TWI679465B - Optical imaging lens - Google Patents

Optical imaging lens Download PDF

Info

Publication number
TWI679465B
TWI679465B TW107147875A TW107147875A TWI679465B TW I679465 B TWI679465 B TW I679465B TW 107147875 A TW107147875 A TW 107147875A TW 107147875 A TW107147875 A TW 107147875A TW I679465 B TWI679465 B TW I679465B
Authority
TW
Taiwan
Prior art keywords
lens
optical imaging
optical
optical axis
imaging lens
Prior art date
Application number
TW107147875A
Other languages
Chinese (zh)
Other versions
TW202026690A (en
Inventor
許聖偉
Sheng-Wei Hsu
王佩琦
Pei-Chi Wang
Original Assignee
玉晶光電股份有限公司
Genius Electronic Optical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 玉晶光電股份有限公司, Genius Electronic Optical Co., Ltd. filed Critical 玉晶光電股份有限公司
Priority to TW107147875A priority Critical patent/TWI679465B/en
Application granted granted Critical
Publication of TWI679465B publication Critical patent/TWI679465B/en
Publication of TW202026690A publication Critical patent/TW202026690A/en

Links

Landscapes

  • Lenses (AREA)

Abstract

一種光學成像鏡頭,從物側至像側沿光軸依序包括第一透鏡、第二透鏡、第三透鏡、光圈、第四透鏡及第五透鏡。第一透鏡是從物側到像側數來的屈光率等於零毫米 -1的第一個透鏡。第二透鏡是從第一透鏡到像側數來具有屈光率的第一個透鏡。第三透鏡是從第一透鏡到像側數來具有屈光率的第二個透鏡。第四透鏡是從光圈到像側數來具有屈光率的第一個透鏡。第五透鏡是從光圈到像側數來具有屈光率的第二個透鏡。 An optical imaging lens includes a first lens, a second lens, a third lens, an aperture, a fourth lens, and a fifth lens in order along the optical axis from the object side to the image side. The first lens is the first lens whose refractive index from the object side to the image side is equal to zero mm -1 . The second lens is the first lens having a refractive power from the first lens to the number of image sides. The third lens is a second lens having a refractive power from the first lens to the number of image sides. The fourth lens is the first lens having refractive power from the aperture to the number of image sides. The fifth lens is a second lens having refractive power from the aperture to the number of image sides.

Description

光學成像鏡頭Optical imaging lens

本發明是有關於一種光學元件,且特別是一種光學成像鏡頭。 The invention relates to an optical element, and in particular to an optical imaging lens.

可攜式電子產品的規格日新月異,其關鍵零組件-光學成像鏡頭也更加多樣化發展。而車用鏡頭的應用領域持續增加中,從倒車、360度環景、車道偏移系統到先進駕駛輔助系統(ADAS)等,一部車使用鏡頭從6顆到20顆都有,鏡頭規格也持續精進,從VGA(30萬)升級到百萬畫素以上。但車用鏡頭的成像品質與手機鏡頭上千萬畫素的成像品質仍有很大的進步空間。 The specifications of portable electronic products change with each passing day, and its key component, the optical imaging lens, is also becoming more diverse. The application fields of automotive lenses continue to increase, from reversing, 360-degree view, lane shifting systems to advanced driver assistance systems (ADAS), etc., a car uses from 6 to 20 lenses, lens specifications also Continuous improvement, upgrade from VGA (300,000) to more than one million pixels. However, there is still much room for improvement in the imaging quality of automotive lenses and the imaging quality of tens of millions of pixels in mobile phone lenses.

車用鏡頭所使用的環境溫度於-20℃到80℃之間,此外鏡頭本身要能抵禦風吹、雨淋、日曬等各種惡劣環境的測試。因此鏡頭的第一透鏡要使用強度經得起環境測試的玻璃材質。此外車用鏡頭半視角要夠大才可適用於後視、倒車與環景等各種需求,所以需要使用大負屈光率的玻璃透鏡,但增加研磨玻璃的製程難度與成本。因此如何提供熱穩定、抗環境測試、大半視角、低成本且符合成像品質的車用鏡頭是需要多方研究的問題。 The ambient temperature of automotive lenses is between -20 ° C and 80 ° C. In addition, the lens itself must be able to withstand various harsh environments such as wind, rain, and sun. Therefore, the first lens of the lens should be made of glass material that can withstand environmental testing. In addition, the half-angle of view of the vehicle lens must be large enough to be suitable for various needs such as rear view, reverse and surrounding scenery. Therefore, a glass lens with a large negative refractive power is required, but the manufacturing process and cost of grinding glass are increased. Therefore, how to provide automotive lenses with thermal stability, anti-environmental testing, a large half angle of view, low cost, and conforming to imaging quality is an issue that requires multiple studies.

本發明提供一種光學成像鏡頭,其具有良好的熱穩定性、良好的光學參數以及良好的成像品質。 The invention provides an optical imaging lens, which has good thermal stability, good optical parameters, and good imaging quality.

本發明的一實施例提出一種光學成像鏡頭,從物側至像側沿光軸依序包括第一透鏡、第二透鏡、第三透鏡、光圈、第四透鏡及第五透鏡。第一透鏡至第五透鏡各自包括一朝向物側且使成像光線通過的物側面及一朝向像側且使成像光線通過的像側面。第一透鏡是從物側到像側數來的屈光率等於零毫米-1的第一個透鏡。第二透鏡是從第一透鏡到像側數來具有屈光率的第一個透鏡。第三透鏡是從第一透鏡到像側數來具有屈光率的第二個透鏡。第三透鏡具有正屈光率。第四透鏡是從光圈到像側數來具有屈光率的第一個透鏡。第四透鏡的物側面與第四透鏡的像側面中的至少其中一面為非球面。第五透鏡是從光圈到像側數來具有屈光率的第二個透鏡。第五透鏡的物側面與第五透鏡的像側面皆為非球面。 An embodiment of the present invention provides an optical imaging lens, which includes a first lens, a second lens, a third lens, an aperture, a fourth lens, and a fifth lens in order along the optical axis from the object side to the image side. Each of the first lens to the fifth lens includes an object side facing the object side and passing imaging light and an image side facing the image side and passing imaging light. The first lens is the first lens whose refractive index from the object side to the image side is equal to zero mm -1 . The second lens is the first lens having a refractive power from the first lens to the number of image sides. The third lens is a second lens having a refractive power from the first lens to the number of image sides. The third lens has a positive refractive power. The fourth lens is the first lens having refractive power from the aperture to the number of image sides. At least one of the object side surface and the image side surface of the fourth lens is an aspheric surface. The fifth lens is a second lens having refractive power from the aperture to the number of image sides. Both the object side of the fifth lens and the image side of the fifth lens are aspheric.

本發明的一實施例提出一種光學成像鏡頭,從物側至像側沿光軸依序包括第一透鏡、第二透鏡、第三透鏡、光圈、第四透鏡及第五透鏡。第一透鏡至第五透鏡各自包括一朝向物側且使成像光線通過的物側面及一朝向像側且使成像光線通過的像側面。第一透鏡是從物側到像側數來的屈光率等於零毫米-1的第一個透鏡。第二透鏡是從第一透鏡到像側數來具有屈光率的第一個透 鏡。第三透鏡是從第一透鏡到像側數來具有屈光率的第二個透鏡。第四透鏡是從光圈到像側數來具有屈光率的第一個透鏡。第四透鏡的物側面與第四透鏡的像側面中的至少其中一面為非球面。第五透鏡是從光圈到像側數來具有屈光率的第二個透鏡。第五透鏡的物側面與第五透鏡的像側面皆為非球面。光學成像鏡頭滿足以下的條件式:1.250≦L2A1R/ImgH≦2.200,其中,L2A1R為第二透鏡的物側面的有效半徑,且ImgH為光學成像鏡頭的最大像高。 An embodiment of the present invention provides an optical imaging lens, which includes a first lens, a second lens, a third lens, an aperture, a fourth lens, and a fifth lens in order along the optical axis from the object side to the image side. Each of the first lens to the fifth lens includes an object side facing the object side and passing imaging light and an image side facing the image side and passing imaging light. The first lens is the first lens whose refractive index from the object side to the image side is equal to zero mm -1 . The second lens is the first lens having a refractive power from the first lens to the number of image sides. The third lens is a second lens having a refractive power from the first lens to the number of image sides. The fourth lens is the first lens having a refractive power from the aperture to the number of image sides. At least one of the object side surface and the image side surface of the fourth lens is an aspheric surface. The fifth lens is a second lens having refractive power from the aperture to the number of image sides. Both the object side of the fifth lens and the image side of the fifth lens are aspheric. The optical imaging lens satisfies the following conditional expression: 1.250 ≦ L2A1R / ImgH ≦ 2.200, where L2A1R is the effective radius of the object side of the second lens, and ImgH is the maximum image height of the optical imaging lens.

基於上述,在本發明的實施例的光學成像鏡頭中,藉由滿足第一至第五透鏡與光圈之間的排列方式、第一透鏡的屈光率等於零毫米-1、第四透鏡的物側面與第四透鏡的像側面中的至少其中一面為非球面、並搭配第五透鏡的物側面與第五透鏡的像側面皆為非球面。因此,本發明的實施例的光學成像鏡頭可以具有良好的熱穩定性、良好的光學參數以及良好的成像品質。 Based on the above, in the optical imaging lens of the embodiment of the present invention, by satisfying the arrangement manner between the first to fifth lenses and the aperture, the refractive index of the first lens is equal to zero millimeter -1 , and the object side of the fourth lens At least one of the image side surfaces of the fourth lens is an aspheric surface, and the object side surface of the fifth lens and the image side surface of the fifth lens are both aspheric surfaces. Therefore, the optical imaging lens of the embodiment of the present invention can have good thermal stability, good optical parameters, and good imaging quality.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.

