TWI686786B - display system - Google Patents

display system Download PDF

Info

Publication number
TWI686786B
TWI686786B TW106112734A TW106112734A TWI686786B TW I686786 B TWI686786 B TW I686786B TW 106112734 A TW106112734 A TW 106112734A TW 106112734 A TW106112734 A TW 106112734A TW I686786 B TWI686786 B TW I686786B
Authority
TW
Taiwan
Prior art keywords
voltage
transistor
type
signals
display system
Prior art date
Application number
TW106112734A
Other languages
Chinese (zh)
Other versions
TW201839744A (en
Inventor
秦玉龍
許靜宜
劉昌和
廖志成
陳強偉
方略
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW106112734A priority Critical patent/TWI686786B/en
Publication of TW201839744A publication Critical patent/TW201839744A/en
Application granted granted Critical
Publication of TWI686786B publication Critical patent/TWI686786B/en

Links

Images

Abstract

The invention provides a display system and a method for forming an output buffer of a source driver. The display system includes a plurality of pixels coupled to a plurality of gate lines and a plurality of source lines. A gate driver generates a plurality of gate signals to the plurality of gate lines. A source driver generates a plurality of image signals to the plurality of source lines. The source driver includes an output buffer. The output buffer is one of a native transistor device, a depletion transistor device or a low threshold transistor device

Description

顯示系統 display system

本發明係關於一種顯示系統,特別係關於一種用於顯示系統的源極驅動器(source driver)架構。 The present invention relates to a display system, and particularly to a source driver architecture for a display system.

平面顯示器技術於消費性娛樂電子產業佔有舉足輕重的地位。傳統平面顯示器如液晶顯示器,其呈現影像的方式,係透過驅動晶片組以輸出電壓的方式,改變液晶分子排列方向,藉由每點畫素之透光率高低來構成顯示的畫面。驅動晶片主要包括源極驅動器以及閘極驅動器兩部份,當一畫素呈現色彩時,需以閘極驅動器控制一薄膜電晶體開關,以及源極驅動器分別輸入R、G、B三原色訊號。閘極驅動器負責顯示器每列訊號的開關動作,當顯示器逐列進行掃瞄動作時,閘極驅動器配合打開一整列開關,讓源極驅動器進行訊號輸入動作。源極驅動器負責顯示器每行畫素訊號的輸入動作,當閘極驅動器打開一整列開關時,源極驅動器即時配合輸入該列畫素資料電壓,提供顯示畫面所需訊號。當顯示器逐步提昇解析度、亮度與反應速度時,驅動晶片越需要朝向高頻與高壓方向發展,才能符合高速掃瞄頻率與快速驅動需求。 Flat panel display technology occupies a pivotal position in the consumer entertainment electronics industry. Conventional flat panel displays, such as liquid crystal displays, display images by driving the chipset to change the arrangement direction of liquid crystal molecules by output voltage, and the display screen is formed by the light transmittance of each pixel. The driving chip mainly includes a source driver and a gate driver. When a pixel displays colors, a thin film transistor switch needs to be controlled by the gate driver, and the source driver inputs three primary color signals of R, G, and B, respectively. The gate driver is responsible for the switching of the signals in each column of the display. When the display performs a scanning operation row by row, the gate driver turns on a whole row of switches to allow the source driver to perform signal input. The source driver is responsible for the input action of the pixel signals of each row of the display. When the gate driver turns on a whole row of switches, the source driver immediately inputs the data voltage of the row of pixels to provide the signal required for displaying the picture. When the display gradually improves the resolution, brightness and response speed, the more the driver chip needs to develop toward the direction of high frequency and high voltage, in order to meet the needs of high-speed scanning frequency and fast driving.

因此,在此技術領域中,需要一種新源極驅動器電路組成,以改善平面顯示器的顯示品質和反應時間。Therefore, in this technical field, a new source driver circuit composition is needed to improve the display quality and response time of flat panel displays.

本發明之一些實施例係提供一種顯示系統。上述顯示系統包括複數畫素,耦接複數閘極線與複數源極線。一閘極驅動器,產生複數閘極信號予上述等閘極線。一源極驅動器,產生複數影像信號予上述等源極線,上述源極驅動器包括一輸出緩衝器,其中上述輸出緩衝器包括一電晶體元件,上述電晶體元件為一初始導通電晶體元件、一空乏型電晶體元件或一低臨界電壓電晶體元件的其中一個。 Some embodiments of the present invention provide a display system. The above display system includes a plurality of pixels, coupled to a plurality of gate lines and a plurality of source lines. A gate driver generates a plurality of gate signals to the above-mentioned equal gate lines. A source driver generates a complex image signal to the above-mentioned source lines. The source driver includes an output buffer, wherein the output buffer includes a transistor element, the transistor element is an initial conduction transistor element, a One of a depletion type transistor element or a low threshold voltage transistor element.

本發明之一些實施例係提供一種形成源極驅動器之輸出緩衝器的方法。上述形成源極驅動器之輸出緩衝器的方法包括提供一P型基板。於上述P型基板中形成一高壓P型井區和相鄰上述高壓P型井區的相對兩側的兩個高壓N型井區。於上述P型基板上形成一閘極結構,其中上述閘極結構完全覆蓋上述高壓P型井區,且部分覆蓋上述些高壓N型井區。對接近於上述P型基板的一表面的部分上述高壓P型井區進行一第一元件臨界電壓調整摻雜製程。對接近於上述P型基板的上述表面的部分上述高壓P型井區進行一第二元件臨界電壓調整摻雜製程,以使上述輸出緩衝器的的臨界電壓等於或小於0.5伏(V)。 Some embodiments of the present invention provide a method of forming an output buffer of a source driver. The above method of forming the output buffer of the source driver includes providing a P-type substrate. A high-pressure P-type well area and two high-pressure N-type well areas adjacent to the two sides of the high-pressure P-type well area adjacent to the high-pressure P-type well area are formed in the P-type substrate. A gate structure is formed on the P-type substrate, wherein the gate structure completely covers the high-voltage P-type well region and partially covers the high-voltage N-type well regions. A first device threshold voltage adjustment doping process is performed on a part of the high-voltage P-type well region close to a surface of the P-type substrate. A second device threshold voltage adjustment doping process is performed on a portion of the high-voltage P-type well region close to the surface of the P-type substrate, so that the threshold voltage of the output buffer is equal to or less than 0.5 volt (V).

100‧‧‧顯示系統 100‧‧‧Display system

102‧‧‧液晶顯示面板 102‧‧‧LCD display panel

104‧‧‧閘極驅動器 104‧‧‧Gate driver

106‧‧‧時序控制器 106‧‧‧ Timing controller

110‧‧‧薄膜電晶體 110‧‧‧thin film transistor

112‧‧‧畫素 112‧‧‧ pixels

114‧‧‧儲存電容 114‧‧‧storage capacitor

200‧‧‧源極驅動器 200‧‧‧ source driver

208:數位類比轉換器 208: digital to analog converter

210:輸出緩衝器 210: output buffer

212:運算放大器 212: Operational amplifier

VDD:源極驅動電壓 VDD: source drive voltage

VSS:閘極驅動電壓 VSS: gate drive voltage

VCOM:共同電壓 VCOM: common voltage

G1~Gi:閘極線 G1~Gi: gate line

D1、Dk:源極線 D1, Dk: source line

DATA:數位影像信號串 DATA: digital image signal string

GC:閘極控制信號串 GC: gate control signal string

SC:源極控制信號串 SC: source control signal string

SW:開關 SW: switch

P:輸出墊 P: output pad

IN:輸入端 IN: input

OUT:輸出端 OUT: output

Vin:類比信號 Vin: analog signal

Vout:輸出電壓 Vout: output voltage

300:P型基板 300: P-type substrate

301:隔絕物 301: Isolation

302:高壓P型井區 302: High-pressure P-type well area

303:表面 303: Surface

304:高壓N型井區 304: High-pressure N-type well area

306:閘極結構 306: Gate structure

308:N型重摻雜區 308: N-type heavily doped region

310:P型重摻雜區 310: P-type heavily doped region

312:高壓N型擴散汲極區 312: High voltage N-type diffusion drain region

314:高壓P型擴散汲極區 314: High-pressure P-type diffusion drain region

322:深N型井區 322: Deep N-type well area

410、440:高壓元件臨界電壓調整摻雜製程 410, 440: doping process for adjusting the critical voltage of high-voltage devices

420:N型金氧半導體場效電晶體元件臨界電壓調整摻雜製程 420: N-type metal oxide semiconductor field effect transistor device threshold voltage adjustment doping process

430:P型金氧半導體場效電晶體元件臨界電壓調整摻雜製程 430: P-type metal oxide semiconductor field effect transistor device threshold voltage adjustment doping process

462:開口 462: opening

470、480:線 470, 480: line

500a~500d:電晶體元件 500a~500d: transistor element

第1圖顯示本發明一些實施例之一顯示系統之方塊圖。 Figure 1 shows a block diagram of a display system according to some embodiments of the invention.

