TWI684755B - 大氣層頂反射率之時間空間影像融合方法於氣膠光學厚度反演 - Google Patents

大氣層頂反射率之時間空間影像融合方法於氣膠光學厚度反演 Download PDF

Info

Publication number
TWI684755B
TWI684755B TW107117432A TW107117432A TWI684755B TW I684755 B TWI684755 B TW I684755B TW 107117432 A TW107117432 A TW 107117432A TW 107117432 A TW107117432 A TW 107117432A TW I684755 B TWI684755 B TW I684755B
Authority
TW
Taiwan
Prior art keywords
image
fusion
spatial resolution
resolution
time
Prior art date
Application number
TW107117432A
Other languages
English (en)
Other versions
TW202004160A (zh
Inventor
黃智遠
何炫騏
林唐煌
Original Assignee
國立中央大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中央大學 filed Critical 國立中央大學
Priority to TW107117432A priority Critical patent/TWI684755B/zh
Publication of TW202004160A publication Critical patent/TW202004160A/zh
Application granted granted Critical
Publication of TWI684755B publication Critical patent/TWI684755B/zh

Links

Images

Landscapes

  • Image Processing (AREA)

Abstract

一種大氣層頂反射率之時間空間影像融合方法(TOA-reflectance-based Spatio-Temporal image fusion method, TOA-STFM)於氣膠光學厚度反演,係基於現有時間空間影像融合方法-時間空間自適應反射率融合模型(spatial and temporal adaptive reflectance fusion model, STARFM),提出TOA-STFM方法針對大氣層頂(top-of-atmosphere, TOA)反射率進行時間空間影像融合。此外 Himawari-8地球同步衛星具有極高之時間解析度(10分鐘),且與高空間解析度衛星影像有相似之光譜波段,如Landsat-8與SPOT-6。藉此,本發明結合高空間解析度影像與Himawari-8高時間解析度影像,透過TOA-STFM產製高空間與高時間解析度之衛星影像,並應用至空氣品質監測。