100、200、300、400、500‧‧‧透鏡 100, 200, 300, 400, 500‧‧‧ lenses

15、25、35、45、55、65、75、95、110、410、510‧‧‧物側面 15, 25, 35, 45, 55, 65, 75, 95, 110, 410, 510‧‧‧

16、26、36、46、56、66、76、96、120、320‧‧‧像側面 16, 26, 36, 46, 56, 66, 76, 96, 120, 320‧‧‧ like side

130‧‧‧組裝部 130‧‧‧Assembly Department

211、212‧‧‧平行光線 211, 212‧‧‧ parallel rays

10‧‧‧光學成像鏡頭 10‧‧‧ Optical Imaging Lens

0‧‧‧光圈 0‧‧‧ aperture

1‧‧‧第一透鏡 1‧‧‧first lens

2‧‧‧第二透鏡 2‧‧‧Second lens

3‧‧‧第三透鏡 3‧‧‧ third lens

4‧‧‧第四透鏡 4‧‧‧ fourth lens

5‧‧‧第五透鏡 5‧‧‧ fifth lens

6‧‧‧第六透鏡 6‧‧‧ sixth lens

7‧‧‧第七透鏡 7‧‧‧ seventh lens

9‧‧‧濾光片 9‧‧‧ Filter

99‧‧‧成像面 99‧‧‧ imaging surface

15p1、16p1、151、162、251、262、35p1、361、451、461、462、551、552、561、651、652、661、751、761‧‧‧光軸區域 15p1, 16p1, 151, 162, 251, 262, 35p1, 361, 451, 461, 462, 551, 552, 561, 651, 652, 661, 751, 761

15p2、16p2、153、164、253、264、35p2、363、453、463、464、553、554、563、564、653、654、663、664、753、763‧‧‧圓周區域 15p2, 16p2, 153, 164, 253, 264, 35p2, 363, 453, 463, 464, 553, 554, 563, 564, 653, 654, 663, 664, 753, 763‧‧‧circle area

A1‧‧‧物側 A1‧‧‧ Object side

A2‧‧‧像側 A2‧‧‧Image side

CP1‧‧‧第一中心點 CP1‧‧‧first center point

CP2‧‧‧第二中心點 CP2‧‧‧Second Center Point

EL‧‧‧延伸線 EL‧‧‧ extension line

I‧‧‧光軸 I‧‧‧ Optical axis

Lm‧‧‧邊緣光線 Lm‧‧‧Edge light

Lc‧‧‧邊緣光線 Lc‧‧‧Edge light

OB‧‧‧光學邊界 OB‧‧‧ Optical Boundary

P‧‧‧平面 P‧‧‧plane

R‧‧‧點 R‧‧‧point

TP1‧‧‧第一轉換點 TP1‧‧‧first transition point

TP2‧‧‧第二轉換點 TP2‧‧‧Second transition point

Z1‧‧‧光軸區域 Z1‧‧‧ Optical axis area

Z2‧‧‧圓周區域 Z2‧‧‧Circular area

Z3‧‧‧中繼區域 Z3‧‧‧ relay area

圖1是一示意圖,說明一透鏡的面型結構。 FIG. 1 is a schematic diagram illustrating a planar structure of a lens.

圖2是一示意圖,說明一透鏡的面型凹凸結構及光線焦點。 FIG. 2 is a schematic diagram illustrating a planar concave-convex structure and a light focus of a lens.

圖3是一示意圖,說明一範例一的透鏡的面型結構。 FIG. 3 is a schematic diagram illustrating a planar structure of a lens of Example 1. FIG.

圖4是一示意圖,說明一範例二的透鏡的面型結構。 FIG. 4 is a schematic diagram illustrating a planar structure of a lens of Example 2. FIG.

圖5是一示意圖,說明一範例三的透鏡的面型結構。 FIG. 5 is a schematic diagram illustrating a planar structure of a lens of Example 3. FIG.

圖6為本發明之第一實施例之光學成像鏡頭的示意圖。 FIG. 6 is a schematic diagram of an optical imaging lens according to a first embodiment of the present invention.

圖7A至圖7D為第一實施例之光學成像鏡頭的縱向球差與各項像差圖。 7A to 7D are diagrams illustrating longitudinal spherical aberration and various aberrations of the optical imaging lens of the first embodiment.

圖8示出本發明之第一實施例之光學成像鏡頭的詳細光學數據。 FIG. 8 shows detailed optical data of the optical imaging lens of the first embodiment of the present invention.

圖9示出本發明之第一實施例之光學成像鏡頭的非球面參數。 FIG. 9 shows aspherical parameters of the optical imaging lens according to the first embodiment of the present invention.

圖10為本發明的第二實施例的光學成像鏡頭的示意圖。 FIG. 10 is a schematic diagram of an optical imaging lens according to a second embodiment of the present invention.

圖11A至圖11D為第二實施例之光學成像鏡頭的縱向球差與各項像差圖。 11A to 11D are diagrams of longitudinal spherical aberration and various aberrations of the optical imaging lens of the second embodiment.

圖12示出本發明之第二實施例之光學成像鏡頭的詳細光學數據。 FIG. 12 shows detailed optical data of an optical imaging lens according to a second embodiment of the present invention.

圖13示出本發明之第二實施例之光學成像鏡頭的非球面參數。 FIG. 13 shows aspherical parameters of an optical imaging lens according to a second embodiment of the present invention.

圖14為本發明的第三實施例的光學成像鏡頭的示意圖。 FIG. 14 is a schematic diagram of an optical imaging lens according to a third embodiment of the present invention.

圖15A至圖15D為第三實施例之光學成像鏡頭的縱向球差與各項像差圖。 15A to 15D are diagrams of longitudinal spherical aberration and various aberrations of the optical imaging lens of the third embodiment.

圖16示出本發明之第三實施例之光學成像鏡頭的詳細光學數據。 FIG. 16 shows detailed optical data of an optical imaging lens according to a third embodiment of the present invention.

圖17示出本發明之第三實施例之光學成像鏡頭的非球面參數。 FIG. 17 shows aspherical parameters of an optical imaging lens according to a third embodiment of the present invention.

圖18為本發明的第四實施例的光學成像鏡頭的示意圖。 FIG. 18 is a schematic diagram of an optical imaging lens according to a fourth embodiment of the present invention.

圖19A至圖19D為第四實施例之光學成像鏡頭的縱向球差與各項像差圖。 19A to 19D are diagrams of longitudinal spherical aberration and various aberrations of the optical imaging lens of the fourth embodiment.

圖20示出本發明之第四實施例之光學成像鏡頭的詳細光學數據。 FIG. 20 shows detailed optical data of an optical imaging lens according to a fourth embodiment of the present invention.

圖21示出本發明之第四實施例之光學成像鏡頭的非球面參數。 FIG. 21 shows aspherical parameters of an optical imaging lens according to a fourth embodiment of the present invention.

圖22為本發明的第五實施例的光學成像鏡頭的示意圖。 FIG. 22 is a schematic diagram of an optical imaging lens according to a fifth embodiment of the present invention.

圖23A至圖23D為第五實施例之光學成像鏡頭的縱向球差與各項像差圖。 23A to 23D are diagrams of longitudinal spherical aberration and various aberrations of the optical imaging lens of the fifth embodiment.

圖24示出本發明之第五實施例之光學成像鏡頭的詳細光學數據。 FIG. 24 shows detailed optical data of an optical imaging lens according to a fifth embodiment of the present invention.

圖25示出本發明之第五實施例之光學成像鏡頭的非球面參數。 FIG. 25 shows aspherical parameters of an optical imaging lens according to a fifth embodiment of the present invention.

圖26為本發明的第六實施例的光學成像鏡頭的示意圖。 FIG. 26 is a schematic diagram of an optical imaging lens according to a sixth embodiment of the present invention.

圖27A至圖27D為第六實施例之光學成像鏡頭的縱向球差與各項像差圖。 27A to 27D are diagrams illustrating longitudinal spherical aberration and various aberrations of the optical imaging lens of the sixth embodiment.

圖28示出本發明之第六實施例之光學成像鏡頭的詳細光學數據。 FIG. 28 shows detailed optical data of an optical imaging lens according to a sixth embodiment of the present invention.

圖29示出本發明之第六實施例之光學成像鏡頭的非球面參 數。 FIG. 29 shows aspherical parameters of an optical imaging lens according to a sixth embodiment of the present invention number.

圖30為本發明的第七實施例的光學成像鏡頭的示意圖。 FIG. 30 is a schematic diagram of an optical imaging lens according to a seventh embodiment of the present invention.

圖31A至圖31D為第七實施例之光學成像鏡頭的縱向球差與各項像差圖。 31A to 31D are diagrams illustrating longitudinal spherical aberration and various aberrations of the optical imaging lens of the seventh embodiment.

圖32示出本發明之第七實施例之光學成像鏡頭的詳細光學數據。 FIG. 32 shows detailed optical data of an optical imaging lens according to a seventh embodiment of the present invention.

圖33示出本發明之第七實施例之光學成像鏡頭的非球面參數。 FIG. 33 illustrates aspherical parameters of an optical imaging lens according to a seventh embodiment of the present invention.

圖34為本發明的第八實施例的光學成像鏡頭的示意圖。 FIG. 34 is a schematic diagram of an optical imaging lens according to an eighth embodiment of the present invention.

圖35A至圖35D為第八實施例之光學成像鏡頭的縱向球差與各項像差圖。 35A to 35D are diagrams of longitudinal spherical aberration and various aberrations of the optical imaging lens of the eighth embodiment.

圖36示出本發明之第八實施例之光學成像鏡頭的詳細光學數據。 FIG. 36 shows detailed optical data of an optical imaging lens according to an eighth embodiment of the present invention.

圖37示出本發明之第八實施例之光學成像鏡頭的非球面參數。 FIG. 37 shows aspherical parameters of an optical imaging lens according to an eighth embodiment of the present invention.

圖38為本發明的第九實施例的光學成像鏡頭的示意圖。 FIG. 38 is a schematic diagram of an optical imaging lens according to a ninth embodiment of the present invention.

圖39A至圖39D為第九實施例之光學成像鏡頭的縱向球差與各項像差圖。 39A to 39D are diagrams illustrating longitudinal spherical aberration and various aberrations of the optical imaging lens of the ninth embodiment.

圖40示出本發明之第九實施例之光學成像鏡頭的詳細光學數據。 FIG. 40 shows detailed optical data of an optical imaging lens according to a ninth embodiment of the present invention.

圖41示出本發明之第九實施例之光學成像鏡頭的非球面參數。 FIG. 41 shows aspherical parameters of an optical imaging lens according to a ninth embodiment of the present invention.

圖42為本發明的第十實施例的光學成像鏡頭的示意圖。 FIG. 42 is a schematic diagram of an optical imaging lens according to a tenth embodiment of the present invention.

圖43A至圖43D為第十實施例之光學成像鏡頭的縱向球差與各項像差圖。 43A to 43D are diagrams of longitudinal spherical aberration and various aberrations of the optical imaging lens of the tenth embodiment.

圖44示出本發明之第十實施例之光學成像鏡頭的詳細光學數據。 FIG. 44 shows detailed optical data of an optical imaging lens according to a tenth embodiment of the present invention.

圖45示出本發明之第十實施例之光學成像鏡頭的非球面參數。 FIG. 45 shows aspherical parameters of an optical imaging lens according to a tenth embodiment of the present invention.

圖46示出本發明之第一至第六實施例之光學成像鏡頭的各重要參數及其關係式的數值。 FIG. 46 shows the important parameters of the optical imaging lenses according to the first to sixth embodiments of the present invention and the values of their relational expressions.

圖47示出本發明之第七至第十實施例之光學成像鏡頭的各重要參數及其關係式的數值。 FIG. 47 shows the important parameters of the optical imaging lenses of the seventh to tenth embodiments of the present invention and their numerical values.