第2圖顯示本發明一些實施例之源極驅動器的方塊圖。 Figure 2 shows a block diagram of a source driver according to some embodiments of the invention.

第3圖顯示本發明一些實施例之輸出緩衝器的的電路示意圖。 FIG. 3 shows a schematic circuit diagram of an output buffer according to some embodiments of the invention.

第4A~4D圖顯示本發明一些實施例之輸出緩衝器之電晶體元件剖面示意圖。 FIGS. 4A-4D show schematic cross-sectional views of transistor elements of output buffers according to some embodiments of the present invention.

第5A~5C圖顯示本發明一些實施例之輸出緩衝器之電晶體元件剖面示意圖,其顯示當輸出緩衝器為橫向擴散型金氧半導體場效電晶體(LDMOS)時,元件臨界電壓的調整步驟。 FIGS. 5A to 5C show cross-sectional schematic diagrams of transistor elements of an output buffer according to some embodiments of the present invention, which show the adjustment steps of the device threshold voltage when the output buffer is a laterally diffused metal oxide semiconductor field effect transistor (LDMOS) .

第6圖顯示本發明一些實施例之輸出緩衝器和習知技術之輸出緩衝器的電壓-時間(V-T)圖,其顯示兩者的驅動能力比較結果。 FIG. 6 shows a voltage-time (V-T) graph of the output buffer of some embodiments of the present invention and the output buffer of the conventional technology, which shows the comparison of the driving capabilities of the two.

為了讓本發明之目的、特徵、及優點能更明顯易懂,下文特舉實施例,並配合所附圖示,做詳細之說明。本發明說明書提供不同的實施例來說明本發明不同實施方式的技術特徵。其中,實施例中的各元件之配置係為說明之用,並非用以限制本發明。且實施例中圖式標號之部分重複,係為了簡化說明,並非意指不同實施例之間的關聯性。 In order to make the purpose, features, and advantages of the present invention more obvious and understandable, the following specifically describes the embodiments and the accompanying drawings for detailed description. The description of the present invention provides different examples to illustrate the technical features of different embodiments of the present invention. Among them, the configuration of each element in the embodiment is for illustrative purposes, and is not intended to limit the present invention. In addition, the reference numerals in the embodiments are repeated for the purpose of simplifying the description, and do not mean the correlation between different embodiments.

第1圖顯示本發明一些實施例之一顯示系統100之方塊圖。如第1圖所示,在本發明一些實施例中,顯示系統100包括一液晶顯示裝置(liquid crystal display(LCD)device)。上述液晶顯示裝置包括一液晶顯示面板(LCD panel)102、複數個閘極驅動器(gate driver)104、複數個源極驅動器(source driver)200和一時序控制器106。 Figure 1 shows a block diagram of a display system 100 according to some embodiments of the invention. As shown in FIG. 1, in some embodiments of the present invention, the display system 100 includes a liquid crystal display (LCD) device. The above-mentioned liquid crystal display device includes a liquid crystal display panel (LCD panel) 102, a plurality of gate drivers 104, a plurality of source drivers 200, and a timing controller 106.

在本發明一些實施例中,液晶顯示面板(LCD panel)102可包括薄膜電晶體基板(TFT substrate)、濾光片基板 (color filter substrate)(圖未顯示)和液晶層(liquid crystal(LC)layer)(圖未顯示)。薄膜電晶體基板具有薄膜電晶體陣列(TFT array)設置於其中,濾光片基板係面向於薄膜電晶體基板設置,且液晶層係設置於薄膜電晶體基板和濾光片基板之間。為了方便顯示起見,在第1圖中,薄膜電晶體基板的位置可相同於液晶顯示面板102的位置。 In some embodiments of the present invention, the liquid crystal display panel (LCD panel) 102 may include a thin film transistor substrate (TFT substrate), a color filter substrate (not shown), and a liquid crystal layer (LC) layer) (not shown). The thin film transistor substrate has a thin film transistor array (TFT array) disposed therein, the filter substrate is disposed facing the thin film transistor substrate, and the liquid crystal layer is disposed between the thin film transistor substrate and the filter substrate. For convenience of display, in FIG. 1, the position of the thin film transistor substrate may be the same as the position of the liquid crystal display panel 102.

在本發明一些實施例中,液晶顯示面板102的薄膜電晶體基板可包括複數閘極線G1~Gi和複數源極線(資料線)D1~Dk。上述閘極線G1~Gi和源極線D1~Dk彼此相交且定義出複數畫素(pixel)112。因此,畫素112係電性耦接至上述閘極線G1~Gi和源極線D1~Dk。每一個畫素112中具有一薄膜電晶體(TFT)110和一儲存電容114。閘極線G1~Gi分別電性耦接至其相應畫素112中的薄膜電晶體110的閘極(gate),且源極線D1~Dk分別電性耦接至其相應畫素112中的薄膜電晶體110的源極(source)。每一個畫素112中的儲存電容114電性耦接至其相應的薄膜電晶體110的汲極(drain)。第1圖所示之實施例之儲存電容114係電性耦接至同一畫素112中的薄膜電晶體110的汲極。 In some embodiments of the present invention, the thin film transistor substrate of the liquid crystal display panel 102 may include a plurality of gate lines G1~Gi and a plurality of source lines (data lines) D1~Dk. The gate lines G1~Gi and the source lines D1~Dk intersect each other and define a plurality of pixels 112. Therefore, the pixel 112 is electrically coupled to the gate lines G1~Gi and the source lines D1~Dk. Each pixel 112 has a thin film transistor (TFT) 110 and a storage capacitor 114. The gate lines G1~Gi are electrically coupled to the gates of the thin film transistors 110 in their corresponding pixels 112, respectively, and the source lines D1~Dk are electrically coupled to the corresponding pixels in their corresponding pixels 112, respectively. The source of the thin film transistor 110. The storage capacitor 114 in each pixel 112 is electrically coupled to the drain of its corresponding thin film transistor 110. The storage capacitor 114 of the embodiment shown in FIG. 1 is electrically coupled to the drain of the thin film transistor 110 in the same pixel 112.

在本發明一些實施例中,顯示系統100的閘極驅動器104係電性耦接至閘極線G1~Gi,且用以依序啟動液晶顯示面板102的閘極線G1~Gi。顯示系統100的源極驅動器200係電性耦接至源極線D1~Dk,且用於將類比信號施加至液晶顯示面板102之源極線D1~Dk。顯示系統100的時序控制器106係電性耦接至閘極驅動器104和源極驅動器200,且用於控制源極驅動器110以及閘極驅動器130之操作時序及提供液晶顯示面板102所 需的影像訊號,以及對液晶顯示面板102的儲存電容114提供電壓。 In some embodiments of the present invention, the gate driver 104 of the display system 100 is electrically coupled to the gate lines G1~Gi, and is used to sequentially activate the gate lines G1~Gi of the LCD panel 102. The source driver 200 of the display system 100 is electrically coupled to the source lines D1~Dk, and is used to apply an analog signal to the source lines D1~Dk of the liquid crystal display panel 102. The timing controller 106 of the display system 100 is electrically coupled to the gate driver 104 and the source driver 200, and is used to control the operation timing of the source driver 110 and the gate driver 130 and provide images required by the liquid crystal display panel 102 Signal and supply voltage to the storage capacitor 114 of the liquid crystal display panel 102.

時序控制器106可接收自外部輸入之影像信號和控制信號,上述控制信號可為水平同步信號、垂直同步信號、主時脈信號以及資料啟用信號。並且,時序控制器106可根據液晶顯示面板102之操作條件來處理上述影像信號,以產生數位影像信號串DATA和源極控制信號串SC傳輸至源極驅動器200,並產生閘極控制信號串GC傳輸至閘極驅動器104。在本發明一些實施例中,上述源極控制信號串SC可包括用於指示將類比信號施加至對應的源極線的輸出控制信號,以及時脈信號。在本發明一些實施例中,上述閘極控制信號串GC可包括用於指示畫素112的閘極接通電壓之開始的垂直開始信號、閘極時脈信號以及用於控制閘極接通電壓之持續時間的輸出啟用信號。在本發明一些實施例中,時序控制器106係對液晶顯示面板102的儲存電容114提供一共同電壓VCOM。 The timing controller 106 may receive image signals and control signals input from the outside. The control signals may be horizontal synchronization signals, vertical synchronization signals, main clock signals, and data enable signals. In addition, the timing controller 106 can process the image signals according to the operating conditions of the liquid crystal display panel 102 to generate a digital image signal string DATA and a source control signal string SC to transmit to the source driver 200 and generate a gate control signal string GC Transmission to the gate driver 104. In some embodiments of the present invention, the above-mentioned source control signal string SC may include an output control signal for indicating that the analog signal is applied to the corresponding source line, and a clock signal. In some embodiments of the present invention, the gate control signal string GC may include a vertical start signal for indicating the start of the gate-on voltage of the pixel 112, a gate clock signal, and a gate-control voltage The output enable signal of the duration. In some embodiments of the present invention, the timing controller 106 provides a common voltage VCOM to the storage capacitor 114 of the liquid crystal display panel 102.

