TWI683734B - Anti-collision method for robot - Google Patents

Anti-collision method for robot Download PDF

Info

Publication number
TWI683734B
TWI683734B TW107137138A TW107137138A TWI683734B TW I683734 B TWI683734 B TW I683734B TW 107137138 A TW107137138 A TW 107137138A TW 107137138 A TW107137138 A TW 107137138A TW I683734 B TWI683734 B TW I683734B
Authority
TW
Taiwan
Prior art keywords
obstacle
electric field
vector
dodge
evasion
Prior art date
Application number
TW107137138A
Other languages
Chinese (zh)
Other versions
TW202015869A (en
Inventor
陳廷碩
Original Assignee
新世代機器人暨人工智慧股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新世代機器人暨人工智慧股份有限公司 filed Critical 新世代機器人暨人工智慧股份有限公司
Priority to TW107137138A priority Critical patent/TWI683734B/en
Application granted granted Critical
Publication of TWI683734B publication Critical patent/TWI683734B/en
Publication of TW202015869A publication Critical patent/TW202015869A/en

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

An anti-collision method for robot is provided. The method controls a robot to sense a Variety of electric field over continuous time via electric field sensor, determine a relative moving direction of an obstacle when detecting the obstacle by the variety of electric field, generate motor control data according to the relative moving direction of the obstacle, and control a motor to rotate according to the motor control data for making a robotic limb move along a dodge vector to dodge the obstacle.

Description

機器人的防碰撞方法 Robot anti-collision method

本發明涉及機器人,特別涉及機器人的防碰撞方法。 The invention relates to a robot, and in particular to a collision prevention method of the robot.

於現有技術中,已有許多具有機械手臂的機器人被提出。前述機器手臂可進行精密操作(如取物、置物或搬移物件等等),而可取代人力或與人員協同完成任務。具體而言,前述機械手臂是設置有多個馬達,各馬達分別被設定來使機械手臂朝指定的軸向移動,機器人是經由同時控制多個馬達運轉來於多個軸向中移動。 In the prior art, many robots with mechanical arms have been proposed. The aforementioned robotic arm can perform precise operations (such as taking objects, placing objects, or moving objects, etc.), and can replace manpower or cooperate with personnel to complete tasks. Specifically, the robot arm is provided with a plurality of motors, and each motor is set to move the robot arm in a specified axial direction, and the robot moves in a plurality of axial directions by simultaneously controlling the operation of the plurality of motors.

然而,前述機器人通常是工作於開放式環境(如無圍籬環境)或與人員協同工作,而存在碰撞人員、車輛或其他障礙物的風險。 However, the aforementioned robots usually work in an open environment (such as an unenclosed environment) or work collaboratively with personnel, and there is a risk of collision with personnel, vehicles, or other obstacles.

為解決上述問題,目前已有一種可基於馬達電流變化偵測障礙物的機器人被提出。前述機器人是於馬達上設置電流感測器,並經由偵測馬達的電流變化來判斷機械手臂是否碰撞障礙物,如於馬達的電流異常增加時判定碰撞障礙物。前述機器人必須於碰撞發生後才可偵測到障礙物,而存在機器人撞毀或障礙物損壞的風險。 In order to solve the above problems, a robot that can detect obstacles based on changes in motor current has been proposed. The aforementioned robot is provided with a current sensor on the motor, and determines whether the robotic arm collides with the obstacle by detecting the current change of the motor, such as when the current of the motor increases abnormally. The aforementioned robot must detect the obstacle after the collision occurs, and there is a risk of the robot colliding or the obstacle being damaged.

另有一種可基於電腦視覺偵測障礙物的機器人被提出。前述機器人是設置有一或多台攝影機,並對所拍攝影像執行物件辨識來判斷是否存在障 礙物。前述機器人雖可於碰撞發生前偵測到障礙物,但由於攝影機的拍攝範圍存在死角,並無法有效偵測到來自所有方向的障礙物。 Another robot that can detect obstacles based on computer vision is proposed. The aforementioned robot is equipped with one or more cameras, and performs object recognition on the captured images to determine whether there are obstacles Obstruction. Although the aforementioned robot can detect obstacles before a collision occurs, due to the dead angle of the camera's shooting range, it cannot effectively detect obstacles from all directions.

有鑑於此,目前亟待一種可有效防止機器人發生碰撞方法的方案被提出。 In view of this, there is an urgent need to propose a solution that can effectively prevent the robot from colliding.

本發明提供一種機器人的防碰撞方法,可基於電場感測技術來偵測障礙物的移動方向並自動進行閃避。 The invention provides an anti-collision method for a robot, which can detect the moving direction of an obstacle based on electric field sensing technology and automatically evade.

於一實施例中,一種防碰撞方法,用於機器人,機器人包括機械肢體、設置於機械肢體的電場感測器及用以移動機械肢體的馬達,防碰撞方法包括以下步驟:經由電場感測器感測連續時間的電場變化;於依據電場變化偵測到第一障礙物時決定第一障礙物的相對移動方向;依據相對移動方向產生對應閃避向量的馬達控制資料;及,依據馬達控制資料控制馬達轉動以使機械肢體沿閃避向量移動來閃避第一障礙物。 In an embodiment, a collision prevention method is used for a robot. The robot includes a mechanical limb, an electric field sensor disposed on the mechanical limb, and a motor for moving the mechanical limb. The anti-collision method includes the following steps: via an electric field sensor Sensing the electric field change in continuous time; determining the relative moving direction of the first obstacle when the first obstacle is detected according to the electric field change; generating the motor control data corresponding to the dodge vector according to the relative moving direction; and, controlling based on the motor control data The motor rotates to move the mechanical limb along the dodge vector to dodge the first obstacle.

本發明可有效令機器人於碰撞發生前自動進行閃避,而可避免機器人撞毀或障礙物毀損。 The invention can effectively enable the robot to automatically evade before the collision occurs, and can avoid the collision of the robot or the destruction of obstacles.

1‧‧‧機器人 1‧‧‧Robot

10‧‧‧微處理單元 10‧‧‧Micro processing unit

11、111-118、511-513、611-612、71‧‧‧電場感測器 11, 111-118, 511-513, 611-612, 71‧‧‧ electric field sensor

12‧‧‧馬達 12‧‧‧Motor

13‧‧‧馬達感測器 13‧‧‧Motor sensor

14‧‧‧記憶單元 14‧‧‧Memory unit

140‧‧‧電腦程式 140‧‧‧ computer program

15‧‧‧人機介面 15‧‧‧Human-machine interface

16‧‧‧通訊單元 16‧‧‧Communication unit

17‧‧‧遙控器 17‧‧‧Remote control

18‧‧‧電腦裝置 18‧‧‧Computer device

20-24、30、5‧‧‧機械肢體 20-24, 30, 5‧‧‧ mechanical limbs

25、55、65、750-751‧‧‧可動結構 25, 55, 65, 750-751 ‧‧‧ movable structure

26、56、66、66’、66’’、760-761‧‧‧臂體 26, 56, 66, 66’, 66’’, 760-761

40、42、44、46、48‧‧‧障礙物 40, 42, 44, 46, 48

D1、D2、f1-f7、DL、DR‧‧‧相對移動方向 D1, D2, f1-f7, D L , D R ‧‧‧ Relative movement direction

X、Y、Z‧‧‧軸 X, Y, Z‧‧‧ axis

θ1、θ1’、θ2、θ3、θ4、θ5‧‧‧角度 θ1, θ1’, θ2, θ3, θ4, θ5‧‧‧Angle

P1、P2‧‧‧位置 P1, P2‧‧‧ position

S10-S14‧‧‧第一防碰撞步驟 S10-S14‧‧‧The first anti-collision procedure

S200-S213‧‧‧第二防碰撞步驟 S200-S213‧‧‧second anti-collision procedure

S300-S309‧‧‧第三防碰撞步驟 S300-S309‧‧‧The third anti-collision procedure

S40-S42‧‧‧決策步驟 S40-S42‧‧‧Decision steps

S50-S56‧‧‧第四防碰撞步驟 S50-S56‧‧‧The fourth anti-collision procedure

圖1為本發明一實施例的機器人的架構圖;圖2為本發明另一實施例的機器人的外觀示意圖;圖3為本發明另一實施例的機器人的外觀示意圖;圖4A為本發明的使用單一電場感測器偵測障礙物的第一示意圖;圖4B為本發明的使用單一電場感測器偵測障礙物的第二示意圖; 圖4C為本發明的使用單一電場感測器偵測障礙物的第三示意圖;圖5A為本發明的使用多個電場感測器偵測障礙物的第一示意圖;圖5B為本發明的使用多個電場感測器偵測障礙物的第二示意圖;圖5C為本發明的使用多個電場感測器偵測障礙物的第三示意圖;圖5D為本發明的使用多個電場感測器偵測障礙物的第四示意圖;圖6A為圖5A的多個電場感測器的電場變化的示意圖;圖6B為圖5B的多個電場感測器的電場變化的示意圖;圖6C為圖5C的多個電場感測器的電場變化的示意圖;圖6D為圖5D的多個電場感測器的電場變化的示意圖;圖6E為能量中心變化與最大能量強度變化的示意圖;圖7為本發明的閃避障礙物的示意圖;圖8為本發明的閃避多個障礙物的示意圖;圖9A為本發明的第一閃避策略的示意圖;圖9B為本發明的第二閃避策略的示意圖;圖10為本發明第一實施例的防碰撞方法的流程圖;圖11A為本發明第二實施例的防碰撞方法的第一流程圖;圖11B為本發明第二實施例的防碰撞方法的第二流程圖;圖12為本發明第三實施例的防碰撞方法的流程圖;圖13為本發明第四實施例的防碰撞方法的部分流程圖;及圖14為本發明第五實施例的防碰撞方法的流程圖。 FIG. 1 is a structural diagram of a robot according to an embodiment of the present invention; FIG. 2 is a schematic diagram of the appearance of a robot according to another embodiment of the present invention; FIG. 3 is a schematic diagram of the appearance of a robot according to another embodiment of the present invention; A first schematic diagram of using a single electric field sensor to detect an obstacle; FIG. 4B is a second schematic diagram of using a single electric field sensor to detect an obstacle; 4C is a third schematic diagram of the present invention using a single electric field sensor to detect obstacles; FIG. 5A is a first schematic diagram of the present invention using multiple electric field sensors to detect obstacles; FIG. 5B is a use of the present invention A second schematic diagram of multiple electric field sensors detecting obstacles; FIG. 5C is a third schematic diagram of using multiple electric field sensors to detect obstacles; FIG. 5D is a use of multiple electric field sensors of the invention A fourth schematic diagram of detecting obstacles; FIG. 6A is a schematic diagram of electric field changes of the plurality of electric field sensors of FIG. 5A; FIG. 6B is a schematic diagram of electric field changes of the plurality of electric field sensors of FIG. 5B; FIG. 6C is a diagram of FIG. 5C FIG. 6D is a schematic diagram of electric field changes of multiple electric field sensors of FIG. 5D; FIG. 6E is a schematic diagram of energy center changes and maximum energy intensity changes; FIG. 7 is the invention 8 is a schematic diagram of the present invention to avoid multiple obstacles; FIG. 9A is a schematic diagram of the first avoidance strategy of the present invention; FIG. 9B is a schematic diagram of the second avoidance strategy of the present invention; FIG. 10 is A flowchart of the anti-collision method of the first embodiment of the present invention; FIG. 11A is a first flowchart of the anti-collision method of the second embodiment of the present invention; FIG. 11B is a second flow of the anti-collision method of the second embodiment of the present invention FIG. 12 is a flowchart of a collision prevention method according to a third embodiment of the invention; FIG. 13 is a partial flowchart of a collision prevention method according to a fourth embodiment of the invention; and FIG. 14 is a collision prevention method according to a fifth embodiment of the invention Flow chart of the method.

下面結合圖式和具體實施例對本發明技術方案進行詳細的描述,以更進一步瞭解本發明的目的、方案及功效,但並非作為本發明所附申請專利範圍的限制。 The technical solutions of the present invention will be described in detail below in conjunction with the drawings and specific embodiments to further understand the objectives, solutions, and effects of the present invention, but they are not intended to limit the scope of the patent application attached to the present invention.

請參閱圖1,為本發明一實施例的機器人的架構圖。本發明揭露了一種機器人1,機器人1配置有一或多個機械肢體(如圖2所示的機械肢體20-24或圖3所示的機械肢體30),並可自動或依據使用者操作變換前述機械肢體的動作以進行精密操作(如取物、置物或搬移物件等等)。 Please refer to FIG. 1, which is an architectural diagram of a robot according to an embodiment of the present invention. The present invention discloses a robot 1. The robot 1 is configured with one or more mechanical limbs (such as the mechanical limbs 20-24 shown in FIG. 2 or the mechanical limbs 30 shown in FIG. 3), and can change the foregoing automatically or according to user operations. The movement of mechanical limbs to perform precise operations (such as picking objects, placing objects or moving objects, etc.).

機器人1可包括一或多個電場感測器11、一或多個馬達12、用以儲存資料的記憶單元14及用以控制上述裝置的微處理單元10。 The robot 1 may include one or more electric field sensors 11, one or more motors 12, a memory unit 14 for storing data, and a micro-processing unit 10 for controlling the aforementioned devices.

電場感測器11可於空間中形成電場,並經由感應電極對電場的能量強度進行感測。具體而言,當障礙物進入前述電場時會造成電場擾動而改變電場的能量強度。本發明即是經由分析前述電場的能量強度的變化來感測電場內是否存在障礙物,還可進一步分析障礙物的移動方向或移動速度。 The electric field sensor 11 can form an electric field in the space, and sense the energy intensity of the electric field via the sensing electrode. Specifically, when an obstacle enters the aforementioned electric field, it will cause electric field disturbance and change the energy intensity of the electric field. The present invention senses whether there is an obstacle in the electric field by analyzing the change of the energy intensity of the electric field, and further analyzes the moving direction or moving speed of the obstacle.

多個馬達12分別連接多個可動結構(如齒輪組、傳動軸或其他可傳遞動力的機構件,如圖2或圖3所示的可動結構25),各可動結構用以串接臂體(如圖2或圖3所示的臂體26)。各馬達12用以輸出動力至可動結構以推動可動結構來移動臂體,而使機器人1擺出指定的動作。以圖2所示的機器人1為例,若右手的馬達12輸出動力至右手的可動結構25,則可使機器人1的右手的臂體26移動,而可擺出舉起、彎曲或放下等動作。 The plurality of motors 12 are respectively connected to a plurality of movable structures (such as gear sets, transmission shafts, or other mechanical components that can transmit power, such as the movable structure 25 shown in FIG. 2 or FIG. 3), and each movable structure is used to connect the arm body in series ( The arm 26 shown in FIG. 2 or FIG. 3). Each motor 12 is used to output power to the movable structure to push the movable structure to move the arm body, so that the robot 1 swings out a specified action. Taking the robot 1 shown in FIG. 2 as an example, if the motor 12 of the right hand outputs power to the movable structure 25 of the right hand, the arm 26 of the right hand of the robot 1 can be moved, and the action such as lifting, bending, or lowering can be performed. .

微處理單元10(如微控制器)用以控制機器人1,並可控制各馬達12的輸出動力。 The micro-processing unit 10 (such as a microcontroller) is used to control the robot 1 and can control the output power of each motor 12.

於一實施例中,記憶單元14包括非暫態電腦可讀取媒體,並儲存有電腦程式140(如機器人1的韌體、作業系統或應用程式),電腦程式140記錄有 電腦可讀取的程式碼。微處理單元10可執行電腦程式140來控制機器人1實現本發明各實施例的防碰撞方法的各步驟。 In one embodiment, the memory unit 14 includes a non-transitory computer readable medium and stores a computer program 140 (such as the firmware, operating system, or application program of the robot 1). The computer program 140 records Computer readable code. The micro-processing unit 10 can execute a computer program 140 to control the robot 1 to implement the steps of the anti-collision method of the embodiments of the present invention.

於一實施例中,機器人1包括電性連接微處理單元10的一或多個馬達感測器13。各馬達感測器13分別設置於馬達12,而可感測各馬達12的轉動狀態(如感測馬達12的轉動位置、速度或電流),並產生對應的馬達感測資料。藉此,微處理單元10可依據馬達感測資料判斷機器人1是否擺出指定動作。於一實施例中,機器人1可包括電性連接微處理單元10的人機介面15(如指示燈、喇叭、按鈕或其他輸入/輸出元件)。使用者可經由人機介面15輸入操作來令微處理單元10執行特定指令(如擺出特定動作),或經由人機介面15得知機器人1的當前狀態(如當前工作狀態或電量)。 In an embodiment, the robot 1 includes one or more motor sensors 13 electrically connected to the micro-processing unit 10. Each motor sensor 13 is respectively disposed on the motor 12, and can sense the rotation state of each motor 12 (such as sensing the rotation position, speed, or current of the motor 12 ), and generate corresponding motor sensing data. In this way, the micro-processing unit 10 can determine whether the robot 1 swings out a specified action according to the motor sensing data. In an embodiment, the robot 1 may include a human-machine interface 15 (such as indicator lights, speakers, buttons, or other input/output elements) electrically connected to the micro-processing unit 10. The user can input operations through the human-machine interface 15 to make the micro-processing unit 10 execute specific commands (such as swinging out a specific action), or know the current state of the robot 1 (such as the current working state or power) through the human-machine interface 15.

於一實施例中,機器人1可包括電性連接微處理單元10的通訊單元16(如藍芽收發器、Zig-Bee收發器、Wi-Fi收發器Sub-1GHz收發器等無線通訊模組或USB模組、有線網路模組、序列資料通訊模組等有線通訊模組)。使用者可經由與通訊單元16配對完成的遙控器17(如機器人1的專用遙控器或安裝有對應的應用程式的智慧型手機)來控制機器人1。或者,機器人1可經由與通訊單元16連接外部的電腦裝置18,並接受電腦裝置18的控制。 In an embodiment, the robot 1 may include a communication unit 16 (such as a Bluetooth transceiver, Zig-Bee transceiver, Wi-Fi transceiver Sub-1GHz transceiver, etc.) that is electrically connected to the microprocessing unit 10 or (USB module, wired network module, serial data communication module and other wired communication modules). The user can control the robot 1 via the remote controller 17 paired with the communication unit 16 (such as a dedicated remote controller for the robot 1 or a smartphone installed with a corresponding application program). Alternatively, the robot 1 may be connected to an external computer device 18 via the communication unit 16 and be controlled by the computer device 18.

續請同時參閱圖2,為本發明另一實施例的機器人的外觀示意圖。於本實施例中,機器人1為人形機器人,並設置有五組機械肢體20-24,分別為頭部、右手、左手、右腳及左腳。各機械肢體20-24包括一或多個臂體26與可動結構25。 Please also refer to FIG. 2 at the same time, which is a schematic view of the appearance of a robot according to another embodiment of the present invention. In this embodiment, the robot 1 is a humanoid robot, and is provided with five sets of mechanical limbs 20-24, namely a head, a right hand, a left hand, a right foot, and a left foot. Each mechanical limb 20-24 includes one or more arm bodies 26 and a movable structure 25.

並且,各機械肢體20-24可設置有一或多個電場感測器11。於一實施例中,各電場感測器11是設置於各機械肢體20-24的臂體26上。藉此,當機器人1揮動/移動機械肢體20-24時,可透過電場感測器11感測臂體26周圍是否存在障礙物。 Moreover, each mechanical limb 20-24 may be provided with one or more electric field sensors 11. In an embodiment, each electric field sensor 11 is disposed on the arm 26 of each mechanical limb 20-24. Thereby, when the robot 1 swings/moves the mechanical limbs 20-24, it can sense whether there is an obstacle around the arm body 26 through the electric field sensor 11.

於本實施例中,頭部的機械肢體20於上側、左側與右側分別設置一組電場感測器11而可同時感測來自三個方向的障礙物;手部的機械肢體21-22由於可動範圍較大且使用頻率較高,碰撞障礙物的機率較高,故於其內側與外側分別設置多組電場感測器11以精確地感測兩側的障礙物;腿部的機械肢體23-24由於可動範圍較小,碰撞障礙物的機率較低,故僅於其外側設置少量電場感測器11,以降低成本。 In this embodiment, the mechanical limb 20 of the head is provided with a set of electric field sensors 11 on the upper side, the left side, and the right side respectively, which can simultaneously sense obstacles from three directions; the mechanical limbs 21-22 of the hand are movable The range is large and the frequency of use is high. The probability of collision with obstacles is high. Therefore, multiple sets of electric field sensors 11 are provided on the inner and outer sides to accurately sense the obstacles on both sides; the mechanical limbs of the legs 23- 24 Since the movable range is small and the probability of collision with obstacles is low, only a small amount of electric field sensor 11 is provided on the outside thereof to reduce costs.

續請同時參閱圖3,為本發明另一實施例的機器人的外觀示意圖。於本實施例中,機器人1為機械手臂機器人,並僅設置單一機械肢體30。機械肢體30包括多個臂體26與可動結構25。 Please also refer to FIG. 3 for the appearance of the robot according to another embodiment of the invention. In this embodiment, the robot 1 is a mechanical arm robot, and only a single mechanical limb 30 is provided. The mechanical limb 30 includes a plurality of arm bodies 26 and movable structures 25.

於本實施例中,末端的臂體26由於移動頻率較高,碰撞障礙物的機率較高,故電場感測器11的設置密度較高(設置四組電場感測器11)以精確地感測周圍的障礙物;中段的臂體26由於移動頻率較低,碰撞障礙物的機率較低,故電場感測器11的設置密度較低(僅於外側設置兩組電場感測器11)以節省成本;最前端的臂體26由於連接底座而無法移動,故不設置電場感測器11以節省成本。 In this embodiment, the arm 26 at the end has a higher moving frequency and a higher probability of collision with obstacles, so the density of the electric field sensors 11 is higher (four sets of electric field sensors 11 are provided) to accurately sense Detect the surrounding obstacles; due to the lower movement frequency of the middle arm 26, the probability of collision with obstacles is lower, so the installation density of the electric field sensor 11 is lower (only two sets of electric field sensors 11 are provided on the outside) Cost saving; the foremost arm 26 cannot be moved due to the connection to the base, so the electric field sensor 11 is not provided to save costs.

值得一提的是,圖2與圖3所示的電場感測器11的配置方式僅是示例,電場感測器11的設置數量與設置位置可依使用者需求或使用機器人1的目的來任意變更,不加以限定。 It is worth mentioning that the configuration of the electric field sensor 11 shown in FIG. 2 and FIG. 3 is only an example, and the number and position of the electric field sensor 11 can be arbitrarily determined according to user needs or the purpose of using the robot 1 Changes are not limited.

續請同時參閱圖4A至圖4C及圖10。圖4A為本發明的使用單一電場感測器偵測障礙物的第一示意圖,圖4B為本發明的使用單一電場感測器偵測障礙物的第二示意圖,圖4C為本發明的使用單一電場感測器偵測障礙物的第三示意圖,圖10為本發明第一實施例的防碰撞方法的流程圖。本發明揭露一種機器人的防碰撞方法,所述防碰撞方法可運用於如圖1至圖3所示的任一實施例的機器人1。本實施例的防碰撞方法包括以下步驟。 Please refer to FIG. 4A to FIG. 4C and FIG. 10 at the same time. 4A is a first schematic diagram of using a single electric field sensor to detect obstacles of the present invention, FIG. 4B is a second schematic diagram of using a single electric field sensor to detect obstacles of the present invention, and FIG. 4C is a single use of the present invention to detect obstacles A third schematic diagram of an electric field sensor detecting an obstacle. FIG. 10 is a flowchart of a collision prevention method according to a first embodiment of the present invention. The present invention discloses a robot anti-collision method. The anti-collision method can be applied to the robot 1 of any embodiment shown in FIGS. 1 to 3. The anti-collision method of this embodiment includes the following steps.

步驟S10:機器人1的微處理單元10經由電場感測器11感測連續時間的電場變化。於一實施例中,微處理單元10是持續從各電場感測器11取得電場的能量強度,並計算指定時間區間內的電場變化,如每隔1秒計算此1秒內的所有各電場感測器11的能量強度變化)。 Step S10: The microprocessing unit 10 of the robot 1 senses the electric field change in continuous time via the electric field sensor 11. In one embodiment, the micro-processing unit 10 continuously obtains the energy intensity of the electric field from each electric field sensor 11 and calculates the electric field change within a specified time interval, such as calculating all the electric field senses within 1 second every 1 second The energy intensity of the detector 11 changes).

步驟S11:微處理單元10依據所取得的電場變化判斷電場內是否存在障礙物。於一實施例中,微處理單元10是於指定時間區間(如1秒或3秒)的電場變化超過臨界值(如超過3瓦)時判定電場中存在障礙物。 Step S11: The micro-processing unit 10 determines whether there is an obstacle in the electric field according to the obtained electric field change. In an embodiment, the micro-processing unit 10 determines that there is an obstacle in the electric field when the change in the electric field exceeds a critical value (for example, more than 3 watts) in a specified time interval (for example, 1 second or 3 seconds).

若微處理單元10偵測到障礙物,則執行步驟S12。否則,微處理單元10再次執行步驟S10以持續感測電場變化。 If the micro-processing unit 10 detects an obstacle, step S12 is executed. Otherwise, the micro-processing unit 10 executes step S10 again to continuously sense the electric field change.

步驟S12:微處理單元10依據電場變化決定障礙物的相對移動方向。 Step S12: The micro-processing unit 10 determines the relative moving direction of the obstacle according to the change of the electric field.

以單一電場感測器11為例,如圖4A所示,當電場感測器11的電場內無障礙物時,電場的能量強度為穩定能量強度(如最強能量強度,10瓦)。如圖4B所示,於障礙物40(如人手)進入電場後,障礙物40會對電場造成干擾而使得電場發生變化(如能量強度降低為8瓦)。如圖4C所示,於障礙物40更接近電場感測器11後,障礙物40會對電場造成更大的干擾而使得電場發生更大的變化(如能量強度降低為4瓦)。 Taking a single electric field sensor 11 as an example, as shown in FIG. 4A, when there is no obstacle in the electric field of the electric field sensor 11, the energy intensity of the electric field is a stable energy intensity (such as the strongest energy intensity, 10 watts). As shown in FIG. 4B, after the obstacle 40 (such as a human hand) enters the electric field, the obstacle 40 will interfere with the electric field and cause the electric field to change (for example, the energy intensity is reduced to 8 watts). As shown in FIG. 4C, after the obstacle 40 is closer to the electric field sensor 11, the obstacle 40 will cause greater interference to the electric field and cause a greater change in the electric field (eg, the energy intensity is reduced to 4 watts).

最後,微處理單元10可依據電場變化判斷障礙物40是朝電場感測器11接近,而可決定障礙物的相對移動方向D1。 Finally, the micro-processing unit 10 can determine whether the obstacle 40 is approaching toward the electric field sensor 11 according to the change of the electric field, and can determine the relative moving direction D1 of the obstacle.

值得一提的是,前述相對移動方向是相對於電場感測器11於機械肢體的設置位置,微處理單元10可依據前述設置位置與機械肢體的當前位置對相對移動方向執行分析轉換處理,以獲得障礙物相對於機器人1整體的移動方向。 It is worth mentioning that the relative movement direction is relative to the installation position of the electric field sensor 11 on the mechanical limb, and the micro-processing unit 10 can perform an analysis conversion process on the relative movement direction according to the installation position and the current position of the mechanical limb, to The moving direction of the obstacle relative to the entire robot 1 is obtained.

步驟S13:微處理單元10依據相對移動方向產生對應閃避向量的馬達控制資料。於一實施例中,微處理單元10可依據所算出的相對移動方向決定機械肢體的閃避向量(即機械肢體沿此閃避向量移動可閃避障礙物),並產生可使機械肢體沿此閃避向量移動的馬達控制資料。具體而言,前述閃避向量包括對應機械肢體進行閃避動作時移動的方向與量值(即移動距離)。 Step S13: The micro-processing unit 10 generates motor control data corresponding to the dodge vector according to the relative movement direction. In one embodiment, the micro-processing unit 10 can determine the evasion vector of the mechanical limb according to the calculated relative movement direction (that is, the mechanical limb moves along the evasion vector to avoid obstacles), and generates the mechanical limb to move along the evasion vector Motor control data. Specifically, the aforementioned dodge vector includes the direction and magnitude (ie, the movement distance) when the corresponding mechanical limb performs the dodge action.

於一實施例中,前述閃避向量的方向可與相對移動方向相同,如障礙物朝左接近機械肢體,機械肢體可朝左閃避以遠離障礙物。於一實施例中,前述閃避向量的方向可與相對移動方向位於不同平面或不同軸向,如障礙物朝左接近機械肢體,機械肢體可朝上舉起以閃避障礙物。 In an embodiment, the direction of the aforementioned dodge vector may be the same as the relative movement direction. For example, if the obstacle approaches the mechanical limb toward the left, the mechanical limb may dodge toward the left to move away from the obstacle. In an embodiment, the direction of the evasion vector and the relative movement direction may be in different planes or different axes. For example, if the obstacle approaches the mechanical limb to the left, the mechanical limb may be lifted upward to evade the obstacle.

步驟S14:微處理單元10依據馬達控制資料控制對應的馬達12轉動以使機械肢體沿閃避向量移動來閃避障礙物。 Step S14: The micro-processing unit 10 controls the corresponding motor 12 to rotate according to the motor control data to move the mechanical limb along the evasion vector to avoid the obstacle.

藉此,本發明可有效令機器人於碰撞發生前自動進行閃避,而可避免機器人撞毀或障礙物毀損。 In this way, the invention can effectively enable the robot to automatically dodge before the collision occurs, and can avoid the collision of the robot or the destruction of obstacles.

值得一提的是,於一實施例中,微處理單元10在執行閃避第一障礙物(即執行步驟S12至S14)期間,仍會同時執行電場感測(即步驟S10-S11)以偵測是否存在第二障礙物,並於偵測到第二障礙物且完成第一障礙物的閃避後接著閃避第二障礙物。藉此,本發明可對多個障礙物進行連續閃避,而可防止碰撞障礙物。 It is worth mentioning that in one embodiment, the micro-processing unit 10 still performs electric field sensing (ie, steps S10-S11) to detect the first obstacle (ie, perform steps S12 to S14) during the evasion of the first obstacle. Whether there is a second obstacle, and after detecting the second obstacle and evading the first obstacle, then evading the second obstacle. In this way, the present invention can continuously avoid multiple obstacles and prevent collisions with obstacles.

續請同時參閱圖5A至圖6D及圖11A至圖11B,圖5A為本發明的使用多個電場感測器偵測障礙物的第一示意圖,圖5B為本發明的使用多個電場感測器偵測障礙物的第二示意圖,圖5C為本發明的使用多個電場感測器偵測障礙物的第三示意圖,圖5D為本發明的使用多個電場感測器偵測障礙物的第四示意圖,圖6A為圖5A的多個電場感測器的電場變化的示意圖,圖6B為圖5B的多個電場感測器的電場變化的示意圖,圖6C為圖5C的多個電場感測器的電場變化的示 意圖,圖6D為圖5D的多個電場感測器的電場變化的示意圖,圖6E為能量中心與最大能量強度變化的示意圖,圖11A為本發明第二實施例的防碰撞方法的第一流程圖,圖11B為本發明第二實施例的防碰撞方法的第二流程圖。 Please refer to FIG. 5A to FIG. 6D and FIG. 11A to FIG. 11B at the same time. FIG. 5A is a first schematic diagram of using multiple electric field sensors to detect obstacles of the present invention. FIG. 5B is a sensing of multiple electric fields of the present invention. 5C is a third schematic diagram of the present invention using multiple electric field sensors to detect obstacles, and FIG. 5D is a present invention using multiple electric field sensors to detect obstacles. Fourth schematic diagram. FIG. 6A is a schematic diagram of electric field changes of multiple electric field sensors of FIG. 5A, FIG. 6B is a schematic diagram of electric field changes of multiple electric field sensors of FIG. 5B, and FIG. 6C is a plurality of electric field sensors of FIG. The change of the electric field of the detector Intention, FIG. 6D is a schematic diagram of electric field changes of a plurality of electric field sensors of FIG. 5D, FIG. 6E is a schematic diagram of energy center and maximum energy intensity changes, and FIG. 11A is a first flow of a collision prevention method according to a second embodiment of the invention FIG. 11B is a second flowchart of the anti-collision method of the second embodiment of the present invention.

於圖4A至圖4C的例子中,使用單一電場感測器11僅能感測障礙物40的垂直移動方向與速度,而無法對水平移動方向與速度進行感測。 In the examples of FIGS. 4A to 4C, the single electric field sensor 11 can only sense the vertical movement direction and speed of the obstacle 40, but cannot sense the horizontal movement direction and speed.

為解決上述問題,本實施例進一步提出使用設置於臂體的同一側的多個電場感測器(圖5A至圖5D的例子是設置八組電場感測器111-118)來感測障礙物的水平移動方向與速度的技術方案。本實施例的防碰撞方法包括以下步驟。 To solve the above problem, this embodiment further proposes to use a plurality of electric field sensors provided on the same side of the arm body (the examples in FIGS. 5A to 5D are provided with eight sets of electric field sensors 111-118) to sense obstacles The technical solution of the horizontal movement direction and speed. The anti-collision method of this embodiment includes the following steps.

步驟S200:機器人1的微處理單元10經由多個電場感測器11感測多個電場於連續時間的能量強度變化。 Step S200: The micro-processing unit 10 of the robot 1 senses the energy intensity changes of the multiple electric fields in a continuous time via the multiple electric field sensors 11.

步驟S201:微處理單元10經由多個電場感測器11感測多個電場於連續時間的能量中心變化。 Step S201: The micro-processing unit 10 senses the change of the energy center of the multiple electric fields in a continuous time via the multiple electric field sensors 11.

具體而言,於步驟S200及步驟S201中,微處理器單元10是經由多個電場感測器111-118感測多個電場於指定時間區間的電場變化,再依據所感測的電場變化與時間區間計算前述能量強度變化與能量中心變化。 Specifically, in steps S200 and S201, the microprocessor unit 10 senses the electric field changes of the multiple electric fields in the specified time interval through the multiple electric field sensors 111-118, and then according to the sensed electric field changes and time The interval calculates the aforementioned energy intensity change and energy center change.

舉例來說,如圖5A所示,當電場內沒有障礙物時能量強度為10瓦,各電場感測器111-118的電場的能量強度變化如圖6A所示(電場感測器111-118於圖6A至6D中的位置分別為1-8,圖6A至6D的橫軸為電場感測器位置,縱軸為電場的能量強度變化)。 For example, as shown in FIG. 5A, the energy intensity is 10 watts when there are no obstacles in the electric field, and the energy intensity of the electric field of each electric field sensor 111-118 changes as shown in FIG. 6A (electric field sensor 111-118 The positions in FIGS. 6A to 6D are 1-8, respectively, the horizontal axis of FIGS. 6A to 6D is the position of the electric field sensor, and the vertical axis is the change of the energy intensity of the electric field).

接著,如圖5B所示,於第一秒時,障礙物42(如人手)進入電場,並對臨近的電場感測器115-118的電場造成不同程度的干擾,而使得這些電場發生不同程度的變化(如電場感測器111-118的電場的能量強度分別為10瓦、10瓦、 10瓦、10瓦、7瓦、5瓦、6瓦及8瓦),各電場感測器111-118的電場的能量強度變化如圖6B所示。 Next, as shown in FIG. 5B, at the first second, the obstacle 42 (such as a human hand) enters the electric field and causes different degrees of interference to the electric fields of the adjacent electric field sensors 115-118, causing these electric fields to occur to different degrees (For example, the electric field energy of the electric field sensors 111-118 is 10 watts, 10 watts, 10 watts, 10 watts, 7 watts, 5 watts, 6 watts, and 8 watts), the energy intensity changes of the electric fields of the electric field sensors 111-118 are shown in FIG. 6B.

接著,於第二秒時,如圖5C所示,障礙物42沿移動方向D2移動(包括水平與垂直移動),並對這些電場造成不同的干擾而使得這些電場再次發生變化(如電場感測器111-118的電場的能量強度分別為10瓦、10瓦、8瓦、5瓦、4瓦、5瓦、8瓦及10瓦),各電場感測器111-118的電場的能量強度變化如圖6C所示。 Then, at the second second, as shown in FIG. 5C, the obstacle 42 moves along the moving direction D2 (including horizontal and vertical movements), and causes different interference to these electric fields to cause these electric fields to change again (such as electric field sensing The electric field energy intensity of the 111-118 electric field is 10 watts, 10 watts, 8 watts, 5 watts, 4 watts, 5 watts, 8 watts and 10 watts), the electric field energy intensity of each electric field sensor 111-118 changes As shown in Figure 6C.

接著,於第三秒時,如圖5D所示,障礙物42繼續沿移動方向D2移動(包括水平與垂直移動),並對這些電場造成不同的干擾而使得這些電場再次發生變化(如電場感測器111-118的電場的能量強度分別為10瓦、6瓦、3瓦、2瓦、3瓦、6瓦、10瓦及10瓦),各電場感測器111-118的電場的能量強度變化如圖6D所示。 Then, at the third second, as shown in FIG. 5D, the obstacle 42 continues to move along the moving direction D2 (including horizontal and vertical movements), and causes different interference to these electric fields to cause these electric fields to change again (such as electric field sensing). The energy intensity of the electric field of the sensors 111-118 is 10 watts, 6 watts, 3 watts, 2 watts, 3 watts, 6 watts, 10 watts and 10 watts), and the energy intensity of the electric field of each electric field sensor 111-118 The change is shown in Figure 6D.

最後,微處理單元10可計算各時間點的能量中心與最大能量強度,並進一步計算能量強度變化與能量中心變化。具體而言,如圖6E所示(橫軸為時間,縱軸為能量強度變化/電場感測器位置),於第一秒時(圖5B所示情境),最大的能量強度變化為5,發生在感測器116;於第二秒時(圖5C所示情境),最大的能量強度變化為6,發生在感測器115;於第三秒時(圖5D所示情境),最大的能量強度變化為8,發生在感測器114,即最大的能量強度變化為5瓦→6瓦→8瓦。 Finally, the micro-processing unit 10 can calculate the energy center and the maximum energy intensity at each time point, and further calculate the energy intensity change and the energy center change. Specifically, as shown in FIG. 6E (the horizontal axis is time, and the vertical axis is energy intensity change/field sensor position), at the first second (the scenario shown in FIG. 5B), the maximum energy intensity change is 5, Occurs at sensor 116; at the second second (situation shown in FIG. 5C), the maximum energy intensity change is 6, occurs at sensor 115; at the third second (situation shown in FIG. 5D), the largest The energy intensity change is 8, which occurs in the sensor 114, that is, the maximum energy intensity change is 5 watts → 6 watts → 8 watts.

此外,微處理單元10可依據下列式(一)來計算各時間點的能量中心:

Figure 107137138-A0305-02-0011-1
In addition, the micro-processing unit 10 can calculate the energy center at each time point according to the following formula (1):
Figure 107137138-A0305-02-0011-1

其中,N為電場感測器的數量,Wn為第n個電場感測器的電場的能量強度,Xn為第n個電場感測器的設置位置(於上述例子中為1~8)。 Where N is the number of electric field sensors, Wn is the energy intensity of the electric field of the nth electric field sensor, and Xn is the installation position of the nth electric field sensor (1-8 in the above example).

以上述例子為例,第一秒的能量中心的位置約為6.36,第二秒的能量中心的位置為5,第三秒的能量中心的位置為4,即能量中心變化為6.36→5→4。 Taking the above example as an example, the position of the energy center in the first second is about 6.36, the position of the energy center in the second second is 5, and the position of the energy center in the third second is 4, that is, the change of the energy center is 6.36→5→4 .

步驟S202:微處理單元10依據所取得的能量強度變化與能量中心變化判斷電場內是否存在障礙物。於一實施例中,微處理單元10是於能量強度變化與能量中心變化超過臨界值時判定電場存在障礙物。 Step S202: The micro-processing unit 10 determines whether there is an obstacle in the electric field according to the obtained energy intensity change and energy center change. In one embodiment, the micro-processing unit 10 determines that there is an obstacle in the electric field when the energy intensity change and the energy center change exceed a critical value.

若微處理單元10偵測到障礙物,則執行步驟S203。否則,微處理單元10再次執行步驟S200以持續感測電場變化。 If the micro-processing unit 10 detects an obstacle, step S203 is executed. Otherwise, the micro-processing unit 10 executes step S200 again to continuously sense the electric field change.

步驟S203:微處理單元10依據能量強度變化決定障礙物與多個電場感測器之間的垂直移動方向。 Step S203: The micro-processing unit 10 determines the vertical movement direction between the obstacle and the multiple electric field sensors according to the change in energy intensity.

於一實施例中,如圖6E所示,微處理單元10可計算出能量強度變化是隨時間增加,即障礙物42與機械肢體間的垂直距離是逐漸縮短,障礙物42的垂直方向是朝機械肢體接近。 In an embodiment, as shown in FIG. 6E, the micro-processing unit 10 can calculate that the change in energy intensity increases with time, that is, the vertical distance between the obstacle 42 and the mechanical limb is gradually shortened, and the vertical direction of the obstacle 42 is toward Mechanical limbs approached.

步驟S204:微處理單元10依據能量中心變化決定障礙物的平行移動方向。 Step S204: The micro-processing unit 10 determines the parallel moving direction of the obstacle according to the change of the energy center.

於一實施例中,如圖6E所示,微處理單元10可計算出能量中心變化是隨時間由位置6.36移動至位置4增加,即障礙物42與機械肢體間的水平方向是由電場感測器116朝電場感測器114。 In one embodiment, as shown in FIG. 6E, the micro-processing unit 10 can calculate that the change in energy center moves from position 6.36 to position 4 with time, that is, the horizontal direction between the obstacle 42 and the mechanical limb is sensed by the electric field器116向电电感器114。 116 towards the electric field sensor 114.

步驟S205:微處理單元10依據步驟S203所計算的垂直移動方向及步驟S204所計算的平行移動方向決定障礙物與多個電場感測器之間的相對移動方向。 Step S205: The micro-processing unit 10 determines the relative movement direction between the obstacle and the multiple electric field sensors according to the vertical movement direction calculated in step S203 and the parallel movement direction calculated in step S204.

步驟S206:微處理單元10依據感測時間及能量強度變化決定障礙物與多個電場感測器之間的相對的垂直移動速度。 Step S206: The micro-processing unit 10 determines the relative vertical movement speed between the obstacle and the plurality of electric field sensors according to the sensing time and energy intensity changes.

於一實施例中,微處理單元10可依據能量強度變化計算對應的實際的垂直距離變化,並依據感測時間(如3秒)與垂直距離變化計算障礙物的垂直移動速度。 In an embodiment, the micro-processing unit 10 may calculate the corresponding actual vertical distance change according to the energy intensity change, and calculate the vertical movement speed of the obstacle based on the sensing time (eg, 3 seconds) and the vertical distance change.

步驟S207:微處理單元10依據感測時間及能量中心變化決定障礙物與多個電場感測器之間的相對的平行移動速度。 Step S207: The micro-processing unit 10 determines the relative parallel moving speed between the obstacle and the multiple electric field sensors according to the sensing time and the change of the energy center.

於一實施例中,微處理單元10可依據能量中心變化與各感測器111-118的設置位置計算水平距離變化,並依據感測時間(如3秒)與水平距離變化計算障礙物的水平移動速度。 In one embodiment, the micro-processing unit 10 can calculate the horizontal distance change according to the energy center change and the setting position of each sensor 111-118, and calculate the obstacle level according to the sensing time (such as 3 seconds) and the horizontal distance change Moving speed.

步驟S208:微處理單元10依據步驟S206所取得的垂直移動速度及步驟S206所取得的平行移動速度決定障礙物與多個電場感測器之間的相對移動速度。 Step S208: The micro-processing unit 10 determines the relative movement speed between the obstacle and the plurality of electric field sensors according to the vertical movement speed obtained in step S206 and the parallel movement speed obtained in step S206.

步驟S209:微處理單元10可依據所取得的障礙物的相對移動方向及/或相對移動速度判斷障礙物是否朝機器人1的機械肢體接近而可能發生碰撞。 Step S209: The micro-processing unit 10 can determine whether the obstacle approaches the mechanical limb of the robot 1 and may collide according to the obtained relative movement direction and/or relative movement speed of the obstacle.

若微處理單元10判斷障礙物可能發生碰撞,則執行步驟S210。若微處理單元10判斷障礙物不會碰撞機器人1(如障礙物持續遠離機器人1,或障礙物已停止移動),則再次執行步驟S200以持續偵測。 If the micro-processing unit 10 determines that the obstacle may collide, step S210 is executed. If the micro-processing unit 10 determines that the obstacle will not collide with the robot 1 (for example, if the obstacle continues to move away from the robot 1 or the obstacle has stopped moving), then step S200 is executed again for continuous detection.

步驟S210:微處理單元10依據障礙物的相對移動方向及相對移動速度決定閃避向量的方向及量值。 Step S210: The micro-processing unit 10 determines the direction and magnitude of the evasion vector according to the relative movement direction and relative movement speed of the obstacle.

於一實施例中,閃避向量的量值可為固定值,或依據障礙物的相對移動方向及/或相對移動速度來加以決定。 In one embodiment, the magnitude of the evasion vector may be a fixed value, or determined according to the relative movement direction and/or relative movement speed of the obstacle.

續請同時參閱圖7,為本發明的閃避障礙物的示意圖。於一實施例中,如圖7所示,於本例子中,機械肢體5的外側設置有三組電場感測器511-513,並包括臂體56與可動結構55。機器人1可經由至少三組馬達12控制可動結構55朝不同的三個軸向轉動,而使臂體56於X軸進行翻滾轉動的動作,於Y軸 進行俯仰轉動的動作,或於Z軸進行偏擺轉動的動作。圖7用以示例性說明針對來自不同方向的障礙物可採用的閃避方向向量的方向,但並非用以限定本發明。 Please also refer to FIG. 7 for a schematic diagram of evading obstacles of the present invention. In one embodiment, as shown in FIG. 7, in this example, three sets of electric field sensors 511-513 are provided on the outer side of the mechanical limb 5, and include an arm 56 and a movable structure 55. The robot 1 can control the movable structure 55 to rotate in three different axial directions via at least three sets of motors 12, so that the arm body 56 rolls and turns in the X axis, and in the Y axis Perform the pitch rotation operation or the yaw rotation operation on the Z axis. FIG. 7 is used to illustrate the direction of the dodge direction vector that can be adopted for obstacles from different directions, but is not intended to limit the present invention.

當障礙物的相對移動方向為f1、f3、f4或f7時,微處理單元10可控制臂體56於X軸進行翻滾轉動的動作(如臂體56朝內側移動)以閃避障礙物。當障礙物的相對移動方向為f2或f6時,微處理單元10可控制臂體56於X軸進行翻滾轉動的動作,並同時於Y軸進行俯仰轉動的動作(如臂體56朝內側移動並朝上舉起)以閃避障礙物。當障礙物的相對移動方向為f5時,微處理單元10可控制臂體56於Y軸進行俯仰轉動的動作(如臂體56朝上舉起)以閃避障礙物。 When the relative movement direction of the obstacle is f1, f3, f4, or f7, the micro-processing unit 10 can control the arm body 56 to perform a tumbling motion on the X axis (such as the arm body 56 moving inward) to avoid the obstacle. When the relative movement direction of the obstacle is f2 or f6, the micro-processing unit 10 can control the arm body 56 to perform the tumbling movement on the X axis, and simultaneously perform the pitch rotation movement on the Y axis (for example, the arm body 56 moves inward and Lift up) to avoid obstacles. When the relative moving direction of the obstacle is f5, the micro-processing unit 10 can control the arm 56 to perform a pitching and turning movement on the Y-axis (eg, the arm 56 is lifted upward) to avoid the obstacle.

於一實施例中,微處理單元10可進一步依據障礙物的相對移動方向、相對移動速度及機械肢體的位置決定執行閃避動作的閃避時機(如於2秒後進行閃避,或者於障礙物與機械肢體之間的距離小於預設值時進行閃避)。 In an embodiment, the micro-processing unit 10 may further determine the evasion timing for performing the evasion action according to the relative movement direction, relative movement speed and position of the mechanical limb of the obstacle (such as evasion after 2 seconds, or between the obstacle and the machine) (Dodge when the distance between the limbs is less than the preset value).

接著執行步驟S211:微處理單元10依據所決定的閃避向量及/或閃避時機產生對應的馬達控制資料。 Next, step S211 is executed: the micro-processing unit 10 generates corresponding motor control data according to the determined evasion vector and/or evasion timing.

步驟S212:微處理單元10判斷當前時機是否符合閃避時機。若已符合閃避時機,則微處理單元10執行步驟S213。否則,微處理單元10再次執行步驟S212以等待閃避時機。 Step S212: The micro-processing unit 10 determines whether the current timing meets the evasion timing. If the timing of evasion has been met, the micro-processing unit 10 executes step S213. Otherwise, the micro-processing unit 10 executes step S212 again to wait for the dodge timing.

步驟S213:微處理單元10依據馬達控制資料控制馬達12轉動以使機械肢體於符合閃避時機時沿閃避向量的方向移動閃避向量的量值來閃避障礙物。 Step S213: The micro-processing unit 10 controls the motor 12 to rotate according to the motor control data so that the mechanical limb moves the magnitude of the dodge vector in the direction of the dodge vector when the dodge timing is met to avoid the obstacle.

本發明經由令機器人1延遲至閃避時機才進行閃避,可有效減少為了閃避障礙物機械肢體所需的移動量,進而減少電能消耗。 The present invention delays the robot 1 until the timing of evasion, and can effectively reduce the amount of movement required for the mechanical limbs to evade obstacles, thereby reducing power consumption.

值得一提的是,於本發明的另一實施例中,可不考慮閃避時機而於偵測到障礙物後直接控制機械肢體進行閃避。 It is worth mentioning that, in another embodiment of the present invention, it is possible to directly control the mechanical limb to evade after detecting an obstacle regardless of the timing of evasion.

續請同時參閱圖8及圖12,圖8為本發明的閃避多個障礙物的示意圖,圖12為本發明第三實施例的防碰撞方法的流程圖。如圖8所示,於本實施例中,機器人1的機械肢體包括可動結構65及臂體66,臂體66的左側設有電場感測器611,右側設有電場感測器612。本實施例的機器人1可依據設置於不同側的電場感測器611-612來感測同一障礙物的相對移動方向。並且,本實施例的機器人1還可於閃避一障礙物的同時,避免碰撞另一障礙物。具體而言,本實施例的防碰撞方法包括以下步驟。 Please refer to FIG. 8 and FIG. 12 at the same time. FIG. 8 is a schematic diagram of avoiding multiple obstacles according to the present invention. FIG. 12 is a flowchart of a collision prevention method according to a third embodiment of the present invention. As shown in FIG. 8, in this embodiment, the mechanical limb of the robot 1 includes a movable structure 65 and an arm body 66. An electric field sensor 611 is provided on the left side of the arm body 66, and an electric field sensor 612 is provided on the right side. The robot 1 of this embodiment can sense the relative movement direction of the same obstacle according to the electric field sensors 611-612 provided on different sides. Moreover, the robot 1 of this embodiment can avoid one obstacle while avoiding collision with another obstacle. Specifically, the anti-collision method of this embodiment includes the following steps.

步驟S300:機器人1的微處理單元10經由不同側的電場感測器611-612感測連續時間的電場變化。 Step S300: The micro-processing unit 10 of the robot 1 senses the electric field change in continuous time via the electric field sensors 611-612 on different sides.

步驟S301:微處理單元10依據所取得的電場變化判斷電場內是否存在障礙物44(第一障礙物)。 Step S301: The micro-processing unit 10 determines whether there is an obstacle 44 (first obstacle) in the electric field according to the acquired electric field change.

若微處理單元10偵測到障礙物,則執行步驟S302-S303。否則,微處理單元10再次執行步驟S300以持續感測電場變化。 If the micro-processing unit 10 detects an obstacle, steps S302-S303 are executed. Otherwise, the micro-processing unit 10 executes step S300 again to continuously sense the electric field change.

步驟S302:微處理單元10依據左側的電場感測器611所感測到的電場變化決定障礙物44的第一移動方向DLStep S302: a first micro processing unit 10 determines the moving direction D L obstacle 44 based on change in electric field on the left side of the field sensor 611 sensed.

步驟S303:微處理單元10依據另一側(右側)的電場感測器612所感測到的電場變化決定障礙物44的第二移動方向DRStep S303: micro processing unit 10 determines a second obstacle movement direction D R 44 changes according to an electric field on the other side (right side) of the electric field sensor 612 sensed.

值得一提的是,步驟S302與步驟S303可同時執行或先後執行,不加以限定。 It is worth mentioning that step S302 and step S303 can be executed simultaneously or sequentially, without limitation.

步驟S304:微處理單元10依據第一移動方向及第二移動方向決定相對移動方向。 Step S304: The micro-processing unit 10 determines the relative movement direction according to the first movement direction and the second movement direction.

於一實施例中,微處理單元10可對第一移動方向及第二移動方向的平均方向作為相對移動方向。 In an embodiment, the micro-processing unit 10 may use the average direction of the first movement direction and the second movement direction as the relative movement direction.

步驟S305:微處理單元10依據所決定的相對移動方向決定閃避向量。 Step S305: The micro-processing unit 10 determines the dodge vector according to the determined relative movement direction.

於一實施例中,微處理單元10是計算相對移動方向與移動前的臂體66的交點位置,並計算可使臂體66離開交點位置的閃避向量。 In one embodiment, the micro-processing unit 10 calculates the position of the intersection point of the relative movement direction and the arm body 66 before the movement, and calculates the evasion vector that can move the arm body 66 away from the intersection point position.

於一實施例中,微處理單元10可計算障礙物44的相對移動向量並設定為閃避向量。 In one embodiment, the micro-processing unit 10 can calculate the relative movement vector of the obstacle 44 and set it as the dodge vector.

步驟S306:微處理單元10預先判斷機械肢體沿所決定的閃避向量移動是否會碰撞另一障礙物48(第二障礙物)。 Step S306: The micro-processing unit 10 determines in advance whether the movement of the mechanical limb along the determined evasion vector will collide with another obstacle 48 (second obstacle).

舉例來說,若修正前的閃避向量是朝右側轉動角度θ1,當臂體66朝右側移動轉動角度θ1而移動至臂體66’的位置時雖可避開障礙物44但會碰撞另一障礙物48(如牆)。因此,機械肢體沿當前的閃避向量移動並不無法確實閃避所有障礙物44與障礙物48。 For example, if the evasion vector before the correction is turned to the right by the angle θ1, when the arm 66 moves to the right by the turning angle θ1 and moves to the position of the arm 66', the obstacle 44 can be avoided but it will collide with another obstacle Object 48 (such as a wall). Therefore, the movement of the mechanical limb along the current evasion vector does not necessarily avoid all obstacles 44 and 48.

於一實施例中,機器人1的記憶單元14記錄有環境地圖及各障礙物48(如固定障礙物,包括有固定移動路線的障礙物)於該環境地圖的位置。微處理單元10可依據環境地圖、機器人1當前於環境地圖的位置及各障礙物48於環境地圖的位置判斷機械肢體沿閃避向量移動是否會碰撞任一障礙物48。 In one embodiment, the memory unit 14 of the robot 1 records the environment map and the positions of the obstacles 48 (such as fixed obstacles, including obstacles with a fixed moving route) on the environment map. The microprocessing unit 10 can determine whether the movement of the mechanical limb along the evasion vector will collide with any obstacle 48 according to the environment map, the current position of the robot 1 on the environment map, and the position of each obstacle 48 on the environment map.

於一實施例中,微處理單元10還可判斷(如基於電場變化來決定各障礙物的移動方式、速度或軌跡並進行判斷)各障礙物為可移動的障礙物(如人員或寵物等等,包括無固定移動路線的障礙物)或是固定的障礙物(如桌椅、牆、電動門等等)。 In an embodiment, the micro-processing unit 10 can also determine (e.g., determine and determine the movement method, speed, or trajectory of each obstacle based on the change of the electric field) that each obstacle is a movable obstacle (such as a person or pet, etc.) , Including obstacles without a fixed movement route) or fixed obstacles (such as tables and chairs, walls, electric doors, etc.).

若微處理單元10判斷會碰撞另一障礙物,則執行步驟S307。否則,微處理單元10執行步驟S308。 If the micro-processing unit 10 determines that it will collide with another obstacle, step S307 is executed. Otherwise, the micro-processing unit 10 executes step S308.

步驟S307:微處理單元10修正閃避向量。於一實施例中,微處理單元10依據預設值修正閃避向量的方向或減少閃避向量的量值。 Step S307: The micro-processing unit 10 corrects the dodge vector. In one embodiment, the micro-processing unit 10 corrects the direction of the ducking vector or reduces the magnitude of the ducking vector according to the preset value.

於一實施例中,微處理單元10依據可能發生碰撞的障礙物48的位置修正閃避向量,以使機械肢體沿修正後的閃避向量移動不會碰撞障礙物48。 In one embodiment, the micro-processing unit 10 corrects the evasion vector according to the position of the obstacle 48 that may collide, so that the movement of the mechanical limb along the corrected evasion vector will not collide with the obstacle 48.

舉例來說,若修正前的閃避向量是朝右側轉動角度θ1(如30度),微處理單元10可依據與障礙物48之間的距離將角度減少為θ1’(如10度)以作為修正後的閃避向量。藉此,當臂體66朝右側移動轉動角度θ1’而移動至臂體66’’的位置時可同時避免碰撞障礙物44與障礙物48。 For example, if the evasion vector before correction is turned to the right by an angle θ1 (such as 30 degrees), the micro-processing unit 10 can reduce the angle to θ1′ (such as 10 degrees) according to the distance from the obstacle 48 as a correction After the dodge vector. Thereby, when the arm body 66 is moved to the right by the rotation angle θ1' to the position of the arm body 66'', collision of the obstacle 44 and the obstacle 48 can be avoided at the same time.

於一實施例中,微處理單元10可改變臂體66移動軸向,如增加任一軸的分量以使機械肢體沿修正後的閃避向量移動可遠離障礙物44與障礙物48所在平面。舉例來說,修正前的閃避向量是朝右側轉動角度θ1,修正後的閃避向量是朝右側轉動角度θ1’,並朝上轉動指定角度(如60度)。 In one embodiment, the micro-processing unit 10 can change the axis of movement of the arm 66, for example, to increase the component of any axis to move the mechanical limb along the corrected evasion vector away from the plane where the obstacle 44 and the obstacle 48 are located. For example, the evasion vector before correction is rotated by the angle θ1 toward the right, and the evasion vector after correction is rotated by the angle θ1' toward the right, and is rotated upward by a specified angle (such as 60 degrees).

值得一提的是,實際上存在機械肢體沿修正後的閃避向量移動仍會擦撞障礙物44的狀況,然而,由於可移動的障礙物44可能主動改變移動方向而避開機械肢體(如人員發現即將發生碰撞會停止接近機械肢體),而固定的障礙物48並不會主動改變移動方向。 It is worth mentioning that there are actually situations where the mechanical limb moves along the corrected evasion vector and still rubs against the obstacle 44. However, the movable obstacle 44 may actively change the direction of movement to avoid the mechanical limb (such as personnel It is found that the impending collision will stop approaching the mechanical limb), and the fixed obstacle 48 will not actively change the direction of movement.

藉此,本發明的一實施例是於同時偵測到可移動的障礙物44及固定的障礙物48時,採取優先避開固定的障礙物48(如修正前的閃避向量是優先避開可移動的障礙物44,修正後的閃避向量是優先避開固定的障礙物48,即機械肢體沿修正後的閃避向量移動必定不會碰撞固定的障礙物48)的閃避方式,可有效降低碰撞機率。 Therefore, according to an embodiment of the present invention, when the movable obstacle 44 and the fixed obstacle 48 are detected at the same time, priority is given to avoiding the fixed obstacle 48 (such as the dodge vector before correction is to avoid the priority). Moving obstacles 44. The corrected dodge vector is the priority to avoid fixed obstacles 48, that is, the movement of the mechanical limb along the corrected dodge vector must not collide with the fixed obstacles 48) The dodge method can effectively reduce the probability of collision .

步驟S308:微處理單元10產生對應閃避向量(若有執行步驟S307,則為修正後的閃避向量)的馬達控制資料。 Step S308: The micro-processing unit 10 generates motor control data corresponding to the evasion vector (the modified evasion vector if step S307 is executed).

於一實施例中,馬達控制資料包括各馬達12的轉動角度。微處理單元10是將閃避向量轉換為多個馬達的轉動角度的組合。 In one embodiment, the motor control data includes the rotation angle of each motor 12. The micro-processing unit 10 is a combination of converting the dodge vector into rotation angles of a plurality of motors.

步驟S309:微處理單元10控制各馬達12轉動對應的轉動角度以移動機械肢體來閃避障礙物44。並且,若閃避向量經過修正,則機械肢體還可避免碰撞障礙物48。 Step S309: The micro-processing unit 10 controls each motor 12 to rotate by a corresponding rotation angle to move the mechanical limb to avoid the obstacle 44. Moreover, if the dodge vector is corrected, the mechanical limb can also avoid collision with the obstacle 48.

藉此,本發明可於閃避過程中避免碰撞其他障礙物。 In this way, the present invention can avoid collision with other obstacles during the evasion process.

續請同時參閱圖9A、圖9B、圖10及圖13,圖9A為本發明的第一閃避策略的示意圖,圖9B為本發明的第二閃避策略的示意圖,圖13為本發明第四實施例的防碰撞方法的部分流程圖。 Please refer to FIG. 9A, FIG. 9B, FIG. 10 and FIG. 13 at the same time. FIG. 9A is a schematic diagram of the first dodge strategy of the present invention, FIG. 9B is a schematic diagram of the second dodge strategy of the present invention, and FIG. 13 is a fourth implementation of the present invention Flow chart of an example anti-collision method.

於本實施例中,機械肢體包括多個臂體(圖9A及圖9B以兩個臂體760-761為例),多個臂體760-761是經由多個可動結構(以兩個可動結構750-751為例)串接,多個馬達12分別配置來控制多個可動結構750-751作動以移動多個臂體760-761。 In this embodiment, the mechanical limb includes multiple arm bodies (FIG. 9A and FIG. 9B take two arm bodies 760-761 as an example), and the multiple arm bodies 760-761 pass through multiple movable structures (with two movable structures 750-751 as an example) in series, a plurality of motors 12 are respectively configured to control the movement of a plurality of movable structures 750-751 to move a plurality of arm bodies 760-761.

本實施例主要是提供一種規劃閃避策略功能,可規劃一組閃避策略,當機器人1依據閃避策略閃避障礙物時,可有較高的閃避成功機率或較少的能量消耗(如多個臂體760-761的總移動量最少)。 This embodiment mainly provides a function of planning an evasion strategy, which can plan a group of evasion strategies. When the robot 1 evades an obstacle according to the evasion strategy, it can have a higher probability of success in evasion or less energy consumption (such as multiple arms) 760-761 has the least total movement).

相較於圖10所示的防碰撞方法,本實施例的防碰撞方法的步驟S13更包括以下步驟。 Compared with the anti-collision method shown in FIG. 10, step S13 of the anti-collision method of this embodiment further includes the following steps.

步驟S40:機器人1的微處理單元10取得最末段的臂體(如臂體761)的當前位置(如位置P1),並依據相對移動方向及當前位置決定閃避位置(如位置P2)。 Step S40: The micro-processing unit 10 of the robot 1 obtains the current position (eg position P1) of the last arm (eg arm 761), and determines the dodge position (eg position P2) according to the relative movement direction and the current position.

於一實施例中,微處理單元10可依據相對移動方預估障礙物46的移動軌跡,並將移動軌跡外的位置設為前述閃避位置 In one embodiment, the micro-processing unit 10 can estimate the movement trajectory of the obstacle 46 according to the relative moving party, and set the position outside the movement trajectory as the aforementioned dodge position

步驟S41:微處理單元10依據當前位置及閃避位置規劃閃避策略。 Step S41: The micro-processing unit 10 plans a dodge strategy according to the current position and the dodge position.

於一實施例中,記憶單元14記錄有各可動結構750-751的可動範圍,微處理單元10是依據各可動結構750-751的可動範圍規劃一組閃避策略,此 閃避策略包括各可動結構750-751的轉動向量,並對應多個臂體760-761的多個閃避向量。當各可動結構750-751沿轉動向量轉動時,可使所連接的臂體760-761沿對應的閃避向量移動,而使最末端的臂體761從當前位置P1移動至閃避位置P2。 In one embodiment, the memory unit 14 records the movable range of each movable structure 750-751. The microprocessing unit 10 plans a set of evasion strategies according to the movable range of each movable structure 750-751. The evasion strategy includes the rotation vectors of each movable structure 750-751, and corresponds to multiple evasion vectors of multiple arm bodies 760-761. When each movable structure 750-751 rotates along the rotation vector, the connected arm body 760-761 can be moved along the corresponding dodge vector, and the endmost arm body 761 is moved from the current position P1 to the dodge position P2.

於一實施例中,若欲消耗較少的能量,微處理單元10可依據當前位置P1(起點)與閃避位置P2(終點)基於最短路徑演算法、最小移動能量演算法或最短移動時間演算法來規劃一組閃避策略。 In one embodiment, if less energy is to be consumed, the micro-processing unit 10 may be based on the shortest path algorithm, the minimum movement energy algorithm or the shortest movement time algorithm based on the current position P1 (starting point) and the dodge position P2 (end point) To plan a set of evasion strategies.

舉例來說,如圖9A所示,是採用消耗較少的能量的閃避策略,如僅控制可動結構751轉動角度θ3來使最末端的臂體761移動至閃避位置P2。 For example, as shown in FIG. 9A, an evasion strategy that consumes less energy is adopted. For example, only the rotation angle θ3 of the movable structure 751 is controlled to move the endmost arm 761 to the evasion position P2.

於一實施例中,若提升閃避成功機率,微處理單元10可依據當前位置P1(起點)與閃避位置P2(終點)規劃可使移動後的所有臂體760-761距離障礙物46較遠的一組閃避策略。 In one embodiment, if the probability of evasion success is increased, the micro-processing unit 10 can plan according to the current position P1 (start point) and the evasion position P2 (end point) so that all the moved arms 760-761 are farther away from the obstacle 46 A set of evasion strategies.

舉例來說,如圖9B所示,是採用閃避成功機率較高的閃避策略,如控制可動結構750轉動角度θ4以使臂體760遠離障礙物46,並控制可動結構751轉動角度θ5以使臂體761遠離障礙物46,並使最末端的臂體761移動至閃避位置P2。更進一步地,前述角度θ4與角度θ5的角度和可大於角度θ2與角度θ3的角度和。 For example, as shown in FIG. 9B, an evasion strategy with a higher probability of evasion success is adopted, such as controlling the rotation angle θ4 of the movable structure 750 to move the arm body 760 away from the obstacle 46, and controlling the rotation angle θ5 of the movable structure 751 to cause the arm The body 761 moves away from the obstacle 46 and moves the arm 761 at the end to the dodge position P2. Furthermore, the aforementioned angle sum of the angle θ4 and the angle θ5 may be greater than the angle sum of the angle θ2 and the angle θ3.

步驟S42:微處理單元10產生對應閃避策略的馬達控制資料。於一實施例中,前述馬達控制資料包括各馬達12的轉動角度。 Step S42: The micro-processing unit 10 generates motor control data corresponding to the evasion strategy. In one embodiment, the aforementioned motor control data includes the rotation angle of each motor 12.

具體而言,步驟S14中,微處理單元10若依據多個馬達控制資料的多個轉動角度分別控制各馬達12轉動時,可使各可動結構750-751轉動對應的角度,而使各臂體760-761沿對應的閃避向量移動,並使最末段的臂體761移動至閃避位置P2。 Specifically, in step S14, if the micro-processing unit 10 controls the rotation of each motor 12 according to a plurality of rotation angles of a plurality of motor control data, each movable structure 750-751 can be rotated by a corresponding angle, so that each arm body 760-761 moves along the corresponding dodge vector, and moves the last arm 761 to the dodge position P2.

藉此,本發明經由依據需求決定閃避策略,可提供更多元的閃避方式,而具有更高的實用性。 In this way, the present invention can provide more diversified evasion methods by determining the evasion strategy according to the demand, and has higher practicability.

續請同時參閱圖14,為本發明第五實施例的防碰撞方法的流程圖。 Please also refer to FIG. 14 for the flow chart of the anti-collision method according to the fifth embodiment of the present invention.

本實施例的防碰撞方法更提供一種可於機器人1的移動過程中執行閃避的防碰撞方法。具體而言,本實施例的防碰撞方法包括以下步驟。 The anti-collision method of this embodiment further provides an anti-collision method that can perform dodge during the movement of the robot 1. Specifically, the anti-collision method of this embodiment includes the following steps.

步驟S50:機器人1的微處理單元10控制機械肢體沿移動向量移動。於一實施例中,微處理單元10是於自遙控器17或電腦裝置18收到指示此移動向量的移動指令後,控制機械肢體沿移動向量移動。 Step S50: The microprocessing unit 10 of the robot 1 controls the mechanical limb to move along the movement vector. In one embodiment, the micro-processing unit 10 controls the mechanical limb to move along the movement vector after receiving the movement instruction indicating the movement vector from the remote controller 17 or the computer device 18.

步驟S51:微處理單元10於機械肢體的移動過程中經由電場感測器11感測連續時間的電場變化。 Step S51: During the movement of the mechanical limb, the micro-processing unit 10 senses the electric field change in continuous time via the electric field sensor 11.

步驟S52:微處理單元10依據所取得的電場變化判斷電場內是否存在障礙物。 Step S52: The micro-processing unit 10 determines whether there is an obstacle in the electric field according to the obtained electric field change.

於一實施例中,微處理單元10於啟動後即持續經由電場感測器11來感測障礙物而不中斷,但不以此限定。 In one embodiment, the micro-processing unit 10 continues to sense the obstacle through the electric field sensor 11 without interruption after starting, but it is not limited thereto.

於一實施例中,微處理單元10是於機器人1移動期間才致能電場感測器11來感測障礙物,並於機器人停止移動時禁能電場感測器11來停止感測障礙物,藉以降低電力消耗。 In an embodiment, the micro-processing unit 10 only enables the electric field sensor 11 to detect obstacles during the movement of the robot 1, and disables the electric field sensor 11 to stop sensing obstacles when the robot stops moving, In order to reduce power consumption.

若微處理單元10偵測到障礙物,則執行步驟S53。否則,微處理單元10再次執行步驟S51以持續感測電場變化。 If the micro-processing unit 10 detects an obstacle, step S53 is executed. Otherwise, the micro-processing unit 10 executes step S51 again to continuously sense the electric field change.

步驟S53:微處理單元10依據電場變化決定障礙物的相對移動方向。 Step S53: The micro-processing unit 10 determines the relative moving direction of the obstacle according to the change of the electric field.

步驟S54:微處理單元10依據障礙物的相對移動方向修正移動向量,並將修正後的移動向量作為閃避向量。於一實施例中,移動向量與閃避向量的終點相同,但路徑不同。 Step S54: The micro-processing unit 10 corrects the movement vector according to the relative movement direction of the obstacle, and uses the corrected movement vector as the dodge vector. In one embodiment, the end points of the motion vector and the dodge vector are the same, but the paths are different.

於一實施例中,微處理單元10是依據障礙物的相對移動方向決定可閃避障礙物的閃避向量,再結合閃避向量與移動向量為最終的閃避向量。 In one embodiment, the micro-processing unit 10 determines the dodge vector that can avoid the obstacle according to the relative movement direction of the obstacle, and then combines the dodge vector and the movement vector as the final dodge vector.

步驟S55:微處理單元10產生對應閃避向量的馬達控制資料。 Step S55: The micro-processing unit 10 generates motor control data corresponding to the dodge vector.

步驟S56:微處理單元10依據馬達控制資料控制各馬達12轉動,以使機械肢體沿閃避向量進行閃避。藉此,本發明經由使機器人1於移動期間偵測並閃避障礙物,可有效避免機器人1撞毀或障礙物毀損。 Step S56: The micro-processing unit 10 controls each motor 12 to rotate according to the motor control data, so that the mechanical limbs evade along the evasion vector. In this way, the present invention can effectively prevent the robot 1 from colliding or damaging the obstacle by detecting and avoiding the obstacle during the movement of the robot 1.

當然,本發明還可有其它多種實施例,在不背離本發明精神及其實質的情況下,本發明所屬技術領域中具有通常知識者當可根據本發明作出各種相應的改變和變形,但這些相應的改變和變形都應屬於本發明所附的申請專利範圍。 Of course, the present invention can have other various embodiments. Without departing from the spirit and essence of the present invention, persons with ordinary knowledge in the technical field to which the present invention belongs can make various corresponding changes and modifications according to the present invention, but these Corresponding changes and deformations should belong to the scope of the patent application attached to the present invention.

S10-S14‧‧‧防碰撞步驟 S10-S14‧‧‧‧Protection steps

Claims (13)

一種防碰撞方法,用於一機器人,該機器人包括一機械肢體、設置於該機械肢體的多個電場感測器及用以移動該機械肢體的一馬達,至少二個該電場感測器設置於該機械肢體的同一側,該防碰撞方法包括以下步驟:a)經由該多個電場感測器感測多個電場於連續時間的一電場變化,其中該電場變化包括一能量強度變化及一能量中心變化;b)於依據該電場變化偵測到一第一障礙物時決定該第一障礙物的一相對移動方向;c)依據該相對移動方向產生對應一閃避向量的一馬達控制資料;及d)依據該馬達控制資料控制該馬達轉動以使該機械肢體沿該閃避向量移動來閃避該第一障礙物。 An anti-collision method for a robot including a mechanical limb, a plurality of electric field sensors disposed on the mechanical limb, and a motor for moving the mechanical limb, at least two of the electric field sensors are disposed on On the same side of the mechanical limb, the anti-collision method includes the following steps: a) sensing an electric field change of multiple electric fields in continuous time through the electric field sensors, wherein the electric field change includes an energy intensity change and an energy Center change; b) when a first obstacle is detected according to the electric field change, a relative movement direction of the first obstacle is determined; c) a motor control data corresponding to an evasion vector is generated according to the relative movement direction; and d) The motor is controlled to rotate according to the motor control data so that the mechanical limb moves along the evasion vector to evade the first obstacle. 如請求項1所述的防碰撞方法,其中該步驟b)包括以下步驟:b11)依據該能量強度變化決定該第一障礙物的一垂直移動方向;b12)依據該能量中心變化決定該第一障礙物的一平行移動方向;及b13)依據該垂直移動方向及該平行移動方向決定該相對移動方向。 The anti-collision method according to claim 1, wherein the step b) includes the following steps: b11) determining a vertical movement direction of the first obstacle according to the energy intensity change; b12) determining the first according to the energy center change A parallel movement direction of the obstacle; and b13) determining the relative movement direction according to the vertical movement direction and the parallel movement direction. 如請求項2所述的防碰撞方法,其中該步驟b)更包括以下步驟:b14)依據一感測時間及該能量強度變化決定該第一障礙物的一垂直移動速度;b15)依據該感測時間及該能量中心變化決定該第一障礙物的一平行移動速度;及b16)依據該垂直移動速度及該平行移動速度決定一相對移動速度。 The anti-collision method according to claim 2, wherein the step b) further includes the following steps: b14) determining a vertical movement speed of the first obstacle according to a sensing time and the energy intensity change; b15) according to the sense The measured time and the change of the energy center determine a parallel moving speed of the first obstacle; and b16) determine a relative moving speed according to the vertical moving speed and the parallel moving speed. 如請求項3所述的防碰撞方法,其中該步驟c)更包括以下步驟: c11)依據該相對移動方向及該相對移動速度決定該閃避向量的方向及量值及一閃避時機;及c12)依據該閃避向量及該閃避時機產生該馬達控制資料;其中,該步驟d)是依據該馬達控制資料控制該馬達於該閃避時機符合時轉動以使該機械肢體沿該閃避向量的方向移動該閃避向量的量值來閃避該第一障礙物。 The anti-collision method according to claim 3, wherein the step c) further includes the following steps: c11) determine the direction and magnitude of the dodge vector and a dodge timing according to the relative movement direction and the relative movement speed; and c12) generate the motor control data according to the dodge vector and the dodge timing; wherein, the step d) is According to the motor control data, the motor is controlled to rotate when the evasion timing is met so that the mechanical limb moves the magnitude of the evasion vector in the direction of the evasion vector to evade the first obstacle. 如請求項1所述的防碰撞方法,其中至少一個該電場感測器設置於該機械肢體的一側,至少一個該電場感測器設置於該機械肢體的另一側;該步驟b)包括以下步驟:b21)於偵測到該第一障礙物時依據一側的該電場感測器所感測到的該電場變化決定一第一移動方向;b22)依據另一側的該電場感測器所感測到的該電場變化決定一第二移動方向;及b23)依據該第一移動方向及該第二移動方向決定該相對移動方向。 The anti-collision method according to claim 1, wherein at least one of the electric field sensors is disposed on one side of the mechanical limb, and at least one of the electric field sensors is disposed on the other side of the mechanical limb; the step b) includes The following steps: b21) when the first obstacle is detected, a first movement direction is determined according to the electric field change sensed by the electric field sensor on one side; b22) based on the electric field sensor on the other side The sensed change in the electric field determines a second moving direction; and b23) the relative moving direction is determined according to the first moving direction and the second moving direction. 如請求項1所述的防碰撞方法,其中,該步驟c)包括以下步驟:c21)依據該相對移動方向決定該閃避向量;c22)於預判該機械肢體沿該閃避向量移動會碰撞一第二障礙物時,依據該第二障礙物的位置修正該閃避向量;及c23)產生對應修正後的該閃避向量的該馬達控制資料,其中該馬達控制資料包括一轉動角度;其中,該步驟d)是控制該馬達轉動該轉動角度。 The anti-collision method according to claim 1, wherein the step c) includes the following steps: c21) determining the dodge vector according to the relative movement direction; c22) predicting that the mechanical limb moving along the dodge vector will collide When there are two obstacles, the dodge vector is corrected according to the position of the second obstacle; and c23) generating the motor control data corresponding to the corrected dodge vector, wherein the motor control data includes a rotation angle; wherein, the step d ) Is to control the motor to rotate the rotation angle. 如請求項6所述的防碰撞方法,其中該機器人包括一記憶單元,該記憶單元記錄有一環境地圖及各該第二障礙物於該環境地圖的位置;該步驟c22)是於依據該環境地圖、該機器人當前於該環境地圖的位置及各該第二障礙物於 該環境地圖的位置判斷該機械肢體沿該閃避向量移動會碰撞任一該第二障礙物時,修正該閃避向量的方向或減少該閃避向量的量值。 The anti-collision method according to claim 6, wherein the robot includes a memory unit that records an environment map and the position of each second obstacle on the environment map; the step c22) is based on the environment map , The current position of the robot on the environment map and each of the second obstacles When the position of the environment map determines that the mechanical limb moves along the evasion vector and collides with any of the second obstacles, the direction of the evasion vector is corrected or the magnitude of the evasion vector is reduced. 如請求項6所述的防碰撞方法,其中該步驟c22)是於預判該機械肢體沿該閃避向量移動會碰撞該第二障礙物,該第一障礙物為可移動的障礙物且該第二障礙物為固定的障礙物時,依據該第二障礙物的位置修正該閃避向量以使修正後的該閃避向量是用來優先閃避該第二障礙物;該步驟d)是依據該馬達控制資料控制該馬達轉動以使該機械肢體沿修正後的該閃避向量移動時不會碰撞該第二障礙物。 The anti-collision method according to claim 6, wherein the step c22) is to predict that the mechanical limb moving along the dodge vector will collide with the second obstacle, the first obstacle is a movable obstacle and the first When the second obstacle is a fixed obstacle, the dodge vector is corrected according to the position of the second obstacle so that the corrected dodge vector is used to preferentially dodge the second obstacle; the step d) is based on the motor control The data controls the motor to rotate so that the mechanical limb does not collide with the second obstacle when moving along the corrected dodge vector. 如請求項1所述的防碰撞方法,其中該機械肢體包括多個臂體,該多個臂體是經由多個可動結構串接,該多個馬達分別配置來控制該多個可動結構作動以移動該多個臂體;該步驟c)包括以下步驟:c31)依據該相對移動方向及最末段的該臂體的一當前位置決定一閃避位置;及c32)依據該當前位置及該閃避位置規劃對應多個閃避向量的一閃避策略,並依據該閃避策略產生該馬達控制資料,其中,該馬達控制資料包括該多個馬達的多個轉動角度;其中,該步驟d)是依據該多個馬達控制資料控制各該馬達分別轉動對應的該轉動角度以使該多個臂體分別沿該多個閃避向量移動來使最末段的該臂體移動至該閃避位置。 The anti-collision method according to claim 1, wherein the mechanical limb includes a plurality of arm bodies, the plurality of arm bodies are connected in series via a plurality of movable structures, and the plurality of motors are respectively configured to control the movement of the plurality of movable structures to Moving the plurality of arms; the step c) includes the following steps: c31) determining an evasion position based on the relative movement direction and a current position of the arm of the last stage; and c32) based on the current position and the evasion position Planning a dodge strategy corresponding to multiple dodge vectors, and generating the motor control data according to the dodge strategy, wherein the motor control data includes a plurality of rotation angles of the plurality of motors; wherein, step d) is based on the plurality of The motor control data controls each of the motors to rotate corresponding to the rotation angle to move the plurality of arm bodies along the plurality of dodge vectors, respectively, to move the arm body at the last stage to the dodge position. 如請求項9所述的防碰撞方法,其中該步驟c32)是基於最短路徑演算法、最小移動能量演算法或最短移動時間演算法來規劃該閃避策略。 The anti-collision method according to claim 9, wherein the step c32) is to plan the dodge strategy based on the shortest path algorithm, the minimum movement energy algorithm or the shortest movement time algorithm. 如請求項1所述的防碰撞方法,其中該步驟b)是於該機械肢體的移動過程中依據該電場變化偵測該第一障礙物;該步驟c)是依據該相對移動方向 修正該機械肢體當前的一移動向量以作為該閃避向量,並產生對應該閃避向量的該馬達控制資料。 The anti-collision method of claim 1, wherein the step b) is to detect the first obstacle based on the electric field change during the movement of the mechanical limb; the step c) is based on the relative movement direction Correct a current movement vector of the mechanical limb as the dodge vector, and generate the motor control data corresponding to the dodge vector. 如請求項1所述的防碰撞方法,其中該步驟d)是使移動後的該機械肢體離開該相對移動方向與移動前的該機械肢體的一交點位置。 The anti-collision method according to claim 1, wherein the step d) is to move the mechanical limb after movement away from an intersection point of the relative movement direction and the mechanical limb before movement. 如請求項1所述的防碰撞方法,其中該步驟c)是於依據該相對移動方向判斷該第一障礙物是朝該機械肢體接近時,產生該馬達控制資料。 The anti-collision method according to claim 1, wherein the step c) is to generate the motor control data when determining that the first obstacle is approaching the mechanical limb according to the relative movement direction.
TW107137138A 2018-10-22 2018-10-22 Anti-collision method for robot TWI683734B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107137138A TWI683734B (en) 2018-10-22 2018-10-22 Anti-collision method for robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107137138A TWI683734B (en) 2018-10-22 2018-10-22 Anti-collision method for robot

Publications (2)

Publication Number Publication Date
TWI683734B true TWI683734B (en) 2020-02-01
TW202015869A TW202015869A (en) 2020-05-01

Family

ID=70413305

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107137138A TWI683734B (en) 2018-10-22 2018-10-22 Anti-collision method for robot

Country Status (1)

Country Link
TW (1) TWI683734B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114690762A (en) * 2020-12-31 2022-07-01 深圳市海柔创新科技有限公司 Pallet fork collision processing method and device, robot, equipment, medium and product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206431487U (en) * 2016-09-08 2017-08-22 肇庆市小凡人科技有限公司 A kind of Mobile Robot Control System
CN108098768A (en) * 2016-11-24 2018-06-01 财团法人资讯工业策进会 Anti-collision system and anti-collision method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206431487U (en) * 2016-09-08 2017-08-22 肇庆市小凡人科技有限公司 A kind of Mobile Robot Control System
CN108098768A (en) * 2016-11-24 2018-06-01 财团法人资讯工业策进会 Anti-collision system and anti-collision method

Also Published As

Publication number Publication date
TW202015869A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
US11065767B2 (en) Object manipulation apparatus and object manipulation method for automatic machine that picks up and manipulates an object
CN111070200A (en) Anti-collision method of robot
US10335964B2 (en) Method and system for controlling robot
US9469031B2 (en) Motion limiting device and motion limiting method
Wang Fuzzy logic based robot path planning in unknown environment
US11090815B2 (en) Robot, control device, and robot system
WO2016103297A1 (en) Automatic obstruction avoidance method and control device for arm-type robot
JP2022539324A (en) Motion planning for multiple robots in a shared workspace
WO2015017355A2 (en) Apparatus and methods for controlling of robotic devices
TW201914785A (en) Robot speech control system and method
JP2011500349A (en) Real-time self-collision and obstacle avoidance
EP3611589B1 (en) Method for controlling motion of robot based on map prediction
TWI683734B (en) Anti-collision method for robot
CN110888443A (en) Rotary obstacle avoidance method and system for mobile robot
CN116457159A (en) Safety system and method for use in robotic operation
CN111989193A (en) Method and control system for controlling motion trail of robot
Kim et al. Improvement of Door Recognition Algorithm using Lidar and RGB-D camera for Mobile Manipulator
JP5306934B2 (en) Robot and control system
Ray et al. Sonar based autonomous automatic guided vehicle (AGV) navigation
CN112077841B (en) Multi-joint linkage method and system for manipulator precision of elevator robot arm
Hsiao et al. Wall following and continuously stair climbing systems for a tracked robot
KR20170019916A (en) Method and apparatus for generating grasping trajectory of robot arm
TWI811816B (en) Method and system for quickly detecting surrounding objects
WO2023026589A1 (en) Control apparatus, control method, and control program
TWI782709B (en) Surgical robotic arm control system and surgical robotic arm control method