本說明書之光學系統包含至少一透鏡,接收入射光學系統之平行於光軸至相對光軸呈半視角(HFOV)角度內的成像光線。成像光線通過光學系統於成像面上成像。所言之「一透鏡具有正屈光率(或負屈光率)」,是指所述透鏡以高斯光學理論計算出來之近軸屈光率為正(或為負)。所言之「透鏡之物側面(或像側面)」定義為成像光線通過透鏡表面的特定範圍。成像光線包括至少兩類光線:主光線(chief ray)Lc及邊緣光線(marginal ray)Lm(如圖1所示)。透鏡之物側面(或像側面)可依不同位置區分為不同區域,包含光軸區域、圓周區域、或在部分實施例中的一 個或多個中繼區域,該些區域的說明將於下方詳細闡述。 The optical system in this specification includes at least one lens that receives imaging light from an incident optical system that is parallel to the optical axis to a half-view angle (HFOV) angle relative to the optical axis. The imaging light is imaged on the imaging surface through the optical system. The expression "a lens has positive refractive power (or negative refractive power)" means that the paraxial refractive power of the lens calculated by Gaussian optical theory is positive (or negative). The "object side (or image side) of the lens" is defined as a specific range of imaging light passing through the lens surface. The imaging light includes at least two types of light: chief ray Lc and marginal ray Lm (as shown in FIG. 1). The object side (or image side) of the lens can be divided into different areas according to different positions, including the optical axis area, the circumferential area, or one of the embodiments. One or more relay areas, the description of these areas will be described in detail below.

圖1為透鏡100的徑向剖視圖。定義透鏡100表面上的二參考點:中心點及轉換點。透鏡表面的中心點為該表面與光軸I的一交點。如圖1所例示,第一中心點CP1位於透鏡100的物側面110,第二中心點CP2位於透鏡100的像側面120。轉換點是位於透鏡表面上的一點,且該點的切線與光軸I垂直。定義透鏡表面之光學邊界OB為通過該透鏡表面徑向最外側的邊緣光線Lm與該透鏡表面相交的一點。所有的轉換點皆位於光軸I與透鏡表面之光學邊界OB之間。除此之外,若單一透鏡表面有複數個轉換點,則該些轉換點由徑向向外的方向依序自第一轉換點開始命名。例如,第一轉換點TP1(最靠近光軸I)、第二轉換點TP2(如圖4所示)及第N轉換點(距離光軸I最遠)。 FIG. 1 is a radial sectional view of the lens 100. Two reference points on the surface of the lens 100 are defined: the center point and the transition point. The center point of the lens surface is an intersection of the surface and the optical axis I. As shown in FIG. 1, the first center point CP1 is located on the object side 110 of the lens 100, and the second center point CP2 is located on the image side 120 of the lens 100. The transition point is a point located on the surface of the lens, and the tangent to this point is perpendicular to the optical axis I. The optical boundary OB defining the lens surface is a point at which the ray Lm passing through the radially outermost edge of the lens surface intersects the lens surface. All transition points are located between the optical axis I and the optical boundary OB on the lens surface. In addition, if there are a plurality of conversion points on the surface of a single lens, the conversion points are named from the first conversion point in order from the radial outward direction. For example, the first conversion point TP1 (closest to the optical axis I), the second conversion point TP2 (shown in FIG. 4), and the Nth conversion point (farthest from the optical axis I).

定義從中心點至第一轉換點TP1的範圍為光軸區域,其中,該光軸區域包含中心點。定義距離光軸I最遠的第N轉換點徑向向外至光學邊界OB的區域為圓周區域。在部分實施例中,可另包含介於光軸區域與圓周區域之間的中繼區域,中繼區域的數量取決於轉換點的數量。 The range from the center point to the first transition point TP1 is defined as an optical axis region, where the optical axis region includes the center point. The area that defines the Nth transition point farthest from the optical axis I and extends radially outward to the optical boundary OB is a circumferential area. In some embodiments, a relay region between the optical axis region and the circumferential region may be further included, and the number of relay regions depends on the number of transition points.

當平行光軸I之光線通過一區域後,若光線朝光軸I偏折且與光軸I的交點位在透鏡像側A2,則該區域為凸面。當平行光軸I之光線通過一區域後,若光線的延伸線與光軸I的交點位在透鏡物側A1,則該區域為凹面。 After the light rays parallel to the optical axis I pass through a region, if the light rays are deflected toward the optical axis I and the intersection point with the optical axis I is at the lens image side A2, the region is convex. After the light rays parallel to the optical axis I pass through a region, if the intersection of the extension line of the light rays and the optical axis I is located on the object side A1 of the lens, the region is concave.

除此之外,參見圖1,透鏡100還可包含一由光學邊界 OB徑向向外延伸的組裝部130。組裝部130一般來說用以供該透鏡100組裝於光學系統之一相對應元件(圖未示)。成像光線並不會到達該組裝部130。組裝部130之結構與形狀僅為說明本發明之示例,不以此限制本發明的範圍。下列討論之透鏡的組裝部130可能會在圖式中被部分或全部省略。 In addition, referring to FIG. 1, the lens 100 may further include an optical boundary The assembly portion 130 extends radially outward in the OB. The assembling unit 130 is generally used for assembling the lens 100 to a corresponding element (not shown) of an optical system. The imaging light does not reach the assembly portion 130. The structure and shape of the assembling portion 130 are merely examples for explaining the present invention, and do not limit the scope of the present invention. The lens assembly 130 discussed below may be partially or completely omitted in the drawings.

參見圖2,定義中心點CP與第一轉換點TP1之間為光軸區域Z1。定義第一轉換點TP1與透鏡表面的光學邊界OB之間為圓周區域Z2。如圖2所示,平行光線211在通過光軸區域Z1後與光軸I在透鏡200的像側A2相交,即平行光線211通過光軸區域Z1的焦點位於透鏡200像側A2的R點。由於光線與光軸I相交於透鏡200像側A2,故光軸區域Z1為凸面。反之,平行光線212在通過圓周區域Z2後發散。如圖2所示,平行光線212通過圓周區域Z2後的延伸線EL與光軸I在透鏡200的物側A1相交,即平行光線212通過圓周區域Z2的焦點位於透鏡200物側A1的M點。由於光線的延伸線EL與光軸I相交於透鏡200物側A1,故圓周區域Z2為凹面。於圖2所示的透鏡200中,第一轉換點TP1是光軸區域與圓周區域的分界,即第一轉換點TP1為凸面轉凹面的分界點。 Referring to FIG. 2, an optical axis region Z1 is defined between the center point CP and the first transition point TP1. A circumferential area Z2 is defined between the first transition point TP1 and the optical boundary OB on the lens surface. As shown in FIG. 2, the parallel light rays 211 intersect with the optical axis I on the image side A2 of the lens 200 after passing through the optical axis region Z1, that is, the focus of the parallel light rays 211 passing through the optical axis region Z1 is located at the R point of the image side A2 of the lens 200. Since the light and the optical axis I intersect at the image side A2 of the lens 200, the optical axis region Z1 is convex. Conversely, the parallel light rays 212 diverge after passing through the circumferential area Z2. As shown in FIG. 2, the extension line EL after the parallel light rays 212 pass through the circumferential area Z2 and the optical axis I intersect at the object side A1 of the lens 200, that is, the focal point of the parallel light rays 212 through the circumferential area Z2 is located at the point M of the object 200 A1 . Since the extension line EL of the light and the optical axis I intersect at the object side A1 of the lens 200, the circumferential region Z2 is concave. In the lens 200 shown in FIG. 2, the first transition point TP1 is a boundary between the optical axis region and the circumferential region, that is, the first transition point TP1 is a boundary point between a convex surface and a concave surface.

另一方面,光軸區域的面形凹凸判斷還可依該領域中通常知識者的判斷方式,即藉由近軸的曲率半徑(簡寫為R值)的正負號來判斷透鏡之光軸區域面形的凹凸。R值可常見被使用於光學設計軟體中,例如Zemax或CodeV。R值亦常見於光學設計 軟體的透鏡資料表(lens data sheet)中。以物側面來說,當R值為正時,判定為物側面的光軸區域為凸面;當R值為負時,判定物側面的光軸區域為凹面。反之,以像側面來說,當R值為正時,判定像側面的光軸區域為凹面;當R值為負時,判定像側面的光軸區域為凸面。此方法判定的結果與前述藉由光線/光線延伸線與光軸的交點判定方式的結果一致,光線/光線延伸線與光軸交點的判定方式即為以一平行光軸之光線的焦點位於透鏡之物側或像側來判斷面形凹凸。本說明書所描述之「一區域為凸面(或凹面)」、「一區域為凸(或凹)」或「一凸面(或凹面)區域」可被替換使用。 On the other hand, the determination of the surface asperity of the optical axis region can also be based on the judgment method of ordinary knowledgeable persons in this field, that is, the positive and negative signs of the radius of curvature (abbreviated as R value) of the paraxial axis to determine the surface of the optical axis region of the lens. Shaped bumps. R values can be commonly used in optical design software, such as Zemax or CodeV. R values are also common in optical design In the lens data sheet of the software. For the object side, when the R value is positive, the optical axis region of the object side is determined to be convex; when the R value is negative, the optical axis region of the object side is determined to be concave. Conversely, for the image side, when the R value is positive, the optical axis area of the image side is determined to be concave; when the R value is negative, the optical axis area of the image side is determined to be convex. The result of this method is consistent with the result of the above-mentioned determination method of the intersection point of the light / ray extension line and the optical axis. The determination method of the intersection point of the light / ray extension line and the optical axis is that the focus of the light with a parallel optical axis is located on the lens The object shape or image side is used to judge the surface irregularities. The "a region is convex (or concave)", "a region is convex (or concave)", or "a convex (or concave) region" described in this specification can be used interchangeably.

圖3至圖5提供了在各個情況下判斷透鏡區域的面形及區域分界的範例,包含前述之光軸區域、圓周區域及中繼區域。 Figures 3 to 5 provide examples of determining the shape of the lens area and the area boundary in each case, including the aforementioned optical axis area, circumferential area, and relay area.

圖3為透鏡300的徑向剖視圖。參見圖3,透鏡300的像側面320在光學邊界OB內僅存在一個轉換點TP1。透鏡300的像側面320的光軸區域Z1及圓周區域Z2如圖3所示。此像側面320的R值為正(即R>0),因此,光軸區域Z1為凹面。 FIG. 3 is a radial sectional view of the lens 300. Referring to FIG. 3, the image side 320 of the lens 300 has only one transition point TP1 within the optical boundary OB. The optical axis region Z1 and the circumferential region Z2 of the image side surface 320 of the lens 300 are shown in FIG. 3. The R value of this image side 320 is positive (ie, R> 0), and therefore, the optical axis region Z1 is concave.