閘極驅動器104接收並處理來自時序控制器106的閘極控制信號串GC,用以產生複數閘極信號予閘極線G1~Gi。源極驅動器200接收並處理來自時序控制器106的數位影像信號串DATA和源極控制信號串SC,用以產生複數影像信號予源極線D1~Dk。 The gate driver 104 receives and processes the gate control signal string GC from the timing controller 106 to generate a plurality of gate signals for the gate lines G1~Gi. The source driver 200 receives and processes the digital image signal string DATA and the source control signal string SC from the timing controller 106 to generate complex image signals to the source lines D1 to Dk.

第2圖顯示本發明一些實施例之源極驅動器200的方塊圖。在本發明一些實施例中,源極驅動器200可包括一移位暫存器(shift register)202、一資料閂鎖器(data latch)204、一位準轉換器(level shifter)206、一數位類比轉換器(digital to analog converter(DAC))206和一輸出緩衝器(output buffer)210。在本發明一些實施例中,移位暫存器202和資料閂鎖器204用以接收數位資料,數位類比轉換器208和輸出緩衝器210用以輸出類比信號。 FIG. 2 shows a block diagram of the source driver 200 according to some embodiments of the present invention. In some embodiments of the present invention, the source driver 200 may include a shift register 202, a data latch 204, a level shifter 206, and a digital A digital to analog converter (DAC) 206 and an output buffer 210. In some embodiments of the present invention, the shift register 202 and the data latch 204 are used to receive digital data, and the digital-to-analog converter 208 and the output buffer 210 are used to output analog signals.

在本發明一些實施例中,源極驅動器200的移位暫存器202係接收並處理外部施加的數位影像信號串DATA,用以產生複數移位信號。詳細來說,移位暫存器202係回應例如時脈信號和水平開始信號等控制信號串SC,以控制接收的數位影像信號串DATA,並輸出產生複數移位信號且依時間順序儲存於資料閂鎖器204中。 In some embodiments of the present invention, the shift register 202 of the source driver 200 receives and processes the externally applied digital image signal string DATA to generate a complex shift signal. In detail, the shift register 202 responds to a control signal string SC such as a clock signal and a horizontal start signal to control the received digital image signal string DATA, and outputs a complex shift signal to be generated and stored in the data in chronological order The latch 204.

在本發明一些實施例中,源極驅動器200的資料閂鎖器204接收並處理上述多個移位信號,用以產生複數閂鎖信號。詳細來說,資料閂鎖器204回應移位信號而接收並儲存影像信號串DATA,且回應例如時脈信號等控制信號串SC而輸出複數閂鎖信號。 In some embodiments of the present invention, the data latch 204 of the source driver 200 receives and processes the aforementioned multiple shift signals to generate a plurality of latch signals. In detail, the data latch 204 receives and stores the image signal string DATA in response to the shift signal, and outputs a complex latch signal in response to the control signal string SC such as a clock signal.

在本發明一些實施例中,源極驅動器200的位準轉換器206接收並處理上述多個閂鎖信號,用以產生複數轉換信號。詳細來說,位準轉換器206將資料閂鎖器204輸出的閂鎖信號由一低電壓範圍轉換至一高電壓範圍而輸出高電壓範圍的轉換信號。 In some embodiments of the present invention, the level converter 206 of the source driver 200 receives and processes the multiple latch signals to generate a complex conversion signal. In detail, the level converter 206 converts the latch signal output by the data latch 204 from a low voltage range to a high voltage range and outputs a conversion signal of the high voltage range.

在本發明一些實施例中,源極驅動器200的數位類比轉換器208接收並處理上述多個轉換信號,用以產生複數類比信號。詳細來說,數位類比轉換器208接收位準轉換器206輸出高電壓範圍的數位轉換信號以將所接收的數位轉換信號轉換為一類比信號,來驅動相應的源極線。 In some embodiments of the present invention, the digital-to-analog converter 208 of the source driver 200 receives and processes the above-mentioned multiple converted signals to generate a complex analog signal. In detail, the digital-to-analog converter 208 receives the digital conversion signal output by the level converter 206 in the high voltage range to convert the received digital-conversion signal to an analog signal to drive the corresponding source line.

在本發明一些實施例中,源極驅動器200的輸出緩衝器210,接收並處理上述多個類比信號,用以對相應的源極線D1~Dk(第1圖)產生複數影像信號。輸出緩衝器210可用以隔離信號輸入端與輸出端,以避免信號輸入端受負載影響,並提供足夠的驅動能力以應對相應的源極線之負載(資料線)並輸出符合顯示系統規格所需之類比影像信號。 In some embodiments of the present invention, the output buffer 210 of the source driver 200 receives and processes the aforementioned multiple analog signals to generate complex image signals for the corresponding source lines D1~Dk (Figure 1). The output buffer 210 can be used to isolate the signal input terminal and the output terminal, to avoid the signal input terminal being affected by the load, and to provide sufficient driving capacity to cope with the corresponding source line load (data line) and output to meet the requirements of the display system specifications Analog video signal.

第3圖顯示本發明一些實施例之輸出緩衝器210的電路示意圖。第3圖為對應每一條源極線(例如第1圖的源極線D1~Dk)的輸出緩衝器的電路示意圖。在本發明一些實施例中,輸出緩衝器210可包括一運算放大器(operational amplifier)212、一開關SW和一輸出墊P。運算放大器212包括一輸入端IN和一輸出端OUT。如第3圖所示,運算放大器212的輸入端IN以接收上述類比信號Vin。輸出緩衝器210的開關SW電性連接運算放大器212的輸出端OUT和輸出墊P,用以做為電性連接至輸出墊P的對應源極線的電傳輸路徑。運算放大器212可根據輸入端IN接收的類比信號Vin,產生相應電壓準位的輸出電壓Vout至輸出端OUT。當開關SW開啟時,運算放大器212的輸出端OUT會電性連接至源極驅動器200的輸出墊P的源極線(例如源極線D1~Dk的其中之一),且將源極線的電壓驅動至某一電壓準位。 FIG. 3 shows a schematic circuit diagram of the output buffer 210 according to some embodiments of the invention. FIG. 3 is a schematic circuit diagram of an output buffer corresponding to each source line (for example, the source lines D1 to Dk in FIG. 1). In some embodiments of the present invention, the output buffer 210 may include an operational amplifier 212, a switch SW, and an output pad P. The operational amplifier 212 includes an input terminal IN and an output terminal OUT. As shown in FIG. 3, the input terminal IN of the operational amplifier 212 receives the analog signal Vin described above. The switch SW of the output buffer 210 is electrically connected to the output terminal OUT of the operational amplifier 212 and the output pad P, and serves as an electrical transmission path electrically connected to the corresponding source line of the output pad P. The operational amplifier 212 can generate the output voltage Vout corresponding to the voltage level to the output terminal OUT according to the analog signal Vin received at the input terminal IN. When the switch SW is turned on, the output terminal OUT of the operational amplifier 212 is electrically connected to the source line of the output pad P of the source driver 200 (for example, one of the source lines D1 to Dk), and the source line The voltage is driven to a certain voltage level.

在本發明一些實施例中,輸出緩衝器210的開關SW可包括一電晶體元件,上述電晶體元件為一初始導通電晶體元件(native transistor device)、一空乏型電晶體元件(depletion transistor device)或一低臨界電壓電晶體元件(low threshold transistor device)的其中一個。在本發明一些實施例中,當上述電晶體元件為低臨界電壓電晶體元件時,電晶體元件的臨界電壓等於或小於0.5伏(V)。在本發明一些實施例中,當上述電晶體元件為初始導通電晶體元件或空乏型電晶體元件時,電晶體元件的臨界電壓等於或小於0伏(V)。 In some embodiments of the present invention, the switch SW of the output buffer 210 may include a transistor device, the transistor device is an initial conduction transistor device (native transistor device), a depletion transistor device (depletion transistor device) Or one of a low threshold transistor device. In some embodiments of the present invention, when the above transistor element is a low threshold voltage transistor element, the threshold voltage of the transistor element is equal to or less than 0.5 volts (V). In some embodiments of the present invention, when the above transistor element is an initially on transistor element or a depletion transistor element, the critical voltage of the transistor element is equal to or less than 0 volts (V).

