TWI686587B - 度量衡裝置、微影系統及量測結構之方法 - Google Patents

度量衡裝置、微影系統及量測結構之方法 Download PDF

Info

Publication number
TWI686587B
TWI686587B TW107118378A TW107118378A TWI686587B TW I686587 B TWI686587 B TW I686587B TW 107118378 A TW107118378 A TW 107118378A TW 107118378 A TW107118378 A TW 107118378A TW I686587 B TWI686587 B TW I686587B
Authority
TW
Taiwan
Prior art keywords
radiation
pupil plane
field distribution
plane field
radiation beam
Prior art date
Application number
TW107118378A
Other languages
English (en)
Other versions
TW201903352A (zh
Inventor
珍尼克 瑞芬斯伯根
尼特許 帕迪
周子理
愛曼德 尤金尼 愛博特 柯蘭
賽巴斯汀亞努斯 安德里亞努斯 高爾登
歐兒 巴斯坦 歐尼 法格金吉
賽門 吉司伯 喬瑟佛思 麥提森
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP17174269.5A external-priority patent/EP3410212A1/en
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW201903352A publication Critical patent/TW201903352A/zh
Application granted granted Critical
Publication of TWI686587B publication Critical patent/TWI686587B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4788Diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95623Inspecting patterns on the surface of objects using a spatial filtering method
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本文中揭示一種量測形成於一基板上之一結構以判定一所關注參數之度量衡裝置。該裝置包含一光學系統,該光學系統經組態以將輻射聚焦至該結構上且將在自該結構反射之後的輻射導引至一偵測器上,其中:該光學系統經組態使得該偵測器偵測由來自一光瞳平面場分佈中之至少兩個不同點之輻射之間的干涉產生的一輻射強度,其中該干涉係使得該偵測到之輻射強度之含有關於該所關注參數之資訊的一分量相對於該偵測到之輻射強度之一或多個其他分量得以增強。