一般來說,以轉換點為界的各個區域面形會與相鄰的區域面形相反,因此,可用轉換點來界定面形的轉變,即自轉換點由凹面轉凸面或由凸面轉凹面。於圖3中,由於光軸區域Z1為凹面,面形於轉換點TP1轉變,故圓周區域Z2為凸面。 In general, the shape of each area bounded by the transition point will be opposite to the shape of the adjacent area. Therefore, the transition point can be used to define the transformation of the shape, that is, the transition point from concave to convex or convex to concave. In FIG. 3, since the optical axis region Z1 is a concave surface, and the shape is changed at the transition point TP1, the circumferential region Z2 is a convex surface.

圖4為透鏡400的徑向剖視圖。參見圖4,透鏡400的物側面410存在一第一轉換點TP1及一第二轉換點TP2。定義光軸I 與第一轉換點TP1之間為物側面410的光軸區域Z1。此物側面410的R值為正(即R>0),因此,光軸區域Z1為凸面。 FIG. 4 is a radial sectional view of the lens 400. Referring to FIG. 4, a first transition point TP1 and a second transition point TP2 exist on the object side surface 410 of the lens 400. Define optical axis I Between the first switching point TP1 and the optical axis region Z1 of the object side surface 410. The R value of the object side surface 410 is positive (that is, R> 0). Therefore, the optical axis region Z1 is convex.

定義第二轉換點TP2與透鏡400的物側面410的光學邊界OB之間為圓周區域Z2,該物側面410的該圓周區域Z2亦為凸面。除此之外,定義第一轉換點TP1與第二轉換點TP2之間為中繼區域Z3,該物側面410的該中繼區域Z3為凹面。再次參見圖4,物側面410由光軸I徑向向外依序包含光軸I與第一轉換點TP1之間的光軸區域Z1、位於第一轉換點TP1與第二轉換點TP2之間的中繼區域Z3,及第二轉換點TP2與透鏡400的物側面410的光學邊界OB之間的圓周區域Z2。由於光軸區域Z1為凸面,面形自第一轉換點TP1轉變為凹,故中繼區域Z3為凹面,又面形自第二轉換點TP2再轉變為凸,故圓周區域Z2為凸面。 A circumferential area Z2 is defined between the second transition point TP2 and the optical boundary OB of the object side surface 410 of the lens 400, and the circumferential area Z2 of the object side surface 410 is also a convex surface. In addition, a relay region Z3 is defined between the first transition point TP1 and the second transition point TP2, and the relay region Z3 of the object side surface 410 is a concave surface. Referring to FIG. 4 again, the object side surface 410 includes the optical axis region Z1 between the optical axis I and the first transition point TP1 in the radial direction outward from the optical axis I and is located between the first transition point TP1 and the second transition point TP2 And a peripheral region Z2 between the second transition point TP2 and the optical boundary OB of the object side surface 410 of the lens 400. Since the optical axis region Z1 is convex and the shape changes from a first transition point TP1 to a concave shape, the relay region Z3 is concave and the shape changes from a second transition point TP2 to a convex shape, so the circumferential area Z2 is convex.

圖5為透鏡500的徑向剖視圖。透鏡500的物側面510無轉換點。對於無轉換點的透鏡表面,例如透鏡500的物側面510,定義自光軸I起算至透鏡表面光學邊界OB之間距離的0~50%為光軸區域,自光軸I起算至透鏡表面光學邊界OB之間距離的50~100%為圓周區域。參見圖5所示之透鏡500,定義光軸I至自光軸I起算到透鏡500表面光學邊界OB之間距離的50%為物側面510的光軸區域Z1。此物側面510的R值為正(即R>0),因此,光軸區域Z1為凸面。由於透鏡500的物側面510無轉換點,因此物側面510的圓周區域Z2亦為凸面。透鏡500更可具有組裝部(圖未示)自圓周區域Z2徑向向外延伸。 FIG. 5 is a radial sectional view of the lens 500. The object side surface 510 of the lens 500 has no transition point. For a lens surface without a transition point, such as the object side 510 of the lens 500, 0-50% of the distance from the optical axis I to the lens surface optical boundary OB is defined as the optical axis region, and from the optical axis I to the lens surface optical 50 to 100% of the distance between the borders OB is the circumferential area. Referring to the lens 500 shown in FIG. 5, 50% of the distance from the optical axis I to the optical boundary OB on the surface of the lens 500 from the optical axis I is defined as the optical axis region Z1 of the object side surface 510. The R value of the object side surface 510 is positive (that is, R> 0). Therefore, the optical axis region Z1 is convex. Since the object side surface 510 of the lens 500 has no transition point, the peripheral region Z2 of the object side surface 510 is also convex. The lens 500 may further have an assembly portion (not shown) extending radially outward from the circumferential region Z2.

圖6為本發明之第一實施例之光學成像鏡頭的示意圖,而圖7A至圖7D為第一實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖6,本發明的第一實施例之光學成像鏡頭10從物側A1至像側A2沿光學成像鏡頭10的一光軸I依序包括一第一透鏡1、一第二透鏡2、一第三透鏡3、一光圈0、一第四透鏡4、一第五透鏡5及一濾光片9。當由一待拍攝物所發出的光線進入光學成像鏡頭10,並依序經由第一透鏡1、第二透鏡2、第三透鏡3、光圈0、第四透鏡4、第五透鏡5及濾光片9之後,會在一成像面99(Image Plane)形成一影像。濾光片9例如為紅外線截止濾光片(infrared cut-off filter),其設置於第五透鏡5與成像面99之間。補充說明的是,物側A1是朝向待拍攝物的一側,而像側A2是朝向成像面99的一側。 FIG. 6 is a schematic diagram of an optical imaging lens according to a first embodiment of the present invention, and FIGS. 7A to 7D are diagrams of longitudinal spherical aberration and various aberrations of the optical imaging lens according to the first embodiment. Please refer to FIG. 6 first. The optical imaging lens 10 according to the first embodiment of the present invention includes a first lens 1 and a second lens 2 in order from an object side A1 to an image side A2 along an optical axis I of the optical imaging lens 10. , A third lens 3, an aperture 0, a fourth lens 4, a fifth lens 5 and a filter 9. When the light emitted by an object to be shot enters the optical imaging lens 10, it passes through the first lens 1, the second lens 2, the third lens 3, the aperture 0, the fourth lens 4, the fifth lens 5, and the filter in order. After film 9, an image is formed on an imaging plane 99 (Image Plane). The filter 9 is, for example, an infrared cut-off filter, and is disposed between the fifth lens 5 and the imaging surface 99. It is added that the object side A1 is a side facing the object to be photographed, and the image side A2 is a side facing the imaging surface 99.

在本實施例中,光學成像鏡頭10的第一透鏡1、第二透鏡2、第三透鏡3、第四透鏡4、第五透鏡5及濾光片9都各自具有一朝向物側A1且使成像光線通過之物側面15、25、35、45、55、95及一朝向像側A2且使成像光線通過之像側面16、26、36、46、56、96。 In this embodiment, the first lens 1, the second lens 2, the third lens 3, the fourth lens 4, the fifth lens 5, and the filter 9 of the optical imaging lens 10 each have a direction toward the object side A1 and make The object sides 15, 25, 35, 45, 55, 95 through which the imaging light passes, and the image sides 16, 26, 36, 46, 56, 96 facing the image side A2 and passing the imaging light.

第一透鏡1是從物側到像側數來的屈光率等於零毫米-1第一個透鏡。第一透鏡1的材料為玻璃。第一透鏡1的物側面15與像側面16皆為平面。第一透鏡1的物側面15的光軸區域15p1為平面。第一透鏡1的物側面15的圓周區域15p2為平面。第一透鏡1的像側面16的光軸區域16p1為平面。第一透鏡1的像側 面16的圓周區域16p2為平面。 The first lens 1 is the first lens whose refractive index from the object side to the image side is equal to zero mm -1 . The material of the first lens 1 is glass. Both the object side surface 15 and the image side surface 16 of the first lens 1 are flat. The optical axis region 15p1 of the object-side surface 15 of the first lens 1 is a flat surface. A peripheral region 15p2 of the object side surface 15 of the first lens 1 is a flat surface. The optical axis region 16p1 of the image side surface 16 of the first lens 1 is a flat surface. The peripheral region 16p2 of the image side surface 16 of the first lens 1 is a flat surface.

第二透鏡2是從第一透鏡1到像側A2數來具有屈光率的第一個透鏡。第二透鏡2具有負屈光率。第二透鏡2的材料為塑膠。第二透鏡2的物側面25的光軸區域251為凸面,且其圓周區域253為凸面。第二透鏡2的像側面26的光軸區域262為凹面,且其圓周區域264為凹面。在本實施例中,第二透鏡2的物側面25與像側面26皆為非球面。 The second lens 2 is a first lens having a refractive power from the first lens 1 to the image side A2. The second lens 2 has a negative refractive power. The material of the second lens 2 is plastic. The optical axis region 251 of the object-side surface 25 of the second lens 2 is convex, and the circumferential region 253 thereof is convex. The optical axis region 262 of the image side surface 26 of the second lens 2 is a concave surface, and its circumferential region 264 is a concave surface. In this embodiment, both the object side surface 25 and the image side surface 26 of the second lens 2 are aspherical surfaces.

第三透鏡3是從第一透鏡1到像側A2數來具有屈光率的第二個透鏡。第三透鏡3具有正屈光率。第三透鏡3的材料為玻璃。第三透鏡3的物側面35為平面。第三透鏡3的物側面35的光軸區域35p1為平面,第三透鏡3的物側面35的圓周區域35p2為平面。第三透鏡3的像側面36的光軸區域361為凸面,且其圓周區域363為凸面。在本實施例中,第三透鏡3的像側面36為球面。 The third lens 3 is a second lens having refractive power from the first lens 1 to the image side A2. The third lens 3 has a positive refractive power. The material of the third lens 3 is glass. The object side surface 35 of the third lens 3 is a flat surface. The optical axis region 35p1 of the object side surface 35 of the third lens 3 is a plane, and the circumferential region 35p2 of the object side surface 35 of the third lens 3 is a plane. The optical axis region 361 of the image side surface 36 of the third lens 3 is convex, and its circumferential region 363 is convex. In this embodiment, the image side surface 36 of the third lens 3 is spherical.

光圈0設置於第三透鏡3與第四透鏡4之間。 The aperture 0 is disposed between the third lens 3 and the fourth lens 4.

第四透鏡4是從光圈0到像側A2數來具有屈光率的第一個透鏡。第四透鏡4具有正屈光率。第四透鏡4的材料為塑膠。第四透鏡4的物側面45的光軸區域451為凸面,且其圓周區域453為凸面。第四透鏡4的像側面46的光軸區域461為凸面,且其圓周區域463為凸面。在本實施例中,第四透鏡4的物側面45與像側面46皆為非球面。 The fourth lens 4 is a first lens having a refractive power from the aperture 0 to the number of image side A2. The fourth lens 4 has a positive refractive power. The material of the fourth lens 4 is plastic. The optical axis region 451 of the object-side surface 45 of the fourth lens 4 is convex, and the circumferential region 453 thereof is convex. The optical axis region 461 of the image side surface 46 of the fourth lens 4 is convex, and the circumferential region 463 thereof is convex. In this embodiment, both the object side surface 45 and the image side surface 46 of the fourth lens 4 are aspherical surfaces.