第4A~4D圖顯示本發明一些實施例之一顯示系統之輸出緩衝器之電晶體元件500a~500d剖面示意圖。在本發明一些實施例中,輸出緩衝器的電晶體元件可包括一N型金氧半導體場效電晶體(NMOS)或一P型金氧半導體場效電晶體(PMOS)。在本發明一些實施例中,輸出緩衝器的電晶體元件可包括一橫向擴散型金氧半導體場效電晶體(LDMOS)或一雙擴散汲極金氧半導體場效電晶體(DDDMOS)。 FIGS. 4A-4D show schematic cross-sectional views of transistor elements 500a-500d of the output buffer of a display system according to some embodiments of the present invention. In some embodiments of the present invention, the transistor element of the output buffer may include an N-type metal oxide semiconductor field effect transistor (NMOS) or a P-type metal oxide semiconductor field effect transistor (PMOS). In some embodiments of the present invention, the transistor element of the output buffer may include a laterally diffused metal oxide semiconductor field effect transistor (LDMOS) or a double diffused drain metal oxide semiconductor field effect transistor (DDDMOS).

如第4A圖所示,在本發明一些實施例中,電晶體元件500a可為一橫向擴散型N型金氧半導體場效電晶體(可簡稱為LDNMOS)。因此,電晶體元件500a又可稱為LDNMOS 500a。LDNMOS 500a包括一P型基板300、高壓P型井區(HVPW)302、高壓N型井區(HVNW)304、閘極結構306、N型重摻雜區(N+)308和P型重摻雜區(P+)310。在本發明一些實施例中,P型基板300例如為一P型磊晶基板。複數個高壓P型井區(HVPW)302和複數個高壓N型井區(HVNW)304,交錯設置於P型基板300上。因此,每一個高壓P型井區(HVPW)302的兩相對側係鄰接不同的高壓N型井區(HVNW)304。並且,每一個高壓N型井區(HVNW)304的兩相對側係鄰接不同的高壓P型井區(HVPW)302。 As shown in FIG. 4A, in some embodiments of the present invention, the transistor element 500a may be a laterally diffused N-type metal oxide semiconductor field effect transistor (may be referred to as LDNMOS for short). Therefore, the transistor element 500a may be referred to as LDNMOS 500a. LDNMOS 500a includes a P-type substrate 300, a high-voltage P-type well (HVPW) 302, a high-voltage N-type well (HVNW) 304, a gate structure 306, an N-type heavily doped region (N+) 308, and a P-type heavily doped区(P+)310. In some embodiments of the present invention, the P-type substrate 300 is, for example, a P-type epitaxial substrate. A plurality of high-pressure P-type well regions (HVPW) 302 and a plurality of high-pressure N-type well regions (HVNW) 304 are alternately arranged on the P-type substrate 300. Therefore, two opposite sides of each high-pressure P-type well area (HVPW) 302 adjoin a different high-pressure N-type well area (HVNW) 304. Moreover, two opposite sides of each high-pressure N-type well area (HVNW) 304 are adjacent to different high-pressure P-type well areas (HVPW) 302.

如第4A圖所示,LDNMOS 500a可包括一個或多個隔絕物301,從P型基板300的頂面延伸至部分P型基板300中,以定義出N型重摻雜區(N+)308和P型重摻雜區(P+)310的形成位置。隔絕物301例如可為淺溝槽隔絕物(STI)或矽局部氧化物(LOCOS)。 As shown in FIG. 4A, the LDNMOS 500a may include one or more spacers 301 extending from the top surface of the P-type substrate 300 into a portion of the P-type substrate 300 to define an N-type heavily doped region (N+) 308 and The formation position of the P-type heavily doped region (P+) 310. The insulator 301 may be, for example, a shallow trench insulator (STI) or a local oxide of silicon (LOCOS).

如第4A圖所示,LDNMOS 500a的閘極結構306設置於P型基板300的表面,並完全覆蓋一個高壓P型井區(HVPW)302,且部分覆蓋相鄰上述高壓P型井區(HVPW)302的相對兩側的兩個高壓N型井區(HVNW)304。另外,閘極結構306會完全覆蓋分別位於上述高壓N型井區(HVNW)304中的隔絕物301。被閘極結構306完全覆蓋且接近閘極結構306的部分高壓P型井區(HVPW)302可視為LDNMOS 500a的通道區(channel region),而相鄰上述高壓P型井區(HVPW)302的相對兩側的兩個高壓N型井區(HVNW)304可視為LDNMOS 500a的源/汲極區(S/D region)。 As shown in FIG. 4A, the gate structure 306 of the LDNMOS 500a is disposed on the surface of the P-type substrate 300 and completely covers a high-voltage P-type well region (HVPW) 302, and partially covers the adjacent high-voltage P-type well region (HVPW) ) Two high-pressure N-type well areas (HVNW) 304 on opposite sides of 302. In addition, the gate structure 306 completely covers the insulation 301 located in the high-voltage N-type well area (HVNW) 304 respectively. A part of the high-voltage P-type well region (HVPW) 302 completely covered by the gate structure 306 and close to the gate structure 306 can be regarded as a channel region of the LDNMOS 500a, while the adjacent high-voltage P-type well region (HVPW) 302 The two high-voltage N-type well regions (HVNW) 304 on opposite sides can be regarded as the source/drain regions (S/D regions) of the LDNMOS 500a.

如第4A圖所示,LDNMOS 500a的複數個N型重摻雜區(N+)308分別設置於高壓N型井區(HVNW)304中,LDNMOS 500a的複數個P型重摻雜區(P+)310分別設置於複數個高壓P型井區(HVPW)302中。並且,N型重摻雜區(N+)308和P型重摻雜區(P+)310分別被隔絕物301圍繞。LDNMOS 500a的N型重摻雜區(N+)308可視為源/汲極區接線摻雜區(S/D pick-up region)。LDNMOS 500a的P型重摻雜區(P+)310可視為主體接線摻雜區(bulk pick-up region)。 As shown in FIG. 4A, a plurality of N-type heavily doped regions (N+) 308 of the LDNMOS 500a are respectively disposed in a high-voltage N-type well region (HVNW) 304, and a plurality of P-type heavily doped regions (P+) of the LDNMOS 500a 310 are respectively arranged in a plurality of high-pressure P-type well areas (HVPW) 302. Moreover, the N-type heavily doped region (N+) 308 and the P-type heavily doped region (P+) 310 are surrounded by the insulation 301, respectively. The N-type heavily doped region (N+) 308 of the LDNMOS 500a can be regarded as a source/drain region doped region (S/D pick-up region). The P-type heavily doped region (P+) 310 of the LDNMOS 500a can be regarded as a bulk pick-up region.

如第4B圖所示,在本發明一些實施例中,電晶體元件500b可為一橫向擴散型P型金氧半導體場效電晶體(可簡稱為LDPMOS)。因此,開關元件500b又可稱為LDPMOS 500b。LDPMOS 500b包括一P型基板300、深N型井區(DNW)322、高壓P型井區(HVPW)302、高壓N型井區(HVNW)304、閘極結構306、N型重摻雜區(N+)308和P型重摻雜區(P+)310。上述圖式中的各元件如有與第4A圖所示相同或相似的部分,則可參考前面的相關敍述,在此不做重複說明。 As shown in FIG. 4B, in some embodiments of the present invention, the transistor element 500b may be a laterally diffused P-type metal oxide semiconductor field effect transistor (may be referred to as LDPMOS for short). Therefore, the switching element 500b may also be referred to as LDPMOS 500b. LDPMOS 500b includes a P-type substrate 300, a deep N-type well (DNW) 322, a high-voltage P-type well (HVPW) 302, a high-voltage N-type well (HVNW) 304, a gate structure 306, and an N-type heavily doped region (N+) 308 and P-type heavily doped region (P+) 310. If the elements in the above drawings are the same as or similar to those shown in FIG. 4A, you can refer to the previous related descriptions, and no repeated description is given here.

如第4B圖所示,LDPMOS 500b的深N型井區(DNW)322設置於P型基板300上。LDPMOS 500b的高壓P型井區(HVPW)302和高壓N型井區(HVNW)304,交錯設置於深N型井區(DNW)322上。 As shown in FIG. 4B, the deep N-type well region (DNW) 322 of the LDPMOS 500b is disposed on the P-type substrate 300. The high-pressure P-type well area (HVPW) 302 and the high-pressure N-type well area (HVNW) 304 of the LDPMOS 500b are alternately arranged on the deep N-type well area (DNW) 322.

LDPMOS 500b的閘極結構306完全覆蓋一個高壓N型井區(HVNW)304,且部分覆蓋相鄰上述高壓N型井區(HVNW)304的相對兩側的兩個高壓P型井區(HVPW)302。另外,閘極結構306會完全覆蓋分別位於上述兩個高壓P型井區(HVPW)302中的隔絕物301。被閘極結構306完全覆蓋且接近閘極結構306的部分的高壓N型井區(HVNW)304可視為LDPMOS 500b的通道區(channel region),而相鄰上述高壓N型井區(HVNW)304的相對兩側的兩個高壓P型井區(HVPW)302可視為LDPMOS 500b的源/汲極區(S/D region)。 The gate structure 306 of the LDPMOS 500b completely covers one high-voltage N-type well region (HVNW) 304, and partially covers two high-voltage P-type well regions (HVPW) adjacent to opposite sides of the above-mentioned high-voltage N-type well region (HVNW) 304. 302. In addition, the gate structure 306 completely covers the insulation 301 located in the two high-voltage P-type wells (HVPW) 302 respectively. The high-voltage N-type well region (HVNW) 304 completely covered by the gate structure 306 and close to the gate structure 306 can be regarded as the channel region of the LDPMOS 500b, and adjacent to the above-mentioned high-voltage N-type well region (HVNW) 304 The two high-voltage P-type well regions (HVPW) 302 on opposite sides of the can be regarded as the source/drain regions (S/D regions) of the LDPMOS 500b.

