TWI680079B - Flight simulation system and flight simulation method for a gyroplane - Google Patents

Flight simulation system and flight simulation method for a gyroplane Download PDF

Info

Publication number
TWI680079B
TWI680079B TW107143132A TW107143132A TWI680079B TW I680079 B TWI680079 B TW I680079B TW 107143132 A TW107143132 A TW 107143132A TW 107143132 A TW107143132 A TW 107143132A TW I680079 B TWI680079 B TW I680079B
Authority
TW
Taiwan
Prior art keywords
rotorcraft
degree
freedom
rotation
flight
Prior art date
Application number
TW107143132A
Other languages
Chinese (zh)
Other versions
TW202021868A (en
Inventor
王振興
Jeen Shing Wang
謝皇廷
Huang Ting Shieh
陳奎佑
Kuei Yu Chen
Original Assignee
國立成功大學
National Cheng Kung University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學, National Cheng Kung University filed Critical 國立成功大學
Priority to TW107143132A priority Critical patent/TWI680079B/en
Application granted granted Critical
Publication of TWI680079B publication Critical patent/TWI680079B/en
Publication of TW202021868A publication Critical patent/TW202021868A/en

Links

Landscapes

  • Toys (AREA)

Abstract

本發明提供一種旋翼機模擬飛行系統與模擬飛行方法。此旋翼機模擬飛行系統包含旋翼機、萬向平台以及電腦裝置。在此旋翼機模擬飛行方法中,首先建構虛擬環境和虛擬旋翼機。然後,提供萬向平台,以感測旋翼機於多個自由度之旋轉動作,並相應地輸出旋轉資訊。萬向平台包含多個旋轉支架以及多個旋轉感測模組。旋轉感測模組係用以感測旋轉支架的旋轉動作,並相應地輸出旋轉資訊。接著,根據旋翼機之馬達資訊以及旋轉資訊來計算旋翼機之飛行姿態與飛行軌跡。然後,根據旋翼機之飛行軌跡和飛行姿態來控制虛擬旋翼機於虛擬環境中之飛行動作。 The invention provides a gyroplane flight simulation system and a flight simulation method. The rotorcraft flight simulation system includes a rotorcraft, a gimbal platform, and a computer device. In this method of rotorcraft simulation flight, a virtual environment and a virtual rotorcraft are first constructed. Then, a universal platform is provided to sense the rotary action of the rotorcraft in multiple degrees of freedom and output the rotation information accordingly. The universal platform includes multiple rotation brackets and multiple rotation sensing modules. The rotation sensing module is used to sense the rotation of the rotation bracket and output rotation information accordingly. Next, calculate the flying attitude and trajectory of the rotorcraft based on the rotorcraft's motor information and rotation information. Then, according to the flight trajectory and flight attitude of the rotorcraft, control the flight action of the virtual rotorcraft in the virtual environment.

Description

旋翼機模擬飛行系統與模擬飛行方法 Rotorcraft flight simulation system and flight simulation method

本發明是有關於一種旋翼機模擬飛行系統與模擬飛行方法,且特別是有關於虛實整合之旋翼機模擬飛行系統與模擬飛行方法。 The invention relates to a rotorcraft simulation flight system and a simulation flight method, and particularly relates to a virtual rotor-plane integration flight simulation system and a simulation flight method.

無人飛行載具(Unmanned Aerial Vehicle)係指的是無駕駛員於機內之飛行設備,其大多透過外在操控來飛行。由於無人飛行器可適用於空拍、搜救、探勘、送貨等多種場合,故近年來愈趨受到重視及廣泛運用。一般而言,無人飛行器係採用多軸旋翼機。多軸旋翼機的飛行控制通常需要較高的穩定性,因此無人飛行器的操作員需要進行各種相關訓練後才能操控無人飛行器進行各種任務。 Unmanned Aerial Vehicle refers to flying equipment without a pilot inside the aircraft, which mostly flies through external control. Because unmanned aerial vehicles can be applied to a variety of occasions such as aerial photography, search and rescue, exploration, and delivery, they have become more and more important and widely used in recent years. Generally speaking, UAVs use multi-axis rotorcraft. The flight control of a multi-axis rotorcraft usually requires high stability, so the operator of the unmanned aerial vehicle needs to perform various related trainings to control the unmanned aerial vehicle for various tasks.

然而,在進行訓練時,無人飛行器可能會因為操作員的經驗不足或操作缺失而受到損壞,使得操作員的訓練時間以及成本提高。 However, during training, the UAV may be damaged due to lack of operator experience or lack of operation, which increases the training time and cost of the operator.

因此,本發明之一目的是在提供一種旋翼機模擬飛行系統與模擬飛行方法,其係應用虛實整合技術來整合真實旋翼機和虛擬旋翼機的飛行動作,以達到模擬飛行的效果,進而降低操作員的訓練時間以及成本提高。 Therefore, an object of the present invention is to provide a rotorcraft flight simulation system and a flight simulation method, which use the virtual-real integration technology to integrate the flight movements of real rotorcraft and virtual rotorcraft in order to achieve the effect of flight simulation and reduce operation The training time and cost of staff are increased.

本發明之一個態樣在於提供一種旋翼機模擬飛行系統,其包含旋翼機、萬向平台以及電腦裝置。旋翼機具有至少一個馬達感測模組,用以提供旋翼機之馬達資訊。萬向平台係用以支撐旋翼機,並將旋翼機之飛行動作侷限於預設空間內。萬向平台包含平台支架、第一自由度旋轉支架、第二自由度旋轉支架、第三自由度旋轉支架以及複數個旋轉感測模組。第一自由度旋轉支架係樞接於平台支架。第二自由度旋轉支架係樞接於第一自由度旋轉支架。第三自由度旋轉支架係樞接於第二自由度旋轉支架,其中旋翼機固設於第三自由度旋轉支架上。旋轉感測模組係設置於平台支架、第一自由度旋轉支架以及第二自由度旋轉支架上,以感測第一自由度旋轉支架、第二自由度旋轉支架以及第三自由度旋轉支架之複數個旋轉動作,並相應地輸出複數個旋轉資訊。電腦裝置係用以進行虛實整合飛行模擬操作。在此虛實整合飛行模擬操作中,首先根據旋翼機之馬達資訊以及旋轉資訊來計算旋翼機之飛行姿態與飛行軌跡。然後,建構虛擬環境以及虛擬旋翼機,並根據旋翼機之飛行軌跡和飛行姿態來控制虛擬旋翼機於虛擬環境中之飛行動作。 One aspect of the present invention is to provide a rotorcraft simulation flight system, which includes a rotorcraft, a gimbal platform, and a computer device. The rotorcraft has at least one motor sensing module for providing motor information of the rotorcraft. The universal platform is used to support the rotorcraft, and restricts the rotorcraft's flight movements to a preset space. The universal platform includes a platform support, a first-degree-of-freedom rotation support, a second-degree-of-freedom rotation support, a third-degree-of-freedom rotation support, and a plurality of rotation sensing modules. The first-degree-of-freedom rotating support is pivotally connected to the platform support. The second-degree-of-freedom rotation bracket is pivotally connected to the first-degree-of-freedom rotation bracket. The third-degree-of-freedom rotation bracket is pivotally connected to the second-degree-of-freedom rotation bracket, wherein the rotorcraft is fixed on the third-degree-of-freedom rotation bracket. The rotation sensing module is disposed on the platform bracket, the first degree of freedom rotation bracket and the second degree of freedom rotation bracket, and senses the first degree of freedom rotation bracket, the second degree of freedom rotation bracket and the third degree of freedom rotation bracket A plurality of rotation actions, and a plurality of rotation information is output accordingly. The computer device is used for virtual-real integrated flight simulation operation. In this virtual-real integrated flight simulation operation, first, the rotor attitude and flight trajectory are calculated based on the rotor information and rotor information. Then, construct a virtual environment and a virtual rotorcraft, and control the flying action of the virtual rotorcraft in the virtual environment according to the flight trajectory and flight attitude of the rotorcraft.

