TWI681407B - Computer-aided recognition system, its method and its computer program product thereof - Google Patents
Computer-aided recognition system, its method and its computer program product thereof Download PDFInfo
- Publication number
- TWI681407B TWI681407B TW107144007A TW107144007A TWI681407B TW I681407 B TWI681407 B TW I681407B TW 107144007 A TW107144007 A TW 107144007A TW 107144007 A TW107144007 A TW 107144007A TW I681407 B TWI681407 B TW I681407B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- neuron
- computer
- hidden
- dnn model
- Prior art date
Links
- 238000004590 computer program Methods 0.000 title claims description 16
- 210000002569 neurons Anatomy 0.000 claims abstract description 123
- 230000001537 neural Effects 0.000 claims abstract description 54
- 206010012601 Diabetes mellitus Diseases 0.000 claims abstract description 39
- 230000001575 pathological Effects 0.000 claims description 50
- 201000011510 cancer Diseases 0.000 claims description 29
- 238000004458 analytical method Methods 0.000 claims description 28
- 230000000875 corresponding Effects 0.000 claims description 20
- 206010038038 Rectal cancer Diseases 0.000 claims description 18
- 201000001275 rectum cancer Diseases 0.000 claims description 18
- 208000002249 Diabetes Complications Diseases 0.000 claims description 7
- 239000003814 drug Substances 0.000 claims description 7
- 229940079593 drugs Drugs 0.000 claims description 6
- 238000002790 cross-validation Methods 0.000 claims description 4
- 201000010099 disease Diseases 0.000 claims description 4
- 230000001225 therapeutic Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 18
- 230000005284 excitation Effects 0.000 description 17
- 210000004205 output neuron Anatomy 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 230000004083 survival Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000003062 neural network model Methods 0.000 description 3
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 229960003105 Metformin Drugs 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000003472 antidiabetic agent Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 208000006673 Asthma Diseases 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- 241000565118 Cordylophora caspia Species 0.000 description 1
- 206010012655 Diabetic complications Diseases 0.000 description 1
- 206010062060 Hyperlipidaemia Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010021972 Inflammatory bowel disease Diseases 0.000 description 1
- 208000001083 Kidney Disease Diseases 0.000 description 1
- 206010029149 Nephropathy Diseases 0.000 description 1
- 206010029151 Nephropathy Diseases 0.000 description 1
- 206010029331 Neuropathy peripheral Diseases 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 206010061529 Polyp Diseases 0.000 description 1
- 206010038923 Retinopathy Diseases 0.000 description 1
- 206010038932 Retinopathy Diseases 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 229940090121 Sulfonylureas for blood glucose lowering Drugs 0.000 description 1
- 208000001072 Type 2 Diabetes Mellitus Diseases 0.000 description 1
- 230000000271 cardiovascular Effects 0.000 description 1
- 201000000522 chronic kidney disease Diseases 0.000 description 1
- 201000011231 colorectal cancer Diseases 0.000 description 1
- 201000006233 congestive heart failure Diseases 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 230000000968 intestinal Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002503 metabolic Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 201000001119 neuropathy Diseases 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000000391 smoking Effects 0.000 description 1
- -1 statin (Statin) Chemical compound 0.000 description 1
- YROXIXLRRCOBKF-UHFFFAOYSA-N sulfonylurea Chemical compound OC(=N)N=S(=O)=O YROXIXLRRCOBKF-UHFFFAOYSA-N 0.000 description 1
- 201000010874 syndrome Diseases 0.000 description 1
Images
Abstract
Description
本發明屬於電腦輔助預測技術領域,特別是預測直腸癌病發可能性的電腦輔助預測技術領域。 The invention belongs to the field of computer-aided prediction technology, in particular to the field of computer-aided prediction technology for predicting the possibility of rectal cancer.
糖尿病是最常見的疾病之一,並且全球罹病人數正逐年增加。對於糖尿病患者而言,良好的醫療照護將可提升生存率。然而,最近的研究發現,糖尿病患者罹患直腸癌的風險會一般人更高,一旦發病,將影響糖尿病患者的醫療照護品質,並使生存率大幅下降。對此,若能即早預測糖尿病患者的罹癌機率,就能給予適當的醫療照護,進而能提升患者的生存率。目前雖有一些技術可預測糖尿病患者的併發症,例如適應糖尿病併發症嚴重程度指數(Adapted Diabetes Complication Severity Index,aDCSI),但其精準度仍不符合預期。由此可知,目前仍急需一種能精準預測糖尿病患者罹患直腸癌可能性的技術 Diabetes is one of the most common diseases, and the number of patients worldwide is increasing year by year. For diabetics, good medical care will improve survival. However, recent studies have found that people with diabetes have a higher risk of developing rectal cancer. Once the disease occurs, it will affect the quality of medical care for patients with diabetes and reduce the survival rate significantly. In this regard, if we can predict the cancer risk of diabetic patients early, we can give appropriate medical care, which can improve the survival rate of patients. At present, although there are some technologies that can predict the complications of diabetics, such as the Adapted Diabetes Complication Severity Index (aDCSI), its accuracy still does not meet expectations. It can be seen that there is still an urgent need for a technology that can accurately predict the possibility of diabetic patients suffering from rectal cancer
本發明提出一種電腦輔助預測技術,是以深度神經網路為基礎,並配合有併發直腸癌或未併發直腸癌的大量糖尿病患者的病理因子資料來對深 度神經網路的基本模型進行訓練,當訓練完成後,深度神經網路即可準確地預測糖尿病患者罹患直腸癌的可能性。 The present invention proposes a computer-aided prediction technology, which is based on a deep neural network and combined with pathological factor data of a large number of diabetic patients with or without rectal cancer. The basic model of the neural network is trained. When the training is completed, the deep neural network can accurately predict the possibility of diabetic patients suffering from rectal cancer.