如第4B圖所示,LDPMOS 500b的複數個N型重摻雜區(N+)308分別設置於複數個高壓N型井區(HVNW)304中,LDNMOS 500b的複數個P型重摻雜區(P+)310分別設置於複數個高壓P型井區(HVPW)302中。並且,N型重摻雜區(N+)308和P型重摻雜區(P+)310分別被隔絕物301圍繞。LDPMOS 500b的P型重摻雜區(P+)310可視為源/汲極區接線摻雜區(S/D pick-up region)。LDPMOS 500b的N型重摻雜區(N+)308可視為主體接線摻雜區(bulk pick-up region)。 As shown in FIG. 4B, the plural N-type heavily doped regions (N+) 308 of the LDPMOS 500b are respectively disposed in the plural high-voltage N-type well regions (HVNW) 304, and the plural P-type heavily doped regions of the LDNMOS 500b ( P+) 310 are respectively arranged in a plurality of high-pressure P-type well areas (HVPW) 302. Moreover, the N-type heavily doped region (N+) 308 and the P-type heavily doped region (P+) 310 are surrounded by the insulation 301, respectively. The P-type heavily doped region (P+) 310 of the LDPMOS 500b may be regarded as a source/drain region doped region (S/D pick-up region). The N-type heavily doped region (N+) 308 of the LDPMOS 500b can be regarded as a bulk pick-up region.

如第4C圖所示的電晶體元件500c可為一雙擴散汲極N型金氧半導體場效電晶體(可簡稱為DDDNMOS)。上述圖式中的各元件如有與第4A~4B圖所示相同或相似的部分,則可參考前面的相關敍述,在此不做重複說明。 The transistor element 500c shown in FIG. 4C may be a double-diffusion drain N-type metal oxide semiconductor field effect transistor (may be referred to as DDDNMOS for short). If the components in the above drawings are the same as or similar to those shown in FIGS. 4A to 4B, you can refer to the previous related descriptions, and they will not be repeated here.

如第4C圖所示,DDDNMOS 500c包括一P型基板300、高壓P型井區(HVPW)302、高壓N型擴散汲極區(HVNDD)312、閘極結構306、N型重摻雜區(N+)308和P型重摻雜區(P+)310。 As shown in FIG. 4C, DDDNMOS 500c includes a P-type substrate 300, a high-voltage P-type well region (HVPW) 302, a high-voltage N-type diffused drain region (HVNDD) 312, a gate structure 306, and an N-type heavily doped region ( N+) 308 and P-type heavily doped region (P+) 310.

如第4C圖所示,DDDNMOS 500c的高壓P型井區(HVPW)302設置於P型基板300上。DDDNMOS 500c具有兩個高壓N型擴散汲極區(HVNDD)312,分別設置於高壓P型井區(HVPW)302上。DDDNMOS 500c的閘極結構306設置於高壓P型井區(HVPW)302上,且閘極結構306的相對兩側分別與兩個高壓N型擴散汲極區(HVNDD)312部分重疊。因此,高壓N型擴散汲極區(HVNDD)312可視為DDDNMOS 500c的源/汲極區,位於閘極結構306的正下方並位於高壓N型擴散汲極區(HVNDD)312之間,且接近閘極結構306的部分的高壓P型井區(HVPW)302可視為DDDNMOS 500c的通道區。 As shown in FIG. 4C, the high-voltage P-type well area (HVPW) 302 of the DDDNMOS 500c is disposed on the P-type substrate 300. DDDNMOS 500c has two high-voltage N-type diffusion drain regions (HVNDD) 312, which are respectively disposed on high-voltage P-type well regions (HVPW) 302. The gate structure 306 of the DDDNMOS 500c is disposed on the high-voltage P-type well region (HVPW) 302, and the opposite sides of the gate structure 306 partially overlap the two high-voltage N-type diffusion drain regions (HVNDD) 312, respectively. Therefore, the high-voltage N-type diffused drain region (HVNDD) 312 can be regarded as the source/drain region of the DDDNMOS 500c, located directly below the gate structure 306 and between the high-voltage N-type diffused drain region (HVNDD) 312, and close to The high-voltage P-type well region (HVPW) 302 of a portion of the gate structure 306 can be regarded as a channel region of the DDDNMOS 500c.

DDDNMOS 500c具有兩個N型重摻雜區(N+)308, 分別設置於兩個高壓N型擴散汲極區(HVNDD)312上,且相鄰於閘極結構306的相對兩側。因此,N型重摻雜區(N+)308可視為DDDNMOS 500c的源/汲極區接線摻雜區。另外,DDDNMOS 500c具有兩個P型重摻雜區(P+)310,分別設置於兩個高壓N型擴散汲極區(HVNDD)312外側的高壓P型井區(HVPW)302上,且藉由隔絕物301與N型重摻雜區(N+)308隔開。因此,P型重摻雜區(P+)310可視為DDDNMOS 500c的主體接線摻雜區。 The DDDNMOS 500c has two N-type heavily doped regions (N+) 308, which are respectively disposed on two high-voltage N-type diffusion drain regions (HVNDD) 312, and are adjacent to opposite sides of the gate structure 306. Therefore, the N-type heavily doped region (N+) 308 can be regarded as the source/drain region wiring doped region of the DDDNMOS 500c. In addition, DDDNMOS 500c has two P-type heavily doped regions (P+) 310, which are respectively disposed on high-voltage P-type well regions (HVPW) 302 outside two high-voltage N-type diffusion drain regions (HVNDD) 312, and by The spacer 301 is separated from the N-type heavily doped region (N+) 308. Therefore, the P-type heavily doped region (P+) 310 can be regarded as the body wiring doped region of the DDDNMOS 500c.

如第4D圖所示的電晶體元件500d可為一雙擴散汲極P型金氧半導體場效電晶體(可簡稱為DDDPMOS)。上述圖式中的各元件如有與第4A~4C圖所示相同或相似的部分,則可參考前面的相關敍述,在此不做重複說明。 The transistor element 500d shown in FIG. 4D may be a double-diffused drain P-type metal oxide semiconductor field effect transistor (may be referred to as DDDPMOS for short). If there are any parts in the above drawings that are the same as or similar to those shown in FIGS. 4A to 4C, you can refer to the previous related descriptions, and they will not be repeated here.

如第4D圖所示,DDDPMOS 500d包括一P型基板300、高壓P型井區(HVPW)302、高壓N型井區(HVNW)304、高壓P型擴散汲極區(HVPDD)314、閘極結構306、N型重摻雜區(N+)308和P型重摻雜區(P+)310。 As shown in FIG. 4D, DDDPMOS 500d includes a P-type substrate 300, a high-voltage P-type well region (HVPW) 302, a high-voltage N-type well region (HVNW) 304, a high-voltage P-type diffusion drain region (HVPDD) 314, a gate Structure 306, N-type heavily doped region (N+) 308 and P-type heavily doped region (P+) 310.

如第4D圖所示,DDDPMOS 500d的高壓P型井區(HVPW)302設置於P型基板300上,高壓N型井區(HVNW)304設置於高壓P型井區(HVPW)302上。DDDPMOS 500d具有兩高壓P型擴散汲極區(HVPDD)314,分別設置於高壓N型井區(HVNW)304上。DDDPMOS 500d的閘極結構306設置於高壓N型井區(HVNW)304上,且閘極結構306的相對兩側分別與兩個高壓P型擴散汲極區(HVPDD)314部分重疊。因此,高壓P型擴散汲極區(HVPDD)314可視為DDDPMOS 500d的源/汲極區,位於閘極結構306的正下方並位於高壓P型擴散汲極區 (HVPDD)314之間,且接近閘極結構306的部分高壓N型井區(HVNW)304可視為DDDPMOS 500d的通道區。 As shown in FIG. 4D, the high-voltage P-type well region (HVPW) 302 of the DDDPMOS 500d is disposed on the P-type substrate 300, and the high-voltage N-type well region (HVNW) 304 is disposed on the high-voltage P-type well region (HVPW) 302. The DDDPMOS 500d has two high-voltage P-type diffusion drain regions (HVPDD) 314, which are respectively disposed on the high-voltage N-type well region (HVNW) 304. The gate structure 306 of the DDDPMOS 500d is disposed on the high-voltage N-type well region (HVNW) 304, and opposite sides of the gate structure 306 partially overlap the two high-voltage P-type diffusion drain regions (HVPDD) 314, respectively. Therefore, the high-voltage P-type diffused drain region (HVPDD) 314 can be regarded as the source/drain region of the DDDPMOS 500d, located directly under the gate structure 306 and between the high-voltage P-type diffused drain region (HVPDD) 314, and close to Part of the high-voltage N-type well region (HVNW) 304 of the gate structure 306 can be regarded as the channel region of the DDDPMOS 500d.

