TWI683320B - 人工變造生醫實驗影像的檢測系統及方法 - Google Patents

人工變造生醫實驗影像的檢測系統及方法 Download PDF

Info

Publication number
TWI683320B
TWI683320B TW108106526A TW108106526A TWI683320B TW I683320 B TWI683320 B TW I683320B TW 108106526 A TW108106526 A TW 108106526A TW 108106526 A TW108106526 A TW 108106526A TW I683320 B TWI683320 B TW I683320B
Authority
TW
Taiwan
Prior art keywords
image
module
unit
input image
processing module
Prior art date
Application number
TW108106526A
Other languages
English (en)
Other versions
TW202032576A (zh
Inventor
邵皓強
Original Assignee
輔仁大學學校財團法人輔仁大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 輔仁大學學校財團法人輔仁大學 filed Critical 輔仁大學學校財團法人輔仁大學
Priority to TW108106526A priority Critical patent/TWI683320B/zh
Priority to US16/394,082 priority patent/US11017516B2/en
Application granted granted Critical
Publication of TWI683320B publication Critical patent/TWI683320B/zh
Publication of TW202032576A publication Critical patent/TW202032576A/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking
    • G06T1/0028Adaptive watermarking, e.g. Human Visual System [HVS]-based watermarking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2201/00General purpose image data processing
    • G06T2201/005Image watermarking
    • G06T2201/0201Image watermarking whereby only tamper or origin are detected and no embedding takes place
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

本發明係提供一種人工變造生醫實驗影像的檢測系統及方法,用以對輸入影像進行影像檢測。根據本發明之設計,一處理模組、一影像差異運算模組、一二值化模組、與一影像混合模組係透過函式庫、變數或運算元的形式建立於一影像分析裝置之中。同時,本發明又特別設計該處理模組具有一量化參數建立單元、一相似運算單元與一偽背景產生單元,其目的在於影像分析裝置能夠在輸入影像上顯示人造的影像。此外,當量化參數不足或不需進行量化分析時,本發明特別設計該處理模組具有一二維高斯低通濾波單元、一參數設定單元與一偽背景建立單元,進而讓該處理模組只需利用高斯模糊化的方式完成該輸入影像之影像檢測。