依據本發明之一實施例,其中第三自由度旋轉支架包含第一支撐桿、第一咬合結構、第二支撐桿以及第二 咬合結構。第一支撐桿具有第一端以及相對第一端之第二端,其中第一端係樞接於第二自由度旋轉支架。第一咬合結構係用以將第一支撐桿之第二端固設於旋翼機上。第二支撐桿具有第三端以及相對第三端之第四端,其中第三端係樞接於第二自由度旋轉支架。第二咬合結構係用以將第二支撐桿之第四端固設於旋翼機上。 According to an embodiment of the present invention, the third-degree-of-freedom rotation bracket includes a first supporting rod, a first engaging structure, a second supporting rod, and a second Occlusal structure. The first support rod has a first end and a second end opposite to the first end, wherein the first end is pivotally connected to the second degree of freedom rotating support. The first engaging structure is used to fix the second end of the first support rod on the rotorcraft. The second support rod has a third end and a fourth end opposite to the third end, wherein the third end is pivotally connected to the second degree of freedom rotating support. The second engaging structure is used to fix the fourth end of the second support rod on the rotorcraft.

依據本發明之一實施例,其中第一咬合結構包含兩第一夾持板和複數顆第一螺絲。第一夾持板係夾持第一支撐桿之第二端以及旋翼機之第一端部。第一螺絲係穿設於第一夾持板中,以固定第一夾持板。 According to an embodiment of the present invention, the first engaging structure includes two first clamping plates and a plurality of first screws. The first clamping plate clamps the second end of the first support rod and the first end of the rotorcraft. The first screw is threaded in the first clamping plate to fix the first clamping plate.

依據本發明之一實施例,其中第二咬合結構包含兩第二夾持板和複數顆第二螺絲。第二夾持板係夾持第二支撐桿之第四端以及該旋翼機之一第二端部。第二螺絲係穿設魚第二夾持板中,以固定第二夾持板。 According to an embodiment of the present invention, the second engaging structure includes two second clamping plates and a plurality of second screws. The second clamping plate clamps the fourth end of the second support rod and a second end portion of the rotorcraft. The second screw is threaded through the second clamping plate of the fish to fix the second clamping plate.

依據本發明之一實施例,其中旋翼機之第二端部相對於旋翼機之第一端部。 According to an embodiment of the invention, the second end portion of the rotorcraft is opposite to the first end portion of the rotorcraft.

依據本發明之一實施例,其中旋轉感測模組包含第一自由度感測模組、第二自由度感測模組以及第三自由度感測模組。第一自由度感測模組係設置於第一自由度旋轉支架與平台支架之樞接處。第二自由度感測模組係設置於第二自由度旋轉支架與第一自由度旋轉支架之樞接處。第三自由度感測模組係設置於第三自由度旋轉支架與第二自由度旋轉支架之樞接處。 According to an embodiment of the present invention, the rotation sensing module includes a first degree of freedom sensing module, a second degree of freedom sensing module, and a third degree of freedom sensing module. The first degree-of-freedom sensing module is disposed at a pivot joint between the first degree-of-freedom rotation support and the platform support. The second-degree-of-freedom sensing module is disposed at a pivot joint between the second-degree-of-freedom rotation bracket and the first-degree-of-freedom rotation bracket. The third-degree-of-freedom sensing module is disposed at a pivot joint between the third-degree-of-freedom rotation bracket and the second-degree-of-freedom rotation bracket.

依據本發明之一實施例,其中第一自由度感測 模組係用以感測第一自由度旋轉支之旋轉角度。第二自由度感測模組係用以感測第二自由度旋轉支之旋轉角度。該第三自由度感測模組係用以感測第三自由度旋轉支之旋轉角度。 According to an embodiment of the present invention, the first degree of freedom sensing The module is used for sensing the rotation angle of the first degree of freedom rotary support. The second-degree-of-freedom sensing module is used to sense the rotation angle of the second-degree-of-freedom rotating support. The third-degree-of-freedom sensing module is used to sense a rotation angle of the third-degree-of-freedom rotating support.

依據本發明之一實施例,其中第一自由度感測模組更用以感測第一自由度旋轉支之旋轉速度。第二自由度感測模組更用以感測第二自由度旋轉支之旋轉速度。第三自由度感測模組係用以感測第三自由度旋轉支之旋轉速度。 According to an embodiment of the present invention, the first degree-of-freedom sensing module is further configured to sense a rotation speed of the first degree-of-freedom rotating support. The second-degree-of-freedom sensing module is further configured to sense the rotation speed of the second-degree-of-freedom rotating support. The third-degree-of-freedom sensing module is used to sense the rotation speed of the third-degree-of-freedom rotating support.

依據本發明之一實施例,其中第一自由度旋轉支架以及第二自由度旋轉支架為環狀。 According to an embodiment of the present invention, the first-degree-of-freedom rotation bracket and the second-degree-of-freedom rotation bracket are ring-shaped.

本發明之另一態樣在於提供一種旋翼機模擬飛行方法。在此旋翼機模擬飛行方法中,首先建構虛擬環境以及虛擬旋翼機。然後,提供萬向平台,以感測旋翼機於複數個自由度之旋轉動作,並相應地輸出複數個旋轉資訊。接著,根據旋翼機之馬達資訊以及旋轉資訊來計算旋翼機之飛行姿態與飛行軌跡。然後,根據旋翼機之飛行軌跡和飛行姿態來控制虛擬旋翼機於虛擬環境中之飛行動作。 Another aspect of the present invention is to provide a rotorcraft simulated flight method. In this rotorcraft flight simulation method, a virtual environment and a virtual rotorcraft are first constructed. Then, a universal platform is provided to sense the rotation of the rotorcraft in a plurality of degrees of freedom and output a plurality of rotation information accordingly. Next, calculate the flying attitude and trajectory of the rotorcraft based on the rotorcraft's motor information and rotation information. Then, according to the flight trajectory and flight attitude of the rotorcraft, control the flight action of the virtual rotorcraft in the virtual environment.