Description

度量衡裝置、微影系統及量測結構之方法
本發明係關於一種用於量測藉由微影製程而形成於基板上之結構之度量衡裝置、一種微影系統,及一種量測藉由微影製程而形成於基板上之結構之方法。
微影裝置為將所要圖案施加至基板上(通常施加至基板之目標部分上)之機器。微影裝置可用於例如積體電路(IC)之製造中。在彼情況下,圖案化器件(其替代地被稱作光罩或倍縮光罩)可用以產生待形成於IC之個別層上之電路圖案。可將此圖案轉印至基板(例如矽晶圓)上之目標部分(例如包括晶粒之部分、一個晶粒或若干晶粒)上。通常經由成像至提供於基板上之輻射敏感材料(抗蝕劑)層上來進行圖案之轉印。一般而言,單一基板將含有經順次地圖案化之鄰近目標部分之網路。在微影製程中,需要頻繁地進行所產生結構之量測,例如以用於製程控制及驗證。用於進行此類量測之各種工具係已知的,包括常常用以量測臨界尺寸(CD)之掃描電子顯微鏡,及用以量測疊對(器件中兩個層之對準準確度之量度)之特殊化工具。可依據兩個層之間的未對準程度來描述疊對,例如,對1奈米之經量測疊對之參考可描述兩個層未對準達1奈米之情形。
近來,已開發供微影領域中使用的各種形式之散射計。此等器件將輻射光束導引至目標上且量測散射輻射之一或多個屬性-例如,依據波長而變化的在單一反射角下之強度;依據反射角而變化的在一或多個波長下之強度;或依據反射角而變化的偏振-以獲得可供判定目標之所關注屬性之「光譜」。可藉由各種技術來執行所關注屬性之判定:例如藉由諸如嚴密耦合波分析或有限元素方法之反覆途徑而進行的目標之重新建構;庫搜尋;及主成份分析。
在已知度量衡技術中,藉由在某些條件下量測疊對目標兩次,同時旋轉疊對目標或改變照明模式或成像模式以分離地獲得-1繞射階強度及+1繞射階強度來獲得疊對量測結果。關於給定疊對目標之強度不對稱性(此等繞射階強度之比較)提供目標不對稱性(亦即,目標中之不對稱性)之量測。疊對目標中之此不對稱性可用作疊對(兩個層之不當的未對準)之指示符。
使用上述度量衡技術進行疊對(或目標結構中之其他不對稱性)之量測在所涉及結構處於待製造之器件特徵之解析度時係困難的。此係因為高解析度特徵造成相對應高的繞射角,該等繞射角難以捕捉,或繞射階變得漸消(非傳播的)。對於由非常接近於彼此的層界定之結構,諸如可為已進行蝕刻之後的狀況,仍有可能獲得關於來自零階散射之不對稱性之一些資訊。然而,在此等量測中難以獲得適當敏感度,尤其在層分離度並非極小的情況下。
需要改良尤其針對高解析度目標之目標不對稱性或其他所關注參數之量測。
根據本發明之一態樣,提供一種用於量測形成於一基板上之一結構以判定一所關注參數之度量衡裝置,該度量衡裝置包含:一光學系統,其經組態以將輻射聚焦至該結構上且將在自該結構反射之後的輻射導引至一偵測器上,其中:該光學系統經組態使得該偵測器偵測由來自一光瞳平面場分佈中之至少兩個不同點之輻射之間的干涉產生的一輻射強度,其中該干涉係使得該偵測到之輻射強度之含有關於該所關注參數之資訊的一分量相對於該偵測到之輻射強度之一或多個其他分量得以增強。
根據本發明之一態樣,提供一種量測形成於一基板上之一結構以判定一所關注參數之方法,該方法包含:將輻射聚焦至該結構上且使用一偵測器以偵測在自該結構反射之後的輻射,其中:該偵測器偵測由來自一光瞳平面場分佈中之至少兩個不同點之輻射之間的干涉產生的一輻射強度,其中該干涉係使得該偵測到之輻射強度之含有關於該所關注參數之資訊的一分量相對於該偵測到之輻射強度之一或多個其他分量得以增強。
0:零階射線/繞射射線
+1:一階射線/繞射射線
+1(N):+1繞射射線
-1:一階射線/繞射射線
-1(S):-1繞射射線
11:源
12:透鏡
13:孔徑板
13H:孔徑板
13N:孔徑板
13S:孔徑板
14:透鏡
14A:透鏡
14B:透鏡
15:光束分裂器
16:物鏡/透鏡
17:第二光束分裂器
18:光學系統
18A:透鏡
18B:透鏡
18C:透鏡
18D:透鏡
19:第一感測器/光瞳平面影像感測器
20:光學系統
21:孔徑光闌/場光闌
22:光學系統
23:影像感測器
24:量測場景或量測光點/經照明光點
25a:目標光柵
25b:目標光柵
25c:目標光柵
25d:目標光柵
26:圓形區域
27a:矩形區域/影像
27b:矩形區域/影像
27c:矩形區域/影像
27d:矩形區域/影像
30:偏振器
32:光瞳平面
34:輸入輻射光束/影像平面
36:偏振器
38:偵測器
38A:第一偵測器
38B:第二偵測器
39:偵測器
40:光學單元
42A:透鏡
42B:透鏡
44:透鏡
46:光瞳平面場分佈修改單元
48:光束分裂器
49:光束分裂器
50:光學路徑長度補償器
52:強度
54:經施加偏置
60:光學系統
61:第一分支
62:第二分支
70:光瞳平面場分佈
71A:光瞳平面場分佈
71B:光瞳平面場分佈
71C:光瞳平面場分佈
72A:光瞳平面場分佈
72B:光瞳平面場分佈
72C:光瞳平面場分佈
80:杜夫稜鏡
81:第一光學分支
82:第二光學分支
83:第一光束分裂器
84:第二光束分裂器
85:第一杜夫稜鏡
86:第二杜夫稜鏡
87:第一輸出
88:第二輸出
90:光學系統
91:光學系統/空間光調變器
92:光學系統/元件
96:偵測器
98:第一光瞳平面場分佈
100:第二光瞳平面場分佈
102:折射元件
104:折射元件
106:透鏡
108:透鏡
110:光瞳平面場分佈
111:光瞳平面場分佈
112:光瞳平面場分佈
113:光瞳平面場分佈
114:對稱背景
116:所關注信號
120A:行/路線1
120B:行/路線2
121A:行/路線3
121B:行/路線4
131:列
132:列
133:列
134:列
AD:調整器
B:輻射光束
BD:光束遞送系統
BK:烘烤板
C:目標部分
CH:冷卻板
CO:聚光器
DE:顯影器
I:量測輻射射線/入射射線
IF:位置感測器
IL:照明系統/照明器
IN:積光器
I/O1:輸入/輸出埠
I/O2:輸入/輸出埠
LA:微影裝置
LACU:微影控制單元
LB:裝載匣
LC:微影製造單元
M1:光罩對準標記
M2:光罩對準標記
MA:圖案化器件/光罩
MT:支撐結構/光罩台
O:光軸
P1:基板對準標記
P2:基板對準標記
PM:第一定位器
PS:投影系統
PU:處理器/影像處理器及控制器
PW:第二定位器
RO:基板處置器或機器人
SC:旋塗器
SCS:監督控制系統
SO:輻射源
T:度量衡目標
TCU:塗佈顯影系統控制單元
W:基板
WT:基板台
x1:點
x1':點
x2:點
x2':點
x:在x方向上之翻轉
y:在y方向上之翻轉
xy:圍繞x方向及圍繞y方向之翻轉
現在將參考隨附示意性圖式而僅作為實例來描述本發明之實施例,在該等圖式中,對應元件符號指示對應部分,且在該等圖式中:圖1描繪微影裝置;圖2描繪微影製造單元或叢集;圖3包含(a)用於使用第一對照明孔徑來量測目標之暗場散射計的示意圖;(b)針對給定照明方向之目標光柵之繞射光譜的細節;(c)對多重光柵目標之已知形式及基板上之量測光點之輪廓的描繪;及(d)對在圖3之(a)之散射計中獲得的圖3之(c)之目標之影像的描繪;及 圖4描繪度量衡裝置之將輸入輻射光束提供至包含光束分裂器之光學單元的光學元件;圖5描繪經組態以自圖4之配置接收輸入輻射光束之光學單元,及用於將第一及第二輻射光束導引至基板上且將經反射第一及第二輻射光束導引至偵測器上之光學系統;圖6進一步詳細地描繪圖5之配置之光學單元的操作,其展示至及自光束分裂器傳播的輻射光束中之光瞳平面場分佈;圖7描繪基於圖6之光學單元的替代光學單元之操作,其中在第二分支中執行額外翻轉;圖8為描繪信號強度I隨著關於非偏置目標之目標不對稱性之典型變化的曲線圖;圖9為描繪信號強度I隨著關於偏置目標之目標不對稱性之變化的曲線圖;圖10描繪其中輻射在自目標結構反射之前及之後傳遞通過第一及第二光束分裂器的替代光學單元;圖11描繪其中輻射僅在自目標結構反射之後傳遞通過第一及第二光束分裂器的光學配置;圖12描繪光瞳平面分佈中之干涉點之實例點對稱對;圖13描繪光瞳平面場分佈中之干涉點之實例鏡面對稱對;圖14描繪光瞳平面場分佈中之四個干涉點之實例群組;圖15描繪經組態以干涉來自光瞳平面場分佈中之三個點之群組之輻射的度量衡裝置;圖16描繪由圖15之度量衡裝置中之第一光瞳平面場分佈之 多個複本形成的第一光瞳平面場分佈(左側)及第二光瞳平面場分佈(右側);圖17描繪用於以干涉方式自對稱背景提取鏡面對稱或點對稱信號之光學配置;圖18描繪在圖17之光學配置經組態以自對稱背景提取鏡面對稱信號的狀況下在自左側進入圖17之光學配置時的實例第一光瞳平面場分佈(左側)及在右側自圖17之光學配置射出時的第二光瞳平面場分佈(右側);圖19描繪在圖17之光學配置經組態以自對稱背景提取點對稱信號的狀況下在自左側進入圖17之光學配置時的實例第一光瞳平面場分佈(左側)及在右側自圖17之光學配置射出時的第二光瞳平面場分佈(右側);圖20為示意性地描繪為了說明待提取之對稱背景及點或鏡面對稱信號的作為光瞳位置之函數的目標回應(強度及相位)之變化的曲線圖;圖21描繪輻射通過OPS系統之不同傳播路線。
本說明書揭示併有本發明之特徵的一或多個實施例。所揭示實施例僅僅例示本發明。本發明之範疇不限於所揭示實施例。本發明係由附加於此處之申請專利範圍界定。
所描述之實施例及本說明書中對「一個實施例」、「一實施例」、「一實例實施例」等之參考指示所描述之實施例可包括一特定特徵、結構或特性,但每一實施例可未必包括該特定特徵、結構或特性。此外, 此等片語未必係指相同實施例。另外,當結合一實施例描述一特定特徵、結構或特性時,應理解,無論是否予以明確描述,結合其他實施例來實現此特徵、結構或特性皆係在熟習此項技術者之認識範圍內。
然而,在更詳細地描述此等實施例之前,有指導性的是呈現可供實施本發明之實施例的實例環境。
圖1示意性地描繪微影裝置LA。該裝置包括:照明系統(照明器)IL,其經組態以調節輻射光束B(例如UV輻射或DUV輻射);支撐結構(例如光罩台)MT,其經建構以支撐圖案化器件(例如光罩)MA且連接至經組態以根據某些參數來準確地定位該圖案化器件之第一定位器PM;基板台(例如晶圓台)WT,其經建構以固持基板(例如抗蝕劑塗佈晶圓)W且連接至經組態以根據某些參數來準確地定位該基板之第二定位器PW;及投影系統(例如折射投影透鏡系統)PS,其經組態以將由圖案化器件MA賦予至輻射光束B之圖案投影至基板W之目標部分C(例如包含一或多個晶粒)上。
照明系統可包括用於導引、塑形或控制輻射的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電或其他類型之光學組件或其任何組合。
支撐結構支撐圖案化器件,亦即,承載圖案化器件之重量。支撐結構以取決於圖案化器件之定向、微影裝置之設計及其他條件(諸如圖案化器件是否被固持於真空環境中)的方式來固持圖案化器件。支撐結構可使用機械、真空、靜電或其他夾持技術來固持圖案化器件。支撐結構可為例如框架或台,其可視需要而固定或可移動。支撐結構可確保圖案化器件例如相對於投影系統處於所要位置。可認為本文對術語「倍縮光 罩」或「光罩」之任何使用皆與更一般之術語「圖案化器件」同義。
本文所使用之術語「圖案化器件」應被廣泛地解譯為係指可用以在輻射光束之橫截面中向輻射光束賦予圖案以便在基板之目標部分中產生圖案的任何器件。應注意,舉例而言,若被賦予至輻射光束之圖案包括相移特徵或所謂輔助特徵,則該圖案可不確切地對應於基板之目標部分中之所要圖案。通常,被賦予至輻射光束之圖案將對應於目標部分中所產生之器件(諸如積體電路)中的特定功能層。
圖案化器件可為透射的或反射的。圖案化器件之實例包括光罩、可程式化鏡面陣列,及可程式化LCD面板。光罩在微影中係熟知的,且包括諸如二元、交變相移及衰減相移之光罩類型,以及各種混合式光罩類型。可程式化鏡面陣列之一實例使用小鏡面之矩陣配置,該等小鏡面中之每一者可個別地傾斜,以便使入射輻射光束在不同方向上反射。傾斜鏡面在由鏡面矩陣反射之輻射光束中賦予圖案。
本文中所使用之術語「投影系統」應被廣泛地解譯為涵蓋適於所使用之曝光輻射或適於諸如浸潤液體之使用或真空之使用之其他因素的任何類型之投影系統,包括折射、反射、反射折射、磁性、電磁及靜電光學系統或其任何組合。可認為本文中對術語「投影透鏡」之任何使用皆與更一般之術語「投影系統」同義。
在此實施例中,舉例而言,裝置屬於透射類型(例如使用透射光罩)。替代地,裝置可屬於反射類型(例如使用如上文所提及之類型之可程式化鏡面陣列,或使用反射光罩)。
微影裝置可屬於具有兩個(雙載物台)或多於兩個基板台及例如兩個或多於兩個光罩台之類型。在此等「多載物台」機器中,可並行 地使用額外台,或可對一或多個台進行預備步驟,同時將一或多個其他台用於曝光。
微影裝置亦可屬於如下類型:其中基板之至少一部分可由具有相對較高折射率之液體(例如水)覆蓋,以便填充投影系統與基板之間的空間。亦可將浸潤液體施加至微影裝置中之其他空間,例如光罩與投影系統之間的空間。浸潤技術在此項技術中被熟知用於增加投影系統之數值孔徑。本文中所使用之術語「浸潤」並不意謂諸如基板之結構必須浸沒於液體中,而是僅意謂液體在曝光期間位於投影系統與基板之間。
參看圖1,照明器IL自輻射源SO接收輻射光束。舉例而言,當源為準分子雷射時,源及微影裝置可為分開之實體。在此等狀況下,不認為源形成微影裝置之部分,且輻射光束係憑藉包含例如合適導引鏡及/或光束擴展器之光束遞送系統BD而自源SO傳遞至照明器IL。在其他狀況下,舉例而言,當源為水銀燈時,源可為微影裝置之整體部分。源SO及照明器IL連同光束遞送系統BD在需要時可被稱作輻射系統。
照明器IL可包含用於調整輻射光束之角度強度分佈之調整器AD。通常,可調整照明器之光瞳平面中之強度分佈的至少外部徑向範圍及/或內部徑向範圍(其通常分別被稱作σ外部及σ內部)。另外,照明器IL可包含各種其他組件,諸如積光器IN及聚光器CO。照明器可用以調節輻射光束,以在其橫截面中具有所要均一性及強度分佈。
輻射光束B入射於被固持於支撐結構(例如光罩台MT)上之圖案化器件(例如光罩MA)上,且係由該圖案化器件而圖案化。在已橫穿光罩MA的情況下,輻射光束B傳遞通過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器IF(例 如干涉器件、線性編碼器、2D編碼器或電容式感測器),可準確地移動基板台WT,例如以便使不同目標部分C定位於輻射光束B之路徑中。相似地,第一定位器PM及另一位置感測器(其未在圖1中明確地描繪)可用以例如在自光罩庫之機械擷取之後或在掃描期間相對於輻射光束B之路徑來準確地定位光罩MA。一般而言,可憑藉形成第一定位器PM之部分之長衝程模組(粗略定位)及短衝程模組(精細定位)來實現光罩台MT之移動。相似地,可使用形成第二定位器PW之部分之長衝程模組及短衝程模組來實現基板台WT之移動。在步進器(相對於掃描器)之狀況下,光罩台MT可僅連接至短衝程致動器,或可固定。可使用光罩對準標記M1、M2及基板對準標記P1、P2來對準光罩MA及基板W。儘管如所說明之基板對準標記佔據專用目標部分,但該等基板對準標記可位於目標部分之間的空間中(此等標記被稱為切割道對準標記)。相似地,在多於一個晶粒提供於光罩MA上之情形中,光罩對準標記可位於該等晶粒之間。
