TWI682294B - Soldering process parameters suggestion method - Google Patents
Soldering process parameters suggestion method Download PDFInfo
- Publication number
- TWI682294B TWI682294B TW107131999A TW107131999A TWI682294B TW I682294 B TWI682294 B TW I682294B TW 107131999 A TW107131999 A TW 107131999A TW 107131999 A TW107131999 A TW 107131999A TW I682294 B TWI682294 B TW I682294B
- Authority
- TW
- Taiwan
- Prior art keywords
- soldering process
- information
- final product
- clustering
- soldering
- Prior art date
Links
Images
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
本發明是關於一種焊錫製程參數建議方法,特別是關於一種使用機器學習方法之焊錫製程參數建議方法。The present invention relates to a soldering process parameter recommendation method, and in particular to a soldering process parameter recommendation method using a machine learning method.
焊錫參數的取得在焊錫作業流程中極為重要,同時須考慮產品良率、生產穩定、生產效率、生產能耗…等。如何快速找到新產品的作業參數、調整修改品的作業參數,如何在上線生產運行後持續優化焊錫參數,一直以來都需仰賴深富焊錫經驗的專家師傅們指導,同時花相當多的時間進行反覆測試驗證,不僅耗費人力、耗費成本、更無法確定為得到最佳參數所需花費的時間,也限制了產線自動化及靈活生產的發展。Obtaining soldering parameters is extremely important in the soldering process, at the same time, product yield, production stability, production efficiency, production energy consumption, etc. must be considered. How to quickly find the operating parameters of new products, adjust the operating parameters of modified products, and how to continuously optimize the soldering parameters after the on-line production operation, has always relied on the guidance of expert experts with deep soldering experience, and spent a lot of time to repeat Test verification not only consumes manpower and costs, but also cannot determine the time required to obtain the best parameters, but also limits the development of production line automation and flexible production.
焊點作業與複雜參數條件習習相關,導致每個焊點的最佳生成條件均不同。在習知的製程方式中,為尋找其焊錫參數往往使用嘗試錯誤法,經由多次測試累積,而決定參數,但又往往受限於整體批量決定參數,而造成花費大量時間測試參數又無法實現最佳品質於生產中。The solder joint operation is related to the complex parameter condition learning, which results in different optimal solder joint generation conditions. In the conventional process method, the trial and error method is often used to find its solder parameters, and the parameters are determined through accumulation of multiple tests, but it is often limited to the overall batch to determine the parameters, which causes a lot of time to test the parameters and cannot be achieved. The best quality is in production.
本發明提出一種焊錫製程參數建議方法,解決先前技術的問題。The invention proposes a soldering process parameter suggestion method to solve the problems of the prior art.
於本發明的一實施例中,一種焊錫製程參數建議方法包含以下步驟。收集焊錫製程相關的材料與元件特性以建立一材料元件資料庫;收集對應材料元件資料庫內之材料或元件之作業資訊以建立一作業參數資料庫;分析一新焊錫製程所需的材料與元件特性,並與材料元件資料庫內的資訊作相似性比對;於作業參數資料庫中選擇對應最相似於新焊錫製程所需的材料與元件特性之作業參數;使用對應最相似於新焊錫製程所需的材料與元件特性之作業參數執行焊錫製程;量測並紀錄焊錫製程之焊錫過程資訊與最終成品資訊;檢測焊錫製程的最終成品是否符合品管要求;以及當最終成品不符合品管要求時,使用機器學習方法針對該焊錫製程之焊錫過程資訊與最終成品資訊進行擬合以獲得下次焊錫製程之作業參數。In an embodiment of the invention, a soldering process parameter suggestion method includes the following steps. Collect the material and component characteristics related to soldering process to create a material component database; collect the operation information of materials or components in the corresponding material component database to create a working parameter database; analyze the materials and components required for a new soldering process Characteristics, and compare the similarity with the information in the material component database; select the operation parameters corresponding to the most similar materials and component characteristics required in the new soldering process in the operation parameter database; use the corresponding most similar to the new soldering process The required material and component characteristics of the operating parameters to perform the soldering process; measure and record the soldering process information and final product information of the soldering process; detect whether the final product of the soldering process meets the quality control requirements; and when the final product does not meet the quality control requirements At the time, the machine learning method is used to fit the soldering process information of the soldering process and the final product information to obtain the operating parameters of the next soldering process.