100‧‧‧旋翼機模擬飛行系統 100‧‧‧ Rotorcraft Flight Simulation System

110‧‧‧旋翼機 110‧‧‧rotor

112、114、116、118‧‧‧螺旋槳 112, 114, 116, 118‧‧‧ propellers

120‧‧‧萬向平台 120‧‧‧Universal platform

121‧‧‧平台支架 121‧‧‧platform bracket

121a‧‧‧子支架 121a‧‧‧Sub-bracket

121b‧‧‧底部固定元件 121b‧‧‧ bottom fixing element

122‧‧‧第一自由度旋轉支架 122‧‧‧First Degree of Freedom Rotation Bracket

123‧‧‧第二自由度旋轉支架 123‧‧‧Second Degree of Freedom Rotation Bracket

124‧‧‧第三自由度旋轉支架 124‧‧‧ Third Degree of Freedom Rotation Bracket

124a‧‧‧第一支撐桿 124a‧‧‧First support rod

124b‧‧‧第二支撐桿 124b‧‧‧Second support rod

125‧‧‧旋轉感測模組 125‧‧‧rotation sensing module

126‧‧‧旋轉感測模組 126‧‧‧rotation sensing module

127‧‧‧旋轉感測模組 127‧‧‧rotation sensing module

130‧‧‧電腦裝置 130‧‧‧Computer device

310‧‧‧電子模組 310‧‧‧Electronic Module

320‧‧‧固定元件 320‧‧‧Fixed components

330‧‧‧電子模組 330‧‧‧Electronic Module

340‧‧‧固定元件 340‧‧‧Fixed element

350‧‧‧電子模組 350‧‧‧electronic module

360‧‧‧固定元件 360‧‧‧Fixed components

CLP1‧‧‧第一夾持板 CLP1‧‧‧First clamping plate

CLP2‧‧‧第二夾持板 CLP2‧‧‧Second clamping plate

P1、P2、P3‧‧‧樞接結構 P1, P2, P3‧‧‧ pivot structure

P1a‧‧‧第一光滑元件 P1a‧‧‧The first smooth element

P1b‧‧‧孔狀樞接結構 P1b‧‧‧Hole-shaped pivot joint structure

P2a‧‧‧第二光滑元件 P2a‧‧‧Second smooth element

P2b、P2c‧‧‧孔狀樞接結構 P2b, P2c‧‧‧hole-shaped pivot joint structure

P3a‧‧‧第三光滑元件 P3a‧‧‧ third smooth element

P3b‧‧‧孔狀樞接結構 P3b‧‧‧Hole-shaped pivot joint structure

MA1、MA2、MA3‧‧‧磁鐵 MA1, MA2, MA3‧‧‧magnet

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之詳細說明如下:[圖1]係繪示根據本發明實施例之旋翼機模擬飛行系統的結構示意圖;[圖2]係繪示根據本發明實施例之旋翼機的簡單結構示意圖; [圖3]係繪示根據本發明實施例之萬向平台的結構爆炸圖;以及[圖4]係繪示根據本發明實施例之旋翼機模擬飛行方法的流程示意圖。 In order to make the above and other objects, features, advantages, and embodiments of the present invention more comprehensible, the detailed description of the drawings is as follows: [FIG. 1] FIG. 1 is a diagram illustrating a rotorcraft simulation flight system according to an embodiment of the present invention. Schematic diagram of the structure; [FIG. 2] Schematic diagram showing the simple structure of the rotorcraft according to the embodiment of the present invention; [Fig. 3] is an exploded view showing the structure of a universal platform according to an embodiment of the present invention; and [Fig. 4] is a schematic flowchart showing a method of simulating flight of a rotorcraft according to an embodiment of the present invention.

關於本文中所使用之『第一』、『第二』、...等,並非特別指次序或順位的意思,其僅為了區別以相同技術用語描述的元件或操作。 Regarding the "first", "second", ... and the like used herein, they do not specifically mean the order or the order, but merely the difference between the elements or operations described in the same technical terms.

請參照圖1,其係繪示根據本發明實施例之旋翼機模擬飛行系統100的結構示意圖。旋翼機模擬飛行系統100包含旋翼機110、萬向平台120以及電腦裝置130。旋翼機110具有複數個馬達感測模組(未繪示),用以提供旋翼機的馬達資訊至電腦裝置130。在本實施例中,馬達感測模組係用以感測旋翼機的馬達轉速,並透過無線傳輸技術(例如WiFi)來將馬達轉速之資訊傳送至電腦裝置130。然而,本發明之實施例並不受限於此。萬向平台120係用以支撐旋翼機110,並將旋翼機110之飛行動作侷限於預設空間內。在本實施例中,萬向平台120係感測旋翼機110在三個自由度上的旋轉動作,並透過無線傳輸模組來將旋翼機的旋轉資訊傳送至電腦裝置130。電腦裝置130係用以建構虛擬環境以及虛擬旋翼機,並將其顯示於螢幕上。當電腦裝置130收到旋翼機110之馬達資訊以及萬向平台120提供之旋翼機旋轉資訊後,電腦裝置130會相應地控制虛擬旋翼機於虛擬環境 中的飛行動作。如此,實體旋翼機110的飛行操作整合於電腦裝置130的虛擬旋翼機,達到虛實整合的效果。 Please refer to FIG. 1, which is a schematic structural diagram of a rotorcraft simulation flight system 100 according to an embodiment of the present invention. The rotorcraft simulation flight system 100 includes a rotorcraft 110, a gimbal platform 120, and a computer device 130. The rotorcraft 110 has a plurality of motor sensing modules (not shown) for providing motor information of the rotorcraft to the computer device 130. In this embodiment, the motor sensing module is used for sensing the motor speed of the rotorcraft, and transmitting the information of the motor speed to the computer device 130 through a wireless transmission technology (such as WiFi). However, the embodiments of the present invention are not limited thereto. The universal platform 120 is used to support the rotorcraft 110 and restrict the flying action of the rotorcraft 110 to a preset space. In this embodiment, the universal platform 120 senses the rotation of the rotorcraft 110 in three degrees of freedom, and transmits the rotation information of the rotorcraft to the computer device 130 through the wireless transmission module. The computer device 130 is used to construct a virtual environment and a virtual rotorcraft, and display them on the screen. After the computer device 130 receives the motor information of the rotorcraft 110 and the rotorcraft rotation information provided by the universal platform 120, the computer device 130 will control the virtual rotorcraft in the virtual environment accordingly. Flight action. In this way, the flight operations of the physical rotorcraft 110 are integrated with the virtual rotorcraft of the computer device 130, so as to achieve the effect of integrating the virtual and the real.

