一第三層,將該些正規化值與Sugeno模糊模式相乘運算;以及一輸出層,將該第三層的運算結果進行總和運算得到該些輸出值。 The lower extremity exoskeleton robot as described in item 1 of the patent application scope, wherein the lower extremity exoskeleton robot is provided for the two lower extremities of the user to wear, the number of the motion sensing units, the exoskeleton motors and the motor encoders They are all six hip joints, two knee joints and two ankle joints which are adjacent to the two lower extremities. The calculation unit communicates with the six motion sensing units and the six motor encoders. The calculation unit is used to The output values are calculated according to the sensing signals, the encoding signals, and the three-linked DH parameter calculation, and the output values are converted into the six exoskeleton motor control signals, and the six exoskeleton motors are based on the six exoskeletons, respectively. The skeletal motor control signal generates the six Auxiliary torque, the lower limb assistive device is driven by the six auxiliary torques to respectively assist the two hip joints, the two knee joints and the two ankle joints; wherein, the calculation unit includes a type of neural network module, the type of neural network module The set is used to calculate the output values and includes: an input layer, using the sensing signals and the encoded signals of the two lower limbs as variables to input a fuzzy rule, which is established based on the three-linked DH parameters; In the first layer, the fuzzy rules are subjected to suitability calculations to obtain the complex rule strength; in the second layer, the rule strengths are normalized to obtain complex normalization values; in the third layer, the normalized values are obtained Multiply operation with Sugeno fuzzy mode; and an output layer, the operation results of the third layer are summed to obtain the output values. 一種下肢外骨骼機器人輔助方法,其用以輔助一使用者之至少一下肢,該下肢外骨骼機器人輔助方法包含:一運動感測步驟,提供該下肢的一髖關節、一膝關節及一踝關節中各關節的三維空間的複數感測信號; 一馬達編碼步驟,提供分別鄰設於該髖關節、該膝關節及該踝關節的三外骨骼馬達中各者的至少一編碼信號;一演算步驟,依據該些感測信號、該些編碼信號及三連動的DH參數運算得到複數輸出值,並將該些輸出值分別轉換為三外骨骼馬達控制信號;以及一下肢輔助步驟,該三外骨骼馬達分別依據該三外骨骼馬達控制信號產生該三輔助力矩,一下肢輔具受該三輔助力矩驅動以分別輔助該髖關節、該膝關節及該踝關節。 An auxiliary method for lower limb exoskeleton robot, which is used to assist at least one lower limb of a user. The auxiliary method for lower limb exoskeleton robot includes: a motion sensing step, providing a hip joint, a knee joint and an ankle joint of the lower limb Complex sensing signals in the three-dimensional space of each joint in A motor coding step, providing at least one coded signal adjacent to each of the three exoskeleton motors respectively disposed on the hip joint, the knee joint, and the ankle joint; a calculation step, based on the sensing signals and the coding signals And three-linked DH parameter operation to obtain complex output values, and convert these output values into three exoskeleton motor control signals; and a lower limb assist step, the three exoskeleton motors generate the output according to the three exoskeleton motor control signals, respectively Three auxiliary moments, the lower limb assistive device is driven by the three auxiliary moments to respectively assist the hip joint, the knee joint and the ankle joint. 如申請專利範圍第6項所述的下肢外骨骼機器人輔助方法,其中該運動感測步驟中,該髖關節、該膝關節及該踝關節中各關節的該些感測信號由三軸加速度計及三軸陀螺儀提供。 The auxiliary method of the lower extremity exoskeleton robot as described in item 6 of the patent application scope, wherein in the motion sensing step, the sensing signals of the joints in the hip joint, the knee joint and the ankle joint are controlled by a three-axis accelerometer And three-axis gyroscope. 