第五透鏡5是從光圈0到像側A2數來具有屈光率的第二 個透鏡。第五透鏡5具有正屈光率。第五透鏡5的材料為塑膠。第五透鏡5的物側面55的光軸區域552為凹面,且其圓周區域554為凹面。第五透鏡5的像側面56的光軸區域561為凸面,且其圓周區域564為凹面。在本實施例中,第五透鏡5的物側面55與像側面56皆為非球面。 The fifth lens 5 is a second lens having a refractive power from the aperture 0 to the number of image side A2. Lenses. The fifth lens 5 has a positive refractive power. The material of the fifth lens 5 is plastic. The optical axis region 552 of the object-side surface 55 of the fifth lens 5 is a concave surface, and the circumferential region 554 thereof is a concave surface. The optical axis region 561 of the image side surface 56 of the fifth lens 5 is convex, and the circumferential region 564 thereof is concave. In this embodiment, both the object side surface 55 and the image side surface 56 of the fifth lens 5 are aspherical surfaces.

此外,於本實施例中,第四透鏡4與第五透鏡5之間利用膠體、膜體或膠合材料填充,而成膠合透鏡。 In addition, in this embodiment, the fourth lens 4 and the fifth lens 5 are filled with a gel, a film, or a cement material to form a cemented lens.

第一實施例之光學成像鏡頭10具有良好的熱穩定性。舉例而言,光學成像鏡頭10以常溫20℃為基準,其焦距偏移量(Focal shift)為0.0000毫米(mm),光學成像鏡頭10在-20℃下的焦距偏移量為-0.0228毫米(mm),而光學成像鏡頭10的焦距偏移量在80℃下為0.0423毫米(mm),但本發明不以此為限。 The optical imaging lens 10 of the first embodiment has good thermal stability. For example, the optical imaging lens 10 is based on a normal temperature of 20 ° C, and its focal shift is 0.0000 millimeters (mm). The optical imaging lens 10's focal shift at -20 ° C is -0.0228 millimeters ( mm), and the focal length offset of the optical imaging lens 10 is 0.0423 millimeters (mm) at 80 ° C, but the invention is not limited thereto.

第一實施例的其他詳細光學數據如圖8所示,且第一實施例的光學成像鏡頭10的整體系統焦距(Effective Focal Length,EFL)為1.635毫米(Millimeter,mm),半視角(half field of view,HFOV)為50.648°,系統長度為14.713毫米,光圈值(F-number,Fno)為1.830,像高為2.340毫米,其中系統長度是指由第一透鏡1的物側面15到成像面99在光軸I上的距離。 Other detailed optical data of the first embodiment are shown in FIG. 8, and the overall system focal length (EFL) of the optical imaging lens 10 of the first embodiment is 1.635 millimeters (mm), and a half field angle (half field) of view (HFOV) is 50.648 °, the system length is 14.713 mm, the aperture value (F-number, Fno) is 1.830, and the image height is 2.340 mm, where the system length is from the object side 15 of the first lens 1 to the imaging surface The distance of 99 on the optical axis I.

此外,在本實施例中,上述的物側面25、45、55及像側面26、46、56共計六個面均是偶次非球面(even aspheric surface),而這些非球面是依下列公式定義:

Figure TWI679465B_D0001
In addition, in this embodiment, the six surfaces of the object side 25, 45, 55 and the image side 26, 46, 56 are even aspheric surfaces, and these aspheric surfaces are defined according to the following formula :
Figure TWI679465B_D0001

Y:非球面曲線上的點與光軸的距離;Z:非球面深度;(非球面上距離光軸為Y的點,與相切於非球面光軸上頂點之切面,兩者間的垂直距離);R:透鏡表面之曲率半徑;K:圓錐係數;ai:第i階非球面係數。 Y: the distance between the point on the aspheric curve and the optical axis; Z: the depth of the aspheric surface; Distance); R: radius of curvature of the lens surface; K: conic coefficient; a i : aspherical coefficient of the i-th order.

上述的物側面25、45、55及像側面26、46、56在公式(1)中的各項非球面係數如圖9所示。其中,圖9中欄位編號25表示其為第二透鏡2的物側面25的非球面係數,其它欄位依此類推。應注意的是,由於第四透鏡4與第五透鏡5彼此膠合而為膠合透鏡,因此像側面46的非球面係數可參照物側面55的非球面係數。 The aspherical surface coefficients of the above-mentioned object side surfaces 25, 45, 55 and image side surfaces 26, 46, 56 in the formula (1) are shown in FIG. 9. Wherein, the field number 25 in FIG. 9 indicates that it is the aspheric coefficient of the object side surface 25 of the second lens 2, and the other fields are deduced by analogy. It should be noted that since the fourth lens 4 and the fifth lens 5 are cemented with each other to form a cemented lens, the aspheric coefficient of the image side 46 may refer to the aspheric coefficient of the object side 55.

另外,第一實施例之光學成像鏡頭10中各重要參數間的關係如圖46所示,其中,在圖46中的參數Fno的單位為無因次,參數HFOV的單位為度(°),而欄位「EFL」與欄位「SR」至欄位「AAG」的單位為毫米(mm),其他的欄位的單位為無因次。並且圖46表格中的”第一”以下的一列,代表的是第一實施例的相關光學參數,而其他以此類推。 In addition, the relationship between important parameters in the optical imaging lens 10 of the first embodiment is shown in FIG. 46, where the unit of the parameter Fno in FIG. 46 is dimensionless and the unit of the parameter HFOV is degree (°), The unit of the field "EFL" and the field "SR" to the field "AAG" is millimeter (mm), and the unit of the other fields is dimensionless. And the column below “first” in the table of FIG. 46 represents the relevant optical parameters of the first embodiment, and so on.

其中,T1為第一透鏡1在光軸I上的厚度; T2為第二透鏡2在光軸I上的厚度;T3為第三透鏡3在光軸I上的厚度;T4為第四透鏡4在光軸I上的厚度;T5為第五透鏡5在光軸I上的厚度;G12為第一透鏡1的像側面16至第二透鏡2的物側面25在光軸I上的距離,也就是第一透鏡1與第二透鏡2在光軸I上的空氣間隙;G23為第二透鏡2的像側面26至第三透鏡3的物側面35在光軸I上的距離,也就是第二透鏡2與第三透鏡3在光軸I上的空氣間隙;G34為第三透鏡3的像側面36至第四透鏡4的物側面45在光軸I上的距離,也就是第三透鏡3與第四透鏡4在光軸I上的空氣間隙;G45為第四透鏡4的像側面46至第五透鏡5的物側面55在光軸I上的距離,也就是第四透鏡4與第五透鏡5在光軸I上的空氣間隙;G5F為第五透鏡5的像側面56至濾光片9的物側面95在光軸I上的距離;AAG為第一透鏡1與第二透鏡2之間在光軸I上的空氣間隙、第二透鏡2與第三透鏡3之間在光軸I上的空氣間隙、第三透鏡3與第四透鏡4之間在光軸I上的空氣間隙以及第四透鏡4與第五透鏡5之間在光軸I上的空氣間隙的空氣間隙總和,即 G12、G23、G34以及G45的總和;ALT為第一透鏡1、第二透鏡2、第三透鏡3、第四透鏡4與第五透鏡5在光軸I上的厚度總和,即T1、T2、T3、T4及T5的總和;TL為第一透鏡1的物側面15到第五透鏡5的像側面56在光軸上I的距離;TTL為第一透鏡1的物側面15到成像面99在光軸I上的距離;BFL為第五透鏡5的像側面56至成像面99在光軸I上的距離;HFOV為光學成像鏡頭10的半視角;ImgH為光學成像鏡頭10的像高;及EFL為光學成像鏡頭10的系統焦距。 T1 is the thickness of the first lens 1 on the optical axis I; T2 is the thickness of the second lens 2 on the optical axis I; T3 is the thickness of the third lens 3 on the optical axis I; T4 is the thickness of the fourth lens 4 on the optical axis I; T5 is the thickness of the fifth lens 5 on the optical axis I Thickness on the axis I; G12 is the distance on the optical axis I from the image side 16 of the first lens 1 to the object side 25 of the second lens 2, that is, the distance between the first lens 1 and the second lens 2 on the optical axis I Air gap; G23 is the distance on the optical axis I from the image side 26 of the second lens 2 to the object side 35 of the third lens 3, that is, the air gap on the optical axis I of the second lens 2 and the third lens 3; G34 is the distance on the optical axis I from the image side 36 of the third lens 3 to the object side 45 of the fourth lens 4, that is, the air gap between the third lens 3 and the fourth lens 4 on the optical axis I; G45 is the first The distance from the image side 46 of the four lenses 4 to the object side 55 of the fifth lens 5 on the optical axis I, that is, the air gap between the fourth lens 5 and the fifth lens 5 on the optical axis I; G5F is the fifth lens 5 The distance from the image side 56 to the object side 95 of the filter 9 on the optical axis I; AAG is the air gap between the first lens 1 and the second lens 2 on the optical axis I, and the second lens 2 and the third Between the lenses 3 The air gap on the optical axis I between the third lens 3 and the fourth lens 4 on the optical axis I and the air gap on the optical axis I between the fourth lens 4 and the fifth lens 5 which is Sum of G12, G23, G34, and G45; ALT is the sum of the thicknesses of the first lens 1, the second lens 2, the third lens 3, the fourth lens 4, and the fifth lens 5 on the optical axis I, that is, T1, T2 The sum of T3, T4, and T5; TL is the distance I on the optical axis from the object side 15 of the first lens 1 to the image side 56 of the fifth lens 5; TTL is the distance from the object side 15 of the first lens 1 to the imaging plane 99 at Distance on the optical axis I; BFL is the distance on the optical axis I from the image side 56 of the fifth lens 5 to the imaging plane 99; HFOV is the half angle of view of the optical imaging lens 10; ImgH is the image height of the optical imaging lens 10; and EFL is the system focal length of the optical imaging lens 10.