Description

大氣層頂反射率之時間空間影像融合方法於氣膠光學厚度反演
本發明係有關於一種大氣層頂反射率之時間空間影像融合方法於氣膠光學厚度反演,尤指涉及一種使用大氣層頂反射率進行時間空間影像融合,特別係指結合Himawari-8地球同步衛星影像與高空間解析度衛星影像,提供每10分鐘一筆高空間解析度融合影像至空氣品質監測者。
遙測衛星提供週期性的地球觀測資料,許多研究將週期性的觀測影像經不同的處理程序,由資料處理成資訊應用至各領域進行分析,如土地覆蓋分析、氣象分析等。遙測衛星搭載感測器之影像,分為四個解析度,空間解析度、時間解析度、光譜解析度、及輻射解析度。其中空間解析度為一個像素元所對應地面大小,時間解析度為衛星拍攝同一地點之週期,光譜解析度為感測器上所能偵測電磁波光譜範圍,輻射解析度為地表輻射進入感測器之能量,經過量化後所使用之灰階範圍。然而,遙測衛星搭載之感測器無法達成同時具備多種高解析度。例如,WorldView-3衛星的空間解析度為30公分,但其時間解析度為4.5天。而日本發射的Himawari-8衛星具有10分鐘的時間解析度,但其空間解析度為500公尺。 遙測應用領域上,有些應用需要高空間以及高時間解析度之影像資訊 ,像是空氣汙染監測。由於城市發展及工業化,空氣汙染日益嚴重。空氣品質監測成為重要的議題。許多研究應用衛星影像進行大尺度之空氣品質監測與分析。然而空氣品質具動態局部變化特性,而現有單一衛星無法提供同時具有高空間與高時間解析度之影像。有些研究者因而提出衛星影像融合之方法來達到同時具有高空間與高時間解析度之衛星影像。目前現有的時間與空間之影像融合技術,例如時間與空間自適應反射率融合模型(Spatial Temporal Adaptive Reflectance Fusion Model, STARFM)、適應地物反射率變化的時間與空間自適應融合演算法(Spatial Temporal Adaptive Algorithm for mapping Reflectance Change, STAARCH)、增進之時間與空間自適應反射率融合模型(enhanced Spatial and Temporal Adaptive Reflectance Fusion Model, ESTARFM)、時間與空間數據融合模型(Spatial and Temporal Data Fusion Model, STDFM)、以及增進之時間與空間數據融合模型(Enhanced Spatial and Temporal Data Fusion Model, ESTDFM)等,皆針對地表反射率來進行融合以預測高空間解析度之地表反射率影像。其融合影像僅能進行土地覆蓋之相關分析應用,而任何大氣相關應用皆無法支援。 再者,過去的研究大多融合了陸地衛星(Landsat)衛星影像與中解析度影像光譜幅射儀(Moderate-resolution Imaging Spectroradiometer, MODIS)衛星影像,提供同時具有高空間解析度(30公尺)與高時間解析度(1至2天)之影像。惟1至2天之時間解析度不足以提供多時序資訊至大氣應用,如空氣品質監測。 整體而言,既有時間空間之影像融合技術無法支援大氣相關應用,且大多使用Landsat衛星影像與MODIS衛星影像進行融合,融合影像之時間解析度不足以應用至空氣品質監測。故,ㄧ般習用者係無法符合使用者於實際使用時之所需。
本發明之主要目的係在於,克服習知技藝所遭遇之上述問題並提供一種針對大氣層頂反射率進行時間空間影像融合,可提供大尺度且多時序之大氣特性資料至空氣品質監測之大氣層頂反射率之時間空間影像融合方法。 本發明之次要目的係在於,提供一種使用長波段影像計算權重,可避免進行大氣校正之耗時,同時加入調整模糊效應參數,最後再加上可見光波段進行預測高空間解析度影像之大氣層頂反射率之時間空間影像融合方法。 本發明之另一目的係在於,提供一種對於無空氣品質測站區域,提供大尺度精確且穩定之資訊,並可有效減少監測區域內之空氣品質測站之數目,達到高精度低成本效益之大氣層頂反射率之時間空間影像融合方法。 本發明之再一目的係在於,提供一種高效率流程,並能滿足時間急迫性高的應用需求之大氣層頂反射率之時間空間影像融合方法。 