Description

人工變造生醫實驗影像的檢測系統及方法
本發明係關於影像檢測之技術領域,尤指一種人工變造生醫實驗影像的檢測系統及方法。
在一般生醫相關領域的論文中,常看到研究者為了迎合自己的實驗結果與理論會變造或複製影像,並且,在變造或複製影像的過程中,變造者先將來自同一個樣品的影像做部分的裁切或調整位置之後,再將裁切或調整位置後的部分影像複製到樣品中,並將變造後的影像標示為不同的樣品或處理結果。
隨著數位影像處理科技發達,現有變造影像的方法主要分為三種:1.單純重複使用同一影像:在標示為不同樣品或處理的實驗之間,使用了相同的影像當做實驗結果;2.經裁切與調整位置後使用同一影像:在生化電泳或是顯微影像中,將來自同一個樣品的部分影像裁切擷選出來,經過翻轉之後,標示為不同的樣品或處理;3.經過變造後使用同一影像: 裁切影像或改變位置,且將某一部份影像局部複製並添加到原本影像中,或是塗色遮蔽、抹去部分細節。
然而,在上述變造影像的方式下,因不適當的後製處理所變造的影像與實驗結果並不準確,嚴重影響生技界發展。
如此,由上述說明可知目前在生醫相關領域上仍具有變造影像的實驗結果;有鑒於此,本案之發明人研發完成一種人工變造生醫實驗影像的檢測系統及方法。
本發明之主要目的,在於提供一種人工變造生醫實驗影像的檢測系統及方法,用以對輸入影像進行影像檢測。根據本發明之設計,一處理模組、一影像差異運算模組、一二值化模組、與一影像混合模組係透過函式庫、變數或運算元的形式建立於一影像分析裝置之中。同時,本發明又特別設計該處理模組具有一量化參數建立單元、一相似運算單元與一偽背景產生單元,其目的在於影像分析裝置能夠在輸入影像上顯示人造的影像。此外,當量化參數不足或不需進行量化分析時,本發明特別設計該處理模組具有一二維高斯低通濾波單元、一參數設定單元與一偽背景建立單元,進而讓該處理模組只需利用高斯模糊化的方式完成該輸入影像之影像檢測。
為了達成上述本發明之主要目的,本案發明人係提供所述之人工變造生醫實驗影像的檢測系統的一實施例,係包括: 一影像接收裝置,用以接收一輸入影像;以及 一影像分析裝置,係包括: 一處理模組,用以接收該輸入影像,進而對該輸入影像進行一偽背景產生處理,進而獲得一偽背景影像; 一影像差異運算模組,係耦接至該處理模組,用以對該偽背景影像與該輸入影像進行一影像差異運算,進而獲得一波動圖樣; 一二值化模組,係耦接於該影像差異運算模組,用以對該波動圖樣進行一二值化處理,進而獲得一指標圖像; 一影像混合模組,係耦接於該二值化模組,用以對該指標圖像與該輸入影像進行一混合運算,以獲得背景雜訊分佈對照影像;以及 一影像顯示模組,係耦接至該影像混合模組,用以顯示該背景雜訊分佈對照影像,藉此方式完成該輸入影像之影像檢測。
並且,為了達成上述本發明之主要目的,本案發明人係提供所述之人工變造生醫實驗影像的檢測方法的一實施例,係包括以下步驟: (1)提供一影像接收裝置接收一輸入影像; (2)提供一處理模組以接收該輸入影像,進而對該輸入影像進行一偽背景產生處理,進而獲得一偽背景影像。 (3)提供一影像差異運算模組用以對該偽背景影像與該輸入影像進行一影像差異運算,進而獲得一波動圖樣; (4)將該波動圖樣透過一範圍建立單元對該波動圖樣進行一影像標準化範圍建立運算,再藉由一設定單元設定該波動圖樣之一特定硬閾值; (5)提供一二值化模組並根據該特定硬閾值,對該波動圖樣進行一二值化處理,進而獲得一指標圖像; (6)提供一影像混合模組對該指標圖像與該輸入影像進行一混合運算,以獲得一背景雜訊分佈對照影像;以及 (7)提供一影像顯示模組顯示該背景雜訊分佈對照影像,藉此方式完成該輸入影像之影像檢測。
