TWI681548B - Three dimensional memory device and method for fabricating the same - Google Patents

Three dimensional memory device and method for fabricating the same Download PDF

Info

Publication number
TWI681548B
TWI681548B TW108104660A TW108104660A TWI681548B TW I681548 B TWI681548 B TW I681548B TW 108104660 A TW108104660 A TW 108104660A TW 108104660 A TW108104660 A TW 108104660A TW I681548 B TWI681548 B TW I681548B
Authority
TW
Taiwan
Prior art keywords
channel
layer
conductive plug
channel portion
storage layer
Prior art date
Application number
TW108104660A
Other languages
Chinese (zh)
Other versions
TW202030874A (en
Inventor
胡志瑋
葉騰豪
江昱維
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW108104660A priority Critical patent/TWI681548B/en
Application granted granted Critical
Publication of TWI681548B publication Critical patent/TWI681548B/en
Publication of TW202030874A publication Critical patent/TW202030874A/en

Links

Images

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A three-dimensional memory device includes a substrate, conductive layers and insulating layers, a storage layer, a first channel, a second channel and a first conductive plug. The conductive layers and insulating layers are alternately stacked over the substrate to form a multi-layer stacked structure. The storage layer penetrates through the multi-layer stacked structure, and has a first string portion and a second string portion that are spaced from each other. The first channel is located on a lateral side of the first string portion. The second channel is located on a lateral side of the second string portion. The first channel and the second channel have an upper channel portion and a lower channel portion. The first conductive plug is interconnected between the upper channel portion and the lower channel portion.

Description

立體記憶體元件及其製作方法 Three-dimensional memory element and manufacturing method thereof

本揭露內容是有關於一種記憶體元件及其製造方法,且特別是有關於一種具有高記憶密度之立體記憶體元件及其製造方法。 This disclosure relates to a memory element and a method of manufacturing the same, and particularly to a three-dimensional memory element with a high memory density and a method of manufacturing the same.

記憶體元件係可攜式電子裝置,例如MP3播放器、數位相機、筆記型電腦、智慧型手機等...中重要的資料儲存元件。隨著各種應用程式的增加及功能的提升,對於記憶體元件的需求,也趨向較小的尺寸、較大的記憶容量。而為了因應這種需求,目前設計者轉而開發一種包含有多個記憶胞階層堆疊的立體記憶體元件,例如垂直通道式立體NAND快閃記憶體元件。 Memory components are important data storage components in portable electronic devices, such as MP3 players, digital cameras, notebook computers, smart phones, etc... With the increase of various application programs and the improvement of functions, the demand for memory components also tends to be smaller in size and larger in memory capacity. In response to this demand, current designers have turned to a three-dimensional memory device including multiple stacked memory cell layers, such as a vertical channel three-dimensional NAND flash memory device.

然而,隨著元件的關鍵尺寸微縮至一般記憶胞技術領域的極限,如何在現有設備的製程能力限制下,獲得到更高的記憶儲存容量,已成了該技術領域所面臨的重要課題。因此,有需要提供一種先進的立體記憶體元件及其製作方法,來解決習知技術所面臨的問題。 However, as the key dimensions of components shrink to the limit of the general memory cell technology field, how to obtain higher memory storage capacity under the limitation of the process capability of existing equipment has become an important issue facing this technical field. Therefore, there is a need to provide an advanced three-dimensional memory device and its manufacturing method to solve the problems faced by the conventional technology.

本說明書的一實施例揭露一種立體記憶體元件,其包含一基材、複數個導電層、複數個絕緣層、一儲存層、一絕緣隔牆、一第一通道部、一第二通道部以及一第一導電插塞。該些導電層以及絕緣層彼此交錯堆疊位於基材上以形成一多層堆疊結構。儲存層穿過多層堆疊結構,且具有彼此分離的一第一串列部以及一第二串列部。第一通道部位於第一串列部的一側邊,且第一串列部位於多層堆疊結構與第一通道部之間。第二通道部位於第二串列部的一側邊,且第二串列部位於多層堆疊結構與第二通道部之間。第一通道部與第二通道部各包含一上通道部份以及一下通道部份。第一導電插塞連接於上通道部份以及下通道部份之間。 An embodiment of the present specification discloses a three-dimensional memory device, which includes a substrate, a plurality of conductive layers, a plurality of insulating layers, a storage layer, an insulating partition wall, a first channel portion, a second channel portion and A first conductive plug. The conductive layers and the insulating layers are alternately stacked on the substrate to form a multilayer stack structure. The storage layer passes through the multilayer stack structure and has a first tandem portion and a second tandem portion separated from each other. The first channel portion is located on one side of the first tandem portion, and the first tandem portion is located between the multilayer stack structure and the first channel portion. The second channel portion is located on one side of the second tandem portion, and the second tandem portion is located between the multilayer stack structure and the second channel portion. The first channel portion and the second channel portion each include an upper channel portion and a lower channel portion. The first conductive plug is connected between the upper channel portion and the lower channel portion.

在本說明書的其他實施例中,立體記憶體元件還包含一蝕刻停止層位於多層堆疊結構中,且位於第一導電插塞一側。 In other embodiments of the present specification, the three-dimensional memory device further includes an etch stop layer located in the multi-layer stacked structure and located on the side of the first conductive plug.

在本說明書的其他實施例中,立體記憶體元件還包含一底部通道,且第一通道部與該二通道之下通道部份為彼此分離的U型通道,且連接至底部通道的兩端。 In other embodiments of the present specification, the three-dimensional memory device further includes a bottom channel, and the first channel portion and the lower channel portion of the two channels are U-shaped channels separated from each other, and are connected to both ends of the bottom channel.

在本說明書的其他實施例中,立體記憶體元件還包含一介電隔牆位於儲存層之第一、二串列部之間,介電隔牆包含一上部以及一下部,下部之頂端的截面寬於上部之底端的截面。 In other embodiments of the present specification, the three-dimensional memory element further includes a dielectric partition wall located between the first and second serial portions of the storage layer. The dielectric partition wall includes an upper portion and a lower portion, and a cross section at the top of the lower portion Section wider than the bottom end of the upper part.

在本說明書的其他實施例中,上通道部份包含一外通道層以及一內通道層,外通道層位於儲存層與內通道層之間,且與第一導電插塞分離。 In other embodiments of the present specification, the upper channel portion includes an outer channel layer and an inner channel layer. The outer channel layer is located between the storage layer and the inner channel layer and is separated from the first conductive plug.

在本說明書的其他實施例中,立體記憶體元件還包含一第二導電插塞,其位於多層堆疊結構上方且連接至上通道部份。 In other embodiments of the present specification, the three-dimensional memory device further includes a second conductive plug, which is located above the multilayer stack structure and connected to the upper channel portion.

在本說明書的其他實施例中,立體記憶體元件還包含一蝕刻停止層,其位於多層堆疊結構上方且位於第二導電插塞一側。 In other embodiments of the present specification, the 3D memory device further includes an etch stop layer, which is located above the multilayer stack structure and on the side of the second conductive plug.

在本說明書的其他實施例中,第一導電插塞與第二導電插塞的材質皆為摻雜的多晶矽。 In other embodiments of the present specification, the materials of the first conductive plug and the second conductive plug are both doped polysilicon.

本說明書的另一實施例揭露一種立體記憶體元件的製作方法,其包含以下步驟:交替沈積複數第一導電層以及第一絕緣層於一基材上;蝕刻一第一通孔穿越該些第一導電層以及該些第一絕緣層;沈積一第一儲存層於該第一通孔內;沈積一下通道部於該第一儲存層上;沈積一第一導電插塞接觸該下通道部;交替沈積複數第二通道層以及第二絕緣層於該第一導電插塞上;蝕刻一第二通孔穿越該些第二通道層以及該些第二絕緣層以暴露該第一導電插塞;沈積一第二儲存層於該第二通孔內;沈積一第二通道層於該第二儲存層上;蝕刻該第二儲存層以及該第二通道層以暴露該第一導電插塞,且蝕刻後剩餘的該第二通道層位於該第二儲存層的側壁;沈積一第三通道層於蝕刻後剩餘的該第二通道層上以形成一第二通道部,其接觸該第一導電插塞;以及沈積一第二導電插塞接觸該第二通道部的頂端。 Another embodiment of the present specification discloses a method for manufacturing a three-dimensional memory device, which includes the following steps: alternately depositing a plurality of first conductive layers and a first insulating layer on a substrate; etching a first through hole through the first A conductive layer and the first insulating layers; depositing a first storage layer in the first through hole; depositing a lower channel part on the first storage layer; depositing a first conductive plug to contact the lower channel part; Alternately depositing a plurality of second channel layers and a second insulating layer on the first conductive plug; etching a second through hole through the second channel layers and the second insulating layers to expose the first conductive plug; Depositing a second storage layer in the second through hole; depositing a second channel layer on the second storage layer; etching the second storage layer and the second channel layer to expose the first conductive plug, and The second channel layer remaining after etching is located on the side wall of the second storage layer; a third channel layer is deposited on the second channel layer remaining after etching to form a second channel portion, which contacts the first conductive plug Plug; and Shen Ji a second conductive plug contacts the top of the second channel portion.