根據本發明的一觀點,茲提出一種電腦輔助預測系統,用以預測糖尿病患者罹患直腸癌的可能性。該系統包含深度神經網路模型,用以透過深度神經元路徑對糖尿病患者的複數個病理因子資料進行特徵分析。深度神經網路模型包含複數個神經元及輸出層。至少部分神經元對應病理因子資料。輸出層根據該特徵分析而輸出與罹患可能性有關的輸出結果。其中,DNN模型是透過複數次訓練來決定每個神經元對應的權重值,進而建立深度神經元路徑。 According to one aspect of the present invention, a computer-aided prediction system is proposed to predict the possibility of diabetic patients suffering from rectal cancer. The system includes a deep neural network model to analyze the characteristics of multiple pathological factors in diabetic patients through a deep neuron path. The deep neural network model includes a plurality of neurons and output layers. At least some neurons correspond to pathological factors. The output layer outputs the output result related to the possibility of suffering based on this feature analysis. Among them, the DNN model determines the weight value corresponding to each neuron through a plurality of trainings, and then establishes a deep neuron path.
根據本發明的另一觀點,是提供一種電腦輔助預測方法,用以預測糖尿病患者罹患直腸癌的可能性,該方法是透過電腦輔助預測系統來執行,其中電腦輔助預測系統包含具有複數個神經元及輸出層的DNN模型。該方法包含步驟:取得糖尿病患者的複數個病理因子資料;藉由DNN模型,透過深度神經元路徑對該等病理因子資料進行特徵分析;以及藉由輸出層,根據特徵分析而輸出與罹癌可能性有關的輸出結果;其中,DNN模型是透過複數次訓練來決定每個神經元對應的權重值,進而建立深度神經元路徑。 According to another aspect of the present invention, there is provided a computer-aided prediction method for predicting the possibility of diabetic patients suffering from rectal cancer. The method is implemented by a computer-aided prediction system, wherein the computer-aided prediction system includes a plurality of neurons And the DNN model of the output layer. The method includes the steps of: obtaining a plurality of pathological factor data of a diabetic patient; performing feature analysis on the pathological factor data through a deep neuron path through a DNN model; and outputting the possibility of cancer development based on the feature analysis through an output layer Sex-related output results; among them, the DNN model determines the weight value corresponding to each neuron through multiple trainings, and then establishes a deep neuron path.
根據本發明又另一觀點,是提供一種電腦程式產品,儲存於非暫態電腦可讀取媒體之中,用以使電腦輔助預測系統進行運作,其中電腦輔助預測系統是用以預測糖尿病患者罹患直腸癌的可能性,並包含具有複數個神經元及輸出層的DNN模型。電腦程式產品包含:一指令,取得糖尿病患者的複數個病理因子資料;一指令,使DNN模型透過深度神經元路徑對病理因子資料進行一特徵分析;以及一指令,使輸出層根據特徵分析而輸出與罹癌可能性有關的輸 出結果;其中,DNN模型是透過複數次訓練來決定每個神經元對應的權重值,藉此建立深度神經元路徑。 According to yet another aspect of the present invention, it is to provide a computer program product, which is stored in a non-transitory computer readable medium for the operation of a computer-aided prediction system, wherein the computer-aided prediction system is used to predict the occurrence of diabetes The possibility of rectal cancer, and includes a DNN model with multiple neurons and output layers. The computer program product includes: an instruction to obtain a plurality of pathological factor data of diabetic patients; an instruction to enable the DNN model to perform a feature analysis on the pathological factor data through the deep neuron path; and an instruction to enable the output layer to output based on the feature analysis Loss related to cancer risk Outcome; Among them, the DNN model determines the weight value corresponding to each neuron through multiple trainings, thereby establishing a deep neuron path.
1‧‧‧電腦輔助預測系統 1‧‧‧ Computer-aided prediction system
10‧‧‧深度神經網路(DNN)模型10
10‧‧‧Deep Neural Network (DNN)
12‧‧‧輸入層 12‧‧‧ input layer
13‧‧‧基本神經元 13‧‧‧Basic neuron
14‧‧‧隱藏神經層 14‧‧‧ hidden nerve layer
141‧‧‧第一個隱藏神經層 141‧‧‧The first hidden nerve layer
142‧‧‧第二個隱藏神經層 142‧‧‧The second hidden nerve layer
143‧‧‧第三個隱藏神經層 143‧‧‧The third hidden nerve layer
15‧‧‧隱藏神經元 15‧‧‧ hidden neurons
16‧‧‧輸出層 16‧‧‧Output layer
17‧‧‧輸出神經元 17‧‧‧ output neuron
18‧‧‧深度神經路徑 18‧‧‧ Deep Neural Path
20‧‧‧資料取得介面 20‧‧‧Data access interface
30‧‧‧電腦程式產品 30‧‧‧Computer program products
40‧‧‧測試模組 40‧‧‧Test module
S31~S35‧‧‧步驟 S31~S35‧‧‧Step
S41~S48‧‧‧步驟 S41~S48‧‧‧Step
圖1(A)是本發明一實施例的直腸癌電腦輔助預測系統的系統架構圖;圖1(B)是本發明一實施例的DNN模型的架構圖;圖2本發明一實施例的DNN模型(已完成訓練)的細部架構示意圖;圖3是本發明一實施例的電腦輔助預測方法的基本步驟流程圖;圖4是本發明一實施例的DNN模型的建立過程的步驟流程圖;圖5是本發明一實施例的實驗數據示意圖。 1(A) is a system architecture diagram of a computer-aided prediction system for rectal cancer according to an embodiment of the invention; FIG. 1(B) is an architecture diagram of a DNN model according to an embodiment of the invention; FIG. 2 is a DNN according to an embodiment of the invention Schematic diagram of the detailed architecture of the model (completed training); FIG. 3 is a flowchart of basic steps of a computer-aided prediction method according to an embodiment of the present invention; FIG. 4 is a flowchart of steps of a process of establishing a DNN model according to an embodiment of the present invention; 5 is a schematic diagram of experimental data according to an embodiment of the invention.