為了能夠更清楚地描述本發明所提出之一種人工變造生醫實驗影像的檢測系統及方法,以下將配合圖式,詳盡說明本發明之較佳實施例。
於說明本發明之人工變造生醫實驗影像的檢測系統及方法之前,需先介紹人工變造生醫實驗影像的檢測系統及方法之基本架構。請參閱圖1,為本發明之人工變造生醫實驗影像的檢測系統的第一架構圖。如圖1所示,本發明之第一種人工變造生醫實驗影像的檢測系統1,係包括:一影像接收裝置11與一影像分析裝置12,其中,該影像接收裝置11可以用以接收一輸入影像 I。進一步地,該輸入影像 I係利用西方墨點法或聚合酶連鎖反應結果而形成的生醫類實驗影像,並且,該影像分析裝置12更包括:一處理模組121、一影像差異運算模組122、一二值化模組123、一影像混合模組124、以及一影像顯示模組125,其中,該處理模組121用以接收該輸入影像 I,進而對該輸入影像 I進行一偽背景產生處理,進而獲得一偽背景影像𝒥,該影像差異運算模組122係耦接至該處理模組121,用以對該偽背景影像𝒥與該輸入影像 I進行一影像差異運算,進而獲得一波動圖樣𝒱,並且,該二值化模組123係耦接於該影像差異運算模組122,用以對該波動圖樣𝒱進行一二值化處理,進而獲得一指標圖像M λ ,該影像混合模組124係耦接於該二值化模組123,用以對該指標圖像M λ 與該輸入影像 I進行一混合運算,以獲得一背景雜訊分佈對照影像,且該影像顯示模組125係耦接至該影像混合模組124,用以判斷該背景雜訊分佈對照影像是否變造,藉此方式完成該輸入影像 I之影像檢測。如熟悉影像分析處理與影像檢測技術的工程師所熟知的,該處理模組121、該影像差異運算模組122、該二值化模組123、與該影像混合模組124係透過函式庫、變數或運算元的形式建立於該影像分析裝置12之中。並且,熟悉影像分析處理與影像檢測技術的工程師可輕易得知該影像分析裝置12可為下列任一者:平板電腦、筆記型電腦、桌上型電腦、或中央處理器。
承上述,於本發明中,該處理模組121更包括一量化參數建立單元1211、一相似運算單元1212、以及一偽背景產生單元1213。於執行該偽背景產生處理時,該處理模組121係先以配置於其內的量化參數建立單元1211對該輸入影像 I進行一影像量化參數建立運算,並根據該影像量化參數建立運算而建立一量化參數矩陣,並且,該處理模組121以配置於其內部的該相似運算單元1212對該輸入影像 I與該偽背景影像𝒥進行一相似性計算,同時,該處理模組121以配置於其內部的該偽背景產生單元1213對該量化參數矩陣與該相似性計算的結果進行一傅立葉轉換的方式,產生該偽背景影像𝒥;其中,該偽背景影像
Figure 02_image001
係利用以下運算式(1)、(2)、(3)、(4)、(5)與(6)而完成。
Figure 02_image003
………. ………. (1)
Figure 02_image005
… (2)
Figure 02_image007
……………(3)
Figure 02_image009
………… (4)
Figure 02_image011
…………(5)
Figure 02_image013
………(6)
於該偽背景影像𝒥的運算式(1)到(6)之中,
Figure 02_image001
是偽背景影像, I是輸入影像,