在本說明書的其他實施例中,立體記憶體元件的製作方法還包含在沈積該些第二通道層以及該些第二絕緣層前,蝕刻一第一溝渠以切割該第一導電插塞、該第一儲存層以及該下 通道部;沈積一第一介電隔牆以填入該第一溝渠;蝕刻一第二溝渠以切割該第二導電插塞、該第二儲存層以及該上通道部以暴露該第一介電隔牆;以及沈積一第二介電隔牆以填入該第二溝渠,並接觸該第一介電隔牆。 In other embodiments of the present specification, the method of manufacturing the three-dimensional memory device further includes etching a first trench to cut the first conductive plug, the second conductive layer before depositing the second channel layers and the second insulating layers The first storage layer and the lower Channel portion; deposit a first dielectric partition to fill the first trench; etch a second trench to cut the second conductive plug, the second storage layer, and the upper channel portion to expose the first dielectric A partition wall; and a second dielectric partition wall is deposited to fill the second trench and contact the first dielectric partition wall.

半圓柱半導體記憶體元件利用多步驟蝕刻方案增加總深寬度,使得具有正常蝕刻能力的傳統蝕刻工具仍然能夠製造更高密度的半導體記憶體元件。 The semi-cylindrical semiconductor memory element uses a multi-step etching scheme to increase the total depth width, so that conventional etching tools with normal etching ability can still manufacture higher density semiconductor memory elements.

以下將以實施方式對上述之說明作詳細的描述,並對本發明之技術方案提供更進一步的解釋。 The above description will be described in detail in the following embodiments, and the technical solutions of the present invention will be further explained.

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附符號之說明如下: In order to make the above and other objects, features, advantages and embodiments of the present invention more obvious and understandable, the attached symbols are described as follows:

100‧‧‧記憶體元件 100‧‧‧Memory component

200‧‧‧記憶體元件 200‧‧‧Memory component

102‧‧‧基材 102‧‧‧ Base material

104‧‧‧導體層 104‧‧‧Conductor layer

106‧‧‧絕緣層 106‧‧‧Insulation

110‧‧‧蝕刻停止層 110‧‧‧Etching stop layer

112‧‧‧儲存層 112‧‧‧Storage layer

112’‧‧‧儲存層 112’‧‧‧ storage layer

112a‧‧‧串列部 112a‧‧‧Series

112b‧‧‧串列部 112b‧‧‧Series

112c‧‧‧串列部 112c‧‧‧Series

112a’‧‧‧串列部 112a’‧‧‧Series

112b’‧‧‧串列部 112b’‧‧‧Series

114‧‧‧通道層 114‧‧‧channel layer

114’‧‧‧通道層 114’‧‧‧Channel

114”‧‧‧通道層 114”‧‧‧channel layer

114a‧‧‧通道部 114a‧‧‧Channel Department

114b‧‧‧通道部 114b‧‧‧Channel Department

114a’‧‧‧通道部 114a’‧‧‧Access Department

114b’‧‧‧通道部 114b’‧‧‧Access Department

114a”‧‧‧通道部 114a”‧‧‧ Channel Department

114b”‧‧‧通道部 114b”‧‧‧Channel Department

114c‧‧‧通道部 114c‧‧‧Channel Department

116‧‧‧孔洞 116‧‧‧hole

116’‧‧‧孔洞 116’‧‧‧hole

116a‧‧‧凹部 116a‧‧‧recess

116a’‧‧‧凹部 116a’‧‧‧recess

118‧‧‧介電填充柱 118‧‧‧dielectric packed column

120‧‧‧導電插塞層 120‧‧‧Conductive plug layer

120a‧‧‧導電插塞 120a‧‧‧Conductive plug

120b‧‧‧導電插塞 120b‧‧‧Conductive plug

122‧‧‧溝槽 122‧‧‧Groove

122’‧‧‧溝槽 122’‧‧‧Trench

124‧‧‧介電隔牆 124‧‧‧Dielectric partition

124’‧‧‧介電隔牆 124’‧‧‧Dielectric partition

130‧‧‧蝕刻停止層 130‧‧‧Etching stop layer

132‧‧‧介電填充柱 132‧‧‧dielectric packed column

136‧‧‧導電插塞層 136‧‧‧Conductive plug layer

136a‧‧‧導電插塞 136a‧‧‧Conductive plug

136b‧‧‧導電插塞 136b‧‧‧Conductive plug

DWL‧‧‧虛字元線 DWL‧‧‧Dummy character line

WL(0~127)‧‧‧字元線 WL(0~127)‧‧‧character line

BL‧‧‧位元線 BL‧‧‧bit line

IG‧‧‧反閘極 IG‧‧‧Reverse gate

SSL‧‧‧串選擇線 SSL‧‧‧String selection line

CSL‧‧‧共同源極線 CSL‧‧‧Common Source Line

GSL‧‧‧閘極選擇線 GSL‧‧‧Gate selection line

T1‧‧‧厚度 T1‧‧‧thickness

T2‧‧‧厚度 T2‧‧‧thickness

W1‧‧‧寬度 W1‧‧‧Width

C1‧‧‧寬度 C1‧‧‧Width

C2‧‧‧寬度 C2‧‧‧Width

D1‧‧‧深度 D1‧‧‧Depth

D2‧‧‧深度 D2‧‧‧Depth

E1‧‧‧寬度 E1‧‧‧Width

E2‧‧‧寬度 E2‧‧‧Width

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖係繪示依照本揭露之一實施例的立體半導體記憶元件的剖面圖;第2A~22A圖係繪示依照本揭露之某些實施例的半導體記憶元件製造方法於多個步驟中的上視圖;第2B~22B圖係繪示依照本揭露之某些實施例的半導體記憶元件製造方法於多個步驟中的剖面圖;第23A圖係繪示依照本揭露之另一實施例的立體半導體記憶元件的上視圖;第23B圖係繪示沿第23A圖之剖面線23B-23B的剖面圖;以及 第24圖繪示依照本揭露之另一實施例的立體半導體記憶元件的剖面圖。 In order to make the above and other objects, features, advantages and embodiments of the present invention more comprehensible, the drawings are described as follows: FIG. 1 is a cross section of a three-dimensional semiconductor memory device according to an embodiment of the present disclosure Figures 2A~22A are top views of a method for manufacturing a semiconductor memory device according to certain embodiments of the present disclosure in multiple steps; Figures 2B~22B are views of certain embodiments according to the present disclosure A cross-sectional view of the semiconductor memory device manufacturing method in multiple steps; FIG. 23A is a top view of a three-dimensional semiconductor memory device according to another embodiment of the present disclosure; FIG. 23B is a cross-sectional line along FIG. 23A 23B-23B sectional views; and FIG. 24 is a cross-sectional view of a three-dimensional semiconductor memory device according to another embodiment of the present disclosure.

本說明書是提供一種立體記憶體元件的製作方法,可在更微小的元件尺寸之中,獲得到更高的記憶儲存容量,同時又能兼顧元件的操作穩定性。為了對本說明書之上述實施例及其他目的、特徵和優點能更明顯易懂,下文特舉一記憶體元件及其製作方法作為較佳實施例,並配合所附圖式作詳細說明。 This specification provides a method for manufacturing a three-dimensional memory element, which can obtain a higher memory storage capacity in a smaller element size, and at the same time, it can also take into account the operation stability of the element. In order to make the above embodiment of the present specification and other objects, features and advantages more obvious and understandable, a memory element and its manufacturing method are specifically described below as preferred embodiments, which will be described in detail in conjunction with the accompanying drawings.

但必須注意的是,這些特定的實施案例與方法,並非用以限定本發明。本發明仍可採用其他特徵、元件、方法及參數來加以實施。較佳實施例的提出,僅係用以例示本發明的技術特徵,並非用以限定本發明的申請專利範圍。該技術領域中具有通常知識者,將可根據以下說明書的描述,在不脫離本發明的精神範圍內,作均等的修飾與變化。在不同實施例與圖式之中,相同的元件,將以相同的元件符號加以表示。 However, it must be noted that these specific implementation examples and methods are not intended to limit the present invention. The present invention can still be implemented using other features, components, methods, and parameters. The proposed preferred embodiments are only used to illustrate the technical features of the present invention, and are not intended to limit the patent application scope of the present invention. Those with ordinary knowledge in this technical field will be able to make equivalent modifications and changes based on the description of the following description without departing from the spirit of the present invention. In different embodiments and drawings, the same elements will be denoted by the same element symbols.

應當理解,儘管「第一」與「第二」等在本文中可以用於描述各種元件、部件、區域、層及/或部分,但是這些元件、部件、區域、及/或部分不應受這些術語的限制。這些術語僅用於將一個元件、部件、區域、層或部分與另一個元件、部件、區域、層或部分區分開。 It should be understood that although "first", "second", etc. may be used herein to describe various elements, components, regions, layers, and/or sections, these elements, components, regions, and/or sections should not be affected by these Terminology limitations. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section.

