TWI682770B - 診斷輔助方法 - Google Patents
診斷輔助方法 Download PDFInfo
- Publication number
- TWI682770B TWI682770B TW107136315A TW107136315A TWI682770B TW I682770 B TWI682770 B TW I682770B TW 107136315 A TW107136315 A TW 107136315A TW 107136315 A TW107136315 A TW 107136315A TW I682770 B TWI682770 B TW I682770B
- Authority
- TW
- Taiwan
- Prior art keywords
- result
- algorithm
- diagnostic
- auxiliary
- image data
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5223—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B7/00—Instruments for auscultation
- A61B7/02—Stethoscopes
- A61B7/04—Electric stethoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0833—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
- A61B8/085—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/461—Displaying means of special interest
- A61B8/463—Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/20—Ensemble learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Theoretical Computer Science (AREA)
- Artificial Intelligence (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Computational Linguistics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Physiology (AREA)
- Fuzzy Systems (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Vascular Medicine (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
本發明提供了一種診斷輔助方法。上述診斷輔助方法包括:藉由一聽診器產生一聲音資料;藉由一超音波裝置產生一影像資料;藉由一第一處理模組處理上述聲音資料,以產生一第一結果;根據一第二處理模組處理上述影像資料,以產生一第二結果;以及根據上述第一結果以及上述第二結果,產生一輔助診斷結果。
Description
本發明說明書主要係有關於一診斷輔助技術,特別係有關於同時根據聽診器產生之聲音資料和超音波裝置產生之影像資料,產生一診斷輔助結果之診斷輔助技術。
傳統在醫療上,超音波裝置與聽診器往往都是獨立作業,並未同時被使用。因此,可能導致在評估一些診斷的準確性有所降低。
然而,超音波裝置與聽診器所產生之結果其實是具有互補的關聯性。舉例來說,聽診器雖然可用來聽出可能的症狀,但卻不能準確地確認症狀實際發生的位置,然而,超音波裝置則可以提供發現症狀的位置影像。反過來說,超音波裝置雖可以得到明確的症狀位置影像,但由於從影像判讀辨識症狀上會來得比聽診器難度更高,也可能會有機率降低其判斷性。
因此,若能結合超音波裝置與聽診器的優勢,將可更加提高醫療輔助診斷上的準確性。
有鑑於上述先前技術之問題,本發明提供了一診斷輔助技術,特別係有關於同時根據聽診器產生之聲音資料和超音波裝置產生之影像資料,產生一診斷輔助結果之診斷輔助方法。
根據本發明之一實施例提供了一種診斷輔助方法。上述診斷輔助方法包括:藉由一聽診器產生一聲音資料;藉由一超音波裝置產生一影像資料;藉由一第一處理模組處理上述聲音資料,以產生一第一結果;根據一第二處理模組處理上述影像資料,以產生一第二結果;以及 根據上述第一結果以及上述第二結果,產生一輔助診斷結果。
根據本發明之一些實施例,上述第一處理模組係根據一第一演算法處理上述聲音資料,以產生上述第一結果,以及上述第二處理模組係根據一第二演算法處理上述影像資料,以產生上述第二結果。
根據本發明之一些實施例,上述診斷輔助方法更包括,藉由一第三處理模組,根據一第三演算法,分析上述第一結果以及上述第二結果,以產生上述輔助診斷結果。
關於本發明其他附加的特徵與優點,此領域之熟習技術人士,在不脫離本發明之精神和範圍內,當可根據本案實施方法中所揭露之診斷輔助方法,做些許的更動與潤飾而得到。
本章節所敘述的是實施本發明之最佳方式,目的在於說明本發明之精神而非用以限定本發明之保護範圍,本發明之保護範圍當視後附之申請專利範圍所界定者為準。