另外,再定義:L2A1R為第二透鏡2的物側面25的有效半徑;SR為光圈0的有效半徑;f1為第一透鏡1的焦距;f2為第二透鏡2的焦距;f3為第三透鏡3的焦距;f4為第四透鏡4的焦距;f5為第五透鏡5的焦距;n1為第一透鏡1的折射率; n2為第二透鏡2的折射率;n3為第三透鏡3的折射率;n4為第四透鏡4的折射率;n5為第五透鏡5的折射率;V1為第一透鏡1的阿貝係數;V2為第二透鏡2的阿貝係數;V3為第三透鏡3的阿貝係數;V4為第四透鏡4的阿貝係數;以及V5為第五透鏡5的阿貝係數。 In addition, redefine: L2A1R is the effective radius of the object side 25 of the second lens 2; SR is the effective radius of the aperture 0; f1 is the focal length of the first lens 1; f2 is the focal length of the second lens 2; f3 is the third lens 3 focal length; f4 is the focal length of the fourth lens 4; f5 is the focal length of the fifth lens 5; n1 is the refractive index of the first lens 1; n2 is the refractive index of the second lens 2; n3 is the refractive index of the third lens 3; n4 is the refractive index of the fourth lens 4; n5 is the refractive index of the fifth lens 5; V1 is the Abbe coefficient of the first lens 1 V2 is the Abbe coefficient of the second lens 2; V3 is the Abbe coefficient of the third lens 3; V4 is the Abbe coefficient of the fourth lens 4; and V5 is the Abbe coefficient of the fifth lens 5.

再配合參閱圖7A至圖7D,圖7A的圖式說明第一實施例的縱向球差(Longitudinal Spherical Aberration),圖7B與圖7C的圖式則分別說明第一實施例當其波長為470nm、555nm及650nm時在成像面99上有關弧矢(Sagittal)方向的場曲(Field Curvature)像差及子午(Tangential)方向的場曲像差,圖7D的圖式則說明第一實施例當其波長為470nm、555nm及650nm時在成像面99上的畸變像差(Distortion Aberration)。本第一實施例的縱向球差圖示圖7A中,每一種波長所成的曲線皆很靠近並向中間靠近,說明每一種波長不同高度的離軸光線皆集中在成像點附近,由每一波長的曲線的偏斜幅度可看出,不同高度的離軸光線的成像點偏差控制在±0.030毫米的範圍內,故本第一實施例確實明顯改善相同波長的球差,此外,三種代表波長彼此間的距離也相當接近,代表不同波長光線的成像位置已相當集中,因而使色像差也獲得 明顯改善。 7A to 7D, FIG. 7A illustrates the longitudinal spherical aberration (Longitudinal Spherical Aberration) of the first embodiment, and FIGS. 7B and 7C illustrate the first embodiment when the wavelength is 470 nm, Field Curvature aberrations on the imaging plane 99 at 555 nm and 650 nm in the sagittal direction and field curvature aberrations in the Tangential direction. The diagram in FIG. 7D illustrates the first embodiment as its Distortion aberration on the imaging plane 99 at wavelengths of 470 nm, 555 nm, and 650 nm. The longitudinal spherical aberration diagram of this first embodiment is shown in FIG. 7A. The curves formed by each wavelength are very close to the middle, indicating that off-axis rays with different heights of each wavelength are concentrated near the imaging point. It can be seen that the deviation of the curve of the wavelength curve is that the deviation of the imaging points of off-axis rays with different heights is controlled within the range of ± 0.030 millimeters. Therefore, the first embodiment does significantly improve the spherical aberration of the same wavelength. In addition, three representative wavelengths The distances between them are also quite close, and the imaging positions representing different wavelengths of light have been quite concentrated, so that chromatic aberration is also obtained. Significant improvement.

在圖7B與圖7C的二個場曲像差圖示中,三種代表波長在整個視場範圍內的場曲像差落在±0.08毫米內,說明本第一實施例的光學系統能有效消除像差。而圖7D的畸變像差圖式則顯示本第一實施例的畸變像差維持在±15%的範圍內,說明本第一實施例的畸變像差已符合光學系統的成像品質要求,據此說明本第一實施例相較於現有光學鏡頭,在系統長度已縮短至14.713毫米左右的條件下,仍能提供良好的成像品質。 In the two field curvature aberration diagrams of FIGS. 7B and 7C, the field curvature aberrations of three representative wavelengths in the entire field of view fall within ± 0.08 millimeters, indicating that the optical system of the first embodiment can effectively eliminate Aberration. The distortion aberration diagram of FIG. 7D shows that the distortion aberration of the first embodiment is maintained within a range of ± 15%, which indicates that the distortion aberration of the first embodiment has met the imaging quality requirements of the optical system. It is explained that compared with the existing optical lens, the first embodiment can still provide good imaging quality under the condition that the system length has been shortened to about 14.713 mm.

圖10為本發明的第二實施例的光學成像鏡頭的示意圖,而圖11A至圖11D為第二實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖10,本發明光學成像鏡頭10的一第二實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3、4及5間的參數或多或少有些不同。在此需注意的是,為了清楚地顯示圖面,圖10中省略與第一實施例相似面形的標號。 FIG. 10 is a schematic diagram of an optical imaging lens according to a second embodiment of the present invention, and FIGS. 11A to 11D are diagrams of longitudinal spherical aberration and various aberrations of the optical imaging lens according to the second embodiment. Please refer to FIG. 10 first, a second embodiment of the optical imaging lens 10 of the present invention is substantially similar to the first embodiment, and the differences between the two are as follows: each optical data, aspheric coefficient, and these lenses 1, 2 The parameters between, 3, 4, and 5 are more or less different. It should be noted here that, in order to clearly show the drawing, reference numerals similar to those in the first embodiment are omitted in FIG. 10.

第二實施例的光學成像鏡頭10詳細的光學數據如圖12所示,且第二實施例的光學成像鏡頭10的整體系統焦距為1.667毫米,半視角(HFOV)為57.089°,光圈值(Fno)為1.830,系統長度為14.997毫米,像高則為2.340毫米。 The detailed optical data of the optical imaging lens 10 of the second embodiment is shown in FIG. 12, and the overall system focal length of the optical imaging lens 10 of the second embodiment is 1.667 mm, the half angle of view (HFOV) is 57.089 °, and the aperture value (Fno ) Is 1.830, the system length is 14.997 mm, and the image height is 2.340 mm.

如圖13所示,則為在第二實施例中,部分透鏡的物側面與像側面在公式(1)中的各項非球面係數。 As shown in FIG. 13, in the second embodiment, the aspheric coefficients of the object side and the image side of some lenses in formula (1).

另外,第二實施例之光學成像鏡頭10中各重要參數間的 關係如圖46所示。 In addition, among the important parameters in the optical imaging lens 10 of the second embodiment, The relationship is shown in Figure 46.

本第二實施例的縱向球差圖示圖11A中,不同高度的離軸光線的成像點偏差控制在±0.025毫米的範圍內。在圖11B與圖11C的二個場曲像差圖示中,三種代表波長在整個視場範圍內的場曲像差落在±0.10毫米內。而圖11D的畸變像差圖式則顯示本第二實施例的畸變像差維持在±10%的範圍內。在本實施例中,光學成像鏡頭10的焦距偏移量在20℃下為0.0000mm,光學成像鏡頭10的焦距偏移量在-20℃下為-0.0081mm,而光學成像鏡頭10的焦距偏移量在80℃下為0.0346mm。因此,相較於現有的光學成像鏡頭,第二實施例能在具備良好之熱穩定性的情況下實現良好的成像品質。 The longitudinal spherical aberration diagram of the second embodiment in FIG. 11A shows that the deviation of imaging points of off-axis rays of different heights is controlled within a range of ± 0.025 mm. In the two field curvature aberration diagrams of FIGS. 11B and 11C, the field curvature aberrations of the three representative wavelengths in the entire field of view fall within ± 0.10 millimeters. The distortion aberration diagram of FIG. 11D shows that the distortion aberration of the second embodiment is maintained within a range of ± 10%. In this embodiment, the focal length offset of the optical imaging lens 10 is 0.0000mm at 20 ° C, the focal length offset of the optical imaging lens 10 is -0.0081mm at -20 ° C, and the focal distance of the optical imaging lens 10 is offset. The displacement was 0.0346 mm at 80 ° C. Therefore, compared with the existing optical imaging lens, the second embodiment can achieve good imaging quality with good thermal stability.

經由上述說明可得知,第二實施例相較於第一實施例的優點在於:第二實施例的半視角大於第一實施例的半視角。第二實施例的畸變像差小於第一實施例的畸變像差。無論是在-20度或者是在80度的環境溫度下,第二實施例的焦距偏移量的絕對值皆小於第一實施例的焦距偏移量的絕對值。 It can be known from the above description that the second embodiment has an advantage over the first embodiment in that the half-view angle of the second embodiment is greater than the half-view angle of the first embodiment. The distortion aberration of the second embodiment is smaller than that of the first embodiment. Whether at an ambient temperature of -20 degrees or 80 degrees, the absolute value of the focal length shift amount of the second embodiment is smaller than the absolute value of the focal length shift amount of the first embodiment.

圖14為本發明的第三實施例的光學成像鏡頭的示意圖,而圖15A至圖15D為第三實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖14,本發明光學成像鏡頭10的一第三實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3、4及5間的參數或多或少有些不同。在此需注意的是,為了清楚地顯示圖面,圖14中省略 與第一實施例相似面形的標號。 FIG. 14 is a schematic diagram of an optical imaging lens according to a third embodiment of the present invention, and FIGS. 15A to 15D are diagrams of longitudinal spherical aberration and various aberrations of the optical imaging lens according to the third embodiment. Please refer to FIG. 14 first, a third embodiment of the optical imaging lens 10 according to the present invention is substantially similar to the first embodiment, and the differences between the two are as follows: each optical data, aspheric coefficient, and these lenses 1, 2 The parameters between, 3, 4, and 5 are more or less different. It should be noted here that in order to clearly show the drawing, it is omitted in FIG. 14 Face-shaped reference numerals similar to those of the first embodiment.

第三實施例的光學成像鏡頭10詳細的光學數據如圖16所示,且第三實施例的光學成像鏡頭10的整體系統焦距為2.015毫米,半視角(HFOV)為45.313°,光圈值(Fno)為1.830,系統長度為14.473毫米,像高則為2.340毫米。 The detailed optical data of the optical imaging lens 10 of the third embodiment is shown in FIG. 16, and the overall system focal length of the optical imaging lens 10 of the third embodiment is 2.015 mm, the half angle of view (HFOV) is 45.313 °, and the aperture value (Fno ) Is 1.830, the system length is 14.473 mm, and the image height is 2.340 mm.

如圖17所示,則為在第三實施例中,部分透鏡的物側面與像側面在公式(1)中的各項非球面係數。 As shown in FIG. 17, in the third embodiment, the aspherical coefficients of the object side and the image side of some lenses in formula (1).

另外,第三實施例之光學成像鏡頭10中各重要參數間的關係如圖46所示。 In addition, the relationship between important parameters in the optical imaging lens 10 of the third embodiment is shown in FIG. 46.