本文使用的術語僅僅是為了描述本發明特定的實施例,而不是用來限制本發明。舉例來說,本文使用的 「一」、「一個」和「該」並非限制元件為單數形式或複數形式。本文使用的「或」表示「及/或」。如本文所使用的,術語「及/或」包括一個或多個相關所列項目的任何和所有組合。還應當理解,當在本說明書中使用時,術語「包括」或「包含」指定所述特徵、區域、整體、步驟、操作、元件的存在及/或部件,但不排除一個或多個其它特徵、區域、整體、步驟、操作、元件、部件及/或其組合的存在或添加。 The terminology used herein is merely for describing specific embodiments of the present invention and is not intended to limit the present invention. For example, this article uses "One", "an", and "the" do not limit the components to singular or plural forms. As used herein, "or" means "and/or". As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. It should also be understood that when used in this specification, the term "comprising" or "including" specifies the features, regions, wholes, steps, operations, presence of elements and/or components, but does not exclude one or more other features , Regions, wholes, steps, operations, elements, components, and/or combinations thereof.

此外,諸如「下」或「底部」和「上」或「頂部」的相對術語可在本文中用於描述一個元件與另一元件的關係,如圖所示。應當理解,相對術語旨在包括除了圖中所示的方位之外的裝置的不同方位。例如,如果一個附圖中的裝置翻轉,則被描述為在其他元件的「下」側的元件將被定向在其他元件的「上」側。因此,示例性術語「下」可以包括「下」和「上」的取向,取決於附圖的特定取向。類似地,如果一個附圖中的裝置翻轉,則被描述為在其它元件「下」或「下方」的元件將被定向為在其它元件「上方」。因此,示例性術語「下」或「下方」可以包括上方和下方的取向。 In addition, relative terms such as "lower" or "bottom" and "upper" or "top" may be used herein to describe the relationship between one element and another element, as shown. It should be understood that relative terms are intended to include different orientations of the device than those shown in the figures. For example, if the device in one drawing is turned over, the element described as being on the "lower" side of the other element will be oriented on the "upper" side of the other element. Thus, the exemplary term "lower" may include "lower" and "upper" orientations, depending on the particular orientation of the drawings. Similarly, if the device in one figure is turned over, elements described as "below" or "beneath" other elements would be oriented "above" the other elements. Thus, the exemplary terms "below" or "below" can include an orientation of above and below.

請參照第1圖,其繪示依照本揭露之一實施例的立體半導體記憶元件的剖面圖。半導體記憶體元件100包括下半層疊結構(即蝕刻停止層110下方的層堆疊)的多個層(例如64層或更多層)以及上半層疊結構(即蝕刻停止層110上方的層疊層),使得整體層疊結構不需要面對更深的孔洞/溝槽蝕刻工藝。 Please refer to FIG. 1, which illustrates a cross-sectional view of a three-dimensional semiconductor memory device according to an embodiment of the present disclosure. The semiconductor memory device 100 includes a plurality of layers (for example, 64 layers or more) of a lower half-stack structure (that is, a layer stack below the etch stop layer 110) and an upper half-stack structure (that is, a stack layer above the etch stop layer 110) So that the overall stacked structure does not need to face deeper hole/trench etching processes.

在本實施例中,下半層疊合結構包括多個導體 層(例如反閘極IG或多個字元線WL32~WL64)以及絕緣層交替堆疊在基材上。下半層疊結構包括下通道部(114a,114b,114c)和下儲存層(112a,112b,112c)。下儲存層(112a,112b,112c)的每個段夾在下通道部(114a,114b,114c)的相應段和導體層的相應段(例如WL32~WL64)之間,以便形成複數個記憶胞。 In this embodiment, the lower half of the laminated structure includes multiple conductors Layers (eg, reverse gate IG or multiple word lines WL32-WL64) and insulating layers are alternately stacked on the substrate. The lower half-layer structure includes a lower channel portion (114a, 114b, 114c) and a lower storage layer (112a, 112b, 112c). Each segment of the lower storage layer (112a, 112b, 112c) is sandwiched between the corresponding segment of the lower channel portion (114a, 114b, 114c) and the corresponding segment of the conductor layer (eg, WL32-WL64), so as to form a plurality of memory cells.

在本實施例中,上半層疊結構包括多個導體層(例如SSL,DWL或WL0~WL31)以及多個絕緣層交替堆疊在蝕刻停止層110上。上半層疊結構包括上通道部(114a',114b')和上儲存層(112a',112b')。上儲存層(112a',112b')的每個段夾在上通道部(114a',114b')的相應段和導體層(例如WL0~WL31)的相應段之間,以形成複數個記憶胞。 In this embodiment, the upper half-stack structure includes a plurality of conductor layers (for example, SSL, DWL, or WL0-WL31) and a plurality of insulating layers alternately stacked on the etch stop layer 110. The upper half-stacked structure includes upper channel portions (114a', 114b') and upper storage layers (112a', 112b'). Each segment of the upper storage layer (112a', 112b') is sandwiched between the corresponding segment of the upper channel portion (114a', 114b') and the corresponding segment of the conductor layer (eg WL0~WL31) to form a plurality of memory cells .

在本實施例中,導電插塞(120a,120b)連接於上通道部(114a',114b')與下通道部(114a,114b)之間。另一個導電插塞(136a,136b)形成在多層堆疊結構上方並連接到上通道部(114a',114b')。因此,上、下通道部可以由導電插塞(120a,120b,136a,136b)串聯。在本實施例中,導電插塞(120a,120b,136a,136b)包括半導體材料較佳為經摻雜的半導體材料,舉例而言為經摻雜的多晶矽製成,但不限於此。 In this embodiment, the conductive plugs (120a, 120b) are connected between the upper channel portions (114a', 114b') and the lower channel portions (114a, 114b). Another conductive plug (136a, 136b) is formed above the multilayer stack structure and connected to the upper channel portion (114a', 114b'). Therefore, the upper and lower channel portions may be connected in series by conductive plugs (120a, 120b, 136a, 136b). In this embodiment, the conductive plugs (120a, 120b, 136a, 136b) include semiconductor materials that are preferably doped semiconductor materials, for example made of doped polysilicon, but are not limited thereto.

在本實施例中,介電隔牆(124,124')位於通道部(114a,114a')和通道部(114b,114b')之間。更具體的說,介電隔牆具有上半部(即124')與下半部(即124)位在通道部(114a,114b)和通道部(114a',114b')之間。介電隔牆的上半部和下半部都具有漸縮的錐形橫截面。在本說明書的一些實施例 中,下半部124的頂部橫截面更寬於上半部124'的底部橫截面。通道部(114a,114a')和通道部(114b,114b')亦可分別稱為第一通道部(114a,114a')和第二通道部(114b,114b')。 In this embodiment, the dielectric partition wall (124, 124') is located between the channel portion (114a, 114a') and the channel portion (114b, 114b'). More specifically, the dielectric partition has an upper half (ie 124') and a lower half (ie 124) between the channel part (114a, 114b) and the channel part (114a', 114b'). The upper and lower halves of the dielectric partition have tapered cross-sections. In some embodiments of this specification In the middle, the top cross section of the lower half 124 is wider than the bottom cross section of the upper half 124'. The channel parts (114a, 114a') and channel parts (114b, 114b') may also be referred to as first channel parts (114a, 114a') and second channel parts (114b, 114b'), respectively.

請參照第2A、2B圖,第2B圖係繪示沿第2A圖剖面線2B-2B之剖面圖。多個導體層104和絕緣層106交替地沉積在基材102上以形成多層堆疊結構,例如圖1中的下半層疊結構。在本說明書的一些實施例中,絕緣層106可以由介電材料製成,包括氧化物例如氧化矽。導體層104可以由金屬(例如,金、銅、鋁、鎢或上述合金)或半導體材料(例如,摻雜或無摻雜的多晶或單晶矽/鍺)或其他合適的材料製成。在多層堆疊結構上進一步沉積蝕刻停止層110,並且蝕刻停止層110可以由不同於絕緣層106的介電材料製成。在本實施例中,蝕刻停止層110可以沉積在絕緣層106的頂部之上,並且具有範圍從大約20nm到大約100nm的厚度T1。在本實施例中,導體層104和絕緣層106的加總平均厚度T2的範圍為約40nm至約70nm。 Please refer to FIGS. 2A and 2B. FIG. 2B is a cross-sectional view taken along section line 2B-2B of FIG. 2A. A plurality of conductor layers 104 and insulating layers 106 are alternately deposited on the base material 102 to form a multilayer stack structure, such as the lower half-stack structure in FIG. 1. In some embodiments of the present specification, the insulating layer 106 may be made of a dielectric material, including oxide such as silicon oxide. The conductor layer 104 may be made of metal (for example, gold, copper, aluminum, tungsten, or the above alloy) or semiconductor material (for example, doped or undoped polycrystalline or single crystal silicon/germanium) or other suitable materials. The etch stop layer 110 is further deposited on the multilayer stack structure, and the etch stop layer 110 may be made of a dielectric material different from the insulating layer 106. In the present embodiment, the etch stop layer 110 may be deposited on top of the insulating layer 106 and have a thickness T1 ranging from about 20 nm to about 100 nm. In this embodiment, the total average thickness T2 of the conductor layer 104 and the insulating layer 106 ranges from about 40 nm to about 70 nm.