Figure 02_image015
是計算該輸入影像 I與該偽背景影像
Figure 02_image001
的相似值,
Figure 02_image017
是針對該偽背景影像
Figure 02_image001
的平滑程度所計算出的懲罰值,
Figure 02_image019
是Toeplitz matrix of a 1D k-tap-long high-pass filter f, h為量化參數矩陣,t是矩陣轉置,
Figure 02_image021
是逐項乘積(Hadamard product),
Figure 02_image023
是對 I進行傅立葉轉換,
Figure 02_image025
是矩陣內容全為1的常數矩陣,λ是量化參數建立單元1211所輸入的參數值,
Figure 02_image027
是對
Figure 02_image029
進行傅立葉轉換,
Figure 02_image031
是對
Figure 02_image033
進行傅立葉逆轉換,藉此獲得偽背景影像𝒥;其中,λ 的參數值為 0.00005,且
Figure 02_image035
Figure 02_image037
為[1, -2, 1]的向量。如下運算式(7)所示, h即表示所述量化參數矩陣。
Figure 02_image039
………(7)
承上述說明,若依據運算式(5),可不給定f、而直接指定h為另一參數矩陣,且該 h如下運算式(8)所示。
Figure 02_image041
………(8)
獲得該偽背景影像𝒥之後,該影像分析裝置12接著令影像差異運算模組122對該偽背景影像𝒥與該輸入影像 I進行該影像差異運算;其中,所述之影像差異運算係利用以下運算式(9)而完成。 𝒱=
Figure 02_image043
……(9)
於影像差異運算的運算式(9)之中, I是輸入影像,𝒥是偽背景影像,
Figure 02_image045
是輸入影像 I與偽背景影像𝒥的差異取絕對值,藉此獲得波動圖樣𝒱。
獲得該波動圖樣𝒱之後,該影像分析裝置12接著令該影像差異運算模組122的一範圍建立單元1221對該波動圖樣𝒱進行一影像標準化範圍建立運算,並透過影像差異運算模組122的一設定單元1222設定該波動圖樣𝒱之一特定硬閾值 ϒ之後,該影像分析裝置12接著令該二值化模組123根據該特定硬閾值 ϒ,將該波動圖樣𝒱進行該二值化處理,藉此獲得該指標圖像M λ 。於本發明中,所述之特定硬閾值 ϒ可為0.5、0.1、0.0001、或0.00001。
繼續地,獲得該指標圖像M λ 之後,該影像分析裝置12接著以該影像混合模組124對該指標圖像M λ 與該輸入影像 I進行一混合運算;其中,該混合運算係利用阿爾法混合運算法(alpha blending)獲得一背景雜訊分佈對照影像。最後,透過該影像顯示模組125顯示該背景雜訊分佈對照影像,藉此方式完成該輸入影像 I之影像檢測。