DDDPMOS 500d的兩個P型重摻雜區(P+)310,分別設置於兩個高壓P型擴散汲極區(HVPDD)314上,且相鄰於閘極結構306的相對兩側。因此,P型重摻雜區(P+)310可視為DDDPMOS 500d的源/汲極區接線摻雜區。另外,DDDPMOS 500d的兩個N型重摻雜區(N+)308,分別設置於兩個P型擴散汲極區(HVPDD)314外側的高壓N型井區(HVNW)304上,且藉由隔絕物301與P型重摻雜區(P+)310隔開。因此,N型重摻雜區(N+)308可視為DDDPMOS 500d的主體接線摻雜區。 The two P-type heavily doped regions (P+) 310 of the DDDPMOS 500d are respectively disposed on the two high-voltage P-type diffused drain regions (HVPDD) 314, and are adjacent to opposite sides of the gate structure 306. Therefore, the P-type heavily doped region (P+) 310 can be regarded as the source/drain region wiring doped region of the DDDPMOS 500d. In addition, the two N-type heavily doped regions (N+) 308 of DDDPMOS 500d are respectively disposed on the high-voltage N-type well regions (HVNW) 304 outside the two P-type diffusion drain regions (HVPDD) 314, and are isolated by The object 301 is separated from the P-type heavily doped region (P+) 310. Therefore, the N-type heavily doped region (N+) 308 can be regarded as the body wiring doped region of the DDDPMOS 500d.

第5A~6C圖顯示本發明一些實施例之一顯示系統之輸出緩衝器之電晶體元件剖面示意圖,其顯示當輸出緩衝器之電晶體元件為LDNMOS 500a時,元件臨界電壓的調整步驟。 FIGS. 5A to 6C are schematic cross-sectional views of the transistor elements of the output buffer of a display system according to some embodiments of the present invention, which show the adjustment steps of the device threshold voltage when the transistor elements of the output buffer are LDNMOS 500a.

如第5A圖所示,首先,提供一P型基板300,並於基板300之上形成隔離區301,接著進行數道摻雜製程,於P型基板300中形成複數個井區,包括交錯設置的複數個高壓P型井區(HVPW)302和複數個高壓N型井區(HVNW)304。接著,於P型基板300的表面上形成閘極結構306,閘極結構306完全覆蓋一個高壓P型井區(HVPW)302,且部分覆蓋相鄰上述高壓P型井區(HVPW)302的相對兩側的兩個高壓N型井區(HVNW)304和位於上述高壓N型井區(HVNW)304中的隔絕物301。 As shown in FIG. 5A, first, a P-type substrate 300 is provided, and an isolation region 301 is formed on the substrate 300, followed by several doping processes to form a plurality of well regions in the P-type substrate 300, including staggered arrangement A plurality of high-pressure P-type well areas (HVPW) 302 and a plurality of high-pressure N-type well areas (HVNW) 304. Next, a gate structure 306 is formed on the surface of the P-type substrate 300. The gate structure 306 completely covers a high-voltage P-type well region (HVPW) 302, and partially covers the opposite of the adjacent high-voltage P-type well region (HVPW) 302. Two high-voltage N-type well areas (HVNW) 304 on both sides and the insulation 301 located in the above-mentioned high-voltage N-type well area (HVNW) 304.

接著,如第5A圖所示,為了降低LDNMOS 500a的臨界電壓使其成為初始導通電晶體元件、空乏型電晶體元件或一低臨界電壓電晶體元件的其中一種,可選擇不進行(或跳過 (skip))對LDNMOS 500a的通道區(位於閘極結構306正下方且接近P型基板300的一表面303的部分的高壓P型井區(HVPW)302)的高壓元件臨界電壓調整摻雜製程(HVNMOS Vt implant process)410。 Next, as shown in FIG. 5A, in order to reduce the threshold voltage of the LDNMOS 500a to be one of the initially turned on transistor element, the depletion type transistor element, or a low threshold voltage transistor element, it may choose not to proceed (or skip (skip)) The doping process of the high-voltage device critical voltage adjustment for the channel region of LDNMOS 500a (the high-voltage P-type well region (HVPW) 302 located directly under the gate structure 306 and close to a surface 303 of the P-type substrate 300) (HVNMOS Vt implant process) 410.

之後,可再進行數道摻雜製程,以分別於複數個高壓N型井區(HVNW)304中形成複數個N型重摻雜區(N+)308,且分別於複數個高壓P型井區(HVPW)302中形成複數個P型重摻雜區(P+)310。經過上述製程,形成本發明一些實施例之一顯示系統之輸出緩衝器之LDNMOS 500a。 After that, several doping processes may be performed to form a plurality of N-type heavily doped regions (N+) 308 in the plurality of high-voltage N-type well regions (HVNW) 304, and in a plurality of high-pressure P-type well regions, respectively In (HVPW) 302, a plurality of P-type heavily doped regions (P+) 310 are formed. Through the above process, the LDNMOS 500a of the output buffer of the display system according to some embodiments of the present invention is formed.

第5B圖顯示本發明一些實施例之輸出緩衝器(LDNMOS 500a)之元件臨界電壓的調整步驟。上述圖式中的各元件的形成步驟如有與第5A圖所示相同或相似的部分,則可參考前面的相關敍述,在此不做重複說明。 FIG. 5B shows the steps of adjusting the device threshold voltage of the output buffer (LDNMOS 500a) according to some embodiments of the present invention. If the forming steps of each element in the above drawings are the same as or similar to those shown in FIG. 5A, the relevant descriptions above can be referred to, and no repeated description will be given here.

如第5B圖所示,在本發明一些實施例中,形成閘極結構306之後,可同時對LDNMOS 500a的通道區(位於閘極結構306正下方的且接近P型基板300的表面303的部分高壓P型井區(HVPW)302)進行N型金氧半導體場效電晶體(NMOS)元件臨界電壓調整摻雜製程420和P型金氧半導體場效電晶體(PMOS)元件臨界電壓調整摻雜製程430,使LDNMOS 500a臨界電壓接近於0V或者等於或小於0V。舉例來說,進行NMOS臨界電壓調整摻雜製程420和PMOS臨界電壓調整摻雜製程430之後,LDNMOS 500a的通道區的導電類型可轉變為N型,且可視為空乏型電晶體元件。在本發明一些實施例中,N型金氧半導體場效電晶體(NMOS)元件臨界電壓調整摻雜製程420為高壓N型金 氧半導體場效電晶體元件臨界電壓調整摻雜製程(HVNMOS Vt implant process),且P型金氧半導體場效電晶體(PMOS)元件臨界電壓調整摻雜製程430為高壓P型金氧半導體場效電晶體元件臨界電壓調整摻雜製程(HVPMOS Vt implant process)。在本發明一些實施例中,NMOS臨界電壓調整摻雜製程420和PMOS臨界電壓調整摻雜製程430於通道區植入的摻質具有相反導電類型。 As shown in FIG. 5B, in some embodiments of the present invention, after forming the gate structure 306, the channel region of the LDNMOS 500a (the portion directly below the gate structure 306 and close to the surface 303 of the P-type substrate 300 High voltage P-type well region (HVPW) 302) for N-type metal oxide semiconductor field effect transistor (NMOS) device critical voltage adjustment doping process 420 and P-type metal oxide semiconductor field effect transistor (PMOS) device critical voltage adjustment doping In the process 430, the threshold voltage of the LDNMOS 500a is close to 0V or equal to or less than 0V. For example, after performing the NMOS threshold voltage adjustment doping process 420 and the PMOS threshold voltage adjustment doping process 430, the conductivity type of the channel region of the LDNMOS 500a can be changed to N-type, and can be regarded as a depletion type transistor device. In some embodiments of the invention, the N-type metal oxide semiconductor field effect transistor (NMOS) device threshold voltage adjustment doping process 420 is a high-voltage N-type metal oxide semiconductor field effect transistor device threshold voltage adjustment doping process (HVNMOS Vt implant process), and the P-type metal oxide semiconductor field effect transistor (PMOS) device threshold voltage adjustment doping process 430 is a high-voltage P-type metal oxide semiconductor field effect transistor device threshold voltage adjustment doping process (HVPMOS Vt implant process). In some embodiments of the present invention, the dopants implanted in the channel region of the NMOS threshold voltage adjustment doping process 420 and the PMOS threshold voltage adjustment doping process 430 have opposite conductivity types.