所描繪裝置可用於以下模式中之至少一者中:
1.在步進模式中,在將被賦予至輻射光束之整個圖案一次性投影至目標部分C上時,使光罩台MT及基板台WT保持基本上靜止(亦即,單次靜態曝光)。接著,使基板台WT在X及/或Y方向上移位,使得可曝光不同目標部分C。在步進模式中,曝光場之最大大小限制單次靜態曝光中所成像之目標部分C之大小。
2.在掃描模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,同步地掃描光罩台MT及基板台WT(亦即,單次動態曝光)。可藉由投影系統PS之放大率(縮小率)及影像反轉特性來判定基板台WT相對於光罩台MT之速度及方向。在掃描模式中,曝光場之最大大小限制單次動態 曝光中之目標部分之寬度(在非掃描方向上),而掃描運動之長度判定目標部分之高度(在掃描方向上)。
3.在另一模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,使光罩台MT保持基本上靜止,從而固持可程式化圖案化器件,且移動或掃描基板台WT。在此模式中,通常使用脈衝式輻射源,且在基板台WT之每一移動之後或在一掃描期間之順次輻射脈衝之間根據需要而更新可程式化圖案化器件。此操作模式可易於應用於利用可程式化圖案化器件(諸如上文所提及之類型的可程式化鏡面陣列)之無光罩微影。
亦可使用上文所描述之使用模式之組合及/或變化或完全不同的使用模式。
如圖2中所展示,微影裝置LA形成微影製造單元LC(有時亦被稱作微影製造單元(lithocell)或叢集)之部分,微影製造單元LC亦包括用以對基板執行曝光前製程及曝光後製程之裝置。通常,此等裝置包括用以沈積抗蝕劑層之旋塗器SC、用以顯影經曝光抗蝕劑之顯影器DE、冷卻板CH及烘烤板BK。基板處置器或機器人RO自輸入/輸出埠I/O1、I/O2拾取基板、在不同製程裝置之間移動基板,且接著將基板遞送至微影裝置之裝載匣LB。常常被集體地稱作塗佈顯影系統之此等器件係在塗佈顯影系統控制單元TCU之控制下,塗佈顯影系統控制單元TCU自身受到監督控制系統SCS控制,監督控制系統SCS亦經由微影控制單元LACU來控制微影裝置。因此,不同裝置可經操作以最大化產出率及處理效率。
為了正確地且一致地曝光由微影裝置曝光之基板,需要檢測經曝光基板以量測屬性,諸如後續層之間的疊對誤差、線厚度、臨界尺寸(CD)等。若偵測到誤差,則可對後續基板之曝光進行例如調整,尤其 在檢測可足夠迅速地且快速地進行而使得同一批量之其他基板仍待曝光的情況下。又,已經曝光之基板可被剝離及重工以改良產率或可能被捨棄,藉此避免對已知有缺陷之基板執行曝光。在基板之僅一些目標部分有缺陷的狀況下,可僅對被認為無缺陷的彼等目標部分執行進一步曝光。
度量衡裝置係用以判定基板之屬性,且尤其判定不同基板或同一基板之不同層之屬性如何在層與層之間變化。度量衡裝置可整合至微影裝置LA或微影製造單元LC中,或可為單機器件。為了實現最快速量測,需要度量衡裝置緊接在曝光之後量測經曝光抗蝕劑層中之屬性。然而,抗蝕劑中之潛影具有極低對比度,此係因為在已曝光至輻射之抗蝕劑之部分與尚未曝光至輻射之抗蝕劑之部分之間僅存在極小折射率差--且並非所有度量衡裝置皆具有足夠敏感度來進行潛影之有用量測。因此,可在曝光後烘烤步驟(PEB)之後採取量測,曝光後烘烤步驟(PEB)通常為對經曝光基板進行之第一步驟且增大抗蝕劑之經曝光部分與未經曝光部分之間的對比度。在此階段,抗蝕劑中之影像可被稱作半潛像(semi-latent)。亦有可能對經顯影抗蝕劑影像進行量測,此時,抗蝕劑之經曝光部分抑或未經曝光部分已被移除-或在諸如蝕刻之圖案轉印步驟之後對經顯影抗蝕劑影像進行量測。後者可能性限制重工有缺陷基板之可能性,但仍可提供有用資訊。
圖3之(a)展示度量衡裝置。圖3之(b)中更詳細地說明目標T及用以照明該目標之量測輻射之繞射射線。所說明之度量衡裝置屬於被稱為暗場度量衡裝置之類型。度量衡裝置可為單機器件,或併入於例如量測站處之微影裝置LA中或併入於微影製造單元LC中。由點線O表示貫穿裝置具有若干分支之光軸。在此裝置中,由源11(例如氙氣燈)發射之光係由 包含透鏡12、14及物鏡16之光學系統經由光束分裂器15導引至基板W上。此等透鏡係以4F配置之雙重序列進行配置。可使用不同透鏡配置,其限制條件為:該透鏡配置仍將基板影像提供至偵測器上,且同時地允許接取中間光瞳平面以用於空間頻率濾光。因此,可藉由定義在呈現基板平面之空間光譜之平面(此處被稱作(共軛)光瞳平面)中的空間強度分佈來選擇輻射入射於基板上之角度範圍。詳言之,可藉由在為物鏡光瞳平面之背向投影式影像之平面中在透鏡12與14之間插入合適形式之孔徑板13來進行此選擇。在所說明實例中,孔徑板13具有不同形式,被標註為13N及13S,從而允許選擇不同照明模式。圖3之實例中之照明系統形成離軸照明模式。在第一照明模式中,孔徑板13N提供自僅出於描述起見被指明為「北」之方向之離軸。在第二照明模式中,孔徑板13S係用以提供相似照明,但提供來自被標註為「南」之相對方向之照明。其餘光瞳平面理想地暗,此係因為所要照明模式外部之任何不必要光將干涉所要量測信號。在其他實施例中,如下文參看圖4至圖8所論述,可使用不同形式之孔徑板13,諸如被標註為13H之孔徑板。
如圖3之(b)中所展示,目標T經置放成使得基板W垂直於物鏡16之光軸O。基板W可由支撐件(圖中未繪示)支撐。與軸線O成一角度而照射於目標T上之量測輻射射線I引起一個零階射線(實線0)及兩個一階射線(點鏈線+1及雙點鏈點線-1)。應記住,在運用填充過度之小目標的情況下,此等射線僅僅為覆蓋包括度量衡目標T及其他特徵之基板區域的許多平行射線中之一者。由於板13中之孔徑具有有限寬度(為接納有用量之光所必要),故入射射線I事實上將佔據一角度範圍,且繞射射線0及+1/-1將稍微散開。根據小目標之點散佈函數(point spread function),每一階 +1及-1將遍及一角度範圍而進一步散佈,而非如所展示之單一理想射線。應注意,目標之光柵間距及照明角度可經設計或經調整成使得進入物鏡之一階射線與中心光軸接近地對準。圖3之(a)及圖3之(b)所說明之射線被展示為稍微離軸,以純粹地使其能夠在圖解中被更容易地區分。
在圖3之實例中,由基板W上之目標T繞射之至少0階及+1階係由物鏡16收集且往回導引通過光束分裂器15。返回至圖3之(a),藉由指定被標註為北(N)及南(S)之完全相對孔徑而說明第一照明模式及第二照明模式兩者。當量測輻射之入射射線I來自光軸之北側時(亦即,當使用孔徑板13N來應用第一照明模式時),被標註為+1(N)之+1繞射射線進入物鏡16。與此對比,當使用孔徑板13S來應用第二照明模式時,-1繞射射線(被標註為-1(S))為進入透鏡16之繞射射線。
第二光束分裂器17將繞射光束劃分成兩個量測分支。在第一量測分支中,光學系統18使用零階繞射光束及一階繞射光束而在第一感測器19(例如CCD或CMOS感測器)上形成目標之繞射光譜(光瞳平面影像)。每一繞射階射中感測器上之一不同點,使得影像處理可比較及對比若干階。由感測器19捕捉之光瞳平面影像可用於聚焦度量衡裝置及/或正規化一階光束之強度量測。亦可出於諸如重新建構之許多量測目的來使用光瞳平面影像。
在第二量測分支中,光學系統20、22在感測器23(例如CCD或CMOS感測器)上形成目標T之影像。在第二量測分支中,在與光瞳平面共軛之平面中提供孔徑光闌21。孔徑光闌21用以阻擋零階繞射光束,使得形成於感測器23上之目標之影像係僅由-1或+1一階光束形成。由感測器19及23捕捉之影像經輸出至處理影像之處理器PU,該處理器之功 能將取決於正被執行之量測之特定類型。應注意,此處在廣泛意義上使用術語「影像」。因而,若存在-1階及+1階中之僅一者,則將不形成光柵線之影像。
圖3中所展示之孔徑板13及場光闌21之特定形式純粹為實例。在本發明之另一實施例中,使用目標之同軸照明,且使用具有離軸孔徑之孔徑光闌以將實質上僅一個一階繞射光傳遞至感測器。在又其他實施例中,代替一階光束或除了一階光束以外,亦在量測中使用二階光束、三階光束及高階光束(圖3中未繪示)。
為了使量測輻射可適應於此等不同類型之量測,孔徑板13可包含圍繞圓盤而形成之數個孔徑圖案,該圓盤旋轉以使所要圖案處於適當位置。應注意,孔徑板13N或13S可僅用以量測在一個方向(取決於設置而為X或Y)上定向之光柵。為了量測正交光柵,可能實施達90°及270°之目標旋轉。
圖3之(c)描繪根據已知實務形成於基板上之(複合)目標。此實例中之目標包含四個光柵25a至25d,該四個光柵接近地定位在一起使得該四個光柵將皆在由度量衡裝置之度量衡輻射照明光束形成之量測場景或量測光點24內。該四個光柵因此皆被同時地照明且同時地成像於感測器19及23上。在專用於疊對量測之實例中,光柵25a至25d自身係由在形成於基板W上之半導體器件之不同層中圖案化之上覆光柵形成的複合光柵。光柵25a至25d可具有以不同方式偏置之疊對偏移(層之間的故意失配),以便促進形成有複合光柵之不同部分之層之間的疊對之量測。此類技術為熟習此項技術者所熟知,且將不對其進行進一步描述。光柵25a至25d亦可在其定向方面不同(如所展示),以便使入射輻射在X方向及Y方向 上繞射。在一項實例中,光柵25a及25c為分別具有+d、-d之偏置之X方向光柵。光柵25b及25d為分別具有偏移+d及-d之Y方向光柵。可在由感測器23捕捉之影像中識別此等光柵之分開之影像。此僅為目標之一個實例。目標可包含多於或少於四個光柵,或僅單一光柵。
圖3之(d)展示在圖3之(a)之裝置中使用圖3之(c)之目標而可形成於感測器23上且由感測器23偵測到的影像之實例。雖然光瞳平面影像感測器19不能解析不同個別光柵25a至25d,但影像感測器23可解析不同個別光柵25a至25d。暗矩形表示感測器上之影像之場,在該場內,基板上之經照明光點24成像至對應圓形區域26中。在此場內,矩形區域27a至27d表示小目標光柵25a至25d之影像。若目標位於產品區域中,則在此影像場之周邊中亦可看見產品特徵。影像處理器及控制器PU使用圖案辨識來處理此等影像以識別光柵25a至25d之分開之影像27a至27d。以此方式,影像並不必須在感測器框架內之特定部位處極精確地對準,此情形極大地改良量測裝置整體上之產出率。
一旦已識別光柵之分開之影像,就可例如藉由平均化或求和經識別區域內之經選擇像素強度值來量測彼等個別影像之強度。可將該等影像之強度及/或其他屬性彼此進行比較。可組合此等結果以量測微影製程之不同參數。疊對效能係此參數之重要實例。
如本說明書之[先前技術]部分中所提及,目標結構中之疊對及其他不對稱性之量測在結構處於待製造之器件特徵之解析度時係困難的。此係因為難以捕捉高於零階之繞射輻射。舉例而言,在圖3(a)至(d)中所描繪之類型之配置中,+1繞射階及-1繞射階中之任一者或兩者的反射角對於其兩者變得過高而未由物鏡16捕捉到或此等階變得漸消(非傳播的)。
本發明人已認識到,目標不對稱性對零階反射光束(亦即鏡面反射光束)作出貢獻(雖然作出極小貢獻)。物鏡16相對容易捕捉到零階反射光束。本發明人已進一步認識到,新穎干涉法可用以以高敏感度量測對零階反射光束之不對稱性貢獻,以及量測其他所關注參數。下文參看圖4至圖20描述基於此原理之實施例。
根據一實施例,提供用於量測藉由微影製程而形成於基板上之結構之度量衡裝置。在一實施例中,在僅提供第一量測分支(其中偵測器被置放於光瞳平面中)之狀況下,該度量衡裝置大致相似於圖3之度量衡裝置。然而,沒有必要使偵測在光瞳平面中發生。在其他實施例中,將偵測器置放於影像平面中或置放於影像平面與光瞳平面之間的平面中。度量衡裝置包含光學系統(下文參看圖4及圖5所描述),該光學系統將輻射聚焦至結構上且將反射之後之輻射導引至偵測器38。該光學系統經組態使得偵測器38偵測由來自光瞳平面場分佈中之至少兩個不同點之輻射之間的干涉產生的輻射強度。該干涉係使得偵測到之輻射強度之含有關於所關注參數之資訊的分量相對於偵測到之輻射強度之一或多個其他分量得以增強(歸因於對應於該一或多個其他分量的輻射之至少部分破壞性干涉)。該光學系統引入光瞳平面場分佈中之不同點之間的所需空間相干性,因此,可使用非相干的輻射源來實施功能性。在一實施例中,偵測到之輻射強度係由來自結構之零階反射產生。因此,該途徑適合於量測高解析度特徵(例如處於待製造之器件結構之解析度的特徵)。
參看圖4至圖9所論述之實施例使用共同路徑干涉法之形式來實施上述功能性,其中由光束分裂器分裂之光在第二次傳遞通過該光束分裂器之後在被干涉之前在不同指向上遵循共同路徑。此等實施例中之所 關注參數為疊對,但原理可經應用至其他所關注參數。
圖4描繪度量衡裝置之用於將輸入輻射光束34提供至光學單元40(展示於圖5至圖7中)的光學元件。源11(例如光纖之輸出端)提供輻射光束,該輻射光束傳遞通過包含透鏡12、14A及14B之透鏡系統。透鏡12、14A及14B對應於圖3中所展示之透鏡12及14。類似於圖3之透鏡12及14,該等透鏡12、14A及14B可以4F配置之雙重序列進行配置。其中形成光瞳平面場分佈的光瞳平面被標註為32。其中形成源(例如光纖之末端)之影像的影像平面被標註為34。孔徑板13提供於光瞳平面32中。孔徑板13可採取由例如插圖13H所描繪之形式(自上方檢視)。孔徑板13將所要光瞳平面場分佈賦予至提供至光束分裂器48之輸入輻射34,且將在下文對其進一步詳細地描述。輸入輻射34係由偏振器30偏振(例如線性偏振)。
如圖6至圖7中所描繪,光學單元40包含光束分裂器48。光束分裂器48將輸入輻射光束34分裂成第一輻射光束及第二輻射光束。光學單元40為將第一輻射光束及第二輻射光束導引至基板W上且將來自基板W之反射輻射經由光束分裂器48導引至偵測器38(例如CCD或CMOS感測器)上的光學系統(圖5中所描繪)之部分。在所展示之實施例中,偵測器38定位於光瞳平面中。偵測器38記錄在自基板W反射之後的第一輻射光束及第二輻射光束之組合在光瞳平面場分佈中之強度。如將在下文進一步詳細地描述,偵測器38偵測由第一輻射光束與第二輻射光束之間的干涉產生的輻射。在一實施例中,該干涉係使得第一輻射光束與第二輻射光束在偵測器38處針對來自目標結構之對稱組件之反射比針對來自目標結構之不對稱組件之反射更具破壞性地(例如完全破壞性地)進行干涉。藉此移除或減小不含有關於目標結構中之不對稱性之資訊的背景信號。含有關於目標結構 中之不對稱性之資訊的信號之一部分得以保留。藉此增大可量測不對稱性之敏感度。第一輻射光束與第二輻射光束之間的干涉包含光瞳平面場分佈中之不同點之間的干涉。在此等實施例中,光瞳平面場分佈中將干涉彼此的若干對點係圍繞共同對稱點(針對點對稱性)或共同對稱軸(針對鏡面對稱性)對稱地配置。當光瞳平面場分佈圍繞共同對稱點或對稱軸完美地對稱時,該若干對點具有相同振幅且可藉由在其之間施加180度相移而使其進行破壞性地干涉。可因此有效地移除對稱背景信號,且可以高敏感度偵測與對稱性之任何偏差。下文所描述之圖6描繪光瞳平面場分佈中之不同點經鏡面對稱干涉之實例。下文所描述之圖7描繪光瞳平面場分佈中之不同點經點對稱干涉之實例。
在一實施例中,到達偵測器的經反射第一輻射光束及經反射第二輻射光束係由自基板W上之目標結構之零階反射產生。因此,該途徑適合於量測高解析度特徵(例如處於待製造之器件結構之解析度的特徵)。