以下說明書將提供本發明的多個實施例。可理解的是,這些實施例並非用以限制。本發明的各實施例的特徵可加以修飾、置換、組合、分離及設計以應用於其他實施例。 The following description will provide various embodiments of the present invention. Understandably, these embodiments are not intended to be limiting. The features of the embodiments of the present invention can be modified, replaced, combined, separated, and designed to be applied to other embodiments.
圖1(A)是本發明一實施例的電腦輔助預測系統1的系統架構圖。如圖1所示,電腦輔助預測系統1包含一深度神經網路模型10(Deep Neural Network,以下簡稱DNN模型10),用以預測糖尿病患者罹患直腸癌的機率。在一實施例中,電腦輔助預測系統1更可包含一資料取得介面20。資料取得介面20用以取得來自外部的資料,亦即使用者(例如醫師)可透過資料取得介面20將患者的
資料輸入至電腦輔助預測系統1中。此外,在一實施例中,電腦輔助預測系統1更可包含一測試模組40,用以測試DNN模型10的預測能力。
FIG. 1(A) is a system architecture diagram of a computer-aided
圖1(B)是本發明一實施例的DNN模型10的架構圖,請同時參考圖1(A)。DNN模型10包含了一輸入層12、複數個隱藏神經層14及一輸出層16。輸入層12具有複數個基本神經元13,其中每個基本神經元13對應一種病理因子資料及一個權重值。隱藏神經層14各自具有複數個隱藏神經元15,其中該等隱藏神經元15與該等基本神經元13連結,且各自亦對應一個權重值。輸出層16包含二輸出神經元17,用以產生二輸出結果,其中該等輸出結果各自對應糖尿病患者的罹癌機率及未罹癌機率。在一實施例中,基本神經元13、隱藏神經元15及輸出神經元17可形成一深度神經元路徑18,而DNN模型10可透過深度神經元路徑18對糖尿病患者的複數個病理因子資料進行一特徵分析,輸出層16可根據該特徵分析而輸出該等輸出結果(罹患癌機率以及未罹癌機率)。更詳細地說明,當DNN模型10取得糖尿病患者的複數個病理因子資料時,可將糖尿病患者的該等病理因子輸入至深度神經元路徑18之中,並利用深度神經元路徑18上每個基本神經元13、隱藏神經元15及輸出神經元17對糖尿病患者的該等病理因子進行特徵分析。在一實施例中,「特徵分析」可視為每個神經元對病理因子所進行的運算,而「運算」可包含一加總運算、一激發運算、一加權運算或該等至少二者之組合,且不限於此。藉此,本發明的DNN模型1可準確地預測該糖尿病患者的罹癌的可能性。接著將說明各元件的細節。
FIG. 1(B) is an architecture diagram of a
電腦輔助預測系統1可以是一資料處理裝置,其可透過任何具有微處理器的裝置來實現,例如桌上型電腦、筆記型電腦、智慧型行動裝置、伺服器或雲端主機等類似裝置。在一實施例中,電腦輔助預測系統1可具備網路通
訊功能,以將資料透過網路進行傳輸,其中網路通訊可以是有線網路或無線網路,因此電腦輔助預測系統1亦可透過網路來取得資料。在一實施例中,電腦輔助預測系統1可由微處理器中執行一電腦程式產品30來實現其功能,其中電腦程式產品30可具有複數個指令,該等指令可使處理器執行特殊運作,進而使處理器實現如DNN模型10或測試模組40等功能。在一實施例中,電腦程式產品30可儲存於一非暫態電腦可讀取媒體(例如記憶體)之中,但不限於此。在一實施例中,電腦程式產品30亦可預先儲存於網路伺服器中,以供使用者下載。
The computer-aided
在一實施例中,資料取得介面20可以是用以取得外部資料的一實體連接埠,例如當電腦輔助預測系統1是由電腦時,資料取得介面20可以是電腦上USB介面、各種傳輸線接頭等,但並非限定。此外,資料取得介面20亦可與無線通訊晶片整合,因此能以無線傳輸的方式接收資料。
In one embodiment, the data acquisition interface 20 may be a physical port for acquiring external data. For example, when the computer-aided
本發明的DNN模型10是一種資料分析的人工智慧模型,其是以複數個運算節點作為神經網路的神經元,且每個神經元的運算可視為病理因子的特徵分析。在利用大量的資料進行訓練後,DNN模型10可建構出每個神經元所對應的權重值。在一實施例中,在進行訓練之前,DNN模型10的基本模型(即未訓練的基本架構)可預先被建立,例如預先設定好神經元的數量、隱藏神經層14的數量、神經元之間的連結等,而系統1再透過電腦程式產品30中的指令使尚未訓練的DNN模型10進行訓練,以決定每個基本神經元13及隱藏神經元15的權重值,進而建立出深度神經元路徑18。在一實施例中,基本模型可經歷多次訓練而產生多個神經元路徑,並可透過測試模組40來測試每個神經元路徑的準確度。需注意的是,為區分訓練前與訓練後的DNN模型10,下文中對於未訓練的DNN模型10皆以基本模型來稱之,而訓練完成後則以DNN模型10稱之。
The
圖2是本發明一實施例的DNN模型10(已完成訓練)的細部架構示意圖,請同時參考圖1(A)及1(B)。為了要準確預測糖尿病患者罹患直腸癌的可能性,本發明的DNN模型10(或基本模型)的隱藏神經層14的數量、基本神經元13的數量及隱藏神經元15的數量皆可視為可變參數。在圖2的實施例中,輸入層12可具有37個基本神經元13,亦即DNN模型10是以37個病理因子作為特徵分析時的基礎。此外,DNN模型10可具有3個隱藏神經層14,且每個隱藏神經層14各自包含30個隱藏神經元15。如圖2所示,輸入層12連結至第一個隱藏神經層141,第一個隱藏神經層142連結至第二個隱藏神經層142,第二個隱藏神經層142連結至第三個隱藏神經層143,第三麼隱藏神經層143連結至輸出層16,因此,當一患者的37個病理因子資料被輸入至DNN模型10時,會先在輸入層12進行分析,之後依序進入隱藏神經層141~143進行分析,之後再由輸出層16根據分析結果產生輸出結果17。上述「分析」是指每個神經元對於接收到的資料所進行的「運算」。在一實施例中,當資料通過一個神經元時,可視為一次運算的執行。
FIG. 2 is a detailed schematic diagram of the DNN model 10 (training completed) according to an embodiment of the present invention. Please refer to FIGS. 1(A) and 1(B) at the same time. In order to accurately predict the possibility of diabetic patients suffering from rectal cancer, the number of hidden
在一實施例中,輸入層12中的每個基本神經元13皆會與第一隱藏神經層141中的每個隱藏神經元連結,亦即每個基本神經元13的運算結果會各自傳送至第一隱藏神經層141的每個隱藏神經元15。第一隱藏神經層141的每個隱藏神經元15皆會與第二隱藏神經層142中的每個隱藏神經元15連結,亦即第一隱藏神經層141的每個隱藏神經元15的運算結果會傳送至第二隱藏神經層142的每個隱藏神經元。第二隱藏神經層142中的每個隱藏神經元15皆會與第三隱藏神經層143中的每個隱藏神經元15連結,亦即第二隱藏神經層142的每個隱藏神經元15的運算結果會傳送至第三隱藏神經層143中的每個隱藏神經元15。第三隱藏神經層143中的每個隱藏神經元15皆會與輸出層16中的每個輸出神經元17連結,亦即
第三隱藏神經層143的每個隱藏神經元15的運算結果會傳送至每個輸出神經元17。經由輸出神經元17的運算後,輸出層16可產生患者的罹癌機率及為罹癌機率。
In an embodiment, each
接著將說明運算過程的細節。如圖2所示,在一實施例中,當37個病理因子資料進入輸入層12後,每個病理因子資料會各自與相對應的權重值進行加權運算(亦即與權重值進行相乘),之後所有加權後的資料再一併傳送至第一隱藏神經層141中的每個隱藏神經元15。在一實施例中,對於每個隱藏神經層141~143的每個隱藏神經元15而言,其會將接收到的資料先進行一加總運算,之後再將加總運算的結果進行一第一型態激發運算,而之後再將第一型態激發運算的結果與該隱藏神經元15所對應的權重值進行加權運算,而每個隱藏神經元15的加權運算結果將一併進入下一個隱藏神經層14或輸出層16之中。在一實施例中,對於輸出層16的每個輸出神經元17而言,所取得的資料會先進行加總步驟,之後再進行一第二型態激發運算,而第二型態激發運算後的結果將形成一機率值。