接著,請參閱圖2,為本發明之人工變造生醫實驗影像的檢測系統的第二架構圖。如圖2所示,本發明之第二種人工變造生醫實驗影像的檢測系統1,係包括:一影像接收裝置11與一影像分析裝置12,其中,該影像接收裝置11可以用來接收利用西方墨點法或聚合酶連鎖反應結果而形成的一輸入影像 I。進一步地,該影像分析裝置12更包括:一處理模組121、一影像差異運算模組122、一二值化模組123、一影像混合模組124、以及一影像顯示模組125,其中,該處理模組121用以接收該輸入影像 I,進而對該輸入影像 I進行一偽背景產生處理,進而獲得一偽背景影像𝒥,該影像差異運算模組122係耦接至該處理模組121,用以對該偽背景影像𝒥與該輸入影像 I進行一影像差異運算,進而獲得一波動圖樣𝒱,並且,該二值化模組123係耦接於該影像差異運算模組122,用以對該波動圖樣𝒱進行一二值化處理,進而獲得一指標圖像M λ ,該影像混合模組124係耦接於該二值化模組123,用以對該指標圖像M λ 與該輸入影像 I進行一混合運算,以獲得一背景雜訊分佈對照影像,且該影像顯示模組125係耦接至該影像混合模組124,用以判斷該背景雜訊分佈對照影像是否變造,藉此方式完成該輸入影像 I之影像檢測。
承上述,於本發明第二種人工變造生醫實驗影像的檢測系統1中,該處理模組121更包括一二維高斯低通濾波單元1214、一參數設定單元1215與一偽背景建立單元1216。與第一種人工變造生醫實驗影像的檢測系統1不同的是,當進行該偽背景產生處理時,藉由該參數設定單元1215設定該二維高斯低通濾波單元1214之一參數設定值,該偽背景建立單元1216藉由完成設定的該二維高斯低通濾波單元1214對該輸入影像 I進行一高斯模糊化(Gaussian Blur)的方式,以建立該偽背景影像𝒥。如此設置,當量化參數不足或不需進行量化分析時,可以利用該二維高斯低通濾波單元1214替代該量化參數建立單元1211與該相似運算單元1212。
經由上述,本發明之一種人工變造生醫實驗影像的檢測系統已清楚且完整地說明,接著將繼續藉由圖式說明本發明所提出之一種人工變造生醫實驗影像的檢測方法。請繼續參閱圖1、圖2以及圖3,其中,圖3為本發明之人工變造生醫實驗影像的檢測方法的流程圖。本發明之一種人工變造生醫實驗影像的檢測方法係包括下列主要步驟:
首先,該方法係執行步驟(S01),提供一影像接收裝置11接收一輸入影像。接著執行步驟(S02),提供一處理模組121以接收該輸入影像,進而對該輸入影像進行一偽背景產生處理,進而獲得一偽背景影像。繼續地,該方法係接著執行步驟(S03),提供一影像差異運算模組122用以對該偽背景影像與該輸入影像進行一影像差異運算,進而獲得一波動圖樣。
獲得該波動圖樣之後,接著進行步驟(S04), 將該波動圖樣透過一範圍建立單元1221對該波動圖樣進行一影像標準化範圍建立運算,再藉由一設定單元1222設定該波動圖樣之一特定硬閾值。獲得該特定硬閾值之後,係接著執行步驟(S05),提供一二值化模組123並根據該特定硬閾值 對該波動圖樣進行一二值化處理,進而獲得一指標圖像。獲得該指標圖像之後,係接著執行步驟(S06),提供一影像混合模組124對該指標圖像與該輸入影像進行一混合運算,獲得背景雜訊分佈對照影像之後,最後執行步驟(S07),提供一影像顯示模組125顯示該背景雜訊分佈對照影像,藉此方式完成該輸入影像之影像檢測。
進一步地,請同時參閱圖1,於第一種實施例中,該步驟(2)係包括以下細部步驟:步驟(21a),以該處理模組121的一量化參數建立單元1211對該輸入影像 I進行一影像量化參數建立運算,並根據該影像量化參數建立運算而建立一量化參數矩陣;步驟(22a),以該處理模組121的一相似運算單元1212對該輸入影像 I與該偽背景影像𝒥進行一相似性計算;以及步驟 (23a), 以該處理模組121的一偽背景產生單元1213對該量化參數矩陣與該相似性計算的結果進行一傅立葉轉換的方式,產生該偽背景影像𝒥。
另外,請同時參閱圖2,於本發明第二種實施例中,該步驟(2)係包括以下細部步驟:步驟(21b),提供一二維高斯低通濾波單元1214;步驟(22b),以該處理模組121的一參數設定單元1215設定該二維高斯低通濾波單元1214之一參數設定值;以及步驟(23b),以該處理模組121的一偽背景建立單元1216對該輸入影像 I進行一高斯模糊化(Gaussian Blur)的方式,以建立該偽背景影像𝒥。
如此,上述已清楚且完整的說明本發明之一種人工變造生醫實驗影像的檢測系統及方法的原理與技術特徵,進一步地,發明人係透過下述之實驗方式證明本發明之人工變造生醫實驗影像的檢測系統在分子生物學實驗的圖像中具有偽造辨識的功能。
請參閱圖4,圖4為人為變造影像的分析結果。如圖4所示,圖4中的(A)圖與(C)圖為經實驗展示用的變造PCR產物圖像,(B)圖與(D)圖分別為(A)圖與(C)圖透過人工變造生醫實驗影像的檢測系統之分析結果,其中,從原圖像中移除矩形區域來創建(A)圖。另外,通過獨立於其他PCR圖像複製三個矩形區域,將它們黏貼在同一模板上,然後適當地調整圖像亮度和對比度來構成(C)圖,因此(C)圖看起來像是包含六個正帶和一個負帶的共同實驗圖像。根據本發明之人工變造生醫實驗影像的檢測系統之分析結果,(B)圖中的黑色矩形是指標圖像M λ 的空區,該空區對應於來源圖像中所移除的矩形區域。另外,由(D)圖可知其所標示的矩形區域為(C)圖PCR圖像所複製三個矩形區域,進而得以揭示隱形或保留在後製處理圖像上的圖案。
如此,上述係已完整且清楚地說明本發明之一種人工變造生醫實驗影像的檢測系統及方法;並且,經由上述可以得知本發明係具有以下之優點:
本發明主要提供一種人工變造生醫實驗影像的檢測系統及方法。根據本發明之設計,一處理模組121、一影像差異運算模組122、一二值化模組123、與一影像混合模組124係透過函式庫、變數或運算元的形式建立於一影像分析裝置12之中。同時,本發明又特別設計該處理模組121具有量化參數建立單元1211、相似運算單元1212與偽背景產生單元1213,其目的在於該影像分析裝置12能夠在輸入影像上顯示人造的影像。此外,當量化參數不足或不需進行量化分析時,本發明特別設計之該處理模組121具有一二維高斯低通濾波單元1214、一參數設定單元1215與一偽背景建立單元1216,進而讓該處理模組121只需利用高斯模糊化的方式完成該輸入影像之影像檢測。
必須加以強調的是,上述之詳細說明係針對本發明可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。
<本發明> S01~S07‧‧‧方法步驟 1‧‧‧人工變造生醫實驗影像的檢測系統 11‧‧‧影像接收裝置 12‧‧‧影像分析裝置 121‧‧‧處理模組 122‧‧‧影像差異運算模組 123‧‧‧二值化模組 124‧‧‧影像混合模組 125‧‧‧影像顯示模組 1211‧‧‧量化參數建立單元 1212‧‧‧相似運算單元 1213‧‧‧偽背景產生單元 1214‧‧‧二維高斯低通濾波單元 1215‧‧‧參數設定單元 1216‧‧‧偽背景建立單元 1221‧‧‧範圍建立單元 1222‧‧‧設定單元
圖1為本發明之人工變造生醫實驗影像的檢測系統的第一架構圖; 圖2為本發明之人工變造生醫實驗影像的檢測系統的第二架構圖; 圖3為本發明之人工變造生醫實驗影像的檢測方法的流程圖;以及 圖4為人為變造影像的分析結果。
S01~S07‧‧‧方法步驟