為達以上之目的,本發明係一種大氣層頂反射率之時間空間影像融合方法,其至少包含下列步驟:預備步驟:匯入低空間解析度影像(C TR)與高空間解析度影像(F TR)之綠光波段及長波長波段,並使用該高空間解析度影像之綠光波段進行土地覆蓋類型考量;權重計算步驟:使用該長波長波段進行影像融合權重計算;影像融合步驟:使用該綠光波段進行預測高空間解析度影像之大氣層頂(top-of-atmosphere, TOA)反射率;模糊效應調整步驟:先使用對比法來取得低空間解析度影像(C T1)之初始氣膠光學厚度(Aerosol optical depth, AOD)值,然後計算模糊效應調整(blurring effect adjustment, BEA)係數,再使用該初始AOD值找到對應的高空間解析度影像的模糊效應,進行模糊效應調整,透過調整融合影像的TOA反射率以擬合回歸線;以及AOD萃取步驟:提供同時高空間解析度及高時間解析度之融合影像,其融合影像提供大尺度資訊,經由後處理可萃取出AOD來推估空氣品質。 於本發明上述實施例中,該模糊效應調整步驟中,在融合影像以擬合回歸線方面,係使用影像融合前處理,找出該低空間解析度影像之模糊效應與對應高空間解析度影像之模糊效應關係進行調整,其調整公式為:
Figure 02_image001
, 其中
Figure 02_image003
為搜尋視窗之中心像素,
Figure 02_image005
為影像像素,F與C分別為高解析度與低解析度影像,w為用於尋找光譜相似的鄰近像素的視窗大小,以及
Figure 02_image007
為考量鄰近像素資訊之權重。 於本發明上述實施例中,該模糊效應調整步驟中,在融合影像以擬合回歸線方面,係使用影像融合後處理,直接調整高解析度融合影像(F T1)之反射率來擬合高空間解析度影像之模糊效應,其調整公式為:
Figure 02_image009
, 其中
Figure 02_image003
為搜尋視窗之中心像素,
Figure 02_image005
為影像像素,F與C分別為高解析度與低解析度影像,w為用於尋找光譜相似的鄰近像素的視窗大小,以及
Figure 02_image007
為考量鄰近像素資訊之權重。 於本發明上述實施例中,該對比法係為離散係數法(dispersion coefficient method, DCM)。 於本發明上述實施例中,該AOD萃取步驟中,係使用離散係數法從融合影像中萃取AOD。 於本發明上述實施例中,該離散係數法係使用特定的視窗大小來計算測試影像與參考影像(具有小於0.1的AOD)之標準偏差,然後比較標準偏差以估計AOD。
請參閱『第1圖』所示,係本發明大氣層頂反射率之時間空間影像融合方法之流程示意圖。如圖所示:本發明主要為基於現有時間空間影像融合方法-時間空間自適應反射率融合模型(spatial and temporal adaptive reflectance fusion model, STARFM),提出使用大氣層頂反射率進行時間空間影像融合之方法(TOA-reflectance-based Spatio-Temporal image fusion method, TOA-STFM),可產生同時具有高空間解析度及高時間解析度之融合影像至空氣品質監測。有兩個最主要方法來融合大氣層頂反射率,首先對於權重部份使用長波段影像來考慮地表覆蓋,其次為考慮模糊效應在不同空間解析度下行為至影像融合程序中。以下為說明TOA-STFM之結合大氣層頂反射率之兩大關鍵想法。 上述權重部份:STARFM方法為找高空間解析度影像(F TR)與低空間解析度影像(C TR)之地表反射率差異,以預測高空間解析度影像之地表反射率
Figure 02_image011
,如公式(1)所示。
Figure 02_image013
(1) 其中
Figure 02_image003
為搜尋視窗之中心像素。然而僅僅只用單一像素來預測影像,易受到雜訊影響,且低空間解析度(C),可能包含許多土地覆蓋類型。因此STARFM方法加入了鄰近像素之資訊。
Figure 02_image007
為考量鄰近像素資訊之權重,權重包括光譜、時間、及中心像素與鄰近像素之距離。然而,STARFM主要設計為推估土地覆蓋改變,為了使大氣成分之影響保存在融合影像內,本發明將使用大氣層頂(top-of-atmosphere, TOA)反射率。此時若直接利用大氣層頂反射率影像計算融合之權重,將因大氣影響錯估權重。且為避免耗時之大氣校正,本發明直接使用較長之光譜波段(此處以短波紅外光波段SWIR)來計算權重,因較長之波段受大氣影響程度較低。然後,就估計T1處之TOA反射率而言,直接在公式(1)中應用原始綠光波段TOA反射率。 上述模糊效應調整(blurring effect adjustment, BEA)部分:通過在影像融合程序中應用綠光波段TOA反射率,保留來自低空間解析度影像(C T1)的大氣特性,然而,大氣特性在不同的空間解析度影像會有不同的行為。時間空間影像融合之預測高空間解析度影像(F TR)最主要來源為低空間解析度影像(C T1),若直接應用低空間解析度影像(C T1)以預測高空間解析度影像之大氣特性變化,誤差較大。因此融合影像程序應考量不同空間解析度下之大氣特性行為。本發明提出考慮模糊效應之時間空間影像融合方法,其主要想法為透過低空間解析度影像(C T1)找出氣膠光學厚度(Aerosol optical depth, AOD)值,來擬合高空間解析度影像之模糊效應。首先本發明從高解析度影像分析出模糊效應之行為可知,在不同之空間解析度影像中,模糊效應具有不同之行為。然而,調整低空解析度影像模糊效應分為兩種,第一種方法(簡稱A1)為影像融合前處理,調整想法為找出低空間解析度影像之模糊效應與高空間解析度影像之模糊效應關係進行調整,如公式(2)所示。第二種(簡稱A2)為影像融合後處理,其想法為直接調整高解析度融合影像(F T1)之反射率來擬合高空間解析度影像之模糊效應,如公式(3)所示。
Figure 02_image001
(2)
Figure 02_image009
(3) 其中
Figure 02_image005
為影像像素,F與C分別為高解析度與低解析度影像,以及w為用於尋找光譜相似的鄰近像素的視窗大小。如公式(2)、(3)所示,A1方法在影像融合程序之前增強了模糊效應,而A2方法則調整融合反射率以擬合目標回歸線。 當運用時,其至少包含下列步驟: 預備步驟s11:匯入低空間解析度影像(C TR)與高空間解析度影像(F TR)之綠光波段及長波長波段,並使用該高空間解析度影像之綠光波段進行土地覆蓋類型考量; 權重計算步驟s12:使用該長波長波段進行影像融合權重計算; 影像融合步驟s13:預測高空間解析度影像使用該綠光波段進行預測高空間解析度影像之大氣層頂反射率; 模糊效應調整步驟s14:先使用對比法來取得低空間解析度影像(C T1)之初始AOD值,再使用該初始AOD值找到對應的高空間解析度影像的模糊效應,進行模糊效應調整;以及 AOD萃取步驟s15:最終將提供同時高空間解析度及高時間解析度之融合影像,其融合影像提供大尺度資訊,經由後處理可萃取出AOD來推估空氣品質。 上述AOD萃取步驟s15,本發明採用對比法來萃取AOD,這種類型之方法主要比較參考影像與目標影像之間的對比度。在本實施例中,選用離散係數法(dispersion coefficient method, DCM)從影像中萃取AOD ,然後與來自AERONET(AErosol RObotic NETwork)的觀測資料進行比較以進行驗證。DCM法首先使用特定之視窗大小來計算測試影像與參考影像(具有小於0.1之AOD)之標準偏差,然後比較標準偏差以估計AOD。為確定合適之視窗大小,選擇AERONET地面測站作為視窗之中心,並且在參考影像上視窗之對比度應高,以包含高反射率地面覆蓋類型與低反射率地面覆蓋類型。 本發明基於STARFM影像融合方法提出TOA-STFM方法,使用大氣層頂反射率進行時間空間影像融合以保留大氣訊息。由於Himawari-8氣象衛星具有極高之時間解析度(10分鐘),且與Landsat-8及SPOT-6之光譜波段相似。因此,本發明將透過TOA-STFM進行Lansdat-8及SPOT-6之高空間解析度影像與Himawri-8高時間解析度影像融合,並應用高空間與高時間解析度之衛星影像至空氣品質監測。