進行NMOS臨界電壓調整摻雜製程420和PMOS臨界電壓調整摻雜製程430之後,可再進行數道摻雜製程,以分別於複數個高壓N型井區(HVNW)304中形成複數個N型重摻雜區(N+)308,且分別於複數個高壓P型井區(HVPW)302中形成複數個P型重摻雜區(P+)310。經過上述製程,形成本發明一些實施例之一顯示系統之輸出緩衝器之LDNMOS 500b。 After the NMOS threshold voltage adjustment doping process 420 and the PMOS threshold voltage adjustment doping process 430, several doping processes may be performed to form a plurality of N-type heavy layers in the plurality of high-voltage N-type well regions (HVNW) 304, respectively. Doped regions (N+) 308, and a plurality of P-type heavily doped regions (P+) 310 are formed in the plurality of high-pressure P-type well regions (HVPW) 302, respectively. Through the above process, an LDNMOS 500b of an output buffer of a display system according to some embodiments of the present invention is formed.

第5C圖顯示本發明一些實施例之輸出緩衝器(LDNMOS 500a)之元件臨界電壓的調整步驟。上述圖式中的各元件的形成步驟如有與第5A圖所示相同或相似的部分,則可參考前面的相關敍述,在此不做重複說明。 FIG. 5C shows the steps of adjusting the device threshold voltage of the output buffer (LDNMOS 500a) according to some embodiments of the present invention. If the forming steps of each element in the above drawings are the same as or similar to those shown in FIG. 5A, the relevant descriptions above can be referred to, and no repeated description will be given here.

如第5C圖所示,在本發明一些實施例中,形成閘極結構306且進行第5A圖所示之高壓元件臨界電壓調整摻雜製程(HVNMOS Vt implant process)410之後,可於LDNMOS 500a製程中增加一光罩460,其具有僅暴露出LDNMOS 500a的通道區的一開口462。因此可藉由上述光罩460對LDNMOS 500a的通道區(位於閘極結構306正下方且接近P型基板300的表面303的部分的高壓P型井區(HVPW)302)進行另一道高壓元件臨界電 壓調整摻雜製程440,使LDNMOS 500a臨界電壓接近於0V,或者等於或小於0V。在本發明一些實施例中,高壓元件臨界電壓調整摻雜製程410和高壓元件臨界電壓調整摻雜製程440可於通道區植入相同導電類型的摻質或相反導電類型的摻質。 As shown in FIG. 5C, in some embodiments of the present invention, after forming the gate structure 306 and performing the HVNMOS Vt implant process 410 shown in FIG. 5A, the LDNMOS 500a process may be performed A photomask 460 is added to it, which has an opening 462 that exposes only the channel region of the LDNMOS 500a. Therefore, the above photomask 460 can perform another high-voltage device criticality on the channel region of the LDNMOS 500a (the high-voltage P-type well region (HVPW) 302 located directly under the gate structure 306 and close to the surface 303 of the P-type substrate 300) The voltage adjustment doping process 440 makes the critical voltage of the LDNMOS 500a close to 0V, or equal to or less than 0V. In some embodiments of the present invention, the high-voltage device threshold voltage adjustment doping process 410 and the high-voltage device threshold voltage adjustment doping process 440 may implant dopants of the same conductivity type or opposite conductivity types in the channel region.

進行高壓元件臨界電壓調整摻雜製程410和高壓元件臨界電壓調整摻雜製程440之後,可再進行數道摻雜製程,以分別於複數個高壓N型井區(HVNW)304中形成複數個N型重摻雜區(N+)308,且分別於複數個高壓P型井區(HVPW)302中形成複數個P型重摻雜區(P+)310。經過上述製程,形成本發明一些實施例之一顯示系統之輸出緩衝器之LDNMOS 500c。 After the high-voltage device threshold voltage adjustment doping process 410 and the high-voltage device threshold voltage adjustment doping process 440, several doping processes may be performed to form a plurality of N in the plurality of high-voltage N-type well regions (HVNW) 304, respectively Type heavily doped region (N+) 308, and a plurality of P type heavily doped regions (P+) 310 are formed in a plurality of high-pressure P-type well regions (HVPW) 302, respectively. Through the above process, an LDNMOS 500c of an output buffer of a display system according to some embodiments of the present invention is formed.

在本發明其他實施例中,當輸出緩衝器之電晶體元件為LVPMOS 500b(第4B圖)時,也可對其通道區進行額外的元件臨界電壓調整摻雜製程,或不對其通道區進行原製程具有的高壓元件臨界電壓調整摻雜製程使LVPMOS 500b臨界電壓接近於0V,或者等於或小於0V。舉例來說,進行上述元件臨界電壓調整摻雜製程之後,LVPMOS 500b的通道區可轉變為P型,且可視為空乏型電晶體元件。 In other embodiments of the present invention, when the transistor component of the output buffer is LVPMOS 500b (Figure 4B), an additional device threshold voltage adjustment doping process may be performed on the channel region, or the channel region may not be subjected to the original The process has a high-voltage device threshold voltage adjustment doping process to make the LVPMOS 500b threshold voltage close to 0V, or equal to or less than 0V. For example, after the above-mentioned device threshold voltage adjustment doping process, the channel region of the LVPMOS 500b can be transformed into a P-type, and can be regarded as a depletion-type transistor device.

第6圖顯示本發明一些實施例之輸出緩衝器和習知技術之輸出緩衝器的電壓-時間(V-T)圖,其顯示兩者的驅動能力比較結果。 FIG. 6 shows a voltage-time (V-T) graph of the output buffer of some embodiments of the present invention and the output buffer of the conventional technology, which shows the comparison of the driving capabilities of the two.

在第6圖中,線470為習知技術之輸出緩衝器的電壓-時間曲線,而線480為本發明一些實施例之輸出緩衝器的電壓-時間曲線。由於習知技術使用增強型金氧半導體場效電晶體(enhancement MOS)做為輸出緩衝器的電晶體元件,所以習 知輸出緩衝器的驅動能力和效能(開關頻率)會受元件本身的導通電阻(Ron)、閘極電荷(Qg)、閘極-汲極電荷(Qgd)或閘極-源極電荷(Qgs)影響而無法有效提升。相較於習知技術之輸出緩衝器(線470),本發明一些實施例之輸出緩衝器的(開關)元件(線480)使用初始導通電晶體元件、空乏型電晶體元件或一低臨界電壓電晶體元件的其中一種,上述元件的臨界電壓接近於0V(例如等於或小於0.5V),或者等於或小於0V,因而可以增加元件的操作頻率(切換速度),在更短的時間達到畫素112所需的類比電壓,提升輸出緩衝器的驅動能力和效能,且進一步改善顯示系統的影像顯示品質和影像反應時間。 In FIG. 6, line 470 is the voltage-time curve of the output buffer of the prior art, and line 480 is the voltage-time curve of the output buffer of some embodiments of the present invention. Since the conventional technology uses an enhanced metal oxide semiconductor field effect transistor (enhancement MOS) as the transistor element of the output buffer, the driving capacity and performance (switching frequency) of the conventional output buffer will be affected by the on-resistance of the device itself (Ron), gate charge (Qg), gate-drain charge (Qgd), or gate-source charge (Qgs) cannot be effectively improved. Compared with the output buffer (line 470) of the conventional technology, the (switching) element (line 480) of the output buffer of some embodiments of the present invention uses an initial conduction transistor element, a depletion transistor element, or a low threshold voltage One of the transistor elements. The threshold voltage of the above element is close to 0V (for example, equal to or less than 0.5V), or equal to or less than 0V, so the operating frequency (switching speed) of the element can be increased, and the pixel can be reached in a shorter time. The analog voltage required by 112 improves the drive capacity and performance of the output buffer, and further improves the image display quality and image response time of the display system.

雖然本發明已以實施例揭露於上,然其並非用以限定本發明,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed above with examples, it is not intended to limit the present invention. Anyone who is familiar with this skill can make some modifications and retouching without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be as defined in the scope of the attached patent application.