在圖4至圖7之實施例中,光學系統60係使得第一輻射光束與第二輻射光束在相對方向上傳播,該等相對方向圍繞包含第一分支61及第二分支62之共同光學路徑。在所展示實施例中,第一分支61及第二分支62具有共同光學元件(例如透鏡42A、42B及44),但輻射在每一分支中傳播通過此等共同光學元件之不同部分。共同光學路徑在第一輻射光束之光學軌跡與第二輻射光束之光學軌跡可疊置於彼此上(在工程容許度內)之意義上係共同的。在共同光學路徑中第一輻射光束之光學軌跡與第二輻射光束之光學軌跡之間的唯一差異為:第一輻射光束與第二輻射光束在相對方向上行進。該共同光學路徑為封閉光學路徑。第一輻射光束沿著第一分 支61(在所展示之實例中向下)自光束分裂器48傳播至基板W且沿著第二分支62(在所展示之實例中向上)自基板W傳播回至光束分裂器48。第二輻射光束沿著第二分支62(在所展示之實例中向下)自光束分裂器48傳播至基板W且沿著第一分支61(在圖中向上)自基板W傳播回至光束分裂器48。第一輻射光束及第二輻射光束聚焦至基板上之同一部位上,從而在基板W上形成影像(例如源11之影像)。相對於第二輻射光束施加相移至第一輻射光束以增加在偵測器38處第一輻射光束與第二輻射光束之間的破壞性干涉(相對於不施加相移之狀況)。在一實施例中,相對於第二輻射光束之整個橫截面均一地施加相移至第一輻射光束之整個橫截面。在實施例之一個特定類別中,相移等於180度。相移係使得偵測到之輻射強度之含有關於所關注參數(例如疊對)之資訊的分量相對於偵測到之輻射強度之一或多個其他分量藉由干涉得以增強。
歸因於第一輻射光束與第二輻射光束具有共同光學路徑,若第一輻射光束與第二輻射光束自其中反射之目標結構完全對稱(例如點對稱或鏡面對稱),則在具有180度之經施加相位差的狀況下在偵測器38處針對光瞳平面場分佈中之所有點可達成完全破壞性干涉。歸因於例如疊對的目標結構中之任何不對稱性將造成不完全破壞性干涉。不完全破壞性干涉在偵測器38處提供可用以獲得不對稱性之量度之信號。干涉法因此移除非想要的背景信號且改良可量測不對稱性之敏感度。
可移除背景之程度將取決於諸如光束分裂器48之光學元件之對準準確度及/或光學缺陷。不完美對準將導致條紋(歸因於自第一輻射光束及第二輻射光束反射之光束並不確切地處於彼此之頂部上且並不在確切相同方向上傳播)。不完美光學件例如在光束分裂器48不提供確切50/50 光束分裂的情況下將導致不完全的背景抑制。
在圖5之實例中,第一輻射光束及第二輻射光束兩者係由透鏡42A、42B及44聚焦至基板W上。透鏡42A與42B之間的影像平面被標註為34。基板W亦定位於影像平面中。透鏡42B與44之間的光瞳平面被標註為32。自第一輻射光束及第二輻射光束反射之輻射在經由透鏡18A及18B第二次傳遞通過光束分裂器48之後經導引至偵測器38。在一實施例中,輸入輻射光束34經偏振,且第一輻射光束及第二輻射光束兩者傳遞通過偏振器36,該偏振器關於在自基板W反射之後且在由偵測器38偵測之前的輸入輻射之偏振係交叉的。在所展示之實施例中,輸入輻射光束34之偏振係由偏振器30提供,且交叉偏振係由定位於透鏡18B與偵測器38之間的偏振器36提供。偏振器36相對於偏振器30交叉。在一實施例中,偏振器36包含偏振光束分裂器。對反射輻射之由於目標結構中之不對稱性(例如疊對)的貢獻存在於交叉偏振分量中。對反射輻射之與不對稱性無關的貢獻通常應不存在於交叉偏振分量中。因此,使用交叉偏振器會進一步抑制不含有關於目標結構中之不對稱性之資訊的背景信號。透鏡18A與18B之間的影像平面被標註為34。在透鏡18B之後且鄰近於偵測器38的光瞳平面被標註為32。如上文所提及,在此實施例中,偵測器量測光瞳平面中之強度。
在一實施例中,第一輻射光束及第二輻射光束經對稱地導引至基板W上。對稱性可導致在第一輻射光束及第二輻射光束自基板W反射之前該第一輻射光束之光瞳平面場分佈相對於該第二輻射光束之光瞳平面場分佈(其在與第一輻射光束之光瞳平面場分佈同一個平面中)係鏡面對稱或點對稱的。光學系統執行在第一分支或第二分支中傳播之輻射之光瞳 平面場分佈的至少一次翻轉或旋轉,使得來自第一輻射光束之影像及來自第二輻射光束之影像分別由具有相對於彼此鏡面對稱或點對稱的光瞳平面場分佈之輻射而形成。
在圖6之實例中,使在第一分支中傳播之輻射之光瞳平面場分佈翻轉(反射),使得來自第一輻射光束之影像及來自第二輻射光束之影像分別由具有相對於彼此鏡面對稱的光瞳平面場分佈之輻射而形成。在此類型之實施例中,可提供光學路徑長度補償器50以補償由光瞳平面場分佈之翻轉引入的額外光學路徑長度。在圖6之特定實例中,藉由第一分支61中之光瞳平面場分佈修改單元46使光瞳平面翻轉。光學路徑長度補償器50接著定位於第二分支62中。
可以各種方式來實施光瞳平面場分佈修改單元46。在所展示之組態中,可使用達成改變輻射光束之方向(自水平至向下)且使光瞳平面場分佈翻轉之所要功能的光學元件之任何組合。可例如使用兩個合適定向鏡面或五稜鏡來實施該功能性。
可以各種方式來實施光學路徑長度補償器50。可使用達成針對第一輻射光束與第二輻射光束使自光束分裂器48至基板W上之目標結構之光學路徑長度相同(藉由補償通過光瞳平面場分佈修改單元46之迂迴路)之所要功能的光學元件之任何組合。此係為確保目標結構在影像平面中且因此焦點對準(從而允許目標結構之最佳量測)所必需的。在圖6之特定實例中,光學路徑長度補償器50包含四個鏡面。光學路徑長度補償器50可替代地使用直角稜鏡或直角稜鏡與鏡面之組合來實施。光學路徑長度補償器50之長度可固定(例如完美地匹配至光瞳平面場分佈修改單元46)或可調的(出於靈活性起見)。原則上,可使用玻璃板(由於高折射率)。
圖7描繪將第一輻射光束與第二輻射光束對稱地導引至基板W上之替代實施方案。與達成鏡面對稱性之圖6之實施例形成對比,圖7之配置導致在第一輻射光束及第二輻射光束自基板W反射之前該第一輻射光束之光瞳平面場分佈相對於該第二輻射光束之光瞳平面場分佈係點對稱的。在圖7之實例中,此係藉由修改圖6之配置以在第二分支62中添加額外翻轉(鏡面反射)來達成。在所展示之實例中,藉由杜夫稜鏡80實施該額外翻轉。在一替代實施例中,使用例如屋脊頂部阿米西(Amici)稜鏡來替代光學路徑長度補償器50之鏡面中之一者來實施額外翻轉。替代地,在第一分支61中提供額外翻轉。替代地,可藉由例如藉由在該等分支中之一者中實施-90度旋轉且在另一分支中實施+90度旋轉而使光瞳平面場分佈旋轉來達成該效應。點對稱性係合乎需要的,此係因為其對應於已自相對方向上與目標相互作用的干涉光束。此對於經對準之光柵目標可並非必需的,其中目標自身之對稱性意謂光瞳平面場分佈中之鏡面對稱性可適當。然而,當疊對目標未對準時或當需要量測產品特徵時,可有必要使用諸如圖7之實施例的實施例來確保光瞳平面場分佈係點對稱的。
可以各種方式來實施光束分裂器48。在所展示之實例中,使用板光束分裂器。在其他實施例中,使用立方體光束分裂器或護膜光束分裂器。為了最大破壞性干涉,50/50光束分裂器係較佳的。
當僅量測不對稱性,諸如僅量測疊對時,通常將使用180度之相移。然而,使用另一相移將意謂背景信號之不完全抑制。此在需要自背景信號獲得資訊的情況下可有益。舉例而言,可獲得關於目標之對稱屬性之資訊(例如臨界尺寸)。在一實施例中,度量衡裝置經組態使得相移選擇性地可控制。因此,可視需要調節背景之位準,或可在主要對不對稱 屬性敏感之模式與主要對對稱屬性敏感之模式之間切換量測。在一實施例中,相移經配置為至少接近於180度但並不確切為180度(例如180度加或減1度、視情況2度、視情況5度、視情況10度、視情況20度之移位)。可藉由例如光束分裂器48之合適調適來實施相移之控制。
替代地或另外,可藉由提供裝置以選擇性地移除光束分裂器48或用不同組件(諸如雙面鏡)選擇性地替換光束分裂器來達成對稱屬性之量測。替代地或另外,光束分裂器48可經組態為具有不同於50/50之光束分裂比率(此將導致對於目標結構之對稱組件之不完全破壞性干涉)。
干涉計之一般屬性為:當一輸出具有180度之相位差時,另一輸出具有0度之相位差。因此,當例如對稱組件在一個輸出中進行破壞性地干涉時,其將在另一輸出中進行建設性地干涉。基於此原理,可提供在往回朝向源11之方向上接收自光束分裂器48輸出之輻射的額外偵測器39。當將180度之相移施加於通向偵測器39之輸出中時,將把0度之相移施加於往回通向源11之輸出中。實例配置描繪於圖5中。在此實例中,提供在往回朝向源11之方向上接收自光束分裂器48輸出之輻射的另一光束分裂器49。該另一光束分裂器49經由透鏡18C及18D而導引輻射朝向偵測器39。偵測器39可定位於影像平面或光瞳平面中。此類型之實施例允許同時地經由偵測器38判定所關注參數(例如疊對),且經由偵測器39自背景信號判定其他資訊(例如臨界尺寸)。可提供額外偵測器39,而不論光學單元40之特定實施細節如何。在實施例中,視情況提供與如關於圖6、圖7及圖10中之任一者所描述的光學單元40組合的額外偵測器39,如圖5中所描繪。
在圖6及圖7之實施例中,反射之第一輻射光束與反射之第 二輻射光束之間的180度相移係藉由該兩個光束經反射或透射通過光束分裂器之不同方式提供。在所展示之特定實例中,第一輻射光束係藉由自光束分裂器48之一側(左側)反射而輸出,且在圍繞共同光學路徑傳播之後藉由自光束分裂器48之相對側(右側)反射而導引至偵測器38。此涉及兩次反射(一次在內部且一次在外部)。與此對比,第二輻射光束係藉由透射通過光束分裂器48而輸出,且在圍繞共同光學路徑傳播之後藉由第二次透射通過光束分裂器48而導引至偵測器38。因此,若光學路徑長度相同,則藉由自光束分裂器之一次外部反射引入的180度相移提供兩個輻射光束之間的所要180度相移。
在一實施例中,至光束分裂器48之輸入輻射34包含光瞳平面場分佈,其中該光瞳平面場分佈之第一區已被移除,從而僅留下該光瞳平面場分佈之第二區。在圖4至圖7之實施例中,藉由孔徑板13H移除第一區。在一實施例中,第一區與第二區為相對定向之半圓。此途徑係合乎需要的,此係因為其允許最大比例的輻射貢獻於基板W之對稱照明。完整圓形光瞳平面場分佈提供於透鏡44處。一半係由第一輻射光束提供且另一半係由第二輻射光束提供。在此類型之實施例中,光瞳平面場分佈之翻轉可包含:圍繞光瞳平面之第一區之半圓之直邊的反射(圖6),及/或圍繞光瞳平面之第一區之半圓之鏡面對稱線的反射(圖7)。
圖6描繪在輸入輻射34至光學單元40之輸入與在自基板W之反射之後的輻射光束自光學單元40之輸出之間的光學路徑中之各種點處的光瞳平面場分佈。輸入輻射34在進入光學單元40時之光瞳平面場分佈被標註為70(如自上方檢視)。箭頭指示輻射之傳播方向(在此狀況下向下)。圖中提供圓形、正方形及三角形(其並不存在於實際光瞳平面場分佈 中)以識別光瞳平面場分佈之參考部分,以便促進該圖中通過光學系統之光瞳平面場分佈之定向的視覺追蹤。
如以上所描述,輸入輻射34係由光束分裂器分裂成第一輻射光束及第二輻射光束。
第一輻射光束遵循第一分支61且在向下射出光學單元40之前傳遞通過光瞳平面場分佈修改單元46。在此階段之光瞳平面場分佈(如自上方檢視)被標註為71A。如可看到,光瞳平面場分佈71A為光瞳平面場分佈70之鏡像。鏡面對稱軸為半圓之直邊。第一輻射光束傳遞通過光學單元40與基板W之間的光學件(第一分支61之其餘部分)以在基板W上形成影像。第一輻射光束接著自基板W反射且沿著第二分支62向上傳播。經反射第一輻射光束傳遞通過基板W與光學單元40之間的光學件。經反射第一輻射光束在進入光學單元時之光瞳平面場分佈被標註為71B(自上方檢視)。光學單元40與基板W之間的光學件導致光瞳平面場分佈71A以點對稱方式重排,從而提供光瞳平面場分佈71B。經反射第一輻射光束向上傳遞通過光學路徑長度補償器50且在自光束分裂器48反射之後自光學單元40輸出。在此階段之光瞳平面場分佈(自左側水平地檢視)被標註為71C。
第二輻射光束圍繞共同光學路徑在與第一輻射光束相對之指向上傳播。在透射通過光束分裂器48並傳播通過光學路徑長度補償器50之後的第二輻射光束之光瞳平面場分佈被標註為72A(自上方檢視)。光瞳平面場分佈72A相同於光瞳平面場分佈70。第二輻射光束傳遞通過光學單元40與基板W之間的光學件(第二分支62之其餘部分)以在基板W上形成影像。第二輻射光束接著自基板W反射且沿著第一分支61向上傳播。經反射第二輻射光束傳遞通過基板W與光學單元40之間的光學件。經反射第二 輻射光束在進入光學單元40時之光瞳平面場分佈被標註為72B(自上方檢視)。光學單元40與基板W之間的光學件導致光瞳平面場分佈72A以點對稱方式重排,從而提供光瞳平面場分佈72B。經反射第二輻射光束傳遞通過光瞳平面場分佈修改單元46,且在第二次透射通過光束分裂器48之後自光學單元40輸出。在此階段之光瞳平面場分佈(自左側水平地檢視)被標註為72C。
圖7描繪在與圖6相同之點處的光瞳平面場分佈。上文所論述之額外翻轉致使光瞳平面場分佈71A相對於光瞳平面場分佈72A點對稱,而非鏡面對稱。
光瞳平面場分佈71C及72C具有相同定向且確切處於彼此上方(在工程容許度內)。此致使源自在由圖6及圖7中之71B及72B之組合界定的光瞳平面場分佈中相對於彼此鏡面對稱或點對稱的若干對點之輻射進行干涉。可接著在偵測器38處偵測對應輻射強度。在圖6及圖7之示意性說明中,71B與72B之兩個三角形將進行干涉、71B與72B之兩個正方形將進行干涉,且71B與72B之兩個圓形將進行干涉。若光瞳平面場分佈71B與72B彼此確切相同(因為目標結構尚未誘發任何不對稱性),則破壞性干涉將致使整個光瞳平面場分佈為暗的。因為半光瞳之兩個複本在空間上重疊,所以貫穿光瞳具有空間相干性並非必需的。如上文所論述,光瞳平面場分佈中之任何不對稱性將造成不完全破壞性干涉且藉此提供亮區。亮區可由偵測器38偵測且提供關於目標結構中之不對稱性之資訊。
由偵測器38記錄之強度被預期具有對目標中之不對稱性(例如疊對)之大致二次相依性。此相依性在圖8中被示意性地描繪。此具有兩個非所要的結果。首先,量測之敏感度由於接近原點的二次曲線之相 對平坦範疇而相對較低。對於給定大小之疊對(由圖8中之影線矩形之寬度的一半所指示),強度52中之改變相對較小(由影線矩形之高度所指示,被標註為52)。其次,不對稱性之指向(例如一個層中之圖案相對於在疊對之狀況下之上覆層中之圖案的位移方向)歸因於二次曲線之對稱性而並非已知的。
根據一實施例,藉由將已知偏置施加至不對稱性(例如將偏置施加至疊對)來處理上述結果。通常,該偏置將大於需要量測之不對稱性。此偏置之效應在圖9中加以描繪。經施加偏置係由箭頭54指示。歸因於待量測之不對稱性的強度之改變針對相同量之不對稱性相比於圖8大得多(比較圖8之箭頭52與圖9之箭頭52)。另外,可導出不對稱性之指向。在圖9之配置中,負不對稱性導致強度之大程度減小且正不對稱性導致強度之大程度增加,而非負不對稱性產生與正不對稱性相同的強度改變(如在圖8中)。因此,有可能以較高敏感度量測不對稱性且推導出不對稱性之指向。
在一替代實施例中,提供以下度量衡裝置:其使用光學光瞳對稱化(OPS)系統以提供對自目標結構之對稱組件之反射的破壞性干涉及對自目標結構之不對稱組件(諸如疊對)之反射的建設性干涉。全文特此係以引用方式併入之WO 2016/096310 A1中提供如何實施OPS系統之細節。