研究結果進行兩項驗證,第一項驗證與真實觀測影像比對,第二項驗證以融合影像反演AOD與AERONET地面測站進行比較。由第一項驗證結果發現 ,相較於以STARFM直接融合大氣層頂反射率,雖反射率絕對值差異不大,但TOA-STFM明顯可保留較佳之影像細節。而第二項驗證結果顯示,STARFM及TOA-STFM融合影像之AOD反演成果皆較原始Himawari-8影像之成果更為穩定,且精度較佳。且第二項驗證亦顯示本發明提出之TOA-STFM在保留大氣訊息後比STARFM可得更精確之AOD反演成果。在七天Landsat-8及三天SPOT-6測試實施例中,TOA-STFM有八天可得最佳成果,且有六天之AOD每日相對誤差在15%以內。 整體而言,本發明具有以下貢獻: 一、所提出之TOA-STFM可針對大氣層頂反射率進行時間與空間影像融合,以高時間與空間解析度之融合影像提供大氣遙測相關應用。 二、本發明測試並證明可使用Himawari-8影像進行影像融合,進而提供高時間解析之動態環境監測。 三、本發明針對AOD反演應用進行實施例驗證,相較STARFM與原始Himawari-8影像,TOA-STFM可得穩定且高精度之反演成果,說明本方法可有效保留大氣層頂反射率並進行動態大氣環境監測應用。 藉此,本發明係基於STARFM影像融合方法提出TOA-STFM方法以針對大氣層頂反射率進行時間空間影像融合,此外 Himawari-8地球同步衛星具有極高之時間解析度(10分鐘),且與高空間解析度衛星影像有相似之光譜波段,如Landsat-8與SPOT-6。本發明結合Himawari-8地球同步衛星影像與高空間解析度衛星影像之大氣層頂反射率以保留大氣特性,提供每10鐘一筆之高空間解析度衛星融合影像至空氣品質監測,同時考量模糊效應在不同空間解析度下之行為至時間空間影像融合程序中。使用本發明之方法所融合之多時序影像,進行動態大尺度之空氣品質變化監測,具有兩項優點。首先,對於無空氣品質測站區域,提供大尺度精確且穩定之資訊;其次,可減少監測區域內之空氣品質測站之數目,達到高精度低成本之效益。 本發明所提方法有別目前時間空間影像融合方法: 1. 進步性:目前時間與空間影像主要設計為土地覆蓋分析應用,無法支援大氣應用。然而大氣應用像是空氣汙染、天氣災害等,都需要更高解析度與大尺度之資訊。因此衛星影像之時間空間影像融合技術為取得同時具有高空間解析度與高時間解析度影像之重要技術。本發明目前為針對空氣品質方面,在未來本方法更可用於其他大氣應用。 2. 新穎性:目前時間與空間影像融合技術使用地表反射率進行融合,同時應用至土地覆蓋分析。然而本發明旨為融合大氣層頂反射率,來預測高空間解析度影像,為首個針對大氣層頂反射率之時間空間影像融合方法,目的則是提供大尺度且多時序之大氣特性資料至空氣品質監測。 3. 實用性與易用性:本發明提出保留大氣特性之時間空間影像融合方法,其主要想法極簡單明瞭。使用長波段影像計算權重,可避免進行大氣校正之耗時,同時加入調整模糊效應參數,最後再加上可見光波段進行預測高空間解析度影像。如此流程是高效率,並且能滿足時間急迫性高之應用需求。 綜上所述,本發明係一種大氣層頂反射率之時間空間影像融合方法(TOA-STFM)於氣膠光學厚度反演,可有效改善習用之種種缺點,結合高空間解析度影像與Himawari-8高時間解析度影像,透過TOA-STFM產製高空間與高時間解析度之衛星影像,並應用至空氣品質監測,進而使本發明之産生能更進步、更實用、更符合使用者之所須,確已符合發明專利申請之要件,爰依法提出專利申請。 惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍;故,凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。
預備步驟s11 權重計算步驟s12 模糊效應調整步驟s13 AOD萃取步驟s14
第1圖,係本發明大氣層頂反射率之時間空間影像融合方法之流 程示意圖。
預備步驟s11 權重計算步驟s12 模糊效應調整步驟s13 AOD萃取步驟s14

Claims (6)

  1. 一種大氣層頂反射率之時間空間影像融合方法,其至少包含下列步驟:預備步驟:匯入低空間解析度影像(CTR)與高空間解析度影像(FTR)之綠光波段及長波長波段,並使用該空間解析度影像之綠光波段進行土地覆蓋類型考量;權重計算步驟:使用該長波長波段進行影像融合權重計算,其中為找該高空間解析度影像(FTR)與該低空間解析度影像(CTR)之地表反射率差異,以預測高空間解析度影像之地表反射率F(x w/2,y w/2,t 1),其公式為:
    Figure 107117432-A0305-02-0013-1
    ,其中(x w/2,y w/2)為搜尋視窗之中心像素,x i ,y j 為影像像素,F與C分別為高解析度與低解析度影像,w為用於尋找光譜相似的鄰近像素的視窗大小,以及W ij 為考量鄰近像素資訊之權重,權重包括光譜、時間、及中心像素與鄰近像素之距離;影像融合步驟:使用該綠光波段進行預測高空間解析度影像之大氣層頂(top-of-atmosphere,TOA)反射率;模糊效應調整步驟:先使用對比法來取得低空間解析度影像(CT1)之初始氣膠光學厚度(Aerosol optical depth,AOD)值,然後計算模糊效應調整(blurring effect adjustment,BEA)係數,再使用該初始AOD值找到對應的高空間解析度影像的模糊效應,進行模糊效應調整,透過調整融合影像的TOA反射率以擬合回歸線;以及 AOD萃取步驟:提供同時高空間解析度及高時間解析度之融合影像,其融合影像提供大尺度資訊,經由後處理可萃取出AOD來推估空氣品質。
  2. 依申請專利範圍第1項所述之大氣層頂反射率之時間空間影像融合方法,其中,該模糊效應調整步驟中,在融合影像以擬合回歸線方面,係使用影像融合前處理,找出該低空間解析度影像之模糊效應與對應高空間解析度影像之模糊效應關係進行調整,其調整公式為:
    Figure 107117432-A0305-02-0014-2
    其中(x w/2,y w/2)為搜尋視窗之中心像素,x i ,y j 為影像像素,F與C分別為高解析度與低解析度影像,w為用於尋找光譜相似的鄰近像素的視窗大小,以及W ij 為考量鄰近像素資訊之權重。
  3. 依申請專利範圍第1項所述之大氣層頂反射率之時間空間影像融合方法,其中,該模糊效應調整步驟中,在融合影像以擬合回歸線方面,係使用影像融合後處理,直接調整高解析度融合影像(FT1)之反射率來擬合高空間解析度影像之模糊效應,其調整公式為:
    Figure 107117432-A0305-02-0014-3
    其中(x w/2,y w/2)為搜尋視窗之中心像素,x i ,y j 為影像像素,F與C分別為高解析度與低解析度影像,w為用於尋找光譜相似的鄰近像素的視窗大小,以及W ij 為考量鄰近像素資訊之權重。
  4. 依申請專利範圍第1項所述之大氣層頂反射率之時間空間影像融 合方法,其中,該對比法係為離散係數法(dispersion coefficient method,DCM)。
  5. 依申請專利範圍第1項所述之大氣層頂反射率之時間空間影像融合方法,其中,該AOD萃取步驟中,係使用離散係數法從融合影像中萃取AOD。
  6. 依申請專利範圍第5項所述之大氣層頂反射率之時間空間影像融合方法,其中,該離散係數法係使用特定的視窗大小來計算測試影像與參考影像(具有小於0.1的AOD)之標準偏差,然後比較標準偏差以估計AOD。
TW107117432A 2018-05-22 2018-05-22 大氣層頂反射率之時間空間影像融合方法於氣膠光學厚度反演 TWI684755B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107117432A TWI684755B (zh) 2018-05-22 2018-05-22 大氣層頂反射率之時間空間影像融合方法於氣膠光學厚度反演