Claims (13)

  1. 一種人工變造生醫實驗影像的檢測系統,係包括: 一影像接收裝置,用以接收一輸入影像;以及 一影像分析裝置,係包括: 一處理模組,用以接收該輸入影像,進而對該輸入影像進行一偽背景產生處理,進而獲得一偽背景影像; 一影像差異運算模組,係耦接至該處理模組,用以對該偽背景影像與該輸入影像進行一影像差異運算,進而獲得一波動圖樣; 一二值化模組,係耦接於該影像差異運算模組,用以對該波動圖樣進行一二值化處理,進而獲得一指標圖像; 一影像混合模組,係耦接於該二值化模組,用以對該指標圖像與該輸入影像進行一混合運算,以獲得一背景雜訊分佈對照影像;以及 一影像顯示模組,係耦接至該影像混合模組,用以顯示該背景雜訊分佈對照影像,藉此方式完成該輸入影像之影像檢測。
  2. 如申請專利範圍第1項所述之人工變造生醫實驗影像的檢測系統,其中,該影像分析裝置為下列任一者:平板電腦、筆記型電腦、桌上型電腦、或中央處理器。
  3. 如申請專利範圍第1項所述之人工變造生醫實驗影像的檢測系統,其中,該處理模組更包括: 一量化參數建立單元,用以對該輸入影像進行一影像量化參數建立運算,並根據該影像量化參數建立運算結果以建立一量化參數矩陣; 一相似運算單元,係耦接至該量化參數建立單元,用以對該輸入影像與該偽背景影像進行一相似性計算;以及 一偽背景產生單元,係耦接至該相似運算單元,藉由該量化參數矩陣與該相似性計算的結果進行一傅立葉轉換的方式,產生該偽背景影像。
  4. 如申請專利範圍第1項所述之人工變造生醫實驗影像的檢測系統,其中,該影像差異運算模組更包括: 一範圍建立單元,用以對該波動圖樣進行一影像標準化範圍建立運算;以及 一設定單元,用以設定該波動圖樣之一特定硬閾值; 其中,根據該特定硬閾值,將該波動圖樣進行該二值化處理,獲得該指標圖像。
  5. 如申請專利範圍第1項所述之人工變造生醫實驗影像的檢測系統,其中,該處理模組更包括: 一二維高斯低通濾波單元; 一參數設定單元,係耦接至該二維高斯低通濾波單元,用以設定該二維高斯低通濾波單元之一參數設定值; 一偽背景建立單元,係耦接至該二維高斯低通濾波單元,藉由該二維高斯低通濾波單元對該輸入影像進行一高斯模糊化的方式,以建立該偽背景影像。
  6. 如申請專利範圍第1項所述之人工變造生醫實驗影像的檢測系統,其中,該混合運算係利用一阿爾法混合運算法而完成。
  7. 如申請專利範圍第1項所述之人工變造生醫實驗影像的檢測系統,其中,該輸入影像係為利用西方墨點法或聚合酶連鎖反應結果而形成的生醫類實驗影像。
  8. 如申請專利範圍第1項所述之人工變造生醫實驗影像的檢測系統,其中,該處理模組、該影像差異運算模組、該二值化模組、與該影像混合模組係透過函式庫、變數或運算元的形式建立於該影像分析裝置之中。
  9. 一種人工變造生醫實驗影像的檢測方法,係包括以下步驟: (1)提供一影像接收裝置接收一輸入影像; (2)提供一處理模組以接收該輸入影像,進而對該輸入影像進行一偽背景產生處理,進而獲得一偽背景影像; (3)提供一影像差異運算模組用以對該偽背景影像與該輸入影像進行一影像差異運算,進而獲得一波動圖樣; (4)將該波動圖樣透過一範圍建立單元對該波動圖樣進行一影像標準化範圍建立運算,再藉由一設定單元設定該波動圖樣之一特定硬閾值; (5)提供一二值化模組並根據該特定硬閾值 對該波動圖樣進行一二值化處理,進而獲得一指標圖像; (6)提供一影像混合模組對該指標圖像與該輸入影像進行一混合運算,以獲得背景雜訊分佈對照影像;以及 (7)提供一影像顯示模組顯示該背景雜訊分佈對照影像,藉此方式完成該輸入影像之影像檢測。
  10. 如申請專利範圍第9項所述之人工變造生醫實驗影像的檢測方法,其中,該步驟(2)係包括以下細部步驟: (21a)以該處理模組的一量化參數建立單元對該輸入影像進行一影像量化參數建立運算,並根據該影像量化參數建立運算結果以建立一量化參數矩陣; (22a)以該處理模組的一相似運算單元對該輸入影像與該偽背景影像進行一相似性計算;以及 (23a)以該處理模組的一偽背景產生單元對該量化參數矩陣與該相似性計算的結果進行一傅立葉轉換的方式,產生該偽背景影像。
  11. 如申請專利範圍第9項所述之人工變造生醫實驗影像的檢測方法,其中,該步驟(2)係包括以下細部步驟: (21b)提供一二維高斯低通濾波單元; (22b)以該處理模組的一參數設定單元設定該二維高斯低通濾波單元之一參數設定值;以及 (23b)以該處理模組的一偽背景建立單元對該輸入影像進行一高斯模糊化的方式,以建立該偽背景影像。
  12. 如申請專利範圍第9項所述之人工變造生醫實驗影像的檢測方法,其中,該混合運算係利用一阿爾法混合運算法而完成。
  13. 如申請專利範圍第9項所述之人工變造生醫實驗影像的檢測方法,其中,該輸入影像係為利用西方墨點法與聚合酶連鎖反應結果而形成的生醫類實驗影像。
TW108106526A 2019-02-26 2019-02-26 人工變造生醫實驗影像的檢測系統及方法 TWI683320B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108106526A TWI683320B (zh) 2019-02-26 2019-02-26 人工變造生醫實驗影像的檢測系統及方法
US16/394,082 US11017516B2 (en) 2019-02-26 2019-04-25 Forgery detection system and its method for falsified biomedical experiment images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108106526A TWI683320B (zh) 2019-02-26 2019-02-26 人工變造生醫實驗影像的檢測系統及方法