請參照圖2,其係繪示根據本發明實施例之旋翼機110的簡單結構示意圖。在本實施例中,旋翼機110為X型四軸旋翼機。四軸旋翼機為一個欠驅動系統,其擁有六個自由度變化,包括三個移動自由度(前後、左右與上下)以及三個轉動自由度(橫滾、俯仰與偏航)。使用者可控制四個螺旋槳112、114、116、118的馬達來操作旋翼機110,以使旋翼機110做出各種飛行動作。針對上述三個移動自由度,電腦裝置130可透過旋翼機110所傳送的馬達資訊,來獲得旋翼機110在前後、左右與上下三個自由度上的移動資訊。針對上述三個轉動自由度,萬向平台120可感測旋翼機110於三個轉動自由度之旋轉動作,並相應地提供旋翼機110的旋轉資訊至電腦裝置130。當電腦裝置130獲得旋翼機110在三個移動自由度以及三個轉動自由度的資訊後,便可控制虛擬旋翼機來做出與實體旋翼機110相同的飛行動作。 Please refer to FIG. 2, which is a schematic diagram showing a simple structure of a rotorcraft 110 according to an embodiment of the present invention. In this embodiment, the rotorcraft 110 is an X-type four-axis rotorcraft. The four-axis rotorcraft is an under-actuated system with six degrees of freedom, including three degrees of freedom of movement (front-back, left-right, and up-and-down) and three degrees of freedom of rotation (roll, pitch, and yaw). The user can control the motors of the four propellers 112, 114, 116, 118 to operate the rotorcraft 110, so that the rotorcraft 110 can perform various flight actions. For the above three degrees of freedom of movement, the computer device 130 can obtain the movement information of the rotorcraft 110 in three degrees of freedom of front-back, left-right, and up-down through the motor information transmitted by the rotorcraft 110. For the above three degrees of freedom of rotation, the universal platform 120 can sense the rotation of the rotorcraft 110 in the three degrees of freedom of rotation, and provide the rotation information of the rotorcraft 110 to the computer device 130 accordingly. After the computer device 130 obtains the information about the three degrees of freedom and three degrees of freedom of rotation of the rotorcraft 110, it can control the virtual rotorcraft to perform the same flying action as the physical rotorcraft 110.

請回到圖1,萬向平台120包含平台支架121、第一自由度旋轉支架122、第二自由度旋轉支架123、第三自由度旋轉支架124以及複數個旋轉感測模組125~127。第一自由度旋轉支架122係樞接於平台支架121上,以根據樞接結構P1來旋轉。第二自由度旋轉支架123係樞接於第一自由度旋轉支架122上,以根據樞接結構P2來旋轉。第三自由度旋轉支架124係樞接於第二自由度旋轉支架123上,以根據樞接結構P3來旋轉。旋翼機110係固設於第三自由度旋轉 支架124上,當旋翼機110在三個轉動自由度上展現飛行動作時,第一自由度旋轉支架122、第二自由度旋轉支架123以及第三自由度旋轉支架124會被旋翼機110帶動而跟著旋轉。旋轉感測模組125~127係分別對應第一自由度旋轉支架122、第二自由度旋轉支架123以及第三自由度旋轉支架124來設置,以感測第一自由度旋轉支架122、第二自由度旋轉支架123以及第三自由度旋轉支架124的旋轉動作。例如,旋轉感測模組125係設置於第一自由度旋轉支架122與平台支架121之樞接處,以感測第一自由度旋轉支架122的旋轉動作。又例如,旋轉感測模組126係設置於第二自由度旋轉支架123與第一自由度旋轉支架122之樞接處,以感測第二自由度旋轉支架123的旋轉動作。再例如,旋轉感測模組127係設置於第三自由度旋轉支架124與第二自由度旋轉支架123之樞接處,以感測第三自由度旋轉支架124的旋轉動作。 Returning to FIG. 1, the universal platform 120 includes a platform support 121, a first-degree-of-freedom rotation support 122, a second-degree-of-freedom rotation support 123, a third-degree-of-freedom rotation support 124, and a plurality of rotation sensing modules 125 to 127. The first-degree-of-freedom rotation bracket 122 is pivotally connected to the platform bracket 121 to rotate according to the pivot structure P1. The second-degree-of-freedom rotation bracket 123 is pivotally connected to the first-degree-of-freedom rotation bracket 122 to rotate according to the pivoting structure P2. The third-degree-of-freedom rotation bracket 124 is pivotally connected to the second-degree-of-freedom rotation bracket 123 to rotate according to the pivot structure P3. Rotorcraft 110 is fixed at a third degree of freedom to rotate On the bracket 124, when the rotorcraft 110 exhibits a flying action in three degrees of freedom of rotation, the first degree of freedom rotation bracket 122, the second degree of freedom rotation bracket 123, and the third degree of freedom rotation bracket 124 will be driven by the rotorcraft 110 and Follow the rotation. The rotation sensing modules 125 to 127 are provided corresponding to the first-degree-of-freedom rotation bracket 122, the second-degree-of-freedom rotation bracket 123, and the third-degree-of-freedom rotation bracket 124, respectively. The rotation operation of the DOF rotation holder 123 and the third DOF rotation holder 124. For example, the rotation sensing module 125 is disposed at a pivotal connection between the first-degree-of-freedom rotation bracket 122 and the platform bracket 121 to sense the rotation of the first-degree-of-freedom rotation bracket 122. For another example, the rotation sensing module 126 is disposed at a pivot joint of the second degree of freedom rotation bracket 123 and the first degree of freedom rotation bracket 122 to sense the rotation of the second degree of freedom rotation bracket 123. For another example, the rotation sensing module 127 is disposed at a pivot joint between the third-degree-of-freedom rotation bracket 124 and the second-degree-of-freedom rotation bracket 123 to sense the rotation of the third-degree-of-freedom rotation bracket 124.