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107117432A TWI684755B (zh) 2018-05-22 2018-05-22 大氣層頂反射率之時間空間影像融合方法於氣膠光學厚度反演

Publications (2)

Publication Number Publication Date
TW202004160A TW202004160A (zh) 2020-01-16
TWI684755B true TWI684755B (zh) 2020-02-11

Family

ID=69941815

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107117432A TWI684755B (zh) 2018-05-22 2018-05-22 大氣層頂反射率之時間空間影像融合方法於氣膠光學厚度反演

Country Status (1)

Country Link
TW (1) TWI684755B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113160100A (zh) * 2021-04-02 2021-07-23 深圳市规划国土房产信息中心(深圳市空间地理信息中心) 一种基于光谱信息影像的融合方法、融合装置及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050180651A1 (en) * 2003-01-31 2005-08-18 Bernstein Lawrence S. Methods for determining a measure of atmospheric aerosol optical properties using a multi- or hyperspectral, multi-pixel image
TW201333188A (zh) * 2011-09-25 2013-08-16 Theranos Inc 用於多重分析的系統和方法
CN104360040A (zh) * 2014-11-07 2015-02-18 河海大学 一种基于starfm融合技术的遥感墒情监测方法
JP2016189184A (ja) * 2015-03-11 2016-11-04 ザ・ボーイング・カンパニーThe Boeing Company リアルタイム多次元画像融合
CN106407656A (zh) * 2016-08-29 2017-02-15 中国科学院遥感与数字地球研究所 一种基于高分辨率卫星影像数据的气溶胶光学厚度反演方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050180651A1 (en) * 2003-01-31 2005-08-18 Bernstein Lawrence S. Methods for determining a measure of atmospheric aerosol optical properties using a multi- or hyperspectral, multi-pixel image
TW201333188A (zh) * 2011-09-25 2013-08-16 Theranos Inc 用於多重分析的系統和方法
CN104360040A (zh) * 2014-11-07 2015-02-18 河海大学 一种基于starfm融合技术的遥感墒情监测方法
JP2016189184A (ja) * 2015-03-11 2016-11-04 ザ・ボーイング・カンパニーThe Boeing Company リアルタイム多次元画像融合
CN106407656A (zh) * 2016-08-29 2017-02-15 中国科学院遥感与数字地球研究所 一种基于高分辨率卫星影像数据的气溶胶光学厚度反演方法

Also Published As

Publication number Publication date
TW202004160A (zh) 2020-01-16

Similar Documents

Publication Publication Date Title
US10685230B2 (en) Method of top-of-atmosphere reflectance-based spatiotemporal image fusion using aerosol optical depth
US12039452B2 (en) System for producing satellite imagery with high-frequency revisits using deep learning to monitor vegetation
Song et al. Spatiotemporal satellite image fusion through one-pair image learning
CN107063296B (zh) 一种卫星遥感传感器在轨辐射定标方法
US20230026811A1 (en) System and method for removing haze from remote sensing images
US20100008595A1 (en) Automated atmospheric characterization of remotely sensed multi-spectral imagery
CN109308688B (zh) 一种可见光和近红外波段厚云及阴影去除方法
CN111126203A (zh) 基于ndvi百分比匹配的浓密植被识别方法
CN110689505B (zh) 一种基于场景的星载遥感仪器自适应校正方法和系统
CN109671038B (zh) 一种基于伪不变特征点分类分层的相对辐射校正方法
Cazorla et al. Using a sky imager for aerosol characterization
CN116519557A (zh) 一种气溶胶光学厚度反演方法
CN113970376A (zh) 一种基于海洋区域再分析资料的卫星红外载荷定标方法
CN114778483A (zh) 用于监测山地的遥感影像近红外波段地形阴影校正方法
CN111383203B (zh) 基于分区域拟合的全色与多光谱遥感图像融合方法
TWI684755B (zh) 大氣層頂反射率之時間空間影像融合方法於氣膠光學厚度反演
CN116721243B (zh) 一种空谱特征约束的深度学习大气校正方法及系统
CN109472237B (zh) 一种可见光遥感卫星影像的大气订正方法和系统
CN113836731B (zh) 陆表稳定目标大气层顶反射率模型的构建方法和装置
CN115294001A (zh) 一种改进ihs与小波变换的夜光遥感影像融合方法
Kozelov et al. A study of rayed structures in auroras by triangulation methods: 1. Height profiles of volume emission rate
Andrade et al. Formation-aware cloud segmentation of ground-based images with applications to PV systems
Stow Radiometric Correction of Remotely Sensed Data
CN106878635B (zh) 一种无效像元的补偿方法
Miecznik et al. Mutual information registration of multi-spectral and multi-resolution images of DigitalGlobe's WorldView-3 imaging satellite