Publications (2)

Publication Number Publication Date
TWI683320B true TWI683320B (zh) 2020-01-21
TW202032576A TW202032576A (zh) 2020-09-01

Family

ID=69942385

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108106526A TWI683320B (zh) 2019-02-26 2019-02-26 人工變造生醫實驗影像的檢測系統及方法

Country Status (2)

Country Link
US (1) US11017516B2 (zh)
TW (1) TWI683320B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220374641A1 (en) * 2021-05-21 2022-11-24 Ford Global Technologies, Llc Camera tampering detection
US11967184B2 (en) 2021-05-21 2024-04-23 Ford Global Technologies, Llc Counterfeit image detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303184A (zh) * 2012-03-21 2015-01-21 皇家飞利浦有限公司 整合医疗成像和活检数据的临床工作站以及使用其的方法
CN104598212A (zh) * 2013-10-30 2015-05-06 上海联影医疗科技有限公司 基于算法库的图像处理方法及装置
CN105678073A (zh) * 2016-01-06 2016-06-15 深圳安泰创新科技股份有限公司 医学影像查看方法、装置及系统
CN106156506A (zh) * 2016-07-05 2016-11-23 青岛海信医疗设备股份有限公司 二维医学图像的组织器官伪彩显示方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171570A1 (en) * 2015-04-20 2016-10-27 Mars Bioimaging Limited Improving material identification using multi-energy ct image data

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303184A (zh) * 2012-03-21 2015-01-21 皇家飞利浦有限公司 整合医疗成像和活检数据的临床工作站以及使用其的方法
CN104598212A (zh) * 2013-10-30 2015-05-06 上海联影医疗科技有限公司 基于算法库的图像处理方法及装置
CN105678073A (zh) * 2016-01-06 2016-06-15 深圳安泰创新科技股份有限公司 医学影像查看方法、装置及系统
CN106156506A (zh) * 2016-07-05 2016-11-23 青岛海信医疗设备股份有限公司 二维医学图像的组织器官伪彩显示方法及装置

Also Published As

Publication number Publication date
US20200273157A1 (en) 2020-08-27
US11017516B2 (en) 2021-05-25
TW202032576A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
Al-Kofahi et al. A deep learning-based algorithm for 2-D cell segmentation in microscopy images
Awan et al. Context-aware learning using transferable features for classification of breast cancer histology images
Reta et al. Segmentation and classification of bone marrow cells images using contextual information for medical diagnosis of acute leukemias
Li et al. Segmentation of touching cell nuclei using gradient flow tracking
TWI683320B (zh) 人工變造生醫實驗影像的檢測系統及方法
He et al. iCut: an integrative cut algorithm enables accurate segmentation of touching cells
Nanni et al. Texture descriptors ensembles enable image-based classification of maturation of human stem cell-derived retinal pigmented epithelium
Jin et al. Quaternion-based color image filtering for impulsive noise suppression
Khan et al. Generalizing convolution neural networks on stain color heterogeneous data for computational pathology
Munshi et al. Disentangling multiple scattering with deep learning: application to strain mapping from electron diffraction patterns
Kar et al. Benchmarking of deep learning algorithms for 3D instance segmentation of confocal image datasets
Jacquemet Deep learning to analyse microscopy images
McCombe et al. HistoClean: Open-source software for histological image pre-processing and augmentation to improve development of robust convolutional neural networks
Zhu et al. Convex analysis of mixtures for separating non-negative well-grounded sources
Robotti et al. 2D-DIGE and fluorescence image analysis
Drumetz et al. Semiautomatic classification of cementitious materials using scanning electron microscope images
Chaphalkar et al. Automated multi-peak tracking kymography (AMTraK): a tool to quantify sub-cellular dynamics with sub-pixel accuracy
Arganda-Carreras et al. Designing image analysis pipelines in light microscopy: a rational approach
Wilm et al. Fast whole-slide cartography in colon cancer histology using superpixels and CNN classification
Keller et al. Do Tissue Source Sites Leave Identifiable Signatures in Whole Slide Images Beyond Staining?
Merlina et al. Detecting the width of pap smear cytoplasm image based on GLCM feature
Raipuria et al. Stain-AgLr: Stain Agnostic Learning for Computational Histopathology Using Domain Consistency and Stain Regeneration Loss
Lukashevich et al. An approach to cell nuclei counting in histological image analysis
Fotos et al. Deep learning enhanced Watershed for microstructural analysis using a boundary class semantic segmentation
Jurgas et al. Robust Multiresolution and Multistain Background Segmentation in Whole Slide Images