本第三實施例的縱向球差圖示圖15A中,不同高度的離軸光線的成像點偏差控制在±0.033毫米的範圍內。在圖15B與圖15C的二個場曲像差圖示中,三種代表波長在整個視場範圍內的場曲像差落在±0.05毫米內。而圖15D的畸變像差圖式則顯示本第三實施例的畸變像差維持在±18%的範圍內。在本實施例中,光學成像鏡頭10的焦距偏移量在20℃下為0.0000mm,光學成像鏡頭10的焦距偏移量在-20℃下為-0.0089mm,而光學成像鏡頭10的焦距偏移量在80℃下為0.0258mm。因此,相較於現有的光學成像鏡頭,第三實施例能在具備良好之熱穩定性的情況下實現良好的成像品質。 The longitudinal spherical aberration diagram of the third embodiment in FIG. 15A shows that deviations of imaging points of off-axis rays of different heights are controlled within a range of ± 0.033 mm. In the two field curvature aberration diagrams of FIG. 15B and FIG. 15C, the field curvature aberrations of the three representative wavelengths in the entire field of view fall within ± 0.05 mm. The distortion aberration diagram of FIG. 15D shows that the distortion aberration of the third embodiment is maintained within a range of ± 18%. In this embodiment, the focal length offset of the optical imaging lens 10 is 0.0000mm at 20 ° C, the focal length offset of the optical imaging lens 10 is -0.0089mm at -20 ° C, and the focal distance of the optical imaging lens 10 is offset. The displacement was 0.0258 mm at 80 ° C. Therefore, compared with the existing optical imaging lens, the third embodiment can achieve good imaging quality with good thermal stability.

經由上述說明可得知,第三實施例相較於第一實施例的優點在於:第三實施例的系統長度小於第一實施例的系統長度。第三實施例的場曲像差小於第一實施例的場曲像差。無論是在-20 度或者是在80度的環境溫度下,第三實施例的焦距偏移量的絕對值皆小於第一實施例的焦距偏移量的絕對值。 It can be known from the above description that the third embodiment has an advantage over the first embodiment in that the system length of the third embodiment is shorter than the system length of the first embodiment. The field curvature aberration of the third embodiment is smaller than that of the first embodiment. Whether it's at -20 At an ambient temperature of 80 degrees, the absolute value of the focal length shift amount of the third embodiment is less than the absolute value of the focal length shift amount of the first embodiment.

圖18為本發明的第四實施例的光學成像鏡頭的示意圖,而圖19A至圖19D為第四實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖18,本發明光學成像鏡頭10的一第四實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3、4及5間的參數或多或少有些不同。在此需注意的是,為了清楚地顯示圖面,圖18中省略部分與第一實施例相似面形的標號。 18 is a schematic diagram of an optical imaging lens according to a fourth embodiment of the present invention, and FIGS. 19A to 19D are diagrams of longitudinal spherical aberration and various aberrations of the optical imaging lens according to the fourth embodiment. Please refer to FIG. 18 first, a fourth embodiment of the optical imaging lens 10 of the present invention is substantially similar to the first embodiment, and the differences between the two are as follows: each optical data, aspheric coefficient, and these lenses 1, 2 The parameters between, 3, 4, and 5 are more or less different. It should be noted here that, in order to clearly show the drawing, part of the figure similar to that of the first embodiment is omitted in FIG. 18.

第四實施例的光學成像鏡頭10詳細的光學數據如圖20所示,且第四實施例的光學成像鏡頭10的整體系統焦距為1.540毫米,半視角(HFOV)為45.014°,光圈值(Fno)為1.830,系統長度為13.855毫米,像高則為2.340毫米。 The detailed optical data of the optical imaging lens 10 of the fourth embodiment is shown in FIG. 20, and the overall system focal length of the optical imaging lens 10 of the fourth embodiment is 1.540 mm, the half angle of view (HFOV) is 45.014 °, and the aperture value (Fno ) Is 1.830, the system length is 13.855 mm, and the image height is 2.340 mm.

如圖21所示,則為在第四實施例中,部分透鏡的物側面與像側面在公式(1)中的各項非球面係數。 As shown in FIG. 21, in the fourth embodiment, the aspherical coefficients of the object side and the image side of some lenses in formula (1).

另外,第四實施例之光學成像鏡頭10中各重要參數間的關係如圖46所示。 In addition, the relationships among important parameters in the optical imaging lens 10 of the fourth embodiment are shown in FIG. 46.

本第四實施例的縱向球差圖示圖19A中,不同高度的離軸光線的成像點偏差控制在±0.033毫米的範圍內。在圖19B與圖19C的二個場曲像差圖示中,三種代表波長在整個視場範圍內的場曲像差落在±0.06毫米內。而圖19D的畸變像差圖式則顯示本第四實施例的畸變像差維持在±20%的範圍內。在本實施例中,光學 成像鏡頭10的焦距偏移量在20℃下為0.0000mm,光學成像鏡頭10的焦距偏移量在-20℃下為-0.0065mm,而光學成像鏡頭10的焦距偏移量在80℃下為0.0265mm。因此,相較於現有的光學成像鏡頭,第四實施例能在具備良好之熱穩定性的情況下實現良好的成像品質。 The longitudinal spherical aberration diagram of the fourth embodiment in FIG. 19A shows that the deviation of imaging points of off-axis rays of different heights is controlled within a range of ± 0.033 mm. In the two field curvature aberration diagrams of FIG. 19B and FIG. 19C, the field curvature aberrations of the three representative wavelengths in the entire field of view fall within ± 0.06 mm. The distortion aberration diagram of FIG. 19D shows that the distortion aberration of the fourth embodiment is maintained within a range of ± 20%. In this embodiment, optical The focal length offset of the imaging lens 10 is 0.0000mm at 20 ° C, the focal length offset of the optical imaging lens 10 is -0.0065mm at -20 ° C, and the focal length offset of the optical imaging lens 10 is 80 ° C 0.0265mm. Therefore, compared with the existing optical imaging lens, the fourth embodiment can achieve good imaging quality with good thermal stability.

經由上述說明可得知,第四實施例相較於第一實施例的優點在於:第四實施例的系統長度小於第一實施例的系統長度。第四實施例的場曲像差小於第一實施例的場曲像差。無論是在-20度或者是在80度的環境溫度下,第四實施例的焦距偏移量的絕對值皆小於第一實施例的焦距偏移量的絕對值。 It can be known from the above description that the fourth embodiment has an advantage over the first embodiment in that the system length of the fourth embodiment is smaller than the system length of the first embodiment. The field curvature aberration of the fourth embodiment is smaller than that of the first embodiment. Whether at an ambient temperature of -20 degrees or 80 degrees, the absolute value of the focal length shift amount of the fourth embodiment is smaller than the absolute value of the focal length shift amount of the first embodiment.

圖22為本發明的第五實施例的光學成像鏡頭的示意圖,而圖23A至圖23D為第五實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖22,本發明光學成像鏡頭10的一第五實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3、4及5間的參數或多或少有些不同。在此需注意的是,為了清楚地顯示圖面,圖22中省略部分與第一實施例相似面形的標號。 22 is a schematic diagram of an optical imaging lens according to a fifth embodiment of the present invention, and FIGS. 23A to 23D are diagrams of longitudinal spherical aberration and various aberrations of the optical imaging lens according to the fifth embodiment. Please refer to FIG. 22 first, a fifth embodiment of the optical imaging lens 10 of the present invention is substantially similar to the first embodiment, and the differences between the two are as follows: each optical data, aspheric coefficient, and these lenses 1, 2 The parameters between, 3, 4, and 5 are more or less different. It should be noted that, in order to clearly show the drawing, part of the figure similar to that of the first embodiment is omitted in FIG. 22.

第五實施例的光學成像鏡頭10詳細的光學數據如圖24所示,且第五實施例的光學成像鏡頭10的整體系統焦距為2.712毫米,半視角(HFOV)為34.179°,光圈值(Fno)為1.830,系統長度為14.473毫米,像高則為2.340毫米。 The detailed optical data of the optical imaging lens 10 of the fifth embodiment is shown in FIG. 24. The overall system focal length of the optical imaging lens 10 of the fifth embodiment is 2.712 mm, the half angle of view (HFOV) is 34.179 °, and the aperture value (Fno ) Is 1.830, the system length is 14.473 mm, and the image height is 2.340 mm.

如圖25所示,則為在第五實施例中,部分透鏡的物側面 與像側面在公式(1)中的各項非球面係數。 As shown in FIG. 25, in the fifth embodiment, the object side of some lenses The aspheric coefficients of the terms in the formula (1) with the image side.

另外,第五實施例之光學成像鏡頭10中各重要參數間的關係如圖46所示。 In addition, the relationships among important parameters in the optical imaging lens 10 of the fifth embodiment are shown in FIG. 46.

本第五實施例的縱向球差圖示圖23A中,不同高度的離軸光線的成像點偏差控制在±0.033毫米的範圍內。在圖23B與圖23C的二個場曲像差圖示中,三種代表波長在整個視場範圍內的場曲像差落在±0.08毫米內。而圖23D的畸變像差圖式則顯示本第五實施例的畸變像差維持在±28%的範圍內。在本實施例中,光學成像鏡頭10的焦距偏移量在20℃下為0.0000mm,光學成像鏡頭10的焦距偏移量在-20℃下為-0.0035mm,而光學成像鏡頭10的焦距偏移量在80℃下為0.0393mm。因此,相較於現有的光學成像鏡頭,第五實施例能在具備良好之熱穩定性的情況下實現良好的成像品質。 The longitudinal spherical aberration diagram of the fifth embodiment in FIG. 23A shows that the deviation of imaging points of off-axis rays of different heights is controlled within a range of ± 0.033 mm. In the two field curvature aberration diagrams of FIG. 23B and FIG. 23C, field curvature aberrations of three representative wavelengths in the entire field of view fall within ± 0.08 millimeters. The distortion aberration diagram of FIG. 23D shows that the distortion aberration of the fifth embodiment is maintained within a range of ± 28%. In this embodiment, the focal length offset of the optical imaging lens 10 is 0.0000mm at 20 ° C, the focal length offset of the optical imaging lens 10 is -0.0035mm at -20 ° C, and the focal distance of the optical imaging lens 10 is offset. The displacement was 0.0393 mm at 80 ° C. Therefore, compared with the existing optical imaging lens, the fifth embodiment can achieve good imaging quality with good thermal stability.

經由上述說明可得知,第五實施例相較於第一實施例的優點在於:第五實施例的系統長度小於第一實施例的系統長度。無論是在-20度或者是在80度的環境溫度下,第五實施例的焦距偏移量的絕對值皆小於第一實施例的焦距偏移量的絕對值。 It can be known from the foregoing description that the fifth embodiment has an advantage over the first embodiment in that the system length of the fifth embodiment is smaller than the system length of the first embodiment. Whether at an ambient temperature of -20 degrees or 80 degrees, the absolute value of the focal length shift amount of the fifth embodiment is smaller than the absolute value of the focal length shift amount of the first embodiment.