210‧‧‧輸出緩衝器 210‧‧‧Output buffer

212‧‧‧運算放大器 212‧‧‧Operational amplifier

D1、Dk‧‧‧源極線 D1, Dk‧‧‧ source line

SW‧‧‧開關 SW‧‧‧switch

P‧‧‧輸出墊 P‧‧‧ Output pad

IN‧‧‧輸入端 IN‧‧‧input

OUT‧‧‧輸出端 OUT‧‧‧Output

Vin‧‧‧類比信號 Vin‧‧‧Analog signal

Vout‧‧‧輸出電壓 Vout‧‧‧Output voltage

Claims (7)

一種顯示系統,包括:複數畫素,耦接複數閘極線與複數源極線;一閘極驅動器,產生複數閘極信號予該等閘極線;以及一源極驅動器,產生複數影像信號予該等源極線,該源極驅動器包括:一輸出緩衝器,其中該輸出緩衝器包括一運算放大器(operational amplifier)和一開關,其中該開關包括一電晶體元件,該電晶體元件為一初始導通電晶體元件(native transistor device)、一空乏型電晶體元件(depletion transistor device)或一低臨界電壓電晶體元件(low threshold transistor device)的其中一個,其中在該開關開啟之狀態下,該運算放大器電性連接至該等源極線;一移位暫存器,接收並處理一影像信號,用以產生複數移位信號;一資料閂鎖器,接收並處理該等移位信號,用以產生複數閂鎖信號;一位準轉換器,接收並處理該等閂鎖信號,用以產生複數轉換信號;以及一數位類比轉換器,接收並處理該等轉換信號,用以產生複數類比信號;其中該輸出緩衝器,接收並處理該等類比信號,用以產生該等影像信號。 A display system includes: complex pixels, coupled to complex gate lines and complex source lines; a gate driver to generate complex gate signals to the gate lines; and a source driver to generate complex image signals to For the source lines, the source driver includes: an output buffer, wherein the output buffer includes an operational amplifier and a switch, wherein the switch includes a transistor element, and the transistor element is an initial One of a transistor transistor (native transistor device), a depletion transistor device (depletion transistor device) or a low threshold voltage transistor device (low threshold transistor device), wherein the operation is performed when the switch is turned on The amplifier is electrically connected to the source lines; a shift register receives and processes an image signal to generate a complex shift signal; a data latch receives and processes the shift signals to Generate complex latch signals; a level converter, receive and process the latch signals to generate complex conversion signals; and a digital analog converter, receive and process the conversion signals to generate complex analog signals; The output buffer receives and processes the analog signals to generate the image signals. 如申請專利範圍第1項所述之顯示系統,其中該電晶體元件 的臨界電壓等於或小於0.5伏(V)。 The display system as described in item 1 of the patent application scope, wherein the transistor element The critical voltage is equal to or less than 0.5 volts (V). 如申請專利範圍第1項所述之顯示系統,其中該電晶體元件的臨界電壓等於或小於0伏(V)。 The display system as described in item 1 of the patent application range, wherein the critical voltage of the transistor element is equal to or less than 0 volts (V). 如申請專利範圍第1項所述之顯示系統,其中該電晶體元件包括一N型金氧半導體場效電晶體(NMOS)或一P型金氧半導體場效電晶體(PMOS)。 The display system as described in item 1 of the patent application scope, wherein the transistor element comprises an N-type metal oxide semiconductor field effect transistor (NMOS) or a P-type metal oxide semiconductor field effect transistor (PMOS). 如申請專利範圍第1項所述之顯示系統,其中該電晶體元件包括一橫向擴散型金氧半導體場效電晶體(LDMOS)或一雙擴散汲極金氧半導體場效電晶體(DDDMOS)。 The display system as described in item 1 of the patent application scope, wherein the transistor element comprises a laterally diffused metal oxide semiconductor field effect transistor (LDMOS) or a double diffusion drain metal oxide semiconductor field effect transistor (DDDMOS). 如申請專利範圍第4項所述之顯示系統,其中該N型金氧半導體場效電晶體包括一通道區,該通道區為N型。 The display system as described in item 4 of the patent application scope, wherein the N-type metal oxide semiconductor field effect transistor includes a channel region, and the channel region is N-type. 如申請專利範圍第4項所述之顯示系統,其中該P型金氧半導體場效電晶體包括一通道區,該通道區為P型。 The display system as described in item 4 of the patent application scope, wherein the P-type metal oxide semiconductor field effect transistor includes a channel region, and the channel region is P-type.
TW106112734A 2017-04-17 2017-04-17 display system TWI686786B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106112734A TWI686786B (en) 2017-04-17 2017-04-17 display system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106112734A TWI686786B (en) 2017-04-17 2017-04-17 display system

Publications (2)

Publication Number Publication Date
TW201839744A TW201839744A (en) 2018-11-01
TWI686786B true TWI686786B (en) 2020-03-01

Family

ID=65033814

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106112734A TWI686786B (en) 2017-04-17 2017-04-17 display system

Country Status (1)

Country Link
TW (1) TWI686786B (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6154058A (en) * 1998-04-06 2000-11-28 Nec Corporation Output buffer
US6172526B1 (en) * 1997-10-20 2001-01-09 Nec Corporation Input/output interface including an output buffer circuit and depletion type field effect transistor
US20040017344A1 (en) * 2002-07-25 2004-01-29 Takahiro Takemoto Liquid-crystal display device and driving method thereof
TW200518456A (en) * 2003-11-18 2005-06-01 Admtek Inc High voltage compatible output buffer consisted of low voltage devices
US20050168416A1 (en) * 2004-01-30 2005-08-04 Nec Electronics Corporation Display apparatus, and driving circuit for the same
US20070081397A1 (en) * 2005-09-28 2007-04-12 Hynix Semiconductor Inc. Data output multiplexer
TW200807713A (en) * 2006-07-21 2008-02-01 Taiwan Semiconductor Mfg Semiconductor structures
US20080278473A1 (en) * 2007-05-11 2008-11-13 Samsung Electronics Co., Ltd. Source line driver and method for controlling slew rate according to temperature and display device including the source line driver
US20090219265A1 (en) * 2008-03-03 2009-09-03 Kyoung-Soo Lee Organic light emitting display device and method for driving the same
US20100053145A1 (en) * 2008-09-03 2010-03-04 Seiko Epson Corporation Integrated circuit device and electronic equipment
CN101763831A (en) * 2008-12-23 2010-06-30 乐金显示有限公司 Liquid crystal display and method of driving the same
TW201133459A (en) * 2009-09-16 2011-10-01 Semiconductor Energy Lab Driver circuit, display device including the driver circuit, and electronic device including the display device
TW201314666A (en) * 2011-09-21 2013-04-01 Samsung Electronics Co Ltd Display device and method of canceling offset thereof
TW201610953A (en) * 2014-09-03 2016-03-16 友達光電股份有限公司 Dynamically adjusting display driving method and display apparatus using the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172526B1 (en) * 1997-10-20 2001-01-09 Nec Corporation Input/output interface including an output buffer circuit and depletion type field effect transistor
US6154058A (en) * 1998-04-06 2000-11-28 Nec Corporation Output buffer
US20040017344A1 (en) * 2002-07-25 2004-01-29 Takahiro Takemoto Liquid-crystal display device and driving method thereof
TW200518456A (en) * 2003-11-18 2005-06-01 Admtek Inc High voltage compatible output buffer consisted of low voltage devices
US20050168416A1 (en) * 2004-01-30 2005-08-04 Nec Electronics Corporation Display apparatus, and driving circuit for the same
US20070081397A1 (en) * 2005-09-28 2007-04-12 Hynix Semiconductor Inc. Data output multiplexer
TW200807713A (en) * 2006-07-21 2008-02-01 Taiwan Semiconductor Mfg Semiconductor structures
US20080278473A1 (en) * 2007-05-11 2008-11-13 Samsung Electronics Co., Ltd. Source line driver and method for controlling slew rate according to temperature and display device including the source line driver
US20090219265A1 (en) * 2008-03-03 2009-09-03 Kyoung-Soo Lee Organic light emitting display device and method for driving the same
US20100053145A1 (en) * 2008-09-03 2010-03-04 Seiko Epson Corporation Integrated circuit device and electronic equipment
CN101763831A (en) * 2008-12-23 2010-06-30 乐金显示有限公司 Liquid crystal display and method of driving the same
TW201133459A (en) * 2009-09-16 2011-10-01 Semiconductor Energy Lab Driver circuit, display device including the driver circuit, and electronic device including the display device
TW201314666A (en) * 2011-09-21 2013-04-01 Samsung Electronics Co Ltd Display device and method of canceling offset thereof
TW201610953A (en) * 2014-09-03 2016-03-16 友達光電股份有限公司 Dynamically adjusting display driving method and display apparatus using the same

Also Published As

Publication number Publication date
TW201839744A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
KR101921974B1 (en) Liquid crystal display device
US10637467B2 (en) Semiconductor device for display driver IC structure
US10504932B2 (en) Display driver semiconductor device and manufacturing method thereof
WO2019214152A1 (en) A pixel array substrate, a driving method, and a display apparatus
US11436992B2 (en) Display system and method for forming an output buffer of a source driver
US11322068B2 (en) Display device having gate driver
US11443674B2 (en) Display device having gate driver
CN100520508C (en) Liquid crystal display driver, and liquid crystal display apparatus using the same
EP1911099A2 (en) Thin film circuits
CN100412942C (en) Display device
JP2005321457A (en) Scanning line driving circuit, display device and electronic equipment
US10832608B2 (en) Pixel circuit, method for driving method, display panel, and display device
US20040222423A1 (en) TFT with body contacts
TWI686786B (en) display system
JPH0695073A (en) Liquid crystal display device
CN108022548B (en) Scanning direction control circuit, grid drive circuit and display device
US10985192B2 (en) Display driver semiconductor device and manufacturing method thereof
US9673334B2 (en) Low temperature poly silicon thin film transistors (LTPS TFTs) and TFT substrates
JPH05259891A (en) Clocked inverter circuit
JPH0964375A (en) Display driving device
JPH0829751A (en) Liquid crystal display device