請參照第3A、3B圖,第3B圖係繪示沿第3A圖剖面線3B-3B之剖面圖。執行蝕刻步驟以在多層堆疊結構上形成多個孔洞116,以形成孔洞陣列(即多排孔洞)。每個孔洞116穿過多層堆疊結構(104,106)和蝕刻停止層110。在本說明書的一些實施例中,多孔洞116可具有O形、橢圓形、蛋形或圓角矩形的周緣,但不限於此。在本說明書的一些實施例中,使用圖案化的硬罩幕(未繪示於圖面)作為蝕刻罩幕進行非等向性蝕刻工藝,例如反應離子蝕刻工藝(anisotropic etching process)對多層堆疊結構蝕刻出多個孔洞116。在本實施例中,每個孔洞116可具有範 圍從約100nm到約250nm的底部內寬度W1。 Please refer to FIGS. 3A and 3B. FIG. 3B is a cross-sectional view taken along section line 3B-3B of FIG. 3A. An etching step is performed to form a plurality of holes 116 on the multilayer stacked structure to form a hole array (ie, rows of holes). Each hole 116 passes through the multilayer stack structure (104, 106) and the etch stop layer 110. In some embodiments of the present specification, the porous hole 116 may have an O-shaped, elliptical, egg-shaped, or rounded rectangular periphery, but is not limited thereto. In some embodiments of the present specification, a patterned hard mask (not shown in the drawing) is used as an etching mask to perform an anisotropic etching process, such as an anisotropic etching process for a multilayer stack structure Etching multiple holes 116. In this embodiment, each hole 116 may have a range Width W1 around the bottom from about 100 nm to about 250 nm.

然後,通過沉積工藝,例如低壓化學氣相沉積(LPCVD),在每個孔洞116的底部和側壁上形成儲存層112和通道層114。在本說明書的一些實施例中,儲存層112可以氧化矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層(即ONO結構),但儲存層的結構並不以此為限。在本說明書的其他實施例中,儲存層的複合層還可以選自於由一矽氧化物-氮化矽-矽氧化物-氮化矽-矽氧化物(oxide-nitride-oxide-nitride-oxide,即ONONO)結構、一矽-矽氧化物-氮化矽-矽氧化物-矽(silicon-oxide-nitride-oxide-silicon,即SONOS)結構、一能隙工程矽-矽氧化物-氮化矽-矽氧化物-矽(bandgap engineered silicon-oxide-nitride-oxide-silicon,即BE-SONOS)結構、一氮化鉭-氧化鋁-氮化矽-矽氧化物-矽(tantalum nitride,aluminum oxide,silicon nitride,silicon oxide,silicon,TANOS)結構以及一金屬高介電係數能隙工程矽-矽氧化物-氮化矽-矽氧化物-矽(metal-high-k bandgap-engineered silicon-oxide-nitride-oxide-silicon,MA BE-SONOS)結構所組成之一族群。在本實施例中,儲存層112可以是ONO結構。通道層114包括經摻雜的半導體材料或未經摻雜的半導體材料,在本實施例中,道層114可以為多晶矽層。 Then, a storage layer 112 and a channel layer 114 are formed on the bottom and sidewalls of each hole 116 through a deposition process, such as low pressure chemical vapor deposition (LPCVD). In some embodiments of the present specification, the storage layer 112 may be a composite layer (ie, ONO structure) of a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer, but the structure of the storage layer is not This is limited. In other embodiments of the present specification, the composite layer of the storage layer may also be selected from a silicon oxide-silicon nitride-silicon oxide-silicon nitride-silicon oxide (oxide-nitride-oxide-nitride-oxide , That is, ONONO) structure, a silicon-silicon oxide-silicon nitride-silicon oxide-silicon-silicon (SONOS) structure, a band gap engineering silicon-silicon oxide-nitride Band-gap engineered silicon-oxide-nitride-oxide-silicon (BE-SONOS) structure, tantalum nitride-alumina-silicon nitride-silicon oxide-silicon (tantalum nitride, aluminum oxide) , silicon nitride, silicon oxide, silicon, TANOS) structure and a metal high-k dielectric bandgap engineering silicon-silicon oxide-silicon nitride-silicon oxide-silicon (metal-high-k bandgap-engineered silicon-oxide- Nitride-oxide-silicon (MA BE-SONOS) structure. In this embodiment, the storage layer 112 may be an ONO structure. The channel layer 114 includes a doped semiconductor material or an undoped semiconductor material. In this embodiment, the channel layer 114 may be a polysilicon layer.

請參照第4A、4B圖,第4B圖係繪示沿第4A圖剖面線4B-4B之剖面圖。接著,通過沉積介電材料在每個孔洞116中形成介電填充柱118。 Please refer to FIGS. 4A and 4B. FIG. 4B is a cross-sectional view taken along section line 4B-4B of FIG. 4A. Next, a dielectric filled pillar 118 is formed in each hole 116 by depositing a dielectric material.

請參照第5A、5B圖,第5B圖係繪示沿第5A圖剖面線5B-5B之剖面圖。使用蝕刻停止層110作為停止層,執行平坦化工藝(例如CMP工藝),以去除多餘的材料。在本實施例中,下半層疊結構的導體層構成多個字元線(WL32~WL63)、反閘極IG和多個字元線(WL64~WL95),但不限於此於此。 Please refer to FIGS. 5A and 5B. FIG. 5B is a cross-sectional view taken along section line 5B-5B of FIG. 5A. Using the etch stop layer 110 as a stop layer, a planarization process (for example, a CMP process) is performed to remove excess material. In this embodiment, the conductor layer of the lower half-stack structure constitutes a plurality of word lines (WL32-WL63), an inverse gate IG, and a plurality of word lines (WL64-WL95), but it is not limited thereto.

請參照第6A、6B圖,第6B圖係繪示沿第6A圖剖面線6B-6B之剖面圖。然後,執行回蝕工藝以去除介電填充柱118、儲存層112和通道層114的頂部以形成凹部116a。 Please refer to FIGS. 6A and 6B. FIG. 6B is a cross-sectional view taken along section line 6B-6B of FIG. 6A. Then, an etch-back process is performed to remove the tops of the dielectric fill pillar 118, the storage layer 112, and the channel layer 114 to form the recess 116a.

請參照第7A、7B圖,第7B圖係繪示沿第7A圖剖面線7B-7B之剖面圖。導電插塞層120沉積在凹部116a中。構成導電插塞層的材料可以包括摻雜或未摻雜的半導體材料(諸如摻雜或無摻雜的多晶或單晶矽/鍺)或其他合適的材料。 Please refer to FIGS. 7A and 7B. FIG. 7B is a cross-sectional view taken along line 7B-7B of FIG. 7A. The conductive plug layer 120 is deposited in the recess 116a. The material constituting the conductive plug layer may include doped or undoped semiconductor materials (such as doped or undoped polycrystalline or single crystal silicon/germanium) or other suitable materials.

請參照第8A、8B圖,第8B圖係繪示沿第8A圖剖面線8B-8B之剖面圖。使用蝕刻停止層110作為停止層執行另一個平坦化工藝(例如CMP工藝),用於去除多餘的材料。在本實施例中,蝕刻停止層110位於導電插塞層120的一側或與導電插塞層120對齊。在一些實施例中,蝕刻停止層110和導電插塞層120可具有連續齊平的頂部表面。 Please refer to FIGS. 8A and 8B. FIG. 8B is a cross-sectional view along section line 8B-8B of FIG. 8A. Using the etch stop layer 110 as a stop layer, another planarization process (for example, a CMP process) is performed for removing excess material. In this embodiment, the etch stop layer 110 is located on one side of the conductive plug layer 120 or aligned with the conductive plug layer 120. In some embodiments, the etch stop layer 110 and the conductive plug layer 120 may have a continuously flush top surface.

請參照第9A、9B圖,第9B圖係繪示沿第9A圖剖面線9B-9B之剖面圖。在每一行的孔洞116上蝕刻一溝槽122,以切割導電插塞層120、介電填充柱118、儲存層112和通道層114。因此,導電插塞層120被分成兩個導電插塞(120a,120b)。因此,儲存層112被切割以形成位於每個孔洞116的側壁的第一側上的U形串列部112a以及位於每個孔洞116的側壁的相對第二側上的 U形串列部112b,但是底串列部112c沒有被溝槽122切斷並且仍然連接在串列部(112a,112b)的底端之間。通道層114具有彼此間隔開的U形通道部114a和U形通道部114b,但是底通道部114c不被溝槽122切割並且仍然連接在通道部(114a,114b)底部之間。每個導電插塞(120a,120b)可以由與通道層114的材料相同的材料製成,但是每個導電插塞(120a,120b)的截面寬度大於通道層114的截面寬度。 Please refer to FIGS. 9A and 9B. FIG. 9B is a cross-sectional view taken along line 9B-9B of FIG. 9A. A trench 122 is etched in the holes 116 of each row to cut the conductive plug layer 120, the dielectric fill pillar 118, the storage layer 112, and the channel layer 114. Therefore, the conductive plug layer 120 is divided into two conductive plugs (120a, 120b). Therefore, the storage layer 112 is cut to form a U-shaped tandem portion 112a on the first side of the side wall of each hole 116 and on the opposite second side of the side wall of each hole 116 The U-shaped tandem portion 112b, but the bottom tandem portion 112c is not cut by the groove 122 and is still connected between the bottom ends of the tandem portions (112a, 112b). The channel layer 114 has a U-shaped channel portion 114a and a U-shaped channel portion 114b spaced apart from each other, but the bottom channel portion 114c is not cut by the groove 122 and is still connected between the bottoms of the channel portions (114a, 114b). Each conductive plug (120a, 120b) may be made of the same material as the channel layer 114, but the cross-sectional width of each conductive plug (120a, 120b) is larger than the cross-sectional width of the channel layer 114.

在本實施例中,溝渠122的底部內寬度C1的範圍為約30nm至約60nm,頂部內寬度E1的範圍為約50nm至約80nm,而內部深度D1的範圍為約1200nm至約2400nm,但不限於此。溝槽122具有從其頂部到底部漸縮的錐形橫截面。一般而言,蝕刻能力所能達成的深寬比(即D1/C1)限制小於約40~60。 In this embodiment, the width C1 in the bottom of the trench 122 ranges from about 30 nm to about 60 nm, the width E1 in the top ranges from about 50 nm to about 80 nm, and the internal depth D1 ranges from about 1200 nm to about 2400 nm, but not Limited to this. The groove 122 has a tapered cross section tapering from the top to the bottom. Generally speaking, the aspect ratio (ie D1/C1) achievable by the etching capability is less than about 40-60.

請參照第10A、10B圖,第10B圖係繪示沿第10A圖剖面線10B-10B之剖面圖。然後將介電材料填充到溝槽122中以形成嵌入在通道層114的通道部(114a,114b)之間且在儲存層112的串列部(112a,112b)之間以及在孔洞116的介電填充柱118中的介電隔牆124。介電隔牆124還具有從其頂部到底部漸縮的錐形橫截面112。 Please refer to FIGS. 10A and 10B. FIG. 10B is a cross-sectional view taken along section line 10B-10B of FIG. 10A. Dielectric material is then filled into the trench 122 to form a dielectric layer embedded between the channel portions (114a, 114b) of the channel layer 114 and between the tandem portions (112a, 112b) of the storage layer 112 and the hole 116 The dielectric partition 124 in the column 118 is electrically filled. The dielectric partition 124 also has a tapered cross-section 112 that tapers from its top to the bottom.

請參照第11A、11B圖,第11B圖係繪示沿第11A圖剖面線11B-11B之剖面圖。多個導體層104和絕緣層106交替地沉積在蝕刻停止層110和導電插塞(120a,120b)上,以形成另一個多層堆疊結構(例如第1圖中,上半層疊結構沉積於下半層疊結構上方)。在本說明書的一些實施例中,絕緣層106可以由介電材料製成,包括氧化物例如氧化矽。導體層104可以由金屬(例 如,金、銅、鋁、鎢或上述合金)或半導體材料(例如,摻雜或無摻雜的多晶或單晶矽/鍺)或其他合適的材料製成。蝕刻停止層130進一步沉積覆蓋於上半層疊結構上,且蝕刻停止層130可以由不同於絕緣層106的介電材料製成,包括氮化物例如氮化矽。在本實施例中,蝕刻停止層130可以沉積在上半層疊結構之最頂的絕緣層106上。 Please refer to FIGS. 11A and 11B. FIG. 11B is a cross-sectional view taken along line 11B-11B of FIG. 11A. A plurality of conductor layers 104 and insulating layers 106 are alternately deposited on the etch stop layer 110 and the conductive plugs (120a, 120b) to form another multilayer stacked structure (for example, in FIG. 1, the upper half of the stacked structure is deposited on the lower half Above the laminated structure). In some embodiments of the present specification, the insulating layer 106 may be made of a dielectric material, including oxide such as silicon oxide. The conductor layer 104 may be made of metal (for example For example, gold, copper, aluminum, tungsten or the above alloys) or semiconductor materials (for example, doped or undoped polycrystalline or single crystal silicon/germanium) or other suitable materials. The etch stop layer 130 is further deposited to cover the upper half of the stacked structure, and the etch stop layer 130 may be made of a dielectric material different from the insulating layer 106, including nitride such as silicon nitride. In this embodiment, the etch stop layer 130 may be deposited on the topmost insulating layer 106 of the upper half-stack structure.

請參照第12A、12B圖,第12B圖係繪示沿第12A圖剖面線12B-12B之剖面圖。執行蝕刻步驟以在上半層疊結構上形成多個孔洞116’,以便形成孔洞陣列(即多排孔洞)。每個孔洞116’與下半層疊結構中的相應孔洞116對齊。每個孔洞116’穿過多層堆疊結構(104,106)和蝕刻停止層130。在本說明書的一些實施例中,多孔洞116’可具有O形、橢圓形、蛋形或圓角矩形的周緣,但不限於此。在本說明書的一些實施例中,使用圖案化的硬罩幕(未繪示於圖面)作為蝕刻罩幕進行非等向性蝕刻工藝,例如反應離子蝕刻工藝(anisotropic etching process)對多層堆疊結構蝕刻出多個孔洞116’。 Please refer to FIGS. 12A and 12B. FIG. 12B is a cross-sectional view taken along section line 12B-12B of FIG. 12A. An etching step is performed to form a plurality of holes 116' on the upper semi-layered structure to form an array of holes (i.e., multiple rows of holes). Each hole 116' is aligned with a corresponding hole 116 in the lower half-stack structure. Each hole 116' passes through the multilayer stack structure (104, 106) and the etch stop layer 130. In some embodiments of the present specification, the porous hole 116' may have an O-shaped, elliptical, egg-shaped, or rounded rectangular periphery, but is not limited thereto. In some embodiments of the present specification, a patterned hard mask (not shown in the drawing) is used as an etching mask to perform an anisotropic etching process, such as an anisotropic etching process for a multilayer stack structure A plurality of holes 116' are etched.

然後,通過沉積工藝,例如低壓化學氣相沉積(LPCVD),在每個孔洞116’的底部和側壁上形成儲存層112’和通道層114’。在本說明書的一些實施例中,儲存層112可以氧化矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層(即ONO結構),但儲存層的結構並不以此為限。在本說明書的其他實施例中,儲存層的複合層還可以選自於由一矽氧化物-氮化矽-矽氧化物-氮化矽-矽氧化物(oxide-nitride-oxide-nitride-oxide,即ONONO)結構、一矽-矽 氧化物-氮化矽-矽氧化物-矽(silicon-oxide-nitride-oxide-silicon,即SONOS)結構、一能隙工程矽-矽氧化物-氮化矽-矽氧化物-矽(bandgap engineered silicon-oxide-nitride-oxide-silicon,即BE-SONOS)結構、一氮化鉭-氧化鋁-氮化矽-矽氧化物-矽(tantalum nitride,aluminum oxide,silicon nitride,silicon oxide,silicon,TANOS)結構以及一金屬高介電係數能隙工程矽-矽氧化物-氮化矽-矽氧化物-矽(metal-high-k bandgap-engineered silicon-oxide-nitride-oxide-silicon,MA BE-SONOS)結構所組成之一族群。在本實施例中,儲存層112’可以是ONO結構,通道層114’可以是一個多晶矽層。 Then, by a deposition process, such as low pressure chemical vapor deposition (LPCVD), a storage layer 112' and a channel layer 114' are formed on the bottom and side walls of each hole 116'. In some embodiments of the present specification, the storage layer 112 may be a composite layer (ie, ONO structure) of a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer, but the structure of the storage layer is not This is limited. In other embodiments of the present specification, the composite layer of the storage layer may also be selected from a silicon oxide-silicon nitride-silicon oxide-silicon nitride-silicon oxide (oxide-nitride-oxide-nitride-oxide , That is, ONONO) structure, a silicon-silicon Oxide-silicon nitride-silicon oxide-silicon (silicon-oxide-nitride-oxide-silicon, or SONOS) structure, a band-gap engineered silicon-silicon oxide-silicon nitride-silicon oxide-silicon (bandgap engineered silicon-oxide-nitride-oxide-silicon (BE-SONOS) structure, tantalum nitride-alumina-silicon nitride-silicon oxide-silicon (tantalum nitride, aluminum oxide, silicon nitride, silicon oxide, silicon, TANOS ) Structure and a metal high dielectric constant energy gap engineering silicon-silicon oxide-silicon nitride-silicon oxide-silicon (metal-high-k bandgap-engineered silicon-oxide-nitride-oxide-silicon, MA BE-SONOS ) An ethnic group composed of structures. In this embodiment, the storage layer 112' may be an ONO structure, and the channel layer 114' may be a polysilicon layer.