於本發明的一實施例中,當最終成品符合品管要求時,接受焊錫製程之焊錫過程資訊所包含的作業參數作為最佳作業參數。In an embodiment of the present invention, when the final product meets the quality control requirements, the operating parameters included in the soldering process information of the soldering process are accepted as the optimal operating parameters.
於本發明的一實施例中,當最終成品不符合品管要求時,不斷地使用機器學習模型針對焊錫製程之焊錫過程資訊與最終成品資訊進行擬合以獲得下次焊錫製程之作業參數,直到最終成品符合品管要求,並接受焊錫製程之焊錫過程資訊所包含的作業參數作為最佳作業參數。In an embodiment of the present invention, when the final product does not meet the quality control requirements, the machine learning model is continuously used to fit the soldering process information of the soldering process and the final product information to obtain the operating parameters of the next soldering process until The final product meets the quality control requirements, and accepts the operation parameters contained in the soldering process information of the soldering process as the optimal operation parameters.
於本發明的一實施例中,材料元件資料庫至少包含焊錫製程相關材料與元件的熱學特性、光學特性以及結構尺寸資訊。In an embodiment of the present invention, the material and component database at least includes thermal characteristics, optical characteristics, and structural dimension information of materials and components related to the soldering process.
於本發明的一實施例中,作業參數資料庫至少包含溫度參數、雷射光點參數以及加熱時間參數。In an embodiment of the invention, the working parameter database at least includes temperature parameters, laser spot parameters and heating time parameters.
於本發明的一實施例中,焊錫過程資訊至少包含焊錫溫度曲線、進錫動態過程影像以及焊錫動態過程影像。In an embodiment of the invention, the soldering process information includes at least a soldering temperature curve, a dynamic process image of soldering, and a dynamic process image of soldering.
於本發明的一實施例中,機器學習方法更包含使用決策樹法則(Decision Tree Algorithm)、支持向量機(Support Vector Machine)、人工神經網路(Artificial Neural Network)、貝葉斯分類(Bayesian Algorithms)或其任意組合進行降維演算分析(Dimensionality Reduction Algorithms)。In an embodiment of the invention, the machine learning method further includes the use of Decision Tree Algorithm, Support Vector Machine, Support Neural Network, Artificial Neural Network, and Bayesian Algorithms ) Or any combination thereof for Dimensionality Reduction Algorithms.
於本發明的一實施例中,機器學習方法更包含使用距離分群(distance-based clustering)與密度分群(density-based clustering)至少其中之一或其結合的方法進行結構分群。距離分群包含例如是K-均值(K-means)、階層式分群法(Hierarchical clustering)、高斯混合模型(GMM)等。密度分群包含例如是以密度為基礎的聚類演算法(Density-Based Spatial Clustering of Applications with Noise)、層級樹分群(Level Set Tree clustering)演算法等。In an embodiment of the invention, the machine learning method further includes using at least one of distance clustering (distance-based clustering) and density clustering (density-based clustering) or a combination thereof to perform structural clustering. The distance clustering includes, for example, K-means (H-means), Hierarchical clustering (Hierarchical clustering), and Gaussian mixture model (GMM). The density clustering includes, for example, a density-based clustering algorithm (Density-Based Spatial Clustering of Applications with Noise), a level set tree clustering (Level Set Tree clustering) algorithm, and the like.
於本發明的一實施例中,機器學習方法更包含使用迴歸演算法(regression)與分類演算法(classification)至少其中之一或其結合的方法來建立條件機率演算核心。迴歸演算法包含例如是廣義線性回歸、支持向量機(support vector machine)、決策樹(decision tree)、隨機森林(random forest)、梯度增強機(gradient boosting machine)、類神經網路(neural network)等。分類演算法包含例如是廣義線性回歸、支持向量機(support vector machine)、決策樹(decision tree)、隨機森林(random forest)、梯度增強機(gradient boosting machine)、類神經網路(neural network)等。In an embodiment of the present invention, the machine learning method further includes using at least one of regression algorithm and classification algorithm or a combination thereof to establish the conditional probability calculation core. Regression algorithms include, for example, generalized linear regression, support vector machine, decision tree, random forest, gradient boosting machine, neural network Wait. Classification algorithms include, for example, generalized linear regression, support vector machine, decision tree, random forest, gradient boosting machine, neural network Wait.
綜上所述,本發明之焊錫製程參數建議方法能適用於資料系統完備或不完備的生產線以及大量少樣或少量多樣的生產線態樣,使各種生產線均能邁向效能增進的自動化生產。In summary, the soldering process parameter suggestion method of the present invention can be applied to production systems with complete or incomplete data systems and a large number of samples or a small variety of production lines, so that various production lines can move towards automated production with improved efficiency.
以下將以實施方式對上述之說明作詳細的描述,並對本發明之技術方案提供更進一步的解釋。The above description will be described in detail in the following embodiments, and the technical solutions of the present invention will be further explained.
為了使本發明之敘述更加詳盡與完備,可參照所附之圖式及以下所述各種實施例,圖式中相同之號碼代表相同或相似之元件。另一方面,眾所週知的元件與步驟並未描述於實施例中,以避免對本發明造成不必要的限制。In order to make the description of the present invention more detailed and complete, reference may be made to the accompanying drawings and various embodiments described below. The same numbers in the drawings represent the same or similar elements. On the other hand, well-known elements and steps are not described in the embodiments to avoid unnecessary restrictions to the present invention.
本發明提出一種智能化焊錫製程參數建議方法,以機器學習方法針對焊點背景參數,包含印刷電路板材料特性、線路設計、元件特性、錫材特性、供錫條件、焊點動態生成溫度、加溫方式及參數、機器視覺影像…等進行分析,以獲得最佳建議作業參數,達到有效減少為取得作業參數之試驗次數,進而實現焊錫自動化。The present invention proposes an intelligent soldering process parameter recommendation method, which uses machine learning methods to target solder joint background parameters, including printed circuit board material characteristics, circuit design, component characteristics, tin material characteristics, tin supply conditions, solder joint dynamic generation temperature, plus Temperature mode and parameters, machine vision images, etc. are analyzed to obtain the best recommended operating parameters, so as to effectively reduce the number of tests for obtaining operating parameters, and then realize solder automation.
請參照第1圖,係繪示依照本發明一實施例之一種焊錫製程參數建議方法。此方法之步驟102是收集能作為機器學習之焊錫製程相關特徵資訊。Please refer to FIG. 1, which illustrates a soldering process parameter recommendation method according to an embodiment of the present invention.
在步驟104中,將步驟102收集的焊錫製程相關特徵資訊分成適當的種類以利建立資料庫並執行機器學習。在本案的實施例中,可將步驟102收集的焊錫製程相關特徵資訊分成四大類。第一類為焊錫製程相關材料與元件特性,例如印刷電路板、焊盤、錫材的熱學特性(比熱、熱傳導等)、光學特性(反射率等)以及電子元件之接腳三維空間分布,用以建立一材料元件資料庫。第二類為焊錫作業資訊,例如參考溫度設定、雷射光點大小與功率、加熱時間等,用以建立一作業參數資料庫。作業參數資料庫內的作業參數應與材料元件資料庫內的材料與元件特性存在對應關係。第三類為焊錫過程執行資訊,例如焊錫溫度曲線、進錫動態過程影像或焊錫動態過程影像等,用以建立一焊錫過程資料庫。第四類為焊錫品質結果,即焊錫製程之最終成品的資訊,例如最終成品之焊錫結構檢測結果,包含ICT測試(In-Circuit-Test,簡稱ICT測試)、X光(X-RAY)檢測、AOI檢測(Automated Optical Inspection,簡稱AOI檢測)或焊錫切片檢測的結果,用以建立一最終成品資料庫。In
在步驟106、108中,運用機器學習針對上述的第三類、第四類資料庫的資訊,建立起焊錫過程資訊與焊錫品質結果間的對應關係,即產生一品質預測模型。建立品質預測模型所能應用的機器學習方式繁多。In
在某些實施例中,可以組合多種機器學習模型,如深度學習、隨機森林,支持向量機等,並融合溫度曲線與焊錫影像資訊,建立起焊錫過程資訊與焊錫品質結果間的對應關係。In some embodiments, multiple machine learning models can be combined, such as deep learning, random forest, support vector machine, etc., and the temperature curve and solder image information are fused to establish the correspondence between the solder process information and the solder quality results.
在某些實施例中,可以組合多種機器學習模型僅針對焊錫過程溫度曲線與焊錫品質結果間建立對應關係,例如將焊錫過程之時間序列分割為數個區間,從每個區間取出特徵值(如平均值、標準差、面積等等)。例如將焊錫過程之時間序列分割為進錫階段的溫度曲線、(焊錫)浸潤階段的溫度曲線以及(焊錫)固化轉換階段的溫度曲線等,並使用機器學習找出各階段的溫度曲線與焊錫品質結果的對應關係。In some embodiments, multiple machine learning models can be combined to establish a corresponding relationship between the soldering process temperature curve and the soldering quality result, for example, the soldering process time series is divided into several intervals, and the characteristic values (such as average Value, standard deviation, area, etc.). For example, the time series of the soldering process is divided into the temperature curve of the soldering stage, the temperature curve of the (solder) infiltration stage, and the temperature curve of the (solder) curing conversion stage, etc., and machine learning is used to find the temperature curve and solder quality of each stage Correspondence of results.
在某些實施例中,焊錫品質結果可以是焊錫結構的最終成品符合品管要求狀況或不符合品管要求的狀況,例如焊錫結構的錫爆、空焊、冷焊或無焊錫等不符合品管要求的狀況,但不以此為限。使用機器學習找出各階段的溫度曲線與不符合品管要求的焊錫結構狀況的對應關係,對於焊錫製程的自動化提升仍具有相當的助益。In some embodiments, the solder quality result may be that the final product of the solder structure meets the requirements for quality control or does not meet the requirements for quality control, such as non-conforming products such as tin explosion, empty soldering, cold soldering, or no soldering of the solder structure Manage the required status, but not limited to this. Using machine learning to find the correspondence between the temperature curve at each stage and the solder structure that does not meet the quality control requirements is still quite helpful for the automation of the soldering process.
在某些實施例中,機器學習方法可包含使用決策樹法則(Decision Tree Algorithm)、支持向量機(Support Vector Machine)、人工神經網路(Artificial Neural Network)、貝葉斯分類(Bayesian Algorithms)或其任意組合針對上述的第三類、第四類資料庫的資訊進行降維演算分析 (Dimensionality Reduction Algorithms),以利找出焊錫過程資訊與焊錫品質結果之間的對應關係。In some embodiments, the machine learning method may include the use of Decision Tree Algorithm, Support Vector Machine, Artificial Neural Network, Bayesian Algorithms or Bayesian Algorithms. Any combination of the above information of the third and fourth types of databases can be used to perform dimensionality reduction algorithms (Dimensionality Reduction Algorithms) to help find the correspondence between the soldering process information and the solder quality results.
在某些實施例中,機器學習方法可包含使用距離分群與密度分群至少其中之一或其結合的方法進行結構分群。距離分群包含例如是K-均值(K-means)、階層式分群法(Hierarchical clustering)、高斯混合模型(GMM)等。密度分群包含例如是以密度為基礎的聚類演算法(Density-Based Spatial Clustering of Applications with Noise)聚類算法、層級樹分群(Level Set Tree clustering)等,以利尋找特性相近的案例。In some embodiments, the machine learning method may include structural grouping using at least one of distance grouping and density grouping or a combination thereof. The distance clustering includes, for example, K-means (H-means), Hierarchical clustering (Hierarchical clustering), and Gaussian mixture model (GMM). Density clustering includes, for example, density-based clustering algorithm (Density-Based Spatial Clustering of Applications with Noise) clustering algorithm, level set tree clustering (Level Set Tree clustering), etc., in order to find cases with similar characteristics.
在某些實施例中,機器學習方法可包含使用迴歸模型與 分類演算法至少其中之一或其結合的方法來建立條件機率演算核心,以利建立焊錫過程資訊與焊錫品質結果之間的對應關係。迴歸演算法包含例如是廣義線性回歸、支持向量機( support vector machine)、決策樹(decision tree)、隨機森林(random forest)、梯度增強機(gradient boosting machine)、類神經網路(neural network)等。分類演算法包含例如是廣義線性回歸、支持向量機(support vector machine)、決策樹(decision tree)、隨機森林(random forest)、梯度增強機(gradient boosting machine)、類神經網路(neural network)等。In some embodiments, the machine learning method may include using at least one of a regression model and a classification algorithm or a combination thereof to establish a conditional probability calculation core to facilitate the establishment of a correspondence between solder process information and solder quality results . Regression algorithms include, for example, generalized linear regression, support vector machine, decision tree, random forest, random boosting machine, gradient boosting machine, neural network Wait. Classification algorithms include, for example, generalized linear regression, support vector machine, decision tree, random forest, gradient boosting machine, neural network Wait.
在步驟110中,使用上述機器學習建立之預測模型產生焊錫製程的作業參數,並以此作業參數執行焊錫製程。In
在步驟112中,驗證焊錫製程的作業參數是否能獲得符合品管要求的最終成品。驗證方式包含檢測並紀錄焊錫結構的最終成品。檢測焊錫結構最終成品的方法可以是前述的ICT測試、X-RAY檢測、AOI檢測、焊錫切片檢測或上述兩種以上的檢測組合等。X-RAY檢測、AOI檢測以及焊錫切片檢測的測試結果為影像,但是ICT測試的測試結果為電性測試,判斷焊錫結構是否有短路、斷路或開路等缺陷。In
在步驟114中,當焊錫製程的最終成品符合或通過品管要求時,即接受焊錫製程之焊錫過程資訊所包含的作業參數作為最佳作業參數。In
在大多數狀況中,較難在使用機器學習方法之第一次預測模型即能獲得最佳作業參數。因此,在步驟116中,需新增焊錫製程相關特徵資訊,再次執行步驟106、108、110、112等步驟,直到焊錫製程的最終成品符合或通過品管要求為止。在某些實施例中,步驟116所新增焊錫製程相關特徵資訊即步驟110執行焊錫製程之過程資訊與焊錫品質結果資訊。在某些實施例中,步驟116所新增焊錫製程相關特徵資訊可以是最新焊錫製程後的最終成品與上述最終成品資料庫之影像差異比對。In most cases, it is difficult to obtain the best operating parameters in the first prediction model using machine learning methods. Therefore, in
請參照第2、3圖,其繪示依照本發明另一實施例之一種焊錫製程參數建議方法。在步驟104a與104b中,依序收集焊錫製程相關的材料與元件特性以建立一材料元件資料庫,並收集對應材料元件資料庫內之材料或元件之作業資訊以建立一作業參數資料庫。Please refer to FIGS. 2 and 3, which illustrate a soldering process parameter recommendation method according to another embodiment of the present invention. In
在步驟106a中,當一個新的焊錫製程需求提出後,整理與分析新焊錫製程所需的材料與元件特性,並與步驟104a所建立之材料元件資料庫內的資訊作相似性比對,例如使用相關性分析以及密度分群演算法,選取出特性相近的案例。In
在步驟108a中,於步驟104b所建立之作業參數資料庫中選擇對應最相似於該新焊錫製程所需的材料與元件特性之作業參數。In
在步驟110a中,使用於步驟108a中獲得對應最相似於該新焊錫製程所需的材料與元件特性之作業參數執行焊錫製程。In
在步驟112a中,量測並紀錄步驟110a之焊錫製程之焊錫過程資訊與最終成品資訊。In
在步驟112b中,檢測步驟112a所紀錄焊錫製程的最終成品是否符合品管要求。檢測方式包含檢測並紀錄焊錫結構的最終成品。檢測焊錫結構最終成品的方法可以是前述的ICT測試、X-RAY檢測、AOI檢測、焊錫切片檢測或上述兩種以上的檢測組合等。X-RAY檢測、AOI檢測以及焊錫切片檢測的測試結果為影像,但是ICT測試的測試結果為電性測試,判斷焊錫結構是否有短路、斷路或開路等缺陷。In
在步驟118中,當最終成品不符合品管要求時,使用機器學習方法針對步驟112a所紀錄焊錫製程之焊錫過程資訊與最終成品資訊進行擬合以獲得下次焊錫製程之作業參數。在某些實施例中,將焊錫製程之焊錫過程資訊與最終成品資訊輸入貝氏最佳化模型(Bayesian Optimization)進行擬合以獲得下次焊錫製程之作業參數,即使用新作業參數重覆步驟110a、112a、112b,直到焊錫製程的最終成品符合或通過品管要求以取得最佳作業參數為止。In
當上述的焊錫製程參數建議方法應用於資料系統完備的生產線時,可將產線物料資訊系統銜接至智能化焊錫製程參數建議系統,經過機器學習智能演算,系統會向使用者提供建議作業參數,並且在測試過程中即時記錄實際焊錫情況回饋至系統調整計算模型,自動收斂最佳作業參數,不僅有效縮短參數測試,亦完整記錄焊錫生產過程。當上述的焊錫製程參數建議方法應用在資料系統尚未健全的生產線時,可針對現有資料庫中有限生產物料資訊,得到一範圍較大之建議作業參數,進入系統測試迴圈,有效收斂最佳作業參數,並縮短缺乏健全資訊系統之生產線邁向自動化生產的時程,同步建立資訊系統。當上述的焊錫製程參數建議方法應用於大量少樣的高產能產線時,可快速進行數據累積建立最佳參數模型,提升產線效率。當上述的焊錫製程參數建議方法應用於少量多樣型的生產線,則可有效縮短達到穩定生產的時間與減少試驗成本,維持產線持續生產。When the above soldering process parameter recommendation method is applied to a production line with a complete data system, the production line material information system can be connected to an intelligent soldering process parameter recommendation system. After machine learning and intelligent calculation, the system will provide users with recommended operating parameters. And in the test process, the actual soldering situation is recorded in real time and fed back to the system adjustment calculation model to automatically converge the optimal operating parameters, which not only effectively shortens the parameter test, but also completely records the soldering production process. When the above soldering process parameter recommendation method is applied to a production line where the data system is not yet sound, a limited range of recommended operating parameters can be obtained for the limited production material information in the existing database, and the system test loop can be entered to effectively converge the best operation Parameters, and shorten the timeline for a production line that lacks a sound information system to move towards automated production, and establish an information system simultaneously. When the above soldering process parameter recommendation method is applied to a large number of production lines with a small number of high-capacity production lines, data can be quickly accumulated to establish the optimal parameter model to improve the efficiency of the production line. When the above soldering process parameter recommendation method is applied to a small number of diverse production lines, it can effectively shorten the time to achieve stable production and reduce test costs, and maintain continuous production of the production line.
綜上所述,本發明之焊錫製程參數建議方法能適用於資料系統完備或不完備的生產線以及大量少樣或少量多樣的生產線態樣,使各種生產線均能邁向效能增進的自動化生產。In summary, the soldering process parameter suggestion method of the present invention can be applied to production systems with complete or incomplete data systems and a large number of samples or a small variety of production lines, so that various production lines can move towards automated production with improved efficiency.
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,於不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed as above in an embodiment, it is not intended to limit the present invention. Anyone who is familiar with this skill can make various modifications and retouching without departing from the spirit and scope of the present invention, so the protection of the present invention The scope shall be determined by the scope of the attached patent application.
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附符號之說明如下:In order to make the above and other objects, features, advantages and embodiments of the present invention more obvious and understandable, the attached symbols are described as follows:
102‧‧‧步驟102‧‧‧Step
104‧‧‧步驟104‧‧‧Step
104a‧‧‧步驟104a‧‧‧Step
104b‧‧‧步驟104b‧‧‧Step
106‧‧‧步驟106‧‧‧Step
106a‧‧‧步驟106a‧‧‧Step
108‧‧‧步驟108‧‧‧Step
108a‧‧‧步驟108a‧‧‧Step
110‧‧‧步驟110‧‧‧Step
110a‧‧‧步驟110a‧‧‧Step
112‧‧‧步驟112‧‧‧Step
112a‧‧‧步驟112a‧‧‧Step
112b‧‧‧步驟112b‧‧‧Step
114‧‧‧步驟114‧‧‧Step
116‧‧‧步驟116‧‧‧Step
118‧‧‧步驟118‧‧‧Step
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1圖係繪示依照本發明一實施例之一種焊錫製程參數建議方法;以及 第2、3圖係繪示依照本發明另一實施例之一種焊錫製程參數建議方法。In order to make the above and other objects, features, advantages and embodiments of the present invention more obvious and understandable, the drawings are described as follows: FIG. 1 illustrates a method for recommending soldering process parameters according to an embodiment of the present invention; And FIGS. 2 and 3 illustrate a method for recommending soldering process parameters according to another embodiment of the present invention.
102~116‧‧‧步驟 102~116‧‧‧Step
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107131999A TWI682294B (en) | 2018-09-12 | 2018-09-12 | Soldering process parameters suggestion method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107131999A TWI682294B (en) | 2018-09-12 | 2018-09-12 | Soldering process parameters suggestion method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI682294B true TWI682294B (en) | 2020-01-11 |
TW202011235A TW202011235A (en) | 2020-03-16 |
Family
ID=69942461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107131999A TWI682294B (en) | 2018-09-12 | 2018-09-12 | Soldering process parameters suggestion method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI682294B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6587580B1 (en) * | 1999-05-06 | 2003-07-01 | Avaya Technology Corp. | Stencil printing process optimization for circuit pack assembly using neural network modeling |
CN101915769A (en) * | 2010-06-29 | 2010-12-15 | 华南理工大学 | Automatic optical inspection method for printed circuit board comprising resistance element |
CN102006731A (en) * | 2010-12-06 | 2011-04-06 | 国营红峰机械厂 | Method for determining tin-soldering paste amount of glue dispenser on pads |
US8115138B2 (en) * | 2005-03-15 | 2012-02-14 | Lincoln Global, Inc. | Comprehensive identification and designation of welding procedures |
TW201415971A (en) * | 2012-10-01 | 2014-04-16 | Lite On Electronics Guangzhou | Solder inspection and auto re-soldering system and method thereof |
-
2018
- 2018-09-12 TW TW107131999A patent/TWI682294B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6587580B1 (en) * | 1999-05-06 | 2003-07-01 | Avaya Technology Corp. | Stencil printing process optimization for circuit pack assembly using neural network modeling |
US8115138B2 (en) * | 2005-03-15 | 2012-02-14 | Lincoln Global, Inc. | Comprehensive identification and designation of welding procedures |
CN101915769A (en) * | 2010-06-29 | 2010-12-15 | 华南理工大学 | Automatic optical inspection method for printed circuit board comprising resistance element |
CN102006731A (en) * | 2010-12-06 | 2011-04-06 | 国营红峰机械厂 | Method for determining tin-soldering paste amount of glue dispenser on pads |
TW201415971A (en) * | 2012-10-01 | 2014-04-16 | Lite On Electronics Guangzhou | Solder inspection and auto re-soldering system and method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW202011235A (en) | 2020-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11599803B2 (en) | Soldering process parameter suggestion method and system thereof | |
TWI715703B (en) | System and method for detecting anomalies in images of a specimen, and non-transitory computer-readable medium | |
JP6817426B2 (en) | Yield prediction system and method for machine learning-based semiconductor manufacturing | |
Yuan-Fu | A deep learning model for identification of defect patterns in semiconductor wafer map | |
JP6005638B2 (en) | Quality inspection method for solder joints | |
CN105372581A (en) | Flexible circuit board manufacturing process automatic monitoring and intelligent analysis system and method | |
Tsai | Development of a soldering quality classifier system using a hybrid data mining approach | |
US11280751B2 (en) | System and method for optimizing a manufacturing process based on an inspection of a component | |
Hsu | Clustering ensemble for identifying defective wafer bin map in semiconductor manufacturing | |
JP2024509741A (en) | Part, sensor, and measurement data integration | |
CN114139589A (en) | Fault diagnosis method, device, equipment and computer readable storage medium | |
CN115129019A (en) | Training method of production line fault analysis model and production line fault analysis method | |
TWI682294B (en) | Soldering process parameters suggestion method | |
Eppinger et al. | A methodology for manufacturing process signature analysis | |
TWI400619B (en) | Product quality fault detection method and real metrolgy data evaluation method | |
TWI793883B (en) | Defect detection method and system for wire rod coating | |
Hamulczuk et al. | Data analysis as the basis for improved design for additive manufacturing (DfAM) | |
KR20220147036A (en) | Method of performing prediction relating to products manufactured via manufacturing process | |
CN114565051A (en) | Test method of product classification model based on neuron influence degree | |
Szymanik et al. | Qualitative evaluation of 3D printed materials’ structure using active infrared thermography and signal analysis based on LSTM neural networks | |
Lin et al. | Comparing the lens displacement profile data by using the sequential approach for selecting alternative suppliers | |
CN114556247A (en) | Method and apparatus for determining product quality | |
Tuunainen et al. | A comparative study on the application of Convolutional Neural Networks for wooden panel defect detection | |
Stocker et al. | Reduction of rejects by combining data from the casting process and automatic X-ray inspection | |
Lo et al. | Automated optical inspection based on synthetic mechanisms combining deep learning and machine learning |