如申請專利範圍第6項所述的下肢外骨骼機器人輔助方法,更包含:一肌電感測步驟,量測該下肢的一大腿之一肌電信號;其中,該演算步驟中,該肌電信號用以控制是否將該些輸出值分別轉換為該三外骨骼馬達控制信號。 The auxiliary method of the lower extremity exoskeleton robot as described in item 6 of the patent application scope further includes: a myoelectricity measuring step, measuring one of the thighs' myoelectric signal of the lower limb; wherein, in the calculation step, the myoelectric signal It is used to control whether to convert the output values into the three exoskeleton motor control signals. 如申請專利範圍第6項所述的下肢外骨骼機器人輔助方法,其中該三連動的DH參數中,在第Xi軸觀察 到的從第Zi-1軸到第Zi軸的距離為ai,在第Zi軸觀察到的從第Xi-1軸到第Xi軸的距離為di,i的數值為1至3,且ai及di的數值皆為零。 The auxiliary method of the lower extremity exoskeleton robot as described in item 6 of the patent application range, wherein the distance from the Z i-1 axis to the Z i axis observed on the X i axis of the three-linked DH parameter is a i, i in the Z-axis of the observed distance from the axis to the X i axis of the first X-1 i is the value of D i, i is 1 to 3, and a value of i and D i are both zero. 如申請專利範圍第6項所述的下肢外骨骼機器人輔助方法,其用以輔助該使用者之二下肢;其中,該運動感測步驟中,提供該二下肢的該二髖關節、該二膝關節及該二踝關節中各關節的三維空間的該些感測信號;其中,該馬達編碼步驟中,提供分別鄰設於該二髖關節、該二膝關節及該二踝關節的該六外骨骼馬達中各者的該編碼信號;其中,該演算步驟中,以一類神經網路模組依據該些感測信號、該些編碼信號及該三連動的DH參數運算得到該些輸出值,並將該些輸出值分別轉換為該六外骨骼馬達控制信號;其中,該下肢輔助步驟中,該六外骨骼馬達分別依據該六外骨骼馬達控制信號產生該六輔助力矩,該下肢輔具受該六輔助力矩驅動以分別輔助該二髖關節、該二膝關節及該二踝關節;其中,該類神經網路模組包含: 一輸入層,以該二下肢的該些感測信號及該些編碼信號作為變數輸入一模糊規則,該模糊規則依據該三連動的DH參數建立;一第一層,將該模糊規則進行適合度運算,得到複數規則強度;一第二層,將該些規則強度進行正規化運算,得到複數正規化值;一第三層,將該些正規化值與Sugeno模糊模式相乘運算;以及一輸出層,將該第三層的運算結果進行總和運算得到該些輸出值。 The auxiliary method of the lower extremity exoskeleton robot as described in item 6 of the patent scope, which is used to assist the two lower limbs of the user; wherein, in the motion sensing step, the two hip joints and the two knees of the two lower limbs are provided The sensing signals in the three-dimensional space of the joints and the joints of the two ankle joints; wherein, in the motor coding step, the six outer sides of the two hip joints, the two knee joints and the two ankle joints are provided adjacent to each other The encoded signals of each of the skeletal motors; wherein, in the calculation step, a type of neural network module is used to obtain the output values based on the sensing signals, the encoded signals, and the three-linked DH parameters, and Converting the output values into the six exoskeleton motor control signals; wherein, in the lower extremity assisting step, the six exoskeleton motors respectively generate the six auxiliary torques according to the six exoskeleton motor control signals, and the lower extremity assistive device receives the Six auxiliary torque drives to respectively assist the two hip joints, the two knee joints and the two ankle joints; wherein, the neural network module includes: An input layer, using the sensing signals and the encoded signals of the two lower limbs as variables to input a fuzzy rule, the fuzzy rule is established according to the three-linked DH parameters; a first layer, the fuzzy rule is adapted Operation to get the strength of complex rules; a second layer, which normalizes these rule strengths to obtain complex normalized values; a third layer, which multiplies these normalized values with Sugeno fuzzy mode; and an output Layer, sum the operation results of the third layer to obtain the output values.
TW108107304A 2019-03-05 2019-03-05 Lower limb exoskeleton robot and aiding method thereof TWI687215B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108107304A TWI687215B (en) 2019-03-05 2019-03-05 Lower limb exoskeleton robot and aiding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108107304A TWI687215B (en) 2019-03-05 2019-03-05 Lower limb exoskeleton robot and aiding method thereof