在一實施例中,提供如以上參看圖4至圖9所描述之度量衡裝置,惟圖4之組態可能不包含供移除光瞳場分佈之第一區的孔徑板13H且光學單元40如圖10中所展示而組態除外。圖10之光學單元40包含OPS系統。光學單元40包含將輻射光束34分裂成第一輻射光束及第二輻射光 束之第一光束分裂器83。光學單元40進一步包含重組第一輻射光束與第二輻射光束之第二光束分裂器84。第一輻射光束沿著第一光束分裂器83與第二光束分裂器84之間的第一光學分支81傳播。第二輻射光束沿著第一光束分裂器83與第二光束分裂器84之間的第二光學分支82傳播。第一光學分支81及第二光學分支82使第一輻射光束之場分佈相對於第二輻射光束之場分佈圍繞兩個正交軸線翻轉或旋轉。在圖10之實例中,在第一分支81中使用第一杜夫稜鏡85使第一輻射光束圍繞第一軸線翻轉。在第二分支82中使用第二杜夫稜鏡86使第二輻射光束圍繞垂直於第一軸線之第二軸線翻轉。在一替代實施方案中,提供使第一輻射光束在第一分支中旋轉-90度且使第二輻射光束在第二分支中旋轉+90度之光學元件。沿著第一光學分支81之光學路徑長度等於沿著第二光學分支82之光學路徑長度。
輻射光束在自目標結構反射(經由光學系統60,其可例如如圖5中所展示而組態)之前傳遞通過第一光束分裂器83及第二光束分裂器84。聚焦至結構上之輻射光束之光瞳平面場分佈係點對稱的。輻射光束接著另外在自目標結構反射(在相對方向上)之後傳遞通過第一光束分裂器83及第二光束分裂器84。此導致來自第一光束分裂器83之第一輸出87係藉由第一輻射光束與第二輻射光束破壞性地干涉來自目標結構之對稱組件之反射且建設性地干涉來自目標結構之不對稱組件之反射而形成。因此,第一輸出87係使得偵測到之輻射強度之含有關於所關注參數(例如疊對)之資訊的分量相對於一或多個其他分量(例如對稱分量)得以增強。
輻射可經由如圖21中示意性地所描繪之四個不同路線傳播通過圖10之OPS系統:1)經由第二光學分支82傳播至目標結構且經由第一光學分支81傳播回至第一光束分裂器83(對應於圖21中之行120A)、2)經 由第一光學分支81傳播至目標結構且經由第二光學分支82傳播回至第一光束分裂器83(對應於圖21中之行120B)、3)經由第一光學分支81傳播至目標結構且經由第一光學分支82傳播回至第一光束分裂器83(對應於圖21中之行121A),及4)經由第二光學分支82傳播至目標結構且經由第二光學分支82傳播回至第一光束分裂器83(對應於圖21中之行121B)。一起考慮之路線1及路線2(120A及120B)相似於參看圖4至圖9所論述之共同路徑干涉實施例。一起考慮之路線3及路線4(121A及121B)類似於雙馬赫-曾德耳(Mach Zehnder)干涉計。兩對路線提供相對於自目標結構之對稱組件之反射的180度之相位差,藉此導致破壞性干涉。不對稱組件可進行建設性地干涉且藉此貢獻於經由第一輸出87偵測之信號。
路線3及路線4(121A及121B)不具有路線1及路線2(120A及120B)之共同路徑優點且將對對準誤差更敏感。因此,需要能夠將來自路線1及2之貢獻與來自路線3及4之貢獻分離。
在一實施例中,該分離係藉由安排輸入至第一光束分裂器83之輻射光束34包含一光瞳平面場分佈來達成,其中該光瞳平面場分佈之第一區已被移除,從而僅留下該光瞳平面場分佈之第二區。如以上參看圖4至圖7所描述,此可例如經由上游光瞳平面中之孔徑板13H來達成。在一實施例中,第一區與第二區為相對定向之半圓。在一實施例中,偵測器38經組態以獨立於來自第一輸出87之光瞳平面場分佈之第二部分(例如不同半圓形區)之輻射來偵測來自第一輸出87之光瞳平面場分佈之第一部分(例如半圓形區)之輻射。藉由將來自路線1及路線2(120A及120B)之貢獻安排為獨佔地在第一輸出87之光瞳平面場分佈之第一部分內且將來自路線3及路線4(121A及121B)之貢獻安排為獨佔地在第一輸出87之光瞳平面場 分佈之第二部分內,有可能獨立於來自路線3及路線4(121A及121B)之貢獻來偵測來自路線1及路線2(120A及120B)之貢獻。
此途徑在圖21中針對輸入至第一光束分裂器83之輻射光束34包含半圓形光瞳平面場分佈之狀況示意性地加以描繪。每一行120A、120B、121A、121B對應於輻射光束34通過第一光束分裂器83及第二光束分裂器84到達目標結構且往回通過第二光束分裂器84及第一光束分裂器83以形成第一輸出87之不同路線。
列131表示如輸入至第一光束分裂器83之輻射光束34之光瞳平面場分佈(沿著光束方向所檢視)的實例定向。
列132表示在第一光學分支81或第二光學分支82中(取決於由輻射採取之路線)在翻轉操作之後的光瞳平面場分佈之定向。列132因此表示在輻射入射至目標結構上之前的光瞳平面場分佈之定向。列131與列132之間的箭頭指示翻轉操作之性質。「x」表示在x方向上之翻轉。「y」表示在y方向(垂直於x)上之翻轉。
列133表示在圍繞x及y翻轉之後歸因於輻射通過物鏡傳遞至目標結構且在自目標結構反射之後往回傳遞通過物鏡的光瞳平面場分佈之定向。列133因此表示在自目標結構反射之後的光瞳平面場分佈之定向。列132與列133之間的箭頭指示翻轉操作之性質。「xy」表示圍繞x方向及圍繞y方向之翻轉。
列134表示在自目標結構反射之後在第一光學分支81或第二光學分支82中(取決於由輻射採取之路線)在翻轉操作之後的光瞳平面場分佈之定向。列134因此表示第一輸出87中之光瞳平面場分佈之最終定向。列133與列134之間的箭頭指示翻轉操作之性質。
列134展示出在第一輸出87中針對路線1與路線2(120A與120B)之光瞳平面場分佈之定向相同。該定向與輸入至第一光束分裂器83中的輻射光束34中之定向相同。因此,在此實例中,光瞳平面場分佈之左上部分對應於第一輸出87之光瞳平面場分佈之第一部分。第一輸出87之光瞳平面場分佈之第一部分因此係獨佔地由以下各者形成:1)已通過第一光學分支81傳播至目標結構且通過第二光學分支82自目標結構傳播回(路線2,120B)之輻射;及2)已通過第二光學分支82傳播至目標結構且通過第一光學分支81自目標結構傳播回(路線1,120A)之輻射。
在第一輸出87中針對路線3與路線4(121A與121B)之光瞳平面場分佈之定向亦相同,且不同於針對路線1與路線2(120A與120B)之光瞳平面場分佈之定向。使該定向在x方向上及在y方向上相對於輸入至第一光束分裂器83之輻射光束34中之定向翻轉。因此,在此實例中,光瞳平面場分佈之右下部分對應於第一輸出87之光瞳平面場分佈之第二部分。光瞳平面場分佈之第二部分係獨佔地由以下各者形成:1)已通過第一光學分支81傳播至目標結構且通過第一光學分支81自目標結構傳播回(路線3,121A)之輻射;及2)已通過第二光學分支82傳播至目標結構且通過第二光學分支82自目標結構傳播回(路線4,121B)之輻射。
來自路線1及2之輻射相對於來自路線3及4之輻射分離至光瞳平面場分佈之不同部分中會允許獨立於來自路線3及4之貢獻來偵測來自路線1及2之貢獻。
來自對應於雙馬赫-曾德耳干涉計的路線3及4之貢獻將對對準誤差、路徑長度誤差及光學件中之缺陷極敏感。此等誤差除了可導致第一輸出87中之條紋,亦可導致目標結構上之條紋。在一實施例中,藉由 將沿著第一光學分支81之光學路徑長度安排為不同於沿著第二光學分支82之光學路徑長度而減少或消除此等條紋。在一實施例中,差大於輸入至第一光束分裂器83之輻射光束34之時間相干長度(亦即使得目標結構上之條紋得以實質上減少或消除),但小於接物鏡光學系統在光瞳平面32中之聚焦深度(參看圖5)。該途徑因此改良目標結構之照明之平滑度(均勻性)。來自路線3及4之貢獻將不再在第一輸出87中完美破壞性地進行干涉。對應於來自路線3及4之貢獻的光瞳平面場分佈之第二部分將替代地包含對稱貢獻及不對稱貢獻兩者。然而,來自路線1及2之貢獻仍將進行破壞性地干涉,此係因為兩個路線包括沿著較短光學分支(81或82)傳播一次及沿著較長光學分支(82或81)傳播一次,使得針對每一路線之總路徑長度將相等。歸因於路線1及2之共同路徑幾何形狀,干涉將對對準及光學缺陷較不敏感,且因此將提供對對輻射之不對稱貢獻的高度敏感存取。
圖11描繪其中圖10之OPS系統經定位使得輻射光束僅在自目標結構反射之後(而不在自目標結構反射之前)傳遞通過的替代實施例。在此類型之實施例中,可提供其他配置以將空間相干性引入入射於結構上之輻射中及/或源11可經組態以輸出空間上相干輻射。在此狀況下之度量衡裝置可如以上參看圖4至圖9所描述,惟圖4之組態可能不包含供移除光瞳場分佈之第一區的孔徑板13H、圖10中之光學單元40由單個光束分裂器組成且圖10之OPS系統被提供於圖5中所展示之透鏡18B之後除外。在此實施例中,第一偵測器38A偵測自第二光束分裂器84之第一輸出87輸出之輻射。第二偵測器38B偵測自第二光束分裂器84之第二輸出88輸出之輻射。在此狀況下之OPS系統根據馬赫-曾德耳干涉計之原理進行操作。當第一光學分支81與第二光學分支82中之路徑長度相等時,第一輸出87歸 因於破壞性干涉而將為暗的且第二輸出88歸因於建設性干涉而將為亮的。如在圖10之實施例中,杜夫稜鏡85及86使第一輻射光束及第二輻射之場分佈翻轉,使得光瞳之兩個複本在其被干涉時係點對稱的。在第一偵測器38A中,光被破壞性地干涉且僅保持不對稱性信號(來自自目標結構之不對稱組件之反射)。此致使偵測到之輻射強度之含有關於所關注參數(例如疊對)之資訊的分量相對於其他分量得以增強。在第二偵測器38B中,光被建設性地干涉。此允許第二偵測器38B偵測其中含有關於所關注參數(例如疊對)之資訊的分量相對於其他分量得以抑制之輻射強度。第二偵測器38B因此可用以量測例如光瞳之對稱部分。
以上實施例可尤其有用地經應用以量測包含分層結構之目標結構中之不對稱性,該分層結構在第一層中具有第一組件且在第二層中具有第二組件,在該狀況下,其中第一層與第二層之間的分離度大於λ/20,其中λ為輸入輻射光束之波長。此可為例如在微影顯影步驟之後但在後續蝕刻步驟之前將該方法應用至結構時的狀況。對不對稱性之增大之敏感度意謂即使在諸如對零階反射之貢獻被預期為極小(歸因於層之間的大分離度)之此等狀況的狀況下亦可針對高解析度結構量測不對稱性(例如第一組件與第二組件之間的疊對)。另外或替代地,可顯著減少量測時間。
上文參看圖4至圖11所論述之實施例涉及偵測由來自光瞳平面場分佈中之對應複數對點之輻射之間的干涉產生的複數個輻射強度。在圖6之實例中,每對點圍繞同一鏡面對稱線相對於彼此鏡面對稱地定位。在圖7、圖10及圖11之實例中,每對點圍繞同一對稱點相對於彼此點對稱地定位。圖12及圖13各自描繪示例的兩對點,其分別被標註為x1及 x1',以及x2及x2'。在圖12之實例中,該兩對點係點對稱的(圍繞圓形光瞳平面場分佈之中心)。在圖13之實例中,該兩對點係鏡面對稱的(圍繞處於沿著圓形光瞳平面場分佈之直徑的鏡面對稱軸)。在源自每一對之兩個點之輻射之間施加180度之相位差的狀況下,偵測到之強度將被提供如下:I(1)=|E(x1)-E(x1')|2 I(2)=|E(x2)-E(x2')|2
其中E(x1)、E(x1')、E(x2)及E(x2')表示在各別點x1、x1'、x2及x2'處之輻射之振幅及相位。
在一實施例中,提供在來自光瞳平面場分佈中之一或多個不同點之輻射貢獻於偵測到之輻射強度之前修改來自彼等點的輻射之相位及振幅中的任一者或兩者之光學加權單元。在一實施例中,光學加權單元包含參考光學目標或可程式化空間光調變器。在一實施例中,光學加權單元可經實施為用於將輻射光束分裂成複數個輻射光束之光柵之部分,如下文參看圖15所描述。該光學加權單元使得有可能微調干涉製程,例如以校正目標中不與疊對相關聯的不對稱性(其中正量測疊對)或光學件中之不對稱性。加權可經調節例如以匹配於來自除疊對之外的所有因素之組合之不對稱性。若疊對為零,則即使在存在其他不對稱性的情況下亦將達成完全破壞性干涉。可接著以較大敏感度量測非零疊對。光學加權導致針對圖12及圖13之實例之偵測到之強度被提供如下:I(1)=|E ref (x1)E(x1)-E ref (x1')E(x1')|2 I(2)=|E ref (x2)E(x2)-E ref (x2')E(x2')|2
其中E ref (x1)、E ref (x1')、E ref (x2)及E ref (x2')表示施加於各別點x1、x1'、x2及x2'處之加權。
光瞳平面場分佈中之複數個不同點之間的干涉在每一狀況 下可包含多於兩個點。圖14描繪光瞳平面場分佈中之四個干涉點之實例群組。此可藉由使已相對於彼此旋轉90度(例如藉由使用額外光束分裂器以產生更多複本且將其重組)之四個光瞳平面場分佈重疊來達成。在此狀況下之偵測到之強度將為如下(其中將加權施加至每一點):I(1)=|E ref (x1)E(x1)+E ref (x1')E(x1')+E ref (x1")E(x1")+E ref (x1''')E(x1''')|2 I(2)=|E ref (x2)E(x2)+E ref (x2')E(x2')+E ref (x2")E(x2")+E ref (x2''')E(x2''')|2
圖15及圖16描繪其中三個點之群組被干涉之實施例。圖15示意性地描繪度量衡裝置。度量衡裝置包含光學系統90至92,該光學系統將來自非相干源11之輻射聚焦至基板W上之結構上且將自結構之反射輻射導引至偵測器96上。偵測器96偵測由來自光瞳平面場分佈中之三個不同點之群組之輻射之間的干涉產生的輻射強度。該干涉係使得偵測到之輻射強度之含有關於所關注參數之資訊的分量相對於偵測到之輻射強度之一或多個其他分量得以增強。光學系統將輻射光束分裂成三個輻射光束且稍後重組該三個輻射光束以提供不同點之群組之間的干涉。在所展示之實施例中,分裂及重組係由空間光調變器91達成,該空間光調變器經程式化以模仿相對於彼此旋轉(例如120度)的三個重疊繞射光柵。在其他實施例中,製造光學元件來達成此功能性。在又其他實施例中,使用光束分裂器。在所展示實施例中,分裂係隨著在輻射在圖15中自左至右傳播通過空間光調變器91來達成。重組係隨著輻射在圖15中自右向左傳播通過空間光調變器91(在自基板W上之結構反射之後)來達成。空間光調變器91產生第一光瞳平面場分佈98之多個複本(在圖16中在左側示意性地描繪)。該第一光瞳平面場分佈存在於圖15之實例中之空間光調變器91的左側。第一光瞳平面場分佈98之多個複本形成第二光瞳平面場分佈100(在圖16中在右側示意性地描繪)。來自第二光瞳平面場分佈100之輻射係由光學系統 90至92之元件92聚焦至基板W上之結構上。來自光瞳平面場分佈中之不同點之輻射之間的干涉包含在自結構反射之後來自第二光瞳平面場分佈100中之不同點之輻射之間(亦即,在對應於三角形之點之間,及分別地在對應於正方形之點之間)的干涉。圖15及圖16之原理可適用於其中在需要干涉來自包含多於三個點之群組之輻射的情況下將輻射光束分裂成多於三個輻射光束之配置。在一實施例中,空間光調變器91可藉由空間光調變之合適程式化而作為如以上所描述之光學加權單元而操作(例如以修改由光柵提供之對比度及/或相移)。
在一實施例中,圖15及圖16之配置經修改以提供另一空間光調變器,從而提供額外自由度。在此實施例中,可將空間光調變器91(或其他光束分裂組件)提供於光學系統90之左側、光學系統90與源11之間,且另一空間光調變器定位於光學系統90與偵測器96之間。