圖26為本發明的第六實施例的光學成像鏡頭的示意圖,而圖27A至圖27D為第六實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖26,本發明光學成像鏡頭10的一第六實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3、4及5間的參數或多或少 有些不同。此外,於本第六實施例中,第一透鏡1的物側面15的光軸區域151為凸面,且其圓周區域153為凸面。第一透鏡1的像側面16的光軸區域162為凹面,且其圓周區域164為凹面。在此需注意的是,為了清楚地顯示圖面,圖26中省略與第一實施例相似面形的標號。 FIG. 26 is a schematic diagram of an optical imaging lens according to a sixth embodiment of the present invention, and FIGS. 27A to 27D are diagrams of longitudinal spherical aberration and various aberrations of the optical imaging lens according to the sixth embodiment. Please refer to FIG. 26 first, a sixth embodiment of the optical imaging lens 10 of the present invention is substantially similar to the first embodiment, and the differences between the two are as follows: each optical data, aspheric coefficient, and these lenses 1, 2 The parameters between 3, 4, 4 and 5 are more or less slidely different. In addition, in the sixth embodiment, the optical axis region 151 of the object side surface 15 of the first lens 1 is convex, and the circumferential region 153 thereof is convex. The optical axis region 162 of the image side surface 16 of the first lens 1 is a concave surface, and its circumferential region 164 is a concave surface. It should be noted here that, in order to clearly show the drawing, reference numerals similar to those in the first embodiment are omitted in FIG. 26.

第六實施例的光學成像鏡頭10詳細的光學數據如圖28所示,且第六實施例的光學成像鏡頭10的整體系統焦距為1.644毫米,半視角(HFOV)為50.011°,光圈值(Fno)為1.830,系統長度為14.627毫米,像高則為2.340毫米。 The detailed optical data of the optical imaging lens 10 of the sixth embodiment is shown in FIG. 28, and the overall system focal length of the optical imaging lens 10 of the sixth embodiment is 1.644 mm, the half angle of view (HFOV) is 50.011 °, and the aperture value (Fno ) Is 1.830, the system length is 14.627 mm, and the image height is 2.340 mm.

如圖29所示,則為在第六實施例中,部分透鏡的物側面與像側面在公式(1)中的各項非球面係數。 As shown in FIG. 29, in the sixth embodiment, the aspherical coefficients of the object side and the image side of some lenses in formula (1).

另外,第六實施例之光學成像鏡頭10中各重要參數間的關係如圖46所示。 In addition, the relationships among important parameters in the optical imaging lens 10 of the sixth embodiment are shown in FIG. 46.

本第六實施例的縱向球差圖示圖27A中,不同高度的離軸光線的成像點偏差控制在±0.038毫米的範圍內。在圖27B與圖27C的二個場曲像差圖示中,三種代表波長在整個視場範圍內的場曲像差落在±0.05毫米內。而圖27D的畸變像差圖式則顯示本第六實施例的畸變像差維持在±11.3%的範圍內。在本實施例中,光學成像鏡頭10的焦距偏移量在20℃下為0.0000mm,光學成像鏡頭10的焦距偏移量在-20℃下為-0.0067mm,而光學成像鏡頭10的焦距偏移量在80℃下為0.0324mm。因此,相較於現有的光學成像鏡頭,第六實施例能在具備良好之熱穩定性的情況下實現良 好的成像品質。 The longitudinal spherical aberration diagram of the sixth embodiment in FIG. 27A shows that the deviation of imaging points of off-axis rays of different heights is controlled within a range of ± 0.038 mm. In the two field curvature aberration diagrams of FIGS. 27B and 27C, the field curvature aberrations of the three representative wavelengths in the entire field of view fall within ± 0.05 mm. The distortion aberration diagram of FIG. 27D shows that the distortion aberration of the sixth embodiment is maintained within a range of ± 11.3%. In this embodiment, the focal length offset of the optical imaging lens 10 is 0.0000mm at 20 ° C, the focal length offset of the optical imaging lens 10 is -0.0067mm at -20 ° C, and the focal distance of the optical imaging lens 10 is offset. The displacement was 0.0324 mm at 80 ° C. Therefore, compared with the existing optical imaging lens, the sixth embodiment can achieve good performance with good thermal stability. Good imaging quality.

經由上述說明可得知,第六實施例相較於第一實施例的優點在於:第六實施例的系統長度小於第一實施例的系統長度。第六實施例的場曲像差小於第一實施例的場曲像差。第六實施例的畸變像差小於第一實施例的畸變像差。無論是在-20度或者是在80度的環境溫度下,第六實施例的焦距偏移量的絕對值皆小於第一實施例的焦距偏移量的絕對值。 It can be known from the foregoing description that the sixth embodiment has an advantage over the first embodiment in that the system length of the sixth embodiment is smaller than the system length of the first embodiment. The field curvature aberration of the sixth embodiment is smaller than that of the first embodiment. The distortion aberration of the sixth embodiment is smaller than that of the first embodiment. Whether at an ambient temperature of -20 degrees or 80 degrees, the absolute value of the focal length shift amount of the sixth embodiment is smaller than the absolute value of the focal length shift amount of the first embodiment.

圖30為本發明的第七實施例的光學成像鏡頭的示意圖,而圖31A至圖31D為第七實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖30,本發明光學成像鏡頭10的一第七實施例,其與第一實施例大致相似,而兩者的差異如下所述:本發明的第七實施例之光學成像鏡頭10從物側A1至像側A2沿光學成像鏡頭10的一光軸I依序包括一第一透鏡1、一第二透鏡2、一第三透鏡3、一光圈0、一第四透鏡4、一第五透鏡5、一第六透鏡6及一濾光片9。當由一待拍攝物所發出的光線進入光學成像鏡頭10,並依序經由第一透鏡1、第二透鏡2、第三透鏡3、光圈0、第四透鏡4、第五透鏡5、第六透鏡6及一濾光片9之後,會在成像面99形成一影像。並且,第五透鏡5具有負屈光率。 FIG. 30 is a schematic diagram of an optical imaging lens according to a seventh embodiment of the present invention, and FIGS. 31A to 31D are diagrams of longitudinal spherical aberration and various aberrations of the optical imaging lens according to the seventh embodiment. Please refer to FIG. 30. A seventh embodiment of the optical imaging lens 10 of the present invention is substantially similar to the first embodiment, and the differences between the two are as follows: The seventh embodiment of the optical imaging lens 10 of the present invention is The object side A1 to the image side A2 sequentially include a first lens 1, a second lens 2, a third lens 3, an aperture 0, a fourth lens 4, and a first lens along an optical axis I of the optical imaging lens 10. Five lenses 5, a sixth lens 6 and a filter 9. When light emitted by a subject enters the optical imaging lens 10 and passes through the first lens 1, the second lens 2, the third lens 3, the aperture 0, the fourth lens 4, the fifth lens 5, and the sixth lens in order. After the lens 6 and a filter 9, an image is formed on the imaging surface 99. The fifth lens 5 has a negative refractive power.

在本實施例中,光學成像鏡頭10的第六透鏡6具有一朝向物側A1且使成像光線通過之物側面65及一朝向像側A2且使成像光線通過之像側面66。 In the present embodiment, the sixth lens 6 of the optical imaging lens 10 has an object side 65 facing the object side A1 and passing imaging light and an image side 66 facing the image side A2 and passing imaging light.

第六透鏡6設置於第五透鏡5與濾光片9之間。第六透 鏡6具有正屈光率。第六透鏡6的材料為塑膠。第六透鏡6的物側面65的光軸區域651為凸面,且其圓周區域653為凸面。第六透鏡6的像側面66的光軸區域661為凸面,且其圓周區域664為凹面。在本實施例中,第六透鏡6的物側面65與像側面66皆為非球面。 The sixth lens 6 is disposed between the fifth lens 5 and the filter 9. Sixth through The mirror 6 has a positive refractive power. The material of the sixth lens 6 is plastic. The optical axis region 651 of the object side surface 65 of the sixth lens 6 is convex, and the circumferential region 653 thereof is convex. The optical axis region 661 of the image side surface 66 of the sixth lens 6 is convex, and the circumferential region 664 thereof is concave. In this embodiment, both the object side surface 65 and the image side surface 66 of the sixth lens 6 are aspherical surfaces.

在此需注意的是,為了清楚地顯示圖面,圖30中省略部分與第一實施例相似面形的標號。 It should be noted here that, in order to clearly show the drawing, part of the figure similar to that of the first embodiment is omitted in FIG. 30.

第七實施例之光學成像鏡頭10具有良好的熱穩定性。舉例而言,光學成像鏡頭10的焦距偏移量在20℃下為0.0000mm,光學成像鏡頭10的焦距偏移量(Focal shift)在-20℃下為-0.0006毫米(mm),而光學成像鏡頭10的焦距偏移量在80℃下為0.0228毫米(mm),但本發明不以此為限。 The optical imaging lens 10 of the seventh embodiment has good thermal stability. For example, the focal length shift of the optical imaging lens 10 is 0.0000 mm at 20 ° C, the focal shift of the optical imaging lens 10 (Focal shift) is -0.0006 millimeters (mm) at -20 ° C, and optical imaging The focal length shift of the lens 10 is 0.0228 millimeters (mm) at 80 ° C, but the invention is not limited thereto.

第七實施例的光學成像鏡頭10詳細的光學數據如圖32所示,且第七實施例的光學成像鏡頭10的整體系統焦距為1.568毫米,半視角(HFOV)為48.705°,光圈值(Fno)為1.830,系統長度為14.108毫米,像高則為2.340毫米。 The detailed optical data of the optical imaging lens 10 of the seventh embodiment is shown in FIG. 32, and the overall system focal length of the optical imaging lens 10 of the seventh embodiment is 1.568 mm, the half angle of view (HFOV) is 48.705 °, and the aperture value (Fno ) Is 1.830, the system length is 14.108 mm, and the image height is 2.340 mm.

此外,在第七實施例中,第二透鏡2、第四透鏡4、第五透鏡5與第六透鏡6的物側面25、35、45、65及26、36、46、66像側面,共計八個面均是非球面,而這些非球面是依公式(1)定義,於此不再贅述。上述表面在公式(1)中的各項非球面係數如圖33所示。其中,圖33中欄位編號25表示其為第二透鏡2的物側面25的非球面係數,其它欄位依此類推。 In addition, in the seventh embodiment, the object sides 25, 35, 45, 65, 26, 36, 46, and 66 image sides of the second lens 2, the fourth lens 4, the fifth lens 5, and the sixth lens 6 total, The eight surfaces are all aspheric, and these aspheric surfaces are defined according to formula (1), which will not be repeated here. The aspheric coefficients of the above surfaces in formula (1) are shown in FIG. 33. Wherein, the field number 25 in FIG. 33 indicates that it is the aspheric coefficient of the object side surface 25 of the second lens 2, and the other fields are deduced by analogy.

另外,第七實施例之光學成像鏡頭10中各重要參數間的關係如圖47所示。圖47中的參數Fno的單位為無因次,參數HFOV的單位為度(°),而欄位「EFL」與欄位「SR」至欄位「AAG」的單位為毫米(mm),其他的欄位的