請參照圖3,其係繪示根據本發明實施例之萬向平台120的結構爆炸圖。平台支架121包含複數個子支架121a以及底部固定元件121b。子支架121a係用以組成具有方框外型之平台支架121,而底部固定元件121b則用以使平台支架121固定於地面上。前述之樞接結構P1包含第一光滑元件P1a以及孔狀樞接結構P1b。孔狀樞接結構P1b係設置於平台支架121之子支架121a中。第一光滑元件P1a之一端係穿設於孔狀樞接結構P1b,而另一端則連接至第一自由度旋轉支架122,以使第一自由度旋轉支架122樞接於平台支 架121。電子模組310係透過固定元件320來設置於樞接結構P1上,以感測第一自由度旋轉支架122的旋轉角度,並將其傳送至電腦裝置130。在本實施例中,電子模組310包含前述之旋轉感測模組125以及無線傳輸模組,但本發明之實施例並不受限於此。在本發明之其他實施例中,電子模組310可更包含其他電子裝置,例如轉速感測器,以提供更多的感測資訊至電腦裝置130。 Please refer to FIG. 3, which is a structural exploded view of the universal platform 120 according to an embodiment of the present invention. The platform support 121 includes a plurality of sub-supports 121a and a bottom fixing element 121b. The sub-bracket 121a is used to form a platform bracket 121 having a box shape, and the bottom fixing element 121b is used to fix the platform bracket 121 on the ground. The aforementioned pivot structure P1 includes a first smoothing element P1a and a hole-shaped pivot structure P1b. The hole-like pivot structure P1b is disposed in the sub-bracket 121a of the platform bracket 121. One end of the first smoothing element P1a passes through the hole-shaped pivoting structure P1b, and the other end is connected to the first-degree-of-freedom rotation bracket 122, so that the first-degree-of-freedom rotation bracket 122 is pivotally connected to the platform support 架 121。 Frame 121. The electronic module 310 is disposed on the pivot structure P1 through the fixing element 320 to sense the rotation angle of the first-degree-of-freedom rotation bracket 122 and transmit it to the computer device 130. In this embodiment, the electronic module 310 includes the aforementioned rotation sensing module 125 and a wireless transmission module, but the embodiment of the present invention is not limited thereto. In other embodiments of the present invention, the electronic module 310 may further include other electronic devices, such as a speed sensor, to provide more sensing information to the computer device 130.

另外,本實施例之旋轉感測模組125為磁角感測模組,且具有磁鐵MA1。磁鐵MA1係固設於第一光滑元件P1a之一端上。如此,旋轉感測模組125可透過測量磁鐵MA1旋轉時的磁場變化量來獲得第一自由度旋轉支架122的旋轉角度。 In addition, the rotation sensing module 125 of this embodiment is a magnetic angle sensing module and has a magnet MA1. The magnet MA1 is fixed on one end of the first smoothing element P1a. In this way, the rotation sensing module 125 can obtain the rotation angle of the first-degree-of-freedom rotation bracket 122 by measuring the magnetic field change amount when the magnet MA1 rotates.

前述之樞接結構P2包含第二光滑元件P2a、孔狀樞接結構P2b和P2c。孔狀樞接結構P2b係設置於第一自由度旋轉支架122中,孔狀樞接結構P2c係設置於第二自由度旋轉支架123中。第二光滑元件P2a之一端係穿設於孔狀樞接結構P2b,而第二光滑元件P2a之另一端則穿設於孔狀樞接結構P2c,以使第二自由度旋轉支架123樞接於第一自由度旋轉支架122。電子模組330係透過固定元件340來設置於樞接結構P2上,以感測第二自由度旋轉支架123的旋轉角度,並將其傳送至電腦裝置130。在本實施例中,電子模組330包含前述之旋轉感測模組126以及無線傳輸模組,但本發明之實施例並不受限於此。在本發明之其他實施例中,電子模組330可更包含其他電子裝置,例如轉速感測器,以 提供更多的感測資訊至電腦裝置130。 The aforementioned pivot structure P2 includes a second smooth element P2a, a hole-shaped pivot structure P2b, and P2c. The hole-shaped pivot structure P2b is disposed in the first-degree-of-freedom rotation bracket 122, and the hole-shaped pivot structure P2c is disposed in the second-degree-of-freedom rotation bracket 123. One end of the second smoothing element P2a is threaded through the hole-shaped pivoting structure P2b, and the other end of the second smoothing element P2a is threaded through the hole-shaped pivoting structure P2c, so that the second degree of freedom rotation bracket 123 is pivotally connected to First degree of freedom rotation bracket 122. The electronic module 330 is disposed on the pivot structure P2 through the fixing element 340 to sense the rotation angle of the second-degree-of-freedom rotation bracket 123 and transmit it to the computer device 130. In this embodiment, the electronic module 330 includes the aforementioned rotation sensing module 126 and a wireless transmission module, but the embodiment of the present invention is not limited thereto. In other embodiments of the present invention, the electronic module 330 may further include other electronic devices, such as a speed sensor, to Provide more sensing information to the computer device 130.

另外,本實施例之旋轉感測模組126為磁角感測模組,且具有磁鐵MA2。磁鐵MA2係固設於第二光滑元件P2a之一端上。如此,旋轉感測模組126可透過測量磁鐵MA2旋轉時的磁場變化量來獲得第二自由度旋轉支架123的旋轉角度。 In addition, the rotation sensing module 126 of this embodiment is a magnetic angle sensing module and has a magnet MA2. The magnet MA2 is fixed on one end of the second smoothing element P2a. In this way, the rotation sensing module 126 can obtain the rotation angle of the second-degree-of-freedom rotation bracket 123 by measuring the magnetic field change amount when the magnet MA2 rotates.

前述之樞接結構P3包含第三光滑元件P3a以及孔狀樞接結構P3b。孔狀樞接結構P3b係設置於第二自由度旋轉支架123中。第三光滑元件P3a之一端係穿設於孔狀樞接結構P3b,而另一端則連接至第三自由度旋轉支架124之第一支撐桿124a和第二支撐桿124b,以使第三自由度旋轉支架124樞接於第二自由度旋轉支架123。在本實施例中,第三自由度旋轉支架124包含前述之第一支撐桿124a和第二支撐桿124b以及用以固定旋翼機110之第一咬合結構和第二咬合結構,其中第一咬合結構包含兩第一夾持板CLP1和複數個鎖固元件;第二咬合結構包含兩第二夾持板CLP2和複數個鎖固元件。 The aforementioned pivot structure P3 includes a third smoothing element P3a and a hole-shaped pivot structure P3b. The hole-shaped pivoting structure P3b is disposed in the second-degree-of-freedom rotation bracket 123. One end of the third smoothing element P3a passes through the hole-shaped pivoting structure P3b, and the other end is connected to the first support rod 124a and the second support rod 124b of the third-degree-of-freedom rotation bracket 124, so that the third degree of freedom The rotating bracket 124 is pivotally connected to the second-degree-of-freedom rotating bracket 123. In this embodiment, the third-degree-of-freedom rotation bracket 124 includes the aforementioned first and second supporting rods 124a and 124b, and a first engaging structure and a second engaging structure for fixing the rotorcraft 110, wherein the first engaging structure Contains two first clamping plates CLP1 and a plurality of locking elements; the second engaging structure includes two second clamping plates CLP2 and a plurality of locking elements.

第一支撐桿124a之一端係固設於第三光滑元件P3a,而第一支撐桿124a之另一端則透過第一咬合結構來固定於旋翼機110上。具體而言,第一夾持板CLP1係夾持第一支撐桿124a之一端以及旋翼機110之一端,而鎖固元件係穿設於第一夾持板CLP1中,以將第一夾持板CLP1互相鎖固,使得第一支撐桿124a固定於旋翼機110上。 One end of the first support rod 124a is fixed to the third smoothing element P3a, and the other end of the first support rod 124a is fixed to the rotorcraft 110 through the first engaging structure. Specifically, the first clamping plate CLP1 clamps one end of the first support rod 124a and one end of the rotorcraft 110, and the locking element is penetrated in the first clamping plate CLP1, so that the first clamping plate CLP1 is locked to each other, so that the first support rod 124a is fixed on the rotorcraft 110.