請參照第13A、13B圖,第13B圖係繪示沿第13A圖剖面線13B-13B之剖面圖。然後執行回蝕工藝以去除多餘的通道層114’材料與儲存層112’以暴露導電插塞(120a,120b)和介電隔牆124的頂表面。剩餘的通道層114’留在儲存層112’的側壁上作為側壁蝕刻保護。剩餘的通道層114’的最下表面高於儲存層112’的最下表面,換句話說,通道層114’暴露出儲存層112’的底端並與導電插塞(120a,120b)隔開。在本實施例中,上半層疊結構的導體層構成串選擇線SSL、虛字元線DWL和多個字元線(WL0~WL31)以及另一側的閘極選擇線GSL、虛字元線DWL和多個字元線(WL96~WL127)。 Please refer to FIGS. 13A and 13B. FIG. 13B is a cross-sectional view taken along line 13B-13B of FIG. 13A. An etch-back process is then performed to remove excess channel layer 114' material and storage layer 112' to expose the top surfaces of the conductive plugs (120a, 120b) and the dielectric barrier 124. The remaining channel layer 114' remains on the sidewalls of the storage layer 112' as sidewall etching protection. The lowermost surface of the remaining channel layer 114' is higher than the lowermost surface of the storage layer 112', in other words, the channel layer 114' exposes the bottom end of the storage layer 112' and is separated from the conductive plugs (120a, 120b) . In this embodiment, the conductor layer of the upper half-stack structure constitutes a string selection line SSL, a dummy word line DWL and a plurality of word lines (WL0 to WL31), and a gate selection line GSL and a dummy word line DWL on the other side. Multiple character lines (WL96~WL127).

請參照第14A、14B圖,第14B圖係繪示沿第14A圖剖面線14B-14B之剖面圖。另一個通道層114”通過沉積工藝,例如低壓化學氣相沉積(LPCVD)形成到每個孔洞116’中和上半層 疊結構上。通道層114”與通道層114’的底部和導電插塞(120a,120b)和介電隔牆124暴露的頂面接觸。通道層114”和通道層114’共同構成上通道部,且通道層114”的底端接觸導電插塞(120a,120b)。 Please refer to FIGS. 14A and 14B. FIG. 14B is a cross-sectional view taken along line 14B-14B of FIG. 14A. Another channel layer 114" is formed by a deposition process such as low pressure chemical vapor deposition (LPCVD) into each hole 116' and the upper half layer Stacked structure. The channel layer 114" is in contact with the bottom of the channel layer 114' and the exposed top surfaces of the conductive plugs (120a, 120b) and the dielectric partition 124. The channel layer 114" and the channel layer 114' together constitute an upper channel portion, and the channel layer The bottom end of 114" contacts the conductive plug (120a, 120b).

請參照第15A、15B圖,第15B圖係繪示沿第15A圖剖面線15B-15B之剖面圖。此後,通過沉積介電材料在每個孔洞116’中形成介電填充柱132。 Please refer to FIGS. 15A and 15B. FIG. 15B is a cross-sectional view along line 15B-15B of FIG. 15A. Thereafter, a dielectric filled pillar 132 is formed in each hole 116' by depositing a dielectric material.

請參照第16A、16B圖,第16B圖係繪示沿第16A圖剖面線16B-16B之剖面圖。使用蝕刻停止層130作為停止層進行平坦化工藝,例如CMP工藝,以去除位於蝕刻停止層130上的部分通道層114”與部分介電填充柱132。通道層114”可以稱為「內通道層」,通道層114’可以稱為「外通道層」,內通道層114”與外通道層114’接觸,而共同構成上通道部,外通道層114’位於儲存層112’與內通道層114”之間。 Please refer to FIGS. 16A and 16B. FIG. 16B is a cross-sectional view taken along section line 16B-16B of FIG. 16A. Use the etch stop layer 130 as a stop layer to perform a planarization process, such as a CMP process, to remove part of the channel layer 114” and part of the dielectric fill pillar 132 on the etch stop layer 130. The channel layer 114” may be referred to as an “inner channel layer ", the channel layer 114' may be called an "outer channel layer", the inner channel layer 114" is in contact with the outer channel layer 114', and together constitutes the upper channel portion, the outer channel layer 114' is located between the storage layer 112' and the inner channel layer 114 "between.

請參照第17A、17B圖,第17B圖係繪示沿第17A圖剖面線17B-17B之剖面圖。然後進行回蝕刻工藝以去除介電填充柱132、儲存層112’和通道層(114’,114”)的頂部,以形成凹部116a’。 Please refer to FIGS. 17A and 17B. FIG. 17B is a cross-sectional view taken along line 17B-17B of FIG. 17A. An etch-back process is then performed to remove the top of the dielectric fill pillar 132, the storage layer 112', and the channel layer (114', 114") to form the recess 116a'.

請參照第18A、18B圖,第18B圖係繪示沿第18A圖剖面線18B-18B之剖面圖。導電插塞層136沉積在凹部116a’中。構成導電插塞層的材料可以包括摻雜或未摻雜的半導體材料(諸如摻雜或無摻雜的多晶或單晶矽/鍺)或其他合適的材料。 Please refer to FIGS. 18A and 18B. FIG. 18B is a cross-sectional view taken along section line 18B-18B of FIG. 18A. The conductive plug layer 136 is deposited in the recess 116a'. The material constituting the conductive plug layer may include doped or undoped semiconductor materials (such as doped or undoped polycrystalline or single crystal silicon/germanium) or other suitable materials.

請參照第19A、19B圖,第19B圖係繪示沿第19A圖剖面線19B-19B之剖面圖。使用蝕刻停止層130作為停止層執行 另一個平坦化工藝(例如CMP工藝),用於去除多餘的材料。在本實施例中,蝕刻停止層130位於導電插塞層136的一側或與導電插塞層136對齊。在一些實施例中,蝕刻停止層130和導電插塞層136可具有連續齊平的頂部表面。 Please refer to FIGS. 19A and 19B. FIG. 19B is a cross-sectional view taken along line 19B-19B of FIG. 19A. Perform using the etch stop layer 130 as a stop layer Another planarization process (eg CMP process) is used to remove excess material. In this embodiment, the etch stop layer 130 is located on one side of the conductive plug layer 136 or aligned with the conductive plug layer 136. In some embodiments, the etch stop layer 130 and the conductive plug layer 136 may have a continuously flush top surface.

請參照第1、20A、20B圖,第20B圖係繪示沿第20A圖剖面線20B-20B之剖面圖。在每一行的孔洞116’上蝕刻一溝槽122’,以切割導電插塞層136、介電填充柱132、儲存層112’和通道層(114’,114”)。因此,導電插塞層236被分成兩個導電插塞(136a,136b)。因此,儲存層112’被切割以形成位於每個孔洞116’的側壁的第一側上的U形串列部112a’以及位於每個孔洞116的側壁的相對第二側上的U形串列部112b’。內通道層114”也被切割以形成彼此間隔開的L形通道部114a”和L形通道部114b”。藉由使用蝕刻停止層110作為蝕刻溝渠122’的停止層以暴露介電隔牆124的頂部。儲存層之串列部(112a,112a’)與串列部(112b,112b’)亦可稱為第一串列部(112a,112a’)與第二串列部(112b,112b’)。 Please refer to FIGS. 1, 20A, and 20B. FIG. 20B is a cross-sectional view taken along section line 20B-20B of FIG. 20A. A trench 122' is etched in each row of holes 116' to cut the conductive plug layer 136, the dielectric fill pillar 132, the storage layer 112' and the channel layer (114', 114"). Therefore, the conductive plug layer 236 is divided into two conductive plugs (136a, 136b). Therefore, the storage layer 112' is cut to form a U-shaped tandem portion 112a' located on the first side of the sidewall of each hole 116' and located at each hole The U-shaped tandem portion 112b' on the opposite second side of the side wall of 116. The inner channel layer 114" is also cut to form an L-shaped channel portion 114a" and an L-shaped channel portion 114b" that are spaced apart from each other. The top of the dielectric barrier 124 is exposed by using the etch stop layer 110 as a stop layer of the etch trench 122'. The tandem portions (112a, 112a') and tandem portions (112b, 112b') of the storage layer may also be referred to as first tandem portions (112a, 112a') and second tandem portions (112b, 112b').

在本實施例中(請參照第9B、20B圖),溝渠122’的底部內寬度C2的範圍為約30nm至約60nm,頂部內寬度E2的範圍為約50nm至約80nm,而內部深度D2的範圍為約1200nm至約2400nm,但不限於此。溝槽122’具有從其頂部到底部漸縮的錐形橫截面。利用兩步驟蝕刻方案,可以放寬高密度記憶體設計(例如64層或96層垂直記憶體陣列)的總深寬比,即(D1+D2)/C1。在其他實施例中,可以利用3步驟或更多步驟蝕刻方案來放寬更高密度記憶體設計(例如128層或更多層的垂直記憶體陣列)的 總深寬比。 In this embodiment (please refer to FIGS. 9B and 20B), the width C2 in the bottom of the trench 122' ranges from about 30 nm to about 60 nm, the width E2 in the top ranges from about 50 nm to about 80 nm, and the internal depth D2 The range is about 1200 nm to about 2400 nm, but is not limited thereto. The groove 122' has a tapered cross section tapering from the top to the bottom. Using a two-step etching scheme, the overall aspect ratio of high-density memory designs (such as 64-layer or 96-layer vertical memory arrays) can be relaxed, ie (D1+D2)/C1. In other embodiments, a three-step or more-step etching scheme may be used to relax the design of higher density memory (such as a vertical memory array with 128 or more layers) Total aspect ratio.