第1圖係顯示根據本發明之一實施例所述之診斷輔助系統100之方塊圖。如第1圖所示,診斷輔助系統100可包括一聽診器110、一超音波裝置120,以及一診斷輔助裝置130。需注意地是,在第1圖所示之方塊圖,僅係為了方便說明本發明之實施例,但本發明並不以此為限。
如第1圖所示,根據本發明一實施例,診斷輔助裝置130可包括一處理裝置131、一儲存裝置132,以及一顯示裝置133。根據本發明之實施例,診斷輔助裝置130可係一智慧型手機、一平板電腦、一桌上型電腦以及一筆電等。此外,需注意地是,在第1圖所示之診斷輔助裝置130,僅係為了方便說明本發明之實施例,但本發明並不以此為限。診斷輔助裝置130中亦可包含其他元件。
根據本發明之一實施例,聽診器110可係一數位聽診器。聽診器110可用以取得人體內之器官(例如:心臟、肺部,以及腸胃等)相關之聲音資料(或聲音訊號)。當聽診器110取得聲音資料後,聽診器110可將其取得之聲音資料透過一有線或無線之傳輸方式傳送到診斷輔助裝置130。根據本發明之一實施例,聽診器110產生之聲音資料可暫存在斷輔助裝置130之儲存裝置132中。
根據本發明之一實施例,超音波裝置120可係一超音波探頭。超音波裝置120可包括一傳送器和一接收器(圖未顯示)。超音波裝置120之傳送器會將電訊號轉換為聲波訊號(即超音波訊號),並將聲波訊號發送至人體。超音波裝置120之接收器會接收從人體反射之聲波訊號,並將反射之聲波訊號轉換成電訊號。接著,超音波裝置120之接收器會再將電訊號轉換為2維(2D)影像(即影像資料)。超音波裝置120取得人體內之器官相關之影像資料後,超音波裝置120可將其取得之人體內之器官相關之影像資料透過一有線或無線之傳輸方式傳送到診斷輔助裝置130。根據本發明之一實施例,超音波裝置120產生之影像資料可暫存在斷輔助裝置130之儲存裝置132中。
根據本發明之一實施例,儲存裝置132可係一揮發性記憶體(volatile memory)(例如:隨機存取記憶體(Random Access Memory, RAM)),或一非揮發性記憶體(non-volatile memory)(例如:快閃記憶體(flash memory)、唯讀記憶體(Read Only Memory, ROM))、一硬碟或上述記憶裝置之組合。根據本發明之一實施例,儲存裝置132可用以儲存軟體和韌體程式碼、訓練過之聲音資料,以及訓練過之影像資料等。在本發明之實施例中,訓練過之聲音資料係表示預先經過醫生標記有問題之聲音資料。舉例來說,在醫生先前針對不同器官之病症之診斷過程中,醫生針對有問題之聲音波形進行標記之聲音資料,就會被儲存在儲存裝置132作為訓練過之聲音資料。此外,在本發明之實施例中,訓練過之影像資料表示預先經過醫生標記有問題之影像資料。舉例來說,在醫生先前針對不同器官之病症之診斷過程中,醫生針對有問題之影像特徵(feature)進行標記之影像資料,就會被儲存在儲存裝置132作為訓練過之影像資料。
根據本發明之一實施例,當診斷輔助裝置130分別從聽診器110和超音波裝置120取得聲音資料和影像資料後,診斷輔助裝置130之處理裝置131之第一處理模組(圖未顯示)會從儲存裝置132取得訓練過之聲音資料和來自聽診器110之聲音資料,並根據訓練過之聲音資料和來自聽診器110之聲音資料,處理並分析來自聽診器110之聲音資料,以產生第一結果。具體來說,處理裝置131會去比較訓練過之聲音資料和來自聽診器110之聲音資料,以判斷目前來自聽診器110之聲音資料中那些部分可能有問題,且處理裝置131會去標記聲音資料中可能有問題之部分,以產生第一結果。
此外,診斷輔助裝置130之處理裝置131之第二處理模組(圖未顯示)會從儲存裝置132取得訓練過之影像資料和來自超音波裝置120之影像資料,並根據訓練過之影像資料和來自超音波裝置120之影像資料,處理並分析來自超音波裝置120之影像資料,以產生第二結果。具體來說,處理裝置131會去比較訓練過之影像資料和來自超音波裝置120之影像資料,以判斷目前來自超音波裝置120之影像資料中那些部分可能有問題,且處理裝置131會去標記影像資料中可能有問題之部分,以產生第二結果。
根據本發明之一實施例,處理裝置131之第一處理模組會根據一第一演算法處理並分析來自聽診器110之聲音信號,以產生第一結果,以及處理裝置131之第二處理模組會根據一第二演算法處理並分析來超音波裝置120之影像信號,以產生第二結果。根據本發明一實施例,第一演算法係一遞歸神經網路(Recurrent Neural Network,RNN)深度學習(deep learning)演算法,以及第二演算法係一卷積神經網路(Convolutional Neural Network,CNN) 深度學習演算法,但本發明不以此為限。根據本發明一些實施例,第一演算法亦可係CNN深度學習演算法或其他深度學習演算法,以及第二演算法亦可係RNN深度學習演算法或其他深度學習演算法。根據本發明一些實施例,第一演算法和第二演算法亦可係兩種不同深度學習演算法之結合,例如:第一演算法中可包含CNN深度學習演算和RNN深度學習演算法之結合,但本發明不以此為限。
RNN深度學習演算法係利用序列的信息,通過反向傳播和記憶機制,對一個序列的每一個元素執行同樣的操作,並且當前的輸出會受之前輸出的影響。處理裝置131之第一處理模組可採用RNN深度學習演算法,比較訓練過之聲音資料和來自聽診器110之聲音資料,以產生第一結果。