第二支撐桿124b之一端係固設於第三光滑元 件P3a,而第一支撐桿124b之另一端則透過第二咬合結構來固定於旋翼機110上。具體而言,第二夾持板CLP2係夾持第二支撐桿124b之一端以及旋翼機110之一端,而鎖固元件係穿設於第二夾持板CLP2中,以將第二夾持板CLP2互相鎖固,使得第二支撐桿124b固定於旋翼機110上。 One end of the second support rod 124b is fixed to the third smooth element. Piece P3a, and the other end of the first support rod 124b is fixed to the rotorcraft 110 through the second engaging structure. Specifically, the second clamping plate CLP2 clamps one end of the second support rod 124b and one end of the rotorcraft 110, and the locking element is penetrated in the second clamping plate CLP2 to place the second clamping plate CLP2 is locked to each other, so that the second support rod 124b is fixed on the rotorcraft 110.

在本實施例中,鎖固元件為螺絲,其係穿設於第一夾持板CLP1和第二夾持板CLP2中,但本發明之實施例並不受限於此。另外,本實施例中之第一支撐桿124a和第二支撐桿124b係分別固定設於旋翼機110的兩相對端部上,如此可有利於支撐旋翼機110並量測旋翼機110的旋轉資訊。 In this embodiment, the locking element is a screw, which is threaded through the first clamping plate CLP1 and the second clamping plate CLP2, but the embodiment of the present invention is not limited thereto. In addition, the first support rod 124a and the second support rod 124b in this embodiment are respectively fixed on two opposite ends of the rotorcraft 110, so that it can be beneficial to support the rotorcraft 110 and measure the rotation information of the rotorcraft 110 .

電子模組350係透過固定元件360來設置於樞接結構P3上,以感測第三自由度旋轉支架124的旋轉角度,並將其傳送至電腦裝置130。在本實施例中,電子模組350包含前述之旋轉感測模組127以及無線傳輸模組,但本發明之實施例並不受限於此。在本發明之其他實施例中,電子模組350可更包含其他電子裝置,例如轉速感測器,以提供更多的感測資訊至電腦裝置130。 The electronic module 350 is disposed on the pivot structure P3 through the fixing element 360 to sense the rotation angle of the third-degree-of-freedom rotation bracket 124 and transmit it to the computer device 130. In this embodiment, the electronic module 350 includes the aforementioned rotation sensing module 127 and a wireless transmission module, but the embodiment of the present invention is not limited thereto. In other embodiments of the present invention, the electronic module 350 may further include other electronic devices, such as a speed sensor, to provide more sensing information to the computer device 130.

另外,本實施例之旋轉感測模組127為磁角感測模組,且具有磁鐵MA3。磁鐵MA3係固設於第三光滑元件P3a之一端上。如此,旋轉感測模組127可透過測量磁鐵MA3旋轉時的磁場變化量來獲得第三自由度旋轉支架124的旋轉角度。 In addition, the rotation sensing module 127 of this embodiment is a magnetic angle sensing module and has a magnet MA3. The magnet MA3 is fixed on one end of the third smoothing element P3a. In this way, the rotation sensing module 127 can obtain the rotation angle of the third-degree-of-freedom rotation bracket 124 by measuring the magnetic field change amount when the magnet MA3 rotates.

請參照圖4,其係繪示根據本發明實施例之旋翼 機模擬飛行方法400的流程示意圖。在旋翼機模擬飛行方法400中,首先進行步驟410,以建構虛擬環境以及虛擬旋翼機。在步驟410中,電腦裝置130係利用Unity 3D模擬系統來建立虛擬環境以及虛擬旋翼機,但本發明之實施例並不受限於此。在步驟420中,提供前述之萬向平台120,以感測旋翼機110於複數個自由度之旋轉動作,並相應地輸出複數個旋轉資訊至電腦裝置130。具體而言,當使用者操作旋翼機110進行飛行時,萬向平台120的旋轉感測模組125~127可分別輸出第一自由度旋轉支架122、第二自由度旋轉支架123以及第三自由度旋轉支架124的旋轉資訊至電腦裝置130。另外,當使用者操作旋翼機110進行飛行時,旋翼機110的四個馬達亦會分別輸出馬達資訊至電腦裝置130。在步驟430中,電腦裝置130係根據旋翼機110之馬達資訊以及旋轉資訊來計算旋翼機之飛行姿態與飛行軌跡。在步驟440中,電腦裝置130係根據旋翼機之飛行軌跡和飛行姿態來控制虛擬旋翼機於虛擬環境中之飛行動作。藉此,使用者便可透過電腦螢幕上的虛擬旋翼機來了解目前旋翼機110的飛行狀況。 Please refer to FIG. 4, which illustrates a rotor according to an embodiment of the present invention. A schematic flow chart of the aircraft simulation flight method 400. In the rotorcraft simulation flight method 400, step 410 is first performed to construct a virtual environment and a virtual rotorcraft. In step 410, the computer device 130 uses the Unity 3D simulation system to establish a virtual environment and a virtual rotorcraft, but the embodiment of the present invention is not limited thereto. In step 420, the aforementioned universal platform 120 is provided to sense the rotary motion of the rotorcraft 110 in a plurality of degrees of freedom, and accordingly output a plurality of rotation information to the computer device 130. Specifically, when the user operates the rotorcraft 110 for flight, the rotation sensing modules 125 to 127 of the universal platform 120 can output the first degree of freedom rotation bracket 122, the second degree of freedom rotation bracket 123, and the third freedom respectively. The rotation information of the degree rotation bracket 124 is transmitted to the computer device 130. In addition, when the user operates the rotorcraft 110 for flight, the four motors of the rotorcraft 110 also output motor information to the computer device 130, respectively. In step 430, the computer device 130 calculates the flight attitude and flight trajectory of the rotorcraft based on the motor information and rotation information of the rotorcraft 110. In step 440, the computer device 130 controls the flying action of the virtual rotorcraft in the virtual environment according to the flight trajectory and flight attitude of the rotorcraft. Thereby, the user can understand the current flight status of the rotorcraft 110 through the virtual rotorcraft on the computer screen.