Publications (2)

Publication Number Publication Date
TWI687215B true TWI687215B (en) 2020-03-11
TW202033172A TW202033172A (en) 2020-09-16

Family

ID=70767192

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108107304A TWI687215B (en) 2019-03-05 2019-03-05 Lower limb exoskeleton robot and aiding method thereof

Country Status (1)

Country Link
TW (1) TWI687215B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI759953B (en) * 2020-11-06 2022-04-01 國立勤益科技大學 Lower limb exoskeleton assisting method and lower limb exoskeleton robot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101278836B1 (en) * 2011-12-12 2013-07-01 인하대학교 산학협력단 Apparatus and method for control 6 axes robot manipulator with human­like arm configuration
CN104936570A (en) * 2013-01-16 2015-09-23 埃克苏仿生公司 Interface for adjusting the motion of powered orthotic device through externally applied forces
CN105938364A (en) * 2016-01-15 2016-09-14 浙江大学 Calculation method of kinetic model of 3D under-actuated biped robot
TWI564129B (en) * 2015-11-27 2017-01-01 財團法人工業技術研究院 Method for estimating posture of robotic walking aid
TWI619488B (en) * 2017-01-19 2018-04-01 國立勤益科技大學 Lower limb exoskeleton and aiding method thereof
CN108748259A (en) * 2018-04-10 2018-11-06 北京华航唯实机器人科技股份有限公司 Robot model's generation method and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101278836B1 (en) * 2011-12-12 2013-07-01 인하대학교 산학협력단 Apparatus and method for control 6 axes robot manipulator with human­like arm configuration
CN104936570A (en) * 2013-01-16 2015-09-23 埃克苏仿生公司 Interface for adjusting the motion of powered orthotic device through externally applied forces
TWI564129B (en) * 2015-11-27 2017-01-01 財團法人工業技術研究院 Method for estimating posture of robotic walking aid
CN105938364A (en) * 2016-01-15 2016-09-14 浙江大学 Calculation method of kinetic model of 3D under-actuated biped robot
TWI619488B (en) * 2017-01-19 2018-04-01 國立勤益科技大學 Lower limb exoskeleton and aiding method thereof
CN108748259A (en) * 2018-04-10 2018-11-06 北京华航唯实机器人科技股份有限公司 Robot model's generation method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI759953B (en) * 2020-11-06 2022-04-01 國立勤益科技大學 Lower limb exoskeleton assisting method and lower limb exoskeleton robot

Also Published As

Publication number Publication date
TW202033172A (en) 2020-09-16

Similar Documents

Publication Publication Date Title
Niyetkaliyev et al. Review on design and control aspects of robotic shoulder rehabilitation orthoses
Ferrati et al. Virtual modelling of a real exoskeleton constrained to a human musculoskeletal model
Martinez et al. A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton
Huo et al. Lower limb wearable robots for assistance and rehabilitation: A state of the art
Wei et al. Synergy-based control of assistive lower-limb exoskeletons by skill transfer
Mummolo et al. Stability of mina v2 for robot-assisted balance and locomotion
Zhu et al. Design and voluntary control of variable stiffness exoskeleton based on sEMG driven model
WO2003002054A1 (en) Torque imparting system
Lim et al. Development of a lower extremity exoskeleton robot with a quasi-anthropomorphic design approach for load carriage
Font-Llagunes et al. Design, control, and pilot study of a lightweight and modular robotic exoskeleton for walking assistance after spinal cord injury
Camardella et al. Gait phases blended control for enhancing transparency on lower-limb exoskeletons
Wu et al. Adaptive cooperative control of a soft elbow rehabilitation exoskeleton based on improved joint torque estimation
Mayag et al. Human-in-the-loop control for agora unilateral lower-limb exoskeleton
CN111248917A (en) Active training control method and device for lower limb walking trainer
Ajayi Modelling and control of actuated lower limb exoskeletons: a mathematical application using central pattern generators and nonlinear feedback control techniques
Biao et al. Design and control of a flexible exoskeleton to generate a natural full gait for lower-limb rehabilitation
Analia et al. Design of assistive torque for a lower limb exoskeleton based on motion prediction
Tian et al. Self-balancing exoskeleton robots designed to facilitate multiple rehabilitation training movements
TWI687215B (en) Lower limb exoskeleton robot and aiding method thereof
Hwang et al. An optimal method of training the specific lower limb muscle group using an exoskeletal robot
Chen et al. Step length adaptation for walking assistance
CN116115217B (en) Human lower limb gait phase estimation method based on depth network
Tageldeen et al. Motion control for a multiple input rehabilitation wearable exoskeleton using fuzzy logic and PID
Liu et al. A novel cable-pulley underactuated lower limb exoskeleton for human load-carrying walking
Safizadeh et al. Kinematic analysis of powered lower limb orthoses for gait rehabilitation of hemiplegic and hemiparetic patients