請參照第1、21A、21B圖,第21B圖係繪示沿第21A圖剖面線21B-21B之剖面圖。然後將介電材料填充到溝槽122’中以形成嵌入在通道層(114’,114”)的通道部(114a’,114b’)之間且在儲存層112’的串列部(112a’,112b’)之間以及在介電填充柱132中的介電隔牆124。介電隔牆124’還具有從其頂部到底部漸縮的錐形橫截面。上介電隔牆124’和下介電隔牆124形成連續介電隔牆,以將通道部成兩個相對的U形或半圓柱形通道部(114a,114a’,114b,114b’)。導電插塞(120a,120b)在上通道部(114a’,114b’)和下通道部(114a,114b)之間連接。 Please refer to FIGS. 1, 21A, and 21B. FIG. 21B is a cross-sectional view taken along the line 21B-21B of FIG. 21A. The dielectric material is then filled into the trench 122' to form a tandem portion (112a') embedded between the channel portions (114a', 114b') of the channel layer (114', 114") and in the storage layer 112' , 112b') and the dielectric partition 124 in the dielectric packing column 132. The dielectric partition 124' also has a tapered cross section tapering from the top to the bottom. The upper dielectric partition 124' and The lower dielectric partition 124 forms a continuous dielectric partition to divide the channel portion into two opposing U-shaped or semi-cylindrical channel portions (114a, 114a', 114b, 114b'). Conductive plugs (120a, 120b) It is connected between the upper channel part (114a', 114b') and the lower channel part (114a, 114b).

請參照第1、22A、22B圖,第22B圖係繪示沿第22A圖剖面線22B-22B之剖面圖。三維記憶體元件100可以包括互連層,即位元線BL和共同源極線CSL,以連接到孔洞(116,116’)中的通道部。具體而言,兩個導電插塞(136a,136b)形成在每個孔洞(116,116’)的開口端並分別與通道部(114a’,114b’)接觸。兩個導電插塞(136a,136b)中的一個連接到位元線BL,而兩個導電插塞(136a,136b)中的另一個連接到共同源極線CSL。因此,記憶體元件100的所有記憶胞均可以連接到互連層。 Please refer to FIGS. 1, 22A, and 22B. FIG. 22B is a cross-sectional view taken along line 22B-22B of FIG. 22A. The three-dimensional memory element 100 may include an interconnection layer, that is, a bit line BL and a common source line CSL to connect to the channel portion in the hole (116, 116'). Specifically, two conductive plugs (136a, 136b) are formed at the open end of each hole (116, 116') and are in contact with the channel portions (114a', 114b'), respectively. One of the two conductive plugs (136a, 136b) is connected to the bit line BL, and the other of the two conductive plugs (136a, 136b) is connected to the common source line CSL. Therefore, all memory cells of the memory device 100 can be connected to the interconnect layer.

請同時參照第1、23A、23B、24圖。記憶體元件200與記憶體元件100的不同之處主要在於記憶體元件100的底串列部112c在記憶體元件200中不存在,使得串列部112a和串列部分112b上的記憶胞無法連接為相同的串列。例如,儲存層的串列string_0對應於串選擇線SSL_0、虛字元線DWL_e、多個字元線(WL0_e~WL63_e)和閘極選擇線GSL,而儲存層的串列 string_1對應於串選擇線SSL_1、虛字元線DWL_o、多字線s(WL0_o~WL63_o)和閘極選擇線GSL。立體記憶體元件200還包括連接到所有導電插塞(136a,136b)的位元線BL和連接到所有通道部(114a,114a’,114b,114b')底端的共同源極線CSL。因此,記憶體元件200的互連層配置方式亦不同於記憶體元件100的互連層配置方式。 Please also refer to Figures 1, 23A, 23B, and 24. The difference between the memory device 200 and the memory device 100 is that the bottom serial part 112c of the memory device 100 does not exist in the memory device 200, so that the memory cells on the serial part 112a and the serial part 112b cannot be connected. The same list. For example, the serial string_0 of the storage layer corresponds to the string selection line SSL_0, the dummy word line DWL_e, a plurality of character lines (WL0_e~WL63_e), and the gate selection line GSL, while the serial layer of the storage layer string_1 corresponds to the string selection line SSL_1, the dummy word line DWL_o, the multi-word line s (WL0_o~WL63_o), and the gate selection line GSL. The three-dimensional memory element 200 further includes a bit line BL connected to all conductive plugs (136a, 136b) and a common source line CSL connected to the bottom ends of all channel portions (114a, 114a', 114b, 114b'). Therefore, the configuration of the interconnection layer of the memory device 200 is also different from the configuration of the interconnection layer of the memory device 100.

根據前述實施例,半圓柱半導體記憶體元件利用多步驟蝕刻方案來放寬更高密度設計的總深寬度,使得具有正常蝕刻能力的傳統蝕刻工具仍然能夠製造更高密度設計的形半導體記憶體元件。 According to the foregoing embodiment, the semi-cylindrical semiconductor memory device utilizes a multi-step etching scheme to relax the overall depth width of the higher density design, so that conventional etching tools with normal etching capabilities can still manufacture higher density design shaped semiconductor memory devices.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何該技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in this technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be deemed as defined by the appended patent application scope.

100‧‧‧記憶體元件 100‧‧‧Memory component

110‧‧‧蝕刻停止層 110‧‧‧Etching stop layer

112a‧‧‧串列部 112a‧‧‧Series

112b‧‧‧串列部 112b‧‧‧Series

112c‧‧‧串列部 112c‧‧‧Series

112a’‧‧‧串列部 112a’‧‧‧Series

112b’‧‧‧串列部 112b’‧‧‧Series

114’‧‧‧通道層 114’‧‧‧Channel

114”‧‧‧通道層 114”‧‧‧channel layer

114a‧‧‧通道部 114a‧‧‧Channel Department

114b‧‧‧通道部 114b‧‧‧Channel Department

114a’‧‧‧通道部 114a’‧‧‧Access Department

114b’‧‧‧通道部 114b’‧‧‧Access Department

114c‧‧‧通道部 114c‧‧‧Channel Department

120a‧‧‧導電插塞 120a‧‧‧Conductive plug

120b‧‧‧導電插塞 120b‧‧‧Conductive plug

124‧‧‧介電隔牆 124‧‧‧Dielectric partition

124'‧‧‧介電隔牆 124'‧‧‧Dielectric partition

130‧‧‧蝕刻停止層 130‧‧‧Etching stop layer

136a‧‧‧導電插塞 136a‧‧‧Conductive plug

136b‧‧‧導電插塞 136b‧‧‧Conductive plug

DWL‧‧‧虛字元線 DWL‧‧‧Dummy character line

WL(0~127)‧‧‧字元線 WL(0~127)‧‧‧character line

BL‧‧‧位元線 BL‧‧‧bit line

IG‧‧‧反閘極層 IG‧‧‧Anti-gate layer

SSL‧‧‧串選擇線 SSL‧‧‧String selection line

CSL‧‧‧共同源極線 CSL‧‧‧Common Source Line

GSL‧‧‧閘極選擇線 GSL‧‧‧Gate selection line

Claims (9)