以上所揭示之實施例自對稱背景提取不對稱信號。圖17至圖20揭示其中自具有不同對稱性之背景提取具有第一對稱性之信號的實例實施例。
圖17描繪包含折射元件102及104以及透鏡106及108的光學配置,該等折射元件及該等透鏡一起提供光瞳平面場分佈中圍繞鏡面對稱點或圍繞鏡面對稱線而對稱地配置之不同點之間的干涉。該光學配置可用於例如圖10之光學單元中,而作為對提供點對稱性之翻轉或旋轉之替代方案。輻射自左側進入光學配置、自左至右傳遞通過且接著自右至左傳遞通過,且在左側射出光學配置。干涉係使得對應於正方形之點干涉對應於圓形之點,且對應於三角形之點干涉對應於星形之點(如藉由遵循實例射線跡線可瞭解)。應瞭解,該配置可取決於折射元件102及104之對稱性而 提供鏡面對稱干涉或點對稱干涉。圖18描繪在折射元件102與104鏡面對稱之狀況下折射元件102之左側的實例光瞳平面場分佈110及折射元件104之右側的光瞳平面場分佈111。圖19描繪在折射元件102與104圍繞光學配置之光軸點對稱之狀況下的對應光瞳平面場分佈112及113。圖20為示意性地展示可使用此配置提取之實例對稱信號的曲線圖。水平軸線表示自光瞳平面場分佈之邊緣朝向光瞳平面場分佈之中心的光瞳座標(PC)。垂直軸線表示信號位準(S)。圓形及正方形描繪對應於自左側進入圖17之光學配置的輻射中之圓形及正方形之位置。所關注信號116在其圍繞光瞳平面場分佈之中心線對稱地下降及上升(在圖20中自左至右)但偏移大的對稱背景114(具有不同對稱性)之意義上係對稱的。由圖17之配置提供之干涉允許待自背景提取此對稱信號。
本文中所揭示之概念可發現出於監控之目的對結構之微影後量測之外的效用。舉例而言,此偵測器架構可用於基於光瞳平面偵測之未來對準感測器概念中,用於微影裝置中以在圖案化製程期間對準基板。
上文所描述之目標結構可為出於量測之目的而經特定設計及形成的度量衡目標。然而,量測高解析度目標之能力意謂實施例亦可經應用至為形成於基板上之器件之功能性部分的目標。許多器件具有規則的類光柵結構。如本文中所使用之術語「目標光柵」及「目標」並不需要已特定針對正被執行之量測來提供結構。
度量衡裝置可在微影系統中使用,諸如上文參考圖2所論述之微影製造單元LC。微影系統包含執行微影製程之微影裝置LA。微影裝置可經組態以在執行隨後微影製程時使用由度量衡裝置進行的對藉由微影製程形成之結構之量測之結果,例如以改良後續微影製程。
一實施例可包括含有機器可讀指令之一或多個序列之電腦程式,該等機器可讀指令描述量測基板上之目標及/或分析量測以獲得關於微影製程之資訊的方法。亦可提供其中儲存有此電腦程式之資料儲存媒體(例如半導體記憶體、磁碟或光碟)。在現有微影或度量衡裝置已經在生產中及/或在使用中之情況下,本發明可藉由提供經更新電腦程式產品以致使處理器執行本文中所描述之方法來實施。
儘管在本文中可特定地參考微影裝置在IC製造中之使用,但應理解,本文中所描述之微影裝置可具有其他應用,諸如製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭,等。熟習此項技術者應瞭解,在此等替代應用之內容背景中,可認為本文對術語「晶圓」或「晶粒」之任何使用分別與更一般之術語「基板」或「目標部分」同義。可在曝光之前或之後在例如塗佈顯影系統(通常將抗蝕劑層施加至基板且顯影經曝光抗蝕劑之工具)、度量衡工具及/或檢測工具中處理本文中所提及之基板。適用時,可將本文中之揭示內容應用於此類及其他基板處理工具。另外,可將基板處理多於一次,例如以便產生多層IC,使得本文中所使用之術語基板亦可指已經含有多個經處理層之基板。
儘管上文可特定地參考在光學微影之內容背景中對本發明之實施例之使用,但應瞭解,本發明可用於其他應用(例如壓印微影)中,且在內容背景允許之情況下不限於光學微影。在壓印微影中,圖案化器件中之構形(topography)界定產生於基板上之圖案。可將圖案化器件之構形壓入被供應至基板之抗蝕劑層中,在基板上,抗蝕劑係藉由施加電磁輻射、熱、壓力或其組合而固化。在抗蝕劑固化之後,將圖案化器件移出抗 蝕劑,從而在其中留下圖案。
本文中所使用之術語「輻射」及「光束」涵蓋所有類型之電磁輻射,包括紫外線(UV)輻射(例如具有為或為約365奈米、355奈米、248奈米、193奈米、157奈米或126奈米之波長)及極紫外線(EUV)輻射(例如具有在5奈米至20奈米之範圍內之波長),以及粒子束,諸如離子束或電子束。
術語「透鏡」在內容背景允許的情況下可指各種類型之光學組件中之任一者或其組合,包括折射、反射、磁性、電磁及靜電光學組件。
對特定實施例之前述描述將因此充分地揭露本發明之一般性質:在不脫離本發明之一般概念的情況下,其他人可藉由應用熟習此項技術者所瞭解之知識針對各種應用而容易地修改及/或調適此等特定實施例,而無需進行不當實驗。因此,基於本文中所呈現之教示及指導,此等調適及修改意欲在所揭示之實施例之等效者的涵義及範圍內。應理解,本文之措辭或術語係出於描述而非限制之目的,使得本說明書之術語或措辭待由熟習此項技術者按照該等教示及指導進行解譯。
在以下編號條項中描繪根據本發明之另外實施例:
1.一種用於量測形成於一基板上之一結構以判定一所關注參數之度量衡裝置,該度量衡裝置包含:一光學系統,其經組態以將輻射聚焦至該結構上且將在自該結構反射之後的輻射導引至一偵測器上,其中:該光學系統經組態使得該偵測器偵測由來自一光瞳平面場分佈中之至少兩個不同點之輻射之間的干涉產生的一輻射強度,其中該干涉係使得 該偵測到之輻射強度之含有關於該所關注參數之資訊的一分量相對於該偵測到之輻射強度之一或多個其他分量得以增強。
2.如條項1之裝置,其中該光學系統經組態以致使該偵測器偵測由來自一光瞳平面場分佈中之對應複數對點之輻射之間的干涉產生的複數個輻射強度,每對點圍繞同一鏡面對稱線相對於彼此鏡面對稱地定位。
3.如條項1之裝置,其中該光學系統經組態以致使該偵測器偵測由來自一光瞳平面場分佈中之對應複數對點之輻射之間的干涉產生的複數個輻射強度,每對點圍繞同一對稱點相對於彼此點對稱地定位。
4.如條項1至3中任一項之裝置,其進一步包含一光學加權單元,該光學加權單元經組態以在來自該光瞳平面場分佈中之一或多個不同點之輻射貢獻於該偵測到之輻射強度之前修改來自彼等點之輻射的相位及振幅中之任一者或兩者。
5.如任一前述條項之裝置,其中該光學系統經組態以將一輻射光束分裂成複數個輻射光束且稍後重組該複數個輻射光束,以便造成來自該光瞳平面場分佈中之不同點之該等輻射之間的該干涉。
6.如條項5之裝置,其中:該將該輻射光束分裂成該複數個輻射光束會產生一第一光瞳平面場分佈之多個複本;該光學系統使用該第一光瞳場分佈之該多個複本而形成一第二光瞳平面場分佈;該第二光瞳平面場分佈中之輻射經聚焦至該結構上;且來自該光瞳平面場分佈中之不同點之該等輻射之間的該干涉包含在自該結構反射之後來自該第二光瞳平面場分佈中之不同點之輻射之間的干 涉。
7.如條項1至4中任一項之裝置,其中該光學系統包含一光束分裂器,該光束分裂器經組態以將一輻射光束分裂成一第一輻射光束及一第二輻射光束,且該光學系統經組態使得:該第一輻射光束與該第二輻射光束圍繞包含一第一分支及一第二分支之一共同光學路徑在相對方向上傳播,該第一輻射光束沿著該第一分支自該光束分裂器傳播至該基板且沿著該第二分支自該基板傳播回至該光束分裂器,且該第二輻射光束沿著該第二分支自該光束分裂器傳播至該基板且沿著該第一分支自該基板傳播回至該光束分裂器;且相對於該第二輻射光束施加一相移至該第一輻射光束,該相移係使得該偵測到之輻射強度之含有關於該所關注參數之資訊的該分量相對於該偵測到之輻射強度之該一或多個其他分量藉由干涉得以增強。
8.如條項7之裝置,其中相對於該第二輻射光束之整個橫截面均一地施加該相移至該第一輻射光束之整個橫截面。
9.如條項7或8之裝置,其中該相移係180度。
10.如條項7至9中任一項之裝置,其中該光學系統經組態以執行在該第一分支或該第二分支中傳播的輻射之該光瞳平面場分佈之至少一次翻轉或旋轉,使得來自該第一輻射光束之影像及來自該第二輻射光束之影像係分別由具有相對於彼此鏡面對稱或點對稱的光瞳平面場分佈之輻射而形成。
11.如條項10之裝置,其進一步包含該第一分支或該第二分支中之一光學路徑長度補償器,該光學路徑長度補償器用以補償由該光瞳平面場分佈之該至少一次翻轉或旋轉引入的任何額外光學路徑長度。
12.如條項7至11中任一項之裝置,其經組態使得輸入至該光束分裂器之該輻射光束包含一光瞳平面場分佈,其中該光瞳平面場分佈之一第一區已被移除,從而僅留下該光瞳平面場分佈之一第二區。
13.如條項12之裝置,其中該第一區與該第二區為相對定向之半圓。
14.如條項13之裝置,其中該光瞳平面場分佈之該至少一次翻轉或旋轉包含以下各者中之一者或兩者:圍繞該光瞳平面之該第一區之該半圓之直邊的一反射,及圍繞該光瞳平面之該第一區之該半圓之一鏡面對稱線的一反射。
15.如條項7至14中任一項之裝置,其中該相移係至少部分藉由以下操作提供:安排該第一輻射光束藉由自該光束分裂器之一側反射而輸出且在圍繞該共同光學路徑傳播之後藉由自該光束分裂器之相對側反射而導引至該偵測器,且安排該第二輻射光束藉由透射通過該光束分裂器而輸出且在圍繞該共同光學路徑傳播之後藉由透射通過該光束分裂器而導引至該偵測器。
16.如條項7至15中任一項之裝置,其中該第一輻射光束及該第二輻射光束經聚焦至該基板上之同一部位上。
17.如條項16之裝置,其中該第一輻射光束及該第二輻射光束在該基板上之該同一部位處形成一影像。
18.如條項16或17之裝置,其中待聚焦至該基板上之該第一輻射光束之一光瞳平面場分佈相對於待聚焦至該基板上之該第二輻射光束之一光瞳平面場分佈係鏡面對稱的。
19.如條項16至18中任一項之裝置,其中待聚焦至該基板上之該第 一輻射光束之一光瞳平面場分佈相對於待聚焦至該基板上之該第二輻射光束之一光瞳平面場分佈係點對稱的。
20.如條項1至4中任一項之裝置,其中該光學系統包含:一第一光束分裂器,其經組態以將一輻射光束分裂成一第一輻射光束及一第二輻射光束;及一第二光束分裂器,其經組態以重組該第一輻射光束及該第二輻射光束,其中該第一輻射光束沿著該第一光束分裂器與該第二光束分裂器之間的一第一光學分支傳播,且該第二輻射光束沿著該第一光束分裂器與該第二光束分裂器之間的一第二光學分支傳播,且該第一光學分支及該第二光學分支經組態使得該第一輻射光束之該場分佈的至少一部分相對於該第二輻射光束之該場分佈的一對應部分翻轉或旋轉;且該偵測器經組態以偵測在自該結構反射之後來自該第一光束分裂器及該第二光束分裂器中之任一者之一第一輸出的輻射,其中該第一輸出係藉由該第一輻射光束與該第二輻射光束以該偵測到之輻射強度之含有關於該所關注參數之資訊的該分量相對於該偵測到之輻射強度之該一或多個其他分量得以增強之方式進行干涉而形成。
21.如條項20之裝置,其中沿著該第一光學分支之光學路徑長度等於沿著該第二光學分支之光學路徑長度。
22.如條項20之裝置,其中沿著該第一光學分支之該光學路徑長度不同於沿著該第二光學分支之該光學路徑長度,該差大於輸入至該第一光束分裂器之該輻射光束之一時間相干長度且小於該光學系統之一光瞳平面中之一聚焦深度。
23.如條項20至22中任一項之裝置,其中該光學系統經組態使得該輻射光束在自該結構反射之前傳遞通過該第一光束分裂器及該第二光束分裂器。
24.如條項23之裝置,其中該光學系統經組態使得該輻射光束另外在自該結構反射之後傳遞通過該第一光束分裂器及該第二光束分裂器,由該第二光束分裂器分裂成該第一輻射光束及該第二輻射且由該第一光束分裂器重組,該第一輻射光束及該第二輻射光束在該第一光束分裂器處進行干涉使得該第一光束分裂器之該第一輸出係藉由該第一輻射光束與該第二輻射光束以該偵測到之輻射強度之含有關於該所關注參數之資訊的該分量相對於該偵測到之輻射強度之該一或多個其他分量得以增強之方式進行干涉而形成。
25.如條項20至22中任一項之裝置,其中該光學系統經組態使得該輻射光束僅在自該結構反射之後傳遞通過該第一光束分裂器及該第二光束分裂器。
26.如條項20至25中任一項之裝置,其包含一另外偵測器,該另外偵測器經組態以偵測自該第一光束分裂器及該第二光束分裂器中之任一者之一第二輸出輸出的輻射,其中該第二輸出係藉由該第一輻射光束與該第二輻射光束以該偵測到之輻射強度之含有關於該所關注參數之資訊的該分量相對於該偵測到之輻射強度之該一或多個其他分量得以抑制之方式進行干涉而形成。
27.如條項20至26中任一項之裝置,其經組態使得輸入至該第一光束分裂器之該輻射光束包含一光瞳平面場分佈,其中該光瞳平面場分佈之一第一區已被移除,從而僅留下該光瞳平面場分佈之一第二區。
28.如條項27之裝置,其中該第一區與該第二區為相對定向之半圓。
29.如條項27或28之裝置,其中該偵測器經組態以獨立於來自該第一輸出之一光瞳平面場分佈之一第二部分的輻射來偵測來自該第一輸出之一光瞳平面場分佈之一第一部分的輻射。
30.如條項29之裝置,其中:該第一輸出之該光瞳平面場分佈之該第一部分係獨佔地由已通過該第一光學分支傳播至該結構且通過該第二光學分支自該結構傳播回之輻射,及已通過該第二光學分支傳播至該結構且通過該第一光學分支自該結構傳播回之輻射形成;且該第一輸出之該光瞳平面場分佈之該第二部分係獨佔地由已通過該第一光學分支傳播至該結構且通過該第一光學分支自該結構傳播回之輻射,及已通過該第二光學分支傳播至該結構且通過該第二光學分支自該結構傳播回之輻射形成。
31.如任一前述條項之裝置,其經組態使得聚焦至該結構上之該輻射經偏振,且該輻射傳遞通過一偏振器,該偏振器關於在自該結構反射之後聚焦至該結構上的該輻射之該偏振係交叉的。
32.如任一前述條項之裝置,其中該所關注參數為該結構之不同層之間的疊對。
33.一種微影系統,其包含:一微影裝置,其經組態以執行一微影製程;及如任一前述條項之度量衡裝置。
34.一種量測形成於一基板上之一結構以判定一所關注參數之方 法,該方法包含:將輻射聚焦至該結構上且使用一偵測器以偵測在自該結構反射之後的輻射,其中:該偵測器偵測由來自一光瞳平面場分佈中之至少兩個不同點之輻射之間的干涉產生的一輻射強度,其中該干涉係使得該偵測到之輻射強度之含有關於該所關注參數之資訊的一分量相對於該偵測到之輻射強度之一或多個其他分量得以增強。
35.如條項34之方法,其中該結構包含在一第一層中具有一第一組件且在一第二層中具有一第二組件的一分層結構,且該第一層與該第二層之間的分離度大於λ/20,其中λ為該輸入輻射光束之一波長。
36.如條項34或35之方法,其中在一微影顯影步驟之後但在一後續蝕刻步驟之前將該方法應用至一結構。
37.如條項34至36中任一項之方法,其中該所關注參數包含該結構之一不對稱性。
38.如條項37之方法,其中該所關注參數包含該結構中之不同層之間的疊對。
39.如條項37或38之方法,其中將該結構之該不對稱性中之一已知偏置施加至該結構。
40.如條項34至39中任一項之方法,其中該偵測到之輻射強度係由來自該結構之零階反射產生。
本發明之廣度及範疇不應受上述例示性實施例中之任一者限制,而應僅根據以下申請專利範圍及其等效者進行界定。
x1‧‧‧點
x1'‧‧‧點
x2‧‧‧點
x2'‧‧‧點