Next, the details of the calculation process will be explained. As shown in FIG. 2, in one embodiment, when 37 pathological factor data enter the
在一實施例中,第一型態激發運算與第二型態激發運算可不相同。在一實施例中,第一激發運算是定義為使用線性整流函數(Rectified Linear Unit,ReLU)作為激發函數(Activation function)來進行運算。在一實施例中,第二激發運算是定義為使用Softmax函數作為激發函數來進行運算。由於ReLU函數的輸出區間為0至無限大,因此適合作為類神經網路的中間部分的神經元的激發器,而由於Softmax函數的輸出區間為0至1,因此適合作為類神經網路的輸出端的神經元的激發器,例如可使輸出結果形成機率。需注意的是,本發明不限於此,亦即本發明亦可使用其它激發函數來進行激發運算。 In one embodiment, the first type excitation operation and the second type excitation operation may be different. In one embodiment, the first excitation operation is defined as using a linear rectification function (Rectified Linear Unit, ReLU) as the activation function (Activation function) to perform the operation. In one embodiment, the second excitation operation is defined as using the Softmax function as the excitation function to perform the operation. Since the output interval of the ReLU function is 0 to infinity, it is suitable as an exciter for neurons in the middle part of the neural-like network, and because the output interval of the Softmax function is 0 to 1, it is suitable as the output of the neural-like network For example, the exciter of the neuron at the end can make the output result into a probability. It should be noted that the present invention is not limited to this, that is, the present invention can also use other excitation functions to perform excitation operations.
藉此,當DNN模型10完成訓練後,只要將一患者的37個病理因子輸入至DNN模型10中,DNN模型10即可預測該患者罹患直腸癌的可能性。在一實施例中,這些病理因子資料可先進行正規化或標準化的程序而形成相同標準下的數值,例如每個病理因子可進行正規化或標準化的程序而轉換為一個分數,而這些分數可經由神經元進行加權運算,且最終形成罹癌機率及未罹癌機率。
In this way, after the
此外,對於DNN模型10而言,神經元的資料來源,可能會影響著DNN模型10的預測能力。在一實施例中,患者的37個病理因子資料可包含生理性資料(Biographical)、共病症資料(Comorbidities)、糖尿病併發症資料(Diabetes Complications)、治療藥物資料(Medications)及指數資料(Scoring System),但不限於此。
In addition, for the
在一實施例中,「生理性資料」可包含年齡、性別、低都市化(Lowest Urbanization)、中都市化(Medium Urbanization)、高都市化(High Urbanization)、最高都市化(Highest Urbanization)、白領階級(White Collar Occupation)、藍領階級(Blue Collar Occupation)及其它職業階級(Other Occupation)等資訊,但不限於此。在一實施例中,「共併症資料」可包含高血壓、高脂血症、中風、充血性心力衰竭、結腸直腸息肉、肥胖、COPD、CAD、哮喘、吸煙、炎症性腸病、腸易激綜合徵、CKD及酒精相關疾病等資訊,但不限於此。在一實施例中,「糖尿病併發症資料」可包含視網膜病變、腎病、神經病變、腦血管、心血管及代謝等資訊,但不限於此。在一實施例中,「治療藥物資料」可包含二甲雙胍(Metformin)、他汀類藥物(Statin),胰島素(Insulin)、磺脲類藥物(Sulfonylureas)、其他抗糖尿病藥物(Other antidiabetic drugs)、TZD及PVD等資訊, 但不限於此。在一實施例中,「指數資料」可包含糖尿病併發症嚴重程度指數(aDCSI Index)資訊,但不限於此。 In an embodiment, the "physiological data" may include age, gender, low urbanization (Lowest Urbanization), medium urbanization (Medium Urbanization), high urbanization (High Urbanization), highest urbanization (Highest Urbanization), white-collar workers Class (White Collar Occupation), Blue Collar Class (Blue Collar Occupation) and other professional classes (Other Occupation) and other information, but not limited to this. In one embodiment, the "comorbidity data" may include hypertension, hyperlipidemia, stroke, congestive heart failure, colorectal polyps, obesity, COPD, CAD, asthma, smoking, inflammatory bowel disease, intestinal susceptibility Irritation syndrome, CKD and alcohol-related diseases, but not limited to this. In one embodiment, the "diabetic complications data" may include retinopathy, nephropathy, neuropathy, cerebrovascular, cardiovascular and metabolic information, but is not limited thereto. In one embodiment, "therapeutic drug information" may include metformin (Metformin), statin (Statin), insulin (Insulin), sulfonylurea (Sulfonylureas), other antidiabetic drugs (Other antidiabetic drugs), TZD and PVD and other information, But it is not limited to this. In one embodiment, the "index data" may include aDCSI Index information, but it is not limited thereto.