一種立體記憶體元件,包含:一基材;複數個導電層以及複數個絕緣層,彼此交錯堆疊位於該基材上,以形成一多層堆疊結構;一儲存層,穿過該多層堆疊結構,且具有一第一串列部以及一第二串列部;一第一通道部,位於該第一串列部的一側邊,且該第一串列部位於該多層堆疊結構與該第一通道部之間;一第二通道部,位於該第二串列部的一側邊,且該第二串列部位於該多層堆疊結構與該第二通道部之間,該第一通道部與該第二通道部各包含一上通道部份以及一下通道部份;以及一第一導電插塞,連接於該上通道部份以及該下通道部份之間,其中該上通道部份包含一外通道層以及一內通道層,該外通道層位於該儲存層與內通道層之間,且與該第一導電插塞分離。 A three-dimensional memory device includes: a substrate; a plurality of conductive layers and a plurality of insulating layers, stacked alternately on the substrate to form a multilayer stack structure; and a storage layer passing through the multilayer stack structure, And has a first tandem portion and a second tandem portion; a first channel portion is located on one side of the first tandem portion, and the first tandem portion is located in the multilayer stack structure and the first Between the channel portions; a second channel portion is located on one side of the second tandem portion, and the second tandem portion is located between the multilayer stack structure and the second channel portion, the first channel portion is The second channel portion each includes an upper channel portion and a lower channel portion; and a first conductive plug connected between the upper channel portion and the lower channel portion, wherein the upper channel portion includes a An outer channel layer and an inner channel layer, the outer channel layer is located between the storage layer and the inner channel layer, and is separated from the first conductive plug. 如申請專利範圍第1項所述之立體記憶體元件,還包含一蝕刻停止層位於該多層堆疊結構中,且位於該第一導電插塞一側。 The three-dimensional memory device described in item 1 of the patent application scope further includes an etch stop layer located in the multilayer stack structure and on the side of the first conductive plug. 如申請專利範圍第1項所述之立體記憶體元件,還包含一底部通道,且該第一通道部與該第二通道部之該下通道部份為彼此分離的U型通道,且連接至該底部通道 的兩端。 The three-dimensional memory element described in item 1 of the patent application scope further includes a bottom channel, and the lower channel portions of the first channel portion and the second channel portion are U-shaped channels separated from each other, and are connected to The bottom channel Both ends. 如申請專利範圍第1項所述之立體記憶體元件,更包含一介電隔牆,位於該儲存層之該第一、二串列部之間,該介電隔牆包含一上部以及一下部,該下部之頂端的截面寬於該上部之底端的截面。 The three-dimensional memory device as described in item 1 of the patent application scope further includes a dielectric partition wall between the first and second serial portions of the storage layer, the dielectric partition wall includes an upper portion and a lower portion , The cross section of the top end of the lower part is wider than that of the bottom end of the upper part. 如申請專利範圍第1項所述之立體記憶體元件,還包含一第二導電插塞,其位於該多層堆疊結構上方且連接至該上通道部份。 The three-dimensional memory device described in item 1 of the patent application scope further includes a second conductive plug located above the multilayer stack structure and connected to the upper channel portion. 如申請專利範圍第5項所述之立體記憶體元件,還包含一蝕刻停止層,其位於該多層堆疊結構上方且位於該第二導電插塞一側。 The three-dimensional memory device described in item 5 of the patent application scope further includes an etch stop layer located above the multilayer stack structure and on the side of the second conductive plug. 如申請專利範圍第5項所述之立體記憶體元件,其中該第一導電插塞與該第二導電插塞的材質為摻雜的多晶矽。 The three-dimensional memory device as described in item 5 of the patent application range, wherein the material of the first conductive plug and the second conductive plug is doped polysilicon. 一種立體記憶體元件的製造方法,包含:交替沈積複數第一導電層以及第一絕緣層於一基材上;蝕刻一第一通孔穿越該些第一導電層以及該些第一絕緣層;沈積一第一儲存層於該第一通孔內;沈積一下通道部於該第一儲存層上; 沈積一第一導電插塞接觸該下通道部;交替沈積複數第二導電層以及第二絕緣層於該第一導電插塞上;蝕刻一第二通孔穿越該些第二通道層以及該些第二絕緣層以暴露該第一導電插塞;沈積一第二儲存層於該第二通孔內;沈積一第二通道層於該第二儲存層上;蝕刻該第二儲存層以及該第二通道層以暴露該第一導電插塞,且蝕刻後剩餘的該第二通道層位於該第二儲存層的側壁;沈積一第三通道層於蝕刻後剩餘的該第二通道層上以形成一上通道部,其接觸該第一導電插塞;以及沈積一第二導電插塞接觸該上通道部的頂端。 A method for manufacturing a three-dimensional memory device includes: alternately depositing a plurality of first conductive layers and first insulating layers on a substrate; etching a first through hole to pass through the first conductive layers and the first insulating layers; Depositing a first storage layer in the first through hole; depositing a channel part on the first storage layer; Depositing a first conductive plug to contact the lower channel portion; alternately depositing a plurality of second conductive layers and a second insulating layer on the first conductive plug; etching a second through hole through the second channel layers and the ones A second insulating layer to expose the first conductive plug; deposit a second storage layer in the second through hole; deposit a second channel layer on the second storage layer; etch the second storage layer and the first Two channel layers to expose the first conductive plug, and the second channel layer remaining after etching is located on the sidewall of the second storage layer; a third channel layer is deposited on the second channel layer remaining after etching to form An upper channel portion, which contacts the first conductive plug; and a second conductive plug is deposited, which contacts the top end of the upper channel portion. 如申請專利範圍第8項所述之製造方法,其中在沈積該些第二通道層以及該些第二絕緣層前,還包含:蝕刻一第一溝渠以切割該第一導電插塞、該第一儲存層以及該下通道部;沈積一第一介電隔牆以填入該第一溝渠;蝕刻一第二溝渠以切割該第二導電插塞、該第二儲存層以及該上通道部以暴露該第一介電隔牆;以及沈積一第二介電隔牆以填入該第二溝渠,並接觸該第一介電隔牆。 The manufacturing method as described in item 8 of the patent application scope, wherein before depositing the second channel layers and the second insulating layers, the method further includes: etching a first trench to cut the first conductive plug, the first A storage layer and the lower channel portion; deposit a first dielectric partition to fill the first trench; etch a second trench to cut the second conductive plug, the second storage layer and the upper channel portion Exposing the first dielectric partition wall; and depositing a second dielectric partition wall to fill the second trench and contact the first dielectric partition wall.
TW108104660A 2019-02-12 2019-02-12 Three dimensional memory device and method for fabricating the same TWI681548B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108104660A TWI681548B (en) 2019-02-12 2019-02-12 Three dimensional memory device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108104660A TWI681548B (en) 2019-02-12 2019-02-12 Three dimensional memory device and method for fabricating the same

Publications (2)

Publication Number Publication Date
TWI681548B true TWI681548B (en) 2020-01-01
TW202030874A TW202030874A (en) 2020-08-16

Family

ID=69942679

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108104660A TWI681548B (en) 2019-02-12 2019-02-12 Three dimensional memory device and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI681548B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380824A (en) * 2020-05-28 2021-09-10 台湾积体电路制造股份有限公司 Memory device and method of forming the same
US11716856B2 (en) 2021-03-05 2023-08-01 Taiwan Semiconductor Manufacturing Co., Ltd. Three-dimensional memory device and method
US11839080B2 (en) 2020-05-28 2023-12-05 Taiwan Semiconductor Manufacturing Company, Ltd. 3D memory with graphite conductive strips
US11985825B2 (en) 2020-06-25 2024-05-14 Taiwan Semiconductor Manufacturing Co., Ltd. 3D memory array contact structures
US12022659B2 (en) 2020-07-30 2024-06-25 Taiwan Semiconductor Manufacturing Co., Ltd. Three-dimensional memory device and method
US12040006B2 (en) 2020-06-26 2024-07-16 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array including dummy regions
US12087621B2 (en) 2020-06-26 2024-09-10 Taiwan Semiconductor Manufacturing Co., Ltd. Air gaps in memory array structures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140284697A1 (en) * 2013-03-12 2014-09-25 SanDisk Technologies, Inc. Vertical nand and method of making thereof using sequential stack etching and landing pad

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140284697A1 (en) * 2013-03-12 2014-09-25 SanDisk Technologies, Inc. Vertical nand and method of making thereof using sequential stack etching and landing pad

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380824A (en) * 2020-05-28 2021-09-10 台湾积体电路制造股份有限公司 Memory device and method of forming the same
TWI773176B (en) * 2020-05-28 2022-08-01 台灣積體電路製造股份有限公司 3d memory device and method for forming the same
US11839080B2 (en) 2020-05-28 2023-12-05 Taiwan Semiconductor Manufacturing Company, Ltd. 3D memory with graphite conductive strips
US12041776B2 (en) 2020-05-28 2024-07-16 Taiwan Semiconductor Manufacturing Company, Ltd. 3D memory with graphite conductive strips
US11985825B2 (en) 2020-06-25 2024-05-14 Taiwan Semiconductor Manufacturing Co., Ltd. 3D memory array contact structures
US12040006B2 (en) 2020-06-26 2024-07-16 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array including dummy regions
US12087621B2 (en) 2020-06-26 2024-09-10 Taiwan Semiconductor Manufacturing Co., Ltd. Air gaps in memory array structures
US12022659B2 (en) 2020-07-30 2024-06-25 Taiwan Semiconductor Manufacturing Co., Ltd. Three-dimensional memory device and method
US11716856B2 (en) 2021-03-05 2023-08-01 Taiwan Semiconductor Manufacturing Co., Ltd. Three-dimensional memory device and method

Also Published As

Publication number Publication date
TW202030874A (en) 2020-08-16

Similar Documents

Publication Publication Date Title
TWI681548B (en) Three dimensional memory device and method for fabricating the same
US10903237B1 (en) Three-dimensional memory device including stepped connection plates and methods of forming the same
TWI713203B (en) Memory device and method for fabricating the same
JP6987876B2 (en) Memory device and method
US10910399B2 (en) Three dimensional memory device and method for fabricating the same
KR102523139B1 (en) A semiconductor memory device
TWI670838B (en) Tilted hemi-cylindrical 3d nand array having bottom reference conductor
US7803683B2 (en) Method of fabricating a semiconductor device
KR20100053393A (en) Method for fabricating nonvolatile memory device and nonvolatile memory device fabricated by the method
TWI595601B (en) Memory device and method for fabricating the same
TW202201744A (en) Memory device and method of manufacturing the same
CN111554689B (en) Three-dimensional memory element and manufacturing method thereof
US7772065B2 (en) Semiconductor memory device including a contact with different upper and bottom surface diameters and manufacturing method thereof
CN115497952A (en) Memory element and flash memory element
TWI727761B (en) Memory device and method of fabricating the same
US11183511B2 (en) Memory device and manufacturing method for the same
TWI785804B (en) 3d and flash memory device and method of fabricating the same
CN112534576B (en) Bottom select gate contact for a center stair-step structure in a three-dimensional memory device
TWI725755B (en) Three dimensional memory device and method for fabricating the same
TWI796557B (en) Memory device and method of fabricating the same
US7045411B1 (en) Semiconductor device having a chain gate line structure and method for manufacturing the same
TWI681550B (en) Three dimensional memory device and method for fabricating the same
TWI768969B (en) Memory device
CN111725215B (en) Three-dimensional memory element and manufacturing method thereof
US20240334695A1 (en) Three-dimensional memory device containing composite dielectric isolation structure in a staircase region and methods of forming the same