CNN深度學習演算法之架構主要可分成卷積層(Convolution Layer)、池化層(Pooling Layer)以及全連接層(Fully Connected Layer)。卷積層可將影像和特定特徵檢測器(feature Detector)做卷積運算,以萃取出影像當中的特徵。池化層會採用一池化之方式(例如:最大池化(Max Pooling),但本發明不以此為限)將經過卷積層處理過後之影像劃分為複數個區塊,並從每個區塊挑出最大值。全連接層則係會平坦化(flatten)池化層處理過後之結果。此外,CNN深度學習演算法可具有不同的類型,例如:區域卷積神經網路(region CNN,R-CNN)、快速區域卷積神經網路(fast R-CNN)以及較快速區域卷積神經網路(faster R-CNN)。處理裝置131之第二模組可採用CNN深度學習演算法,比較訓練過之影像資料和來自超音波裝置120之影像資料,以產生第二結果。
根據本發明之一實施例,使用者可根據第一結果和第二結果去調整深度學習演算法(例如:RNN深度學習演算法和CNN深度學習演算法)之參數,例如:時期的數量(number of epoch)、學習率(learning rate)、衰減函數(objective function)、權值初始化(weight initialization)以及正規化相關(regularization),但本發明不以此為限。
根據本發明之一實施例,當第一結果和第二結果產生後,處理裝置131之第三處理模組(圖未顯示)會接收第一結果和第二結果,並根據第一結果和第二結果產生一輔助診斷結果。根據本發明之一實施例,處理裝置131之第三處理模組會根據一第三演算法,來分析第一結果和第二結果,以產生輔助診斷結果。根據本發明之一實施例,第三演算法可係一整體學習(Ensemble Learning)演算法,但本發明不以此為限。在整體學習演算法中,會綜合考慮不同分類器的預測結果(即第一結果和第二結果),並給予不同預測結果不同之權重,以取得更好的預測結果(即輔助診斷結果)。
當處理裝置131產生輔助診斷結果後,處理裝置131會將輔助診斷結果輸出到顯示裝置133。顯示裝置133接收到輔助診斷結果後,可顯示輔助診斷結果,供醫生參考。根據本發明之一實施例,輔助診斷結果可係一具有標記之聲音資料、一具有標記之影像資料,或一文字資料,但本發明不以此為限。舉例來說,若輔助診斷結果係一文字資料,輔助診斷結果中會包括人體可能出現哪些症狀描述,例如:可能有出現症狀之位置,或是可能出現該症狀之機率等。
第2圖係根據本發明之一實施例所述之診斷輔助方法之流程圖200。此指無線資源分配方法可適用本發明之診斷輔助系統100。在步驟S210,藉由診斷輔助系統100之一聽診器產生一聲音資料。在步驟S220,藉由診斷輔助系統100之一超音波裝置產生一影像資料。在步驟S230,藉由診斷輔助系統100之診斷輔助裝置之一第一處理模組處理聽診器所產生之聲音資料,以產生一第一結果。在步驟S240,藉由診斷輔助系統100之診斷輔助裝置之一一第二處理模組處理超音波裝置產生之影像資料,以產生一第二結果。在步驟S250,藉由診斷輔助系統100之診斷輔助裝置根據第一結果以及第二結果,產生一輔助診斷結果。
根據本發明一實施例,在診斷輔助方法中,第一處理模組係根據一第一演算法處理聽診器所產生之聲音資料,以產生第一結果,以及第二處理模組係根據一第二演算法處理超音波裝置所產生之影像資料,以產生第二結果。根據本發明一實施例,第一演算法可係一遞歸神經網路(RNN)深度學習演算法,以及第二演算法可係一卷積神經網路(CNN)深度學習演算法。根據本發明一實施例,在診斷輔助方法中,第一處理模組會根據第一演算法,比較訓練過之聲音資料和處理聽診器所產生之聲音資料,以產生第一結果,以及第二處理模組會根據第二演算法,比較訓練過之影像資料和超音波裝置所產生之影像資料,以產生第二結果。
根據本發明一實施例,在診斷輔助方法中更包括,藉由診斷輔助系統100之診斷輔助裝置之一第三處理模組,根據一第三演算法,分析第一結果以及第二結果,以產生輔助診斷結果。根據本發明一實施例,第三演算法可係一整體學習演算法。
根據本發明一實施例,在診斷輔助方法中更包括,藉由診斷輔助系統100之一顯示裝置顯示輔助診斷結果。根據本發明之一實施例,輔助診斷結果可係一具有標記之聲音資料、一具有標記之影像資料,或一文字資料,但本發明不以此為限。
根據本發明之實施例所提出之診斷輔助方法,將可透過整合超音波裝置和聽診器取得之結果,並藉由深度學習演算法的計算來強化超音波裝置和聽診器取得之結果間的相關性,以更精確且有效的提供一輔助診斷結果供醫生參考。
在本說明書中以及申請專利範圍中的序號,例如「第一」、「第二」等等,僅係為了方便說明,彼此之間並沒有順序上的先後關係。
本發明之說明書所揭露之方法和演算法之步驟,可直接透過執行一處理器直接應用在硬體以及軟體模組或兩者之結合上。一軟體模組(包括執行指令和相關數據)和其它數據可儲存在數據記憶體中,像是隨機存取記憶體(RAM)、快閃記憶體(flash memory)、唯讀記憶體(ROM)、可抹除可規化唯讀記憶體(EPROM)、電子可抹除可規劃唯讀記憶體(EEPROM)、暫存器、硬碟、可攜式應碟、光碟唯讀記憶體(CD-ROM)、DVD或在此領域習之技術中任何其它電腦可讀取之儲存媒體格式。一儲存媒體可耦接至一機器裝置,舉例來說,像是電腦/處理器(爲了說明之方便,在本說明書以處理器來表示),上述處理器可透過來讀取資訊(像是程式碼),以及寫入資訊至儲存媒體。一儲存媒體可整合一處理器。一特殊應用積體電路(ASIC)包括處理器和儲存媒體。一用戶設備則包括一特殊應用積體電路。換句話說,處理器和儲存媒體以不直接連接用戶設備的方式,包含於用戶設備中。此外,在一些實施例中,任何適合電腦程序之產品包括可讀取之儲存媒體,其中可讀取之儲存媒體包括和一或多個所揭露實施例相關之程式碼。在一些實施例中,電腦程序之產品可包括封裝材料。
以上段落使用多種層面描述。顯然的,本文的教示可以多種方式實現,而在範例中揭露之任何特定架構或功能僅為一代表性之狀況。根據本文之教示,任何熟知此技藝之人士應理解在本文揭露之各層面可獨立實作或兩種以上之層面可以合併實作。
雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何熟習此技藝者,在不脫離本揭露之精神和範圍內,當可作些許之更動與潤飾,因此發明之保護範圍當視後附之申請專利範圍所界定者為準。
100‧‧‧診斷輔助系統
110‧‧‧聽診器
120‧‧‧超音波裝置
130‧‧‧診斷輔助裝置
131‧‧‧處理裝置
132‧‧‧儲存裝置
133‧‧‧顯示裝置
200‧‧‧流程圖
S210~S250‧‧‧步驟
第1圖係顯示根據本發明之一實施例所述之診斷輔助系統100之方塊圖。 第2圖係根據本發明之一實施例所述之診斷輔助方法之流程圖200。
200‧‧‧流程圖
S210~S250‧‧‧步驟
Claims (8)
- 一種診斷輔助方法,包括:藉由一聽診器產生一聲音資料;藉由一超音波裝置產生一影像資料;藉由一第一處理模組,根據一第一演算法,比較訓練過之聲音資料和上述聲音資料,以產生一第一結果;藉由一第二處理模組,根據一第二演算法,比較訓練過之影像資料和上述影像資料,以產生一第二結果;以及根據上述第一結果以及上述第二結果,產生一輔助診斷結果。
- 如申請專利範圍第1項所述之診斷輔助方法,其中上述第一演算法係一遞歸神經網路(RNN)深度學習演算法,以及上述第二演算法係一卷積神經網路(CNN)深度學習演算法。
- 如申請專利範圍第1項所述之診斷輔助方法,更包括:藉由一第三處理模組,根據一第三演算法,分析上述第一結果以及上述第二結果,以產生上述輔助診斷結果。
- 如申請專利範圍第3項所述之診斷輔助方法,其中上述第三演算法係一整體學習演算法。
- 如申請專利範圍第1項所述之診斷輔助方法,其中上述聽診器係一數位聽診器。
- 如申請專利範圍第1項所述之診斷輔助方法,其中上述超音波裝置係一超音波探頭。
- 如申請專利範圍第1項所述之診斷輔助方法,更包括:在一顯示裝置顯示上述輔助診斷結果。
- 如申請專利範圍第1項所述之診斷輔助方法,其中上述輔助診斷結果係一具有標記之聲音資料、一具有標記之影像資料或一文字資料。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107136315A TWI682770B (zh) | 2018-10-16 | 2018-10-16 | 診斷輔助方法 |
US16/504,619 US20200113545A1 (en) | 2018-10-16 | 2019-07-08 | Diagnostic assistance method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107136315A TWI682770B (zh) | 2018-10-16 | 2018-10-16 | 診斷輔助方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI682770B true TWI682770B (zh) | 2020-01-21 |
TW202015623A TW202015623A (zh) | 2020-05-01 |
Family
ID=69942447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107136315A TWI682770B (zh) | 2018-10-16 | 2018-10-16 | 診斷輔助方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20200113545A1 (zh) |
TW (1) | TWI682770B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10957341B2 (en) * | 2018-12-28 | 2021-03-23 | Intel Corporation | Ultrasonic attack detection employing deep learning |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10052081B2 (en) * | 2016-08-17 | 2018-08-21 | California Institute Of Technology | Enhanced stethoscope devices and methods |
-
2018
- 2018-10-16 TW TW107136315A patent/TWI682770B/zh active
-
2019
- 2019-07-08 US US16/504,619 patent/US20200113545A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10052081B2 (en) * | 2016-08-17 | 2018-08-21 | California Institute Of Technology | Enhanced stethoscope devices and methods |
Also Published As
Publication number | Publication date |
---|---|
US20200113545A1 (en) | 2020-04-16 |
TW202015623A (zh) | 2020-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11817203B2 (en) | Ultrasound clinical feature detection and associated devices, systems, and methods | |
US11207055B2 (en) | Ultrasound Cardiac Doppler study automation | |
JP5185811B2 (ja) | 多段分類器を用いた画像分割のためのシステム及び方法 | |
CN104706384B (zh) | 使用剪切波获得关于感兴趣区域的弹性信息的方法和设备 | |
JP2021119996A (ja) | 情報処理装置、内視鏡用プロセッサ、情報処理方法およびプログラム | |
EP3781036A1 (en) | Electronic stethoscope | |
US20200178930A1 (en) | Method and system for evaluating cardiac status, electronic device and ultrasonic scanning device | |
TW201244691A (en) | Heart sound signal/heart disease or cardiopathy distinguishing system and method | |
US20230329646A1 (en) | Classifying biomedical acoustics based on image representation | |
Argha et al. | Artificial intelligence based blood pressure estimation from auscultatory and oscillometric waveforms: a methodological review | |
WO2016206704A1 (en) | The smart stethoscope | |
US11532084B2 (en) | Gating machine learning predictions on medical ultrasound images via risk and uncertainty quantification | |
CN111031930A (zh) | 声波诊断装置及声波诊断装置的控制方法 | |
CN111370120B (zh) | 一种基于心音信号的心脏舒张功能障碍的检测方法 | |
TWI682770B (zh) | 診斷輔助方法 | |
CN112367921B (zh) | 声波诊断装置及声波诊断装置的控制方法 | |
Joshi et al. | Ai-cardiocare: artificial intelligence based device for cardiac health monitoring | |
US20200178840A1 (en) | Method and device for marking adventitious sounds | |
US20220280065A1 (en) | A method and apparatus for processing asthma patient cough sound for application of appropriate therapy | |
Altaf et al. | Systematic Review for Phonocardiography Classification Based on Machine Learning | |
US20230329674A1 (en) | Ultrasound imaging | |
CN111166371A (zh) | 诊断辅助方法 | |
Xia et al. | Uncertainty-aware Health Diagnostics via Class-balanced Evidential Deep Learning | |
US20180092606A1 (en) | Heart Sound Processing Method and System for Detecting Cardiopathy | |
Nnamdi et al. | Model confidence calibration for reliable covid-19 early screening via audio signal analysis |