Claims (15)

  1. 一種用於量測形成於一基板上之一結構以判定一所關注參數(parameter of interest)之度量衡裝置,該度量衡裝置包含:一第一偵測器;一第二偵測器;及一光學系統,其經組態以將輻射聚焦至該結構上且將在自該結構反射之後的輻射之一第一部分導引至該第一偵測器上,且將在自該結構反射之後的輻射之一第二部分導引至該第二偵測器上,其中:該光學系統經組態使得該第一偵測器偵測由來自一光瞳平面場分佈(pupil plane field distribution)中之至少兩個不同點之輻射之間的干涉產生的一輻射強度,該干涉係使得該偵測到之輻射強度之含有關於該所關注參數之資訊的一分量相對於該偵測到之輻射強度之一或多個其他分量得以增強,且該第二偵測器偵測不同於該輻射強度之一參數。
  2. 如請求項1之裝置,其中該光學系統經組態以致使該第一偵測器偵測由來自該光瞳平面場分佈中之對應複數對點之輻射之間的干涉產生的複數個輻射強度,每對點圍繞同一鏡面對稱線相對於彼此鏡面對稱地定位。
  3. 如請求項1之裝置,其中該光學系統經組態以致使該第一偵測器偵測由來自該光瞳平面場分佈中之對應複數對點之輻射之間的干涉產生的複數個輻射強度,每對點圍繞同一對稱點相對於彼此點對稱地定位。
  4. 如請求項1之裝置,其進一步包含一光學加權單元,該光學加權單元經組態以在來自該光瞳平面場分佈中之一或多個不同點之輻射貢獻於由該第一偵測器偵測之該偵測到之輻射強度之前修改來自彼等點之輻射的相位及振幅中之任一者或兩者。
  5. 如請求項1之裝置,其中該光學系統經組態以將一輻射光束分裂成複數個輻射光束且稍後重組該複數個輻射光束,以便造成來自該光瞳平面場分佈中之不同點之該輻射之間的該干涉。
  6. 如請求項5之裝置,其中:該將該輻射光束分裂成該複數個輻射光束會產生一第一光瞳平面場分佈之多個複本(copies);該光學系統使用該第一光瞳場分佈之該多個複本而形成一第二光瞳平面場分佈;該第二光瞳平面場分佈中之輻射經聚焦至該結構上;且來自該第一光瞳平面場分佈中之不同點之該輻射之間的該干涉包含在自該結構反射之後來自該第二光瞳平面場分佈中之不同點之輻射之間的干涉。
  7. 如請求項1之裝置,其中該光學系統包含一光束分裂器,該光束分裂器經組態以將一輻射光束分裂成一第一輻射光束及一第二輻射光束,且該光學系統經組態使得: 該第一輻射光束與該第二輻射光束圍繞包含一第一分支及一第二分支之一共同光學路徑在相對方向上傳播,該第一輻射光束沿著該第一分支自該光束分裂器傳播至該基板且沿著該第二分支自該基板傳播回至該光束分裂器,該第二輻射光束沿著該第二分支自該光束分裂器傳播至該基板且沿著該第一分支自該基板傳播回至該光束分裂器;且相對於該第二輻射光束施加一相移至該第一輻射光束,該相移係使得該偵測到之輻射強度之含有關於該所關注參數之資訊的該分量相對於該偵測到之輻射強度之該一或多個其他分量藉由干涉得以增強。
  8. 如請求項7之裝置,其中相對於該第二輻射光束之一橫截面之一整體均一地施加該相移至該第一輻射光束之一橫截面之一整體。
  9. 如請求項7之裝置,其中該相移係180度。
  10. 如請求項7之裝置,其中該光學系統經組態以執行在該第一分支或該第二分支中傳播的輻射之該光瞳平面場分佈之至少一次翻轉(flip)或旋轉(rotation),使得來自該第一輻射光束之影像及來自該第二輻射光束之影像係分別由具有相對於彼此鏡面對稱或點對稱的光瞳平面場分佈之輻射而形成。
  11. 如請求項10之裝置,其進一步包含該第一分支或該第二分支中之一光學路徑長度補償器,該光學路徑長度補償器用以補償由該光瞳平面場分 佈之該至少一次翻轉或旋轉引入的任何額外光學路徑長度。
  12. 如請求項7之裝置,其經組態使得輸入至該光束分裂器之該輻射光束包含該光瞳平面場分佈,其中該光瞳平面場分佈之一第一區已被移除,從而僅留下該光瞳平面場分佈之一第二區。
  13. 如請求項12之裝置,其中該第一區與該第二區為相對定向之半圓。
  14. 如請求項13之裝置,其中該光學系統經組態以執行包含以下各者中之一者或兩者之該光瞳平面場分佈之該至少一次翻轉或旋轉:圍繞該光瞳平面場分佈之該第一區之該半圓之直邊的一反射;及圍繞該光瞳平面場分佈之該第一區之該半圓之一鏡面對稱線的一反射。
  15. 如請求項7之裝置,其中該相移係至少部分藉由以下操作提供:安排該第一輻射光束藉由自該光束分裂器之一側反射而輸出且在圍繞該共同光學路徑傳播之後藉由自該光束分裂器之相對側反射而導引至該第一偵測器,且安排該第二輻射光束藉由透射通過該光束分裂器而輸出且在圍繞該共同光學路徑傳播之後藉由透射通過該光束分裂器而導引至該第一偵測器。
TW107118378A 2017-06-02 2018-05-30 度量衡裝置、微影系統及量測結構之方法 TWI686587B (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
EPEP17174269 2017-06-02
??EP17174269 2017-06-02
EP17174269.5A EP3410212A1 (en) 2017-06-02 2017-06-02 Metrology apparatus
??EP17177960 2017-06-26
EPEP17177960 2017-06-26
EP17177960 2017-06-26
??EP17200068 2017-11-06
EPEP17200068 2017-11-06
EP17200068 2017-11-06