在一實施例中,每個病理因子資料可以被數值化為相對應的分數,其中數值化的方式可依照資料性質而不相同,舉例來說,某些特徵可依照「特徵的有無」而對應不同分數(例如性別的不同會對應不同分數、藥物的使用與否會對應不同分數等),而某些特徵本身可分為多個級距,並且透過級距而對應至不同分數(例如25歲可對應一分數,30歲可對應另一分數等);上述內容僅是舉例,本發明不限於此。 In an embodiment, each pathological factor data can be quantified into a corresponding score, where the way of quantification can be different according to the nature of the data, for example, certain features can be corresponding according to "the presence or absence of features" Different scores (for example, different genders will correspond to different scores, whether the use of drugs will correspond to different scores, etc.), and some features themselves can be divided into multiple grades, and through the grades are corresponding to different scores (such as 25 years old It can correspond to a score, 30 years old can correspond to another score, etc.); the above content is just an example, the invention is not limited to this.
接著將說明電腦輔助預測系統1的基本運作方式。圖3是本發明一實施例的電腦輔助預測方法的基本步驟流程圖,該方法是由圖1(A)的電腦輔助預測系統1執行,其中DNN模型10屬於已訓練完成的狀態,並請同時參考圖1(A)至圖3。如圖3所示,首先步驟S31被執行,資料取得介面20取得一糖尿病患者的病理因子資料。之後,步驟S32被執行,DNN模型10的輸入層12取得病理因子資料,並將加權後的病理因子資料傳送至隱藏神經層14。之後,步驟S33被執行,每個隱藏神經層14的每個隱藏神經元會對接收到的資料進行運算,其中最後一個隱藏神經層14會將運算後的結果傳送至輸出層16。之後,步驟S34被執行,輸出層16對接收到的資料進行運算,進而輸出該患者的罹癌機率及未罹癌機率。之後,步驟S35被執行,系統1根據輸出層16的輸出結果,預測該患者的罹癌可能性。
Next, the basic operation mode of the computer-aided
關於步驟S31,在一實施例中,病理因子資料可以是前述的37個病理因子,並且已經由正規化或標準差運算而形成一分數。 Regarding step S31, in one embodiment, the pathological factor data may be the aforementioned 37 pathological factors, and has been formed into a score by normalization or standard deviation operation.
關於步驟S32,在一實施例中,每個病理因子所對應的權重值(基本神經元13的權重值)皆已在DNN模型10(基本模型)的訓練過程中被決定,換言
之,DNN模型10的訓練目的之一即是在決定每個病理因子所對應的權重值為何。在一實施例中,每個病理因子的分數會在基本神經元13中進行加權運算,之後再被傳送至第一個隱藏神經層14中的每個隱藏神經元15。
Regarding step S32, in an embodiment, the weight value corresponding to each pathological factor (the weight value of the basic neuron 13) has been determined during the training process of the DNN model 10 (basic model), in other words
In short, one of the training objectives of the
關於步驟S33,在一實施例中,每個隱藏神經層14的每個隱藏神經元15會對接收到的資料進行加總運算、激發運算(第一型態激發運算)及加權運算,其中每個隱藏神經元15對應的權重值亦是在DNN模型10(基本模型)的訓練過程中被決定,亦即DNN模型10的訓練目的之一即是在決定每個隱藏神經元所對應的權重值為何。在一實施例中,最後一個隱藏神經層14中的每個隱藏神經元15的加權運算結果,將被傳送至輸出層16中的每個輸出神經元17。
Regarding step S33, in an embodiment, each
關於步驟S34,在一實施例中,輸出層16的每個輸出神經元會對接收到的資料進行加總及激發運算(第二型態激發運算)。在一實施例中,輸出層16的二輸出結果的加總為1(亦即加總結果對應100%的預測機率)。
Regarding step S34, in an embodiment, each output neuron of the
關於步驟S35,在一實施例中,系統1會比較輸出層16的二輸出結果,並將較高的機率作為預測結果,舉例來說,當對應未罹癌機率的輸出結果為0.75(即表示75%),而對應罹癌機率的輸出結果為0.25(即表示25%)時,則系統1會預測該患者的罹癌可能性較低,但本發明不限於此。
Regarding step S35, in one embodiment, the
由此可知,當DNN模型10建立完成後,只要將患者的病理因子資料輸入至電腦輔助預測系統1中,DNN模型10即可預測該患者的罹癌可能性,藉此,患者可提早進行預防,生存機率可大幅提升。
It can be seen that after the establishment of the
此外,為了使DNN模型10能夠執行步驟S31至S35,DNN模型10必須先透過訓練來建立每個神經元的權重值。以下將詳細說明DNN模型10的建立過程。
In addition, in order for the
圖4是本發明一實施例的DNN模型10的建立過程的步驟流程圖,其中該等步驟可由電腦輔助預測系統1的處理器執行電腦程式產品30中的指令而實現,並請同時參考圖1至圖4。
FIG. 4 is a flow chart of the steps of the process of establishing the
首先,步驟S41被執行,DNN模型10的基本模型被設定完成。之後,步驟S42被執行,輸入層12從全部訓練用資料中取得一最小批量的資料。之後,步驟S43被執行,基本模型利用取得的資料進行訓練,以決定基本模型中的每個神經元的權重值,藉此建立一個候選神經元路徑。之後步驟S44被執行,基本模型的輸入層12取得最小批量的另外複數筆訓練用資料,並重新執行步驟S43。之後步驟S45被執行,重複執行步驟S44,直到達到一預設條件。之後步驟S46被執行,重新執行步驟S42至S45複數次(itoration程序)。之後步驟S47被執行,預測模型40評估每個候選神經元路徑的預測能力。之後步驟S48被執行,系統1將具備預測能力最好的候選神經元路徑設定為DNN模型10實際使用的深度神經元路徑18。上述步驟至少可透過系統1的處理器執行電腦程式產品30的指令或其它電腦程式產品的指令而實現。
First, step S41 is executed, and the basic model of the
關於步驟S41,此步驟是用以找出DNN模型10(基本模型)的最佳變數參數,此處變數參數可例如是隱藏神經層的數量、激發函數為何等,且不限於此。此步驟可由系統1接收使用者所輸入的指令,並依照指令來進行基本模型的設定來實現。在一實施例中,此步驟是使用少數訓練用資料先建立出複數個具備不同參數的簡化基本模型,之後再利用K折交互驗證方法(K-fold cross validation)找出其中一個效能最佳的簡化基本模型,並將該簡化基本模型設定為DNN模型10的基本模型(亦即最佳參數值可被找出)。此處「少數的訓練用資料」可例如是所有訓練用資料的1/100,但不限於此。在一實施例中,K-fold cross
validation是對每個簡化基本模型進行K次驗證,每次驗證包含了訓練過程及測試過程,其中訓練過程是決定該簡化基本模型的各神經元的權重值,測試過程是用以測試該簡化基本模型的預測能力。對於一個簡化基本模型而言,每次驗證是將前述少數的訓練用資料以(K-1):1的數量分為訓練組及測試組,其中訓練組用於訓練過程,測試組則用於測試過程。當K次驗證完成後,系統1再將該簡化基本模型的每次驗證的準確度取平均值,並將該平均值作為該簡化基本模型的準確度。在一實施例中,K為10,亦即每個簡化基本模型將進行10次驗證,且每次驗證是將訓練用資料以9:1的數量分為訓練組及測試組,但本發明不限於此。此外,假如DNN模型10需使用最佳超參數(best hyperparameter)、優化器(optimizer),則最佳超參數(best hyperparameter)、優化器(optimizer)亦可在步驟S41被設定好。藉此,步驟S41可找出具備最佳參數的簡化基本模型,以作為後續深度訓練所使用的基本模型。
Regarding step S41, this step is used to find the optimal variable parameter of the DNN model 10 (basic model), where the variable parameter may be, for example, the number of hidden nerve layers, what is the excitation function, etc., and is not limited thereto. This step can be realized by the
關於步驟S42,系統1可先取得全部訓練用資料,並從全部訓練用資料中提取最小批量的資料數量輸入至基本模型中,使基本模型利用該等最小批量的資料進行深度訓練(第一次深度訓練)。在一實施例中,全部訓練用資料的數量是定義為至少一百萬筆,而最小批量是定義至少為100筆資料。在一實施例中,全部訓練用資料為1315899筆,而最小批量是128筆資料,因此系統1會從1315899筆訓練用資料中隨機選取128筆資料輸入至基本模型中,但本發明不限於此。需注意的是,每個訓練用資料包含了一位糖尿病患者的37個病理因子資料及該患者實際罹癌與否的資訊。
Regarding step S42, the
關於步驟S43,此步驟是基本模型利用步驟S42中所取得的資料來進行訓練,由於訓練用資料包含了糖尿病患者的實際罹癌與否的資訊,因此基 本模型可藉此分析出罹癌情況下可能的病理因子的特性以及未罹癌情況下可能的病理因子特性,進而決定每個神經元的權重值。在一實施例中,基本模型是執行梯度下降運算法來進行訓練,進而決定每個神經元的權重值。在一實施例中,梯度下降運算法可以是Stochastic gradient descent或Adam with Nesterov’s accelerated gradient descent二者至少之一,且不限於此。採用Stochastic gradient descent的目的之一是可減少基本模型的預測值及真實結果之間的差異(loss),例如使基本模型的預測結果與真實結果之間具備局部最小差異值,而採用Adam with Nesterov’s accelerated gradient descent的目的之一是使基本模型的預測結果與真實結果之間具備絕對最小差異值的機率提升。此外,由於本發明的重點之一在於藉由Stochastic gradient descent及Adam with Nesterov’s accelerated gradient descent的特性來提升基本模型的預測能力的準確度,而關於Stochastic gradient descent及Adam with Nesterov’s accelerated gradient descent的執行過程則並非重點,因此在此不對執行過程進行詳述。當完成步驟S43後,基本模型可完成一次訓練,一候選神經元網路可被建立。 Regarding step S43, this step is for the basic model to use the data obtained in step S42 for training. Since the training data contains information on whether the diabetic patient actually suffered from cancer, the basic model This model can analyze the characteristics of possible pathological factors in the case of cancer and the characteristics of possible pathological factors in the case of no cancer, and then determine the weight value of each neuron. In one embodiment, the basic model performs gradient descent algorithm for training, and then determines the weight value of each neuron. In one embodiment, the gradient descent algorithm may be at least one of Stochastic gradient descent or Adam with Nesterov's accelerated gradient descent, and is not limited thereto. One of the purposes of using Stochastic gradient descent is to reduce the difference between the predicted value of the basic model and the actual result (loss), for example, to have a local minimum difference between the predicted result of the basic model and the real result, and adopt Adam with Nesterov's One of the purposes of accelerated gradient descent is to increase the probability of the absolute minimum difference between the predicted results of the basic model and the real results. In addition, since one of the key points of the present invention is to improve the accuracy of the prediction ability of the basic model through the characteristics of Stochastic gradient descent and Adam with Nesterov's accelerated gradient descent, the implementation process of Stochastic gradient descent and Adam with Nesterov's accelerated gradient descent It is not the focus, so the implementation process will not be detailed here. After step S43 is completed, the basic model can complete one training and a candidate neuron network can be established.
關於步驟S44,系統1會將另外一組最小批量的資料(即另外128筆資料)輸入至基本模型中,基本模型再利用該組最小批量的資料重新進行步驟S43的訓練,並藉此產生另一候選神經元網路。在一實施例中,每次系統所選擇的最小批量的資料皆是隨機選取,因此每組最小批量的資料可能會有重複的資料被選取,但並非限定。
Regarding step S44, the
關於步驟S45,系統1會重複執行步驟S41,進而產生基本模型的複數個神經元網路,直至一個預設條件被達成。在一實施例中,「預設條件」是指所有的訓練用資料都已輸入至基本模型之中,且基本模型已訓練完成;在
另一實施例中,「預設條件」亦可以是指定數量的神經元網路已被建立出來。關於「預設條件」的描述僅是舉例,本發明不限於此。
Regarding step S45, the
關於步驟S46,此步驟用以對基本模型的訓練進行迭代(iteration)程序,亦即重新執行步驟S42至S45,直至達到指定次數,藉此進一步提升神經元網路的預測能力。在一實施例中,「指定次數」是設定為至少1000次,但並非限定。 Regarding step S46, this step is used to perform an iteration procedure on the training of the basic model, that is, steps S42 to S45 are re-executed until the specified number of times is reached, thereby further improving the prediction ability of the neural network. In one embodiment, the "specified number of times" is set to at least 1000 times, but it is not limited.
關於步驟S47,此步驟是透過測試模組40對每個候選神經元網路進行效能的評估。在一實施例中。測試模組40的測試可包含權重平均召回(Weighted average recall)分析,用以分析該等候選神經元網路的靈敏度。在一實施例中,測試模組40的測試可包含正預測值分析,用以分析出該等候選神經元網路的準確度。在一實施例中,測試模組40的測試可包含F1分析,用以分析出該等候選神經元網路的F1值(即靈敏度和精準度的調和平均值)。在一實施例中,權重平均召回、正預測值及F1分析中之至少二者會一併執行。藉此,每個候選神經元網路的預測效能可被評估出來。 Regarding step S47, this step is to evaluate the performance of each candidate neuron network through the test module 40. In an embodiment. The test of the test module 40 may include weighted average recall analysis to analyze the sensitivity of the candidate neuron networks. In an embodiment, the test of the test module 40 may include positive predictive value analysis to analyze the accuracy of the candidate neuron networks. In an embodiment, the test of the test module 40 may include F1 analysis to analyze the F1 values of the candidate neural network (ie, the harmonic average of sensitivity and accuracy). In one embodiment, at least two of weighted average recall, positive predictive value, and F1 analysis are performed together. In this way, the prediction performance of each candidate neuron network can be evaluated.
關於步驟S48,此步驟是用以選取預測效能最佳的候選神經元網路作為實際使用的DNN模型10的深度神經元網路18。當步驟S48完成後,DNN模型10的訓練已完成,往後使用者(醫師)只要將患者的病理因子資料輸入至DNN模型10,DNN模型10即可分析出患者的罹癌可能性。
Regarding step S48, this step is to select the candidate neuron network with the best prediction performance as the
此外,在一實施例中,在訓練過程中,每個隱藏神經層14及輸出層16可被施加一個dropout(即一種用以避免過度訓練(overfitting)的正規化技術)。在一實施例中,輸出層16可使用categorical cross entropy function作為一損失函數。
另外,在一實施例中,每個神經元的權重值可使用正規化He起始值(Normalized He initialization)而被初始化。本發明不限於此。
In addition, in an embodiment, during the training process, each hidden
圖5是本發明一實施例的實驗數據示意圖,其是以ROC曲線來呈現本發明的DNN模型10與傳統的aDCSI模型對於預估糖尿病患者罹癌機率的準確度,其Y軸為真陽性率(以True positive rate標註),X軸為偽陽性率(以False positive rate標註),其中兩者是以相同的資料進行測試。如圖5所示,DNN模型10的ROC曲線的曲線下面積(AUC)約為0.738,而aDCSI模型的AUC約為0.492,由此可知,本發明的DNN模型10擁有比傳統的aDCSI模型更好的預測能力。
5 is a schematic diagram of experimental data according to an embodiment of the present invention. The ROC curve is used to present the accuracy of the
藉此,本發明所使用的DNN模型可建立完成,換言之,只要將患者的病理因子資料輸入至DNN模型中,DNN模型即可自動預測出該患者罹患直腸癌的可能性。藉由深度學習訓練,本發明的電腦輔助預測系統可精準地預測出患者的罹癌機率,可輔助患者尋求最佳的醫療照護方式。 In this way, the DNN model used in the present invention can be established. In other words, as long as the pathological factor data of the patient is input into the DNN model, the DNN model can automatically predict the possibility of the patient suffering from rectal cancer. Through deep learning training, the computer-aided prediction system of the present invention can accurately predict the cancer incidence of patients, and can assist patients in seeking the best medical care.
此外,在一實施例中,本發明的電腦輔助預測系統、方法及電腦程式產品可由論文“Development of a Prediction Model for Colorectal Cancer among Patients with Type 2 Diabetes Mellitus Using a Deep Neural Network,Meng-Hsuen Hsieh,Li-Min Sun,Cheng-Li Lin,Meng-Ju Hsieh,Kyle Sun,Chung-Y.Hsu,An-Kuo Chou,and Chia-Hung Kao”記載的內容來實現,但不限於此。 In addition, in an embodiment, the computer-aided prediction system, method and computer program product of the present invention can be described in the paper "Development of a Prediction Model for Colorectal Cancer among Patients with Type 2 Diabetes Mellitus Using a Deep Neural Network, Meng-Hsuen Hsieh, "Li-Min Sun, Cheng-Li Lin, Meng-Ju Hsieh, Kyle Sun, Chung-Y. Hsu, An-Kuo Chou, and Chia-Hung Kao" to achieve, but not limited to.
儘管本發明已透過上述實施例來說明,可理解的是,根據本發明的精神及本發明所主張的申請專利範圍,許多修飾及變化都是可能的。 Although the present invention has been described through the above embodiments, it is understandable that many modifications and changes are possible in accordance with the spirit of the present invention and the patent application scope claimed by the present invention.
1‧‧‧電腦輔助預測系統 1‧‧‧ Computer-aided prediction system
10‧‧‧深度神經網路(DNN)模型10
10‧‧‧Deep Neural Network (DNN)
20‧‧‧資料取得介面 20‧‧‧Data access interface
30‧‧‧電腦程式產品 30‧‧‧Computer program products
40‧‧‧測試模組 40‧‧‧Test module
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107144007A TWI681407B (en) | 2018-12-07 | 2018-12-07 | Computer-aided recognition system, its method and its computer program product thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107144007A TWI681407B (en) | 2018-12-07 | 2018-12-07 | Computer-aided recognition system, its method and its computer program product thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI681407B true TWI681407B (en) | 2020-01-01 |
TW202022890A TW202022890A (en) | 2020-06-16 |
Family
ID=69942404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107144007A TWI681407B (en) | 2018-12-07 | 2018-12-07 | Computer-aided recognition system, its method and its computer program product thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI681407B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105447569A (en) * | 2015-12-18 | 2016-03-30 | 北京柏惠维康科技有限公司 | Breast cancer cell characteristic analysis system based on deep learning |
CN107024586A (en) * | 2017-04-20 | 2017-08-08 | 中国人民解放军第五九医院 | Method based on artificial neural network tumor-marker joint-detection auxiliary diagnosis liver cancer |
CN108695001A (en) * | 2018-07-16 | 2018-10-23 | 武汉大学人民医院(湖北省人民医院) | A kind of cancer lesion horizon prediction auxiliary system and method based on deep learning |
-
2018
- 2018-12-07 TW TW107144007A patent/TWI681407B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105447569A (en) * | 2015-12-18 | 2016-03-30 | 北京柏惠维康科技有限公司 | Breast cancer cell characteristic analysis system based on deep learning |
CN107024586A (en) * | 2017-04-20 | 2017-08-08 | 中国人民解放军第五九医院 | Method based on artificial neural network tumor-marker joint-detection auxiliary diagnosis liver cancer |
CN108695001A (en) * | 2018-07-16 | 2018-10-23 | 武汉大学人民医院(湖北省人民医院) | A kind of cancer lesion horizon prediction auxiliary system and method based on deep learning |
Also Published As
Publication number | Publication date |
---|---|
TW202022890A (en) | 2020-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200185102A1 (en) | System and method for providing health information | |
US20210068766A1 (en) | Methods and apparatus to determine developmental progress with artificial intelligence and user input | |
CN110516161B (en) | Recommendation method and device | |
Martins et al. | Data mining for cardiovascular disease prediction | |
Gürbüz et al. | A new adaptive support vector machine for diagnosis of diseases | |
Prabhakar et al. | Artificial intelligence (AI) impacting diagnosis of glaucoma and understanding the regulatory aspects of AI-based software as medical device | |
US20220037022A1 (en) | Ensemble machine-learning models to detect respiratory syndromes | |
US20070005257A1 (en) | Bayesian network frameworks for biomedical data mining | |
Zhang et al. | Nonlaboratory-based risk assessment model for type 2 diabetes mellitus screening in Chinese rural population: a joint bagging-boosting model | |
Nair et al. | Blood vessel segmentation and diabetic retinopathy recognition: an intelligent approach | |
Reddy et al. | Diabetes correlated renal fault prediction through deep learning | |
Abirami et al. | A novel automated komodo Mlipir optimization-based attention BiLSTM for early detection of diabetic retinopathy | |
TWI681407B (en) | Computer-aided recognition system, its method and its computer program product thereof | |
TWI723312B (en) | Computer-aided recognition system for treatment response of rectal cancer, and its method and computer program product | |
Astuti et al. | The impact of different fold for cross validation of missing values imputation method on hepatitis dataset | |
Mishra et al. | Heart disease prediction system | |
CN111863248A (en) | Effective method for constructing clinical decision model | |
US11379760B2 (en) | Similarity based learning machine and methods of similarity based machine learning | |
KR20200114837A (en) | Method and apparatus for generating feature data for glaucoma diagnosis, method and apparatus for diagnosing glaucoma | |
Siddiqui et al. | IoT-based disease prediction using machine learning | |
Geetha et al. | Stacking Ensemble Learning-Based Convolutional Gated Recurrent Neural Network for Diabetes Miletus. | |
TWI802379B (en) | Training method for model of facial emotion | |
Jindal et al. | Design and Development of Cardiovascular Disease Prediction System Using Voting Classifier | |
US20230005574A1 (en) | Methods and systems for comprehensive symptom analysis | |
Ypma et al. | AI-based Forensic Evaluation in Court: The Desirability of Explanation and the Necessity of Validation |