由以上說明可知,本發明之實施例係利用萬向平台來限縮實體旋翼機往三個移動自由度的平移運動,而實體旋翼機仍保留三個完整轉動自由度的旋轉運動,且三個轉動自由度都設計有摩擦力極小的機構(例如前述之樞接結構),再搭配磁角感測模組來感測旋轉角度,如此可以透過無線的方式將旋翼機在萬向平台上的姿態變化回傳至電腦 裝置,使電腦虛擬環境之虛擬旋翼機投影出跟實體旋翼機相同之姿態,達到虛實整合之飛行模擬操作的效果。 As can be seen from the above description, the embodiment of the present invention uses a universal platform to limit the translational movement of the solid rotorcraft to three degrees of freedom of movement, while the solid rotorcraft still retains three complete rotational degrees of freedom of rotation, and three Rotational degrees of freedom are all designed with a mechanism with very little friction (such as the aforementioned pivot structure), and then combined with a magnetic angle sensing module to sense the rotation angle, so that the attitude of the rotorcraft on the universal platform can be wirelessly Change back to computer The device enables the virtual rotor of the computer virtual environment to project the same attitude as the physical rotor, and achieves the effect of virtual and real integration flight simulation operation.

雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with several embodiments, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field to which the present invention pertains can make various modifications without departing from the spirit and scope of the present invention. Changes and retouching, so the protection scope of the present invention shall be determined by the scope of the appended patent application.

Claims (10)

一種旋翼機模擬飛行系統,包含:一旋翼機,具有複數個馬達感測模組,用以提供該旋翼機之一馬達資訊;一萬向平台,用以支撐該旋翼機,並將該旋翼機之飛行動作侷限於一預設空間內,其中該萬向平台包含:一平台支架;一第一自由度旋轉支架,樞接於該平台支架,;一第二自由度旋轉支架,樞接於該第一自由度旋轉支架;以及一第三自由度旋轉支架,樞接於該第二自由度旋轉支架,其中該旋翼機固設於該第三自由度旋轉支架上;複數個旋轉感測模組,設置於該平台支架、該第一自由度旋轉支架以及該第二自由度旋轉支架上,用以感測該第一自由度旋轉支架、該第二自由度旋轉支架以及該第三自由度旋轉支架之複數個旋轉動作,並相應地輸出複數個旋轉資訊;以及一電腦裝置,用以進行一虛實整合飛行模擬操作,其中該虛實整合飛行模擬操作包含:根據該旋翼機之該馬達資訊以及該些旋轉資訊來計算該旋翼機之一飛行姿態與一飛行軌跡;以及建構一虛擬環境以及一虛擬旋翼機,並根據該旋翼機之該飛行軌跡和該飛行姿態來控制該虛擬旋翼機於該虛擬環境中之飛行動作。A rotorcraft simulation flight system includes: a rotorcraft having a plurality of motor sensing modules for providing information on one of the rotorcraft's motors; a universal platform for supporting the rotorcraft, and the rotorcraft The flying action is limited to a preset space, wherein the universal platform includes: a platform support; a first-degree-of-freedom rotating support pivotally connected to the platform support; and a second-degree-of-freedom rotating support pivoted to the A first degree of freedom rotation bracket; and a third degree of freedom rotation bracket pivotally connected to the second degree of freedom rotation bracket, wherein the rotorcraft is fixed on the third degree of freedom rotation bracket; a plurality of rotation sensing modules Is arranged on the platform bracket, the first degree of freedom rotation bracket and the second degree of freedom rotation bracket, and is used for sensing the first degree of freedom rotation bracket, the second degree of freedom rotation bracket and the third degree of freedom rotation A plurality of rotation actions of the bracket and correspondingly outputting a plurality of rotation information; and a computer device for performing a virtual-real integrated flight simulation operation, wherein the virtual-real integrated flight simulation operation Including: calculating a flight attitude and a flight trajectory of the rotorcraft according to the motor information of the rotorcraft and the rotation information; and constructing a virtual environment and a virtual rotorcraft, and according to the flight trajectory of the rotorcraft and The flight attitude is used to control the flight of the virtual rotorcraft in the virtual environment. 如申請專利範圍第1項所述之旋翼機模擬飛行系統,其中該第三自由度旋轉支架包含:一第一支撐桿,具有一第一端以及相對該第一端之一第二端,其中該第一端係樞接於該第二自由度旋轉支架;一第一咬合結構,用以將該第一支撐桿之該第二端固設於該旋翼機上;一第二支撐桿,具有一第三端以及相對該第三端之一第四端,其中該第三端係樞接於該第二自由度旋轉支架;以及一第二咬合結構,用以將該第二支撐桿之該第四端固設於該旋翼機上。The rotorcraft simulation flight system according to item 1 of the scope of patent application, wherein the third-degree-of-freedom rotating support includes a first support rod having a first end and a second end opposite to the first end, wherein The first end is pivotally connected to the second-degree-of-freedom rotating support; a first engaging structure for fixing the second end of the first support rod to the rotorcraft; a second support rod having A third end and a fourth end opposite to the third end, wherein the third end is pivotally connected to the second-degree-of-freedom rotation bracket; and a second engaging structure for connecting the second support rod to the The fourth end is fixed on the rotorcraft. 如申請專利範圍第2項所述之旋翼機模擬飛行系統,其中該第一咬合結構包含兩第一夾持板和複數顆第一螺絲,該兩第一夾持板係夾持該第一支撐桿之該第二端以及該旋翼機之一第一端部,該些第一螺絲係穿設於該兩第一夾持板中,以固定該兩第一夾持板。According to the rotorcraft simulation flight system described in item 2 of the patent application scope, wherein the first engaging structure includes two first clamping plates and a plurality of first screws, and the two first clamping plates are configured to clamp the first support. The second end of the rod and a first end of the rotorcraft, the first screws are threaded through the two first clamping plates to fix the two first clamping plates. 如申請專利範圍第3項所述之旋翼機模擬飛行系統,其中該第二咬合結構包含兩第二夾持板和複數顆第二螺絲,該兩第二夾持板係夾持該第二支撐桿之該第四端以及該旋翼機之一第二端部,該些第二螺絲係穿設於該兩第二夾持板中,以固定該兩第二夾持板。According to the rotorcraft simulation flight system described in item 3 of the patent application scope, wherein the second engaging structure includes two second clamping plates and a plurality of second screws, and the two second clamping plates are configured to clamp the second support. The fourth end of the rod and a second end of the rotorcraft, the second screws are threaded through the two second clamping plates to fix the two second clamping plates. 如申請專利範圍第4所述之旋翼機模擬飛行系統,其中該旋翼機之該第二端部相對於該旋翼機之該第一端部。According to the rotorcraft simulation flight system described in the patent application scope 4, wherein the second end portion of the rotorcraft is opposite to the first end portion of the rotorcraft. 如申請專利範圍第1項所述之旋翼機模擬飛行系統,其中該些旋轉感測模組包含:一第一自由度感測模組,設置於該第一自由度旋轉支架與該平台支架之樞接處;一第二自由度感測模組,設置於該第二自由度旋轉支架與該第一自由度旋轉支架之樞接處;以及一第三自由度感測模組,設置於該第三自由度旋轉支架與該第二自由度旋轉支架之樞接處。According to the rotorcraft simulation flight system described in item 1 of the scope of patent application, wherein the rotation sensing modules include: a first degree of freedom sensing module, which is disposed between the first degree of freedom rotation bracket and the platform bracket A pivot; a second degree of freedom sensing module provided at the pivot between the second degree of freedom rotating bracket and the first degree of freedom rotating bracket; and a third degree of freedom sensing module provided at the The pivot joint of the third-degree-of-freedom rotation bracket and the second-degree-of-freedom rotation bracket. 如申請專利範圍第6項所述之旋翼機模擬飛行系統,其中:該第一自由度感測模組係用以感測該第一自由度旋轉支之旋轉角度;該第二自由度感測模組係用以感測該第二自由度旋轉支之旋轉角度;該第三自由度感測模組係用以感測該第三自由度旋轉支之旋轉角度。The rotorcraft simulation flight system according to item 6 of the scope of patent application, wherein: the first degree of freedom sensing module is used to sense the rotation angle of the first degree of freedom rotary support; the second degree of freedom sensing The module is used to sense the rotation angle of the second degree of freedom swivel; the third degree of freedom sensing module is used to sense the rotation angle of the third degree of freedom swivel. 如申請專利範圍第6項所述之旋翼機模擬飛行系統,其中:該第一自由度感測模組更用以感測該第一自由度旋轉支之旋轉速度;該第二自由度感測模組更用以感測該第二自由度旋轉支之旋轉速度;該第三自由度感測模組係用以感測該第三自由度旋轉支之旋轉速度。According to the rotorcraft simulation flight system described in item 6 of the scope of patent application, wherein: the first degree of freedom sensing module is further configured to sense the rotation speed of the first degree of freedom rotary support; the second degree of freedom sensing The module is further configured to sense the rotation speed of the second-degree-of-freedom swivel; the third degree-of-freedom sensing module is used to sense the rotation speed of the third-degree-of-freedom swivel. 如申請專利範圍第1項所述之旋翼機模擬飛行系統,其中該第一自由度旋轉支架以及該第二自由度旋轉支架為環狀。The rotorcraft simulation flight system according to item 1 of the scope of the patent application, wherein the first-degree-of-freedom rotation support and the second-degree-of-freedom rotation support are annular. 一種旋翼機模擬飛行方法,包含:利用一電腦裝置來建構一虛擬環境以及一虛擬旋翼機;提供一萬向平台,以感測一旋翼機於複數個自由度之旋轉動作,並相應地輸出複數個旋轉資訊;根據該旋翼機之一馬達資訊以及該些旋轉資訊來計算該旋翼機之一飛行姿態與一飛行軌跡;以及利用該電腦裝置來根據該旋翼機之該飛行軌跡和該飛行姿態控制該虛擬旋翼機於該虛擬環境中之飛行動作,並利用一電腦螢幕來顯示該虛擬環境以及該虛擬環境中的該虛擬旋翼機。A rotorcraft simulation flight method includes: using a computer device to construct a virtual environment and a virtual rotorcraft; providing a universal platform to sense the rotation of a rotorcraft in a plurality of degrees of freedom, and outputting a plurality of corresponding numbers Rotation information; calculating a flight attitude and a flight trajectory of the rotorcraft based on motor information of the rotorcraft and the rotation information; and using the computer device to control the flight trajectory and the flight attitude of the rotorcraft The flying action of the virtual rotorcraft in the virtual environment, and a computer screen is used to display the virtual environment and the virtual rotorcraft in the virtual environment.
TW107143132A 2018-11-30 2018-11-30 Flight simulation system and flight simulation method for a gyroplane TWI680079B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107143132A TWI680079B (en) 2018-11-30 2018-11-30 Flight simulation system and flight simulation method for a gyroplane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107143132A TWI680079B (en) 2018-11-30 2018-11-30 Flight simulation system and flight simulation method for a gyroplane

Publications (2)

Publication Number Publication Date
TWI680079B true TWI680079B (en) 2019-12-21
TW202021868A TW202021868A (en) 2020-06-16

Family

ID=69582253

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107143132A TWI680079B (en) 2018-11-30 2018-11-30 Flight simulation system and flight simulation method for a gyroplane

Country Status (1)

Country Link
TW (1) TWI680079B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132461A (en) * 2016-01-25 2017-08-03 大分県 Unmanned flying body characteristic measurement device and unmanned flying body evaluation system using the same
CN107993513A (en) * 2017-11-06 2018-05-04 贾杰 A kind of unmanned helicopter integrated management, training and pilot scale study device
US10101719B1 (en) * 2017-12-12 2018-10-16 Kitty Hawk Corporation Aircraft control system based on sparse set of simulation data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132461A (en) * 2016-01-25 2017-08-03 大分県 Unmanned flying body characteristic measurement device and unmanned flying body evaluation system using the same
CN107993513A (en) * 2017-11-06 2018-05-04 贾杰 A kind of unmanned helicopter integrated management, training and pilot scale study device
US10101719B1 (en) * 2017-12-12 2018-10-16 Kitty Hawk Corporation Aircraft control system based on sparse set of simulation data

Also Published As

Publication number Publication date
TW202021868A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
US11118728B2 (en) Method and system for stabilizing a payload
US11085580B2 (en) Systems and methods for payload stabilization
JP6239619B2 (en) Flying camera with a string assembly for positioning and interaction
US20190162358A1 (en) Method and system for adaptive gimbal
CN203705964U (en) Stable closed-loop control device of airborne 3-DOF pan-tilt
WO2019223270A1 (en) Method and apparatus for estimating angle and angular velocity of electric motor of gimbal, and gimbal and aerial vehicle
US8566071B2 (en) Calibration and synchronization of micro air vehicle autopilots
EP3460616A2 (en) Addressing method for functional modules of a movable object
CN110312913A (en) Method and system for adaptive holder
WO2018032425A1 (en) Unmanned aerial vehicle, and unmanned aerial vehicle stability control method and control device
JP2017193208A (en) Small-sized unmanned aircraft
Papachristos et al. Towards a high-end unmanned tri-tiltrotor: Design, modeling and hover control
WO2019100821A1 (en) Unmanned aerial vehicle
CN207472269U (en) Inertial measurement system, holder drive dynamic control device and aerial photography device
CN105783896A (en) Interactive type unmanned aerial vehicle magnetic compass calibration device and method
CN111977006A (en) Method and device for initializing joint angle and aircraft
TWI680079B (en) Flight simulation system and flight simulation method for a gyroplane
WO2019100825A1 (en) Unmanned aerial vehicle
Moutinho et al. The tilt-quadrotor: concept, modeling and identification
WO2019100824A1 (en) Unmanned aerial vehicle
CN108475066B (en) Unmanned aerial vehicle attitude calculation method, flight controller and unmanned aerial vehicle
CN111260992A (en) Simulation flight system and simulation flight method of rotor wing
JP6684012B1 (en) Information processing apparatus and information processing method
WO2021223169A1 (en) Method and device for detecting power output of unmanned aerial vehicle
WO2021016847A1 (en) Load-stabilizing device and control method therefor, and computer-readable storage medium