Publications (2)

Publication Number Publication Date
TW201903352A TW201903352A (zh) 2019-01-16
TWI686587B true TWI686587B (zh) 2020-03-01

Family

ID=62152574

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107118378A TWI686587B (zh) 2017-06-02 2018-05-30 度量衡裝置、微影系統及量測結構之方法

Country Status (5)

Country Link
US (1) US10599047B2 (zh)
KR (1) KR102328438B1 (zh)
CN (1) CN110709778B (zh)
TW (1) TWI686587B (zh)
WO (1) WO2018219639A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201609995D0 (en) * 2016-06-08 2016-07-20 Aquasium Technology Ltd Shaped welding head
WO2020057900A1 (en) * 2018-09-19 2020-03-26 Asml Netherlands B.V. Metrology sensor for position metrology
CN113196177B (zh) * 2018-12-20 2024-04-30 Asml荷兰有限公司 量测传感器、照射系统、和产生具有能够配置的照射斑直径的测量照射的方法
US11550227B2 (en) 2019-01-18 2023-01-10 Asml Netherlands B.V. Projection system and lithographic apparatus comprising said projection system
US11094499B1 (en) * 2020-10-04 2021-08-17 Borries Pte. Ltd. Apparatus of charged-particle beam such as electron microscope comprising sliding specimen table within objective lens
US11747731B2 (en) * 2020-11-20 2023-09-05 Canon Kabishiki Kaisha Curing a shaped film using multiple images of a spatial light modulator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469793B1 (en) * 1999-08-10 2002-10-22 Svg Lithography Systems, Inc. Multi-channel grating interference alignment sensor
US6795198B1 (en) * 1998-05-28 2004-09-21 Martin Fuchs Method and device for measuring thin films and semiconductor substrates using reflection mode geometry
US20080266561A1 (en) * 2007-04-26 2008-10-30 Kla-Tencor Corporation Optical gain approach for enhancement of overlay and alignment systems performance
CN102089616A (zh) * 2008-06-03 2011-06-08 焕·J·郑 干涉缺陷检测和分类
US9164397B2 (en) * 2010-08-03 2015-10-20 Kla-Tencor Corporation Optics symmetrization for metrology
TWI578113B (zh) * 2014-02-03 2017-04-11 Asml荷蘭公司 度量衡方法及裝置、基板、微影系統及器件製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536023B2 (ja) * 1988-02-29 1996-09-18 株式会社ニコン 露光装置、及び露光方法
KR100483981B1 (ko) * 1996-02-22 2005-11-11 가부시키가이샤 니콘 펄스폭신장광학계및이러한광학계를갖춘노광장치
US6795168B2 (en) * 2002-04-08 2004-09-21 Numerical Technologies, Inc. Method and apparatus for exposing a wafer using multiple masks during an integrated circuit manufacturing process
DE60319462T2 (de) * 2002-06-11 2009-03-12 Asml Netherlands B.V. Lithographischer Apparat und Verfahren zur Herstellung eines Artikels
US7561282B1 (en) 2006-03-27 2009-07-14 Kla-Tencor Technologies Corporation Techniques for determining overlay and critical dimension using a single metrology tool
KR101395733B1 (ko) * 2009-06-17 2014-05-15 에이에스엠엘 네델란즈 비.브이. 오버레이 측정 방법, 리소그래피 장치, 검사 장치, 처리 장치, 및 리소그래피 처리 셀
CN102460129B (zh) * 2009-06-22 2015-08-12 Asml荷兰有限公司 物体检查系统和方法
US8189202B2 (en) 2009-08-04 2012-05-29 Zygo Corporation Interferometer for determining overlay errors
US8582114B2 (en) * 2011-08-15 2013-11-12 Kla-Tencor Corporation Overlay metrology by pupil phase analysis
EP2579100A3 (en) * 2011-10-03 2017-12-06 ASML Holding N.V. Inspection apparatus, lithographic apparatus, and device manufacturing method
JP5873212B2 (ja) * 2012-04-12 2016-03-01 エーエスエムエル ネザーランズ ビー.ブイ. 位置測定方法、位置測定装置、リソグラフィ装置及びデバイス製造方法並びに光学要素
EP3234694B1 (en) 2014-12-15 2022-10-12 ASML Holding N.V. Method and apparatuses for optical pupil symmetrization
US10551749B2 (en) * 2017-01-04 2020-02-04 Kla-Tencor Corporation Metrology targets with supplementary structures in an intermediate layer
EP3470926A1 (en) * 2017-10-16 2019-04-17 ASML Netherlands B.V. Metrology apparatus, lithographic system, and method of measuring a structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795198B1 (en) * 1998-05-28 2004-09-21 Martin Fuchs Method and device for measuring thin films and semiconductor substrates using reflection mode geometry
US6469793B1 (en) * 1999-08-10 2002-10-22 Svg Lithography Systems, Inc. Multi-channel grating interference alignment sensor
US20080266561A1 (en) * 2007-04-26 2008-10-30 Kla-Tencor Corporation Optical gain approach for enhancement of overlay and alignment systems performance
CN102089616A (zh) * 2008-06-03 2011-06-08 焕·J·郑 干涉缺陷检测和分类
US9164397B2 (en) * 2010-08-03 2015-10-20 Kla-Tencor Corporation Optics symmetrization for metrology
TWI578113B (zh) * 2014-02-03 2017-04-11 Asml荷蘭公司 度量衡方法及裝置、基板、微影系統及器件製造方法
TWI582548B (zh) * 2014-02-03 2017-05-11 Asml荷蘭公司 度量衡方法及裝置、基板、微影系統及器件製造方法

Also Published As

Publication number Publication date
CN110709778B (zh) 2021-12-21
CN110709778A (zh) 2020-01-17
US10599047B2 (en) 2020-03-24
KR20190142381A (ko) 2019-12-26
US20180348645A1 (en) 2018-12-06
TW201903352A (zh) 2019-01-16
KR102328438B1 (ko) 2021-11-17
WO2018219639A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
KR102523532B1 (ko) 구조의 특성을 결정하는 방법 및 계측 장치
TWI686587B (zh) 度量衡裝置、微影系統及量測結構之方法
TWI709001B (zh) 度量衡裝置、微影系統及測量結構的方法
TWI660164B (zh) 檢測基板之方法、度量衡設備及微影系統
TWI691800B (zh) 量測系統、微影系統及量測目標的方法
KR20200033965A (ko) 패터닝 공정 매개변수를 결정하기 위한 방법 및 계측 장치
TWI693483B (zh) 用於量測形成於基板上之結構的方法
WO2020126266A1 (en) Method of measuring a parameter of a patterning process, metrology apparatus, target
US10607873B2 (en) Substrate edge detection
WO2021224009A1 (en) A substrate comprising a target arrangement, and associated at least one patterning device, lithographic method and metrology method
TWI691802B (zh) 測量目標的方法、度量衡裝置、微影單元及目標
EP3410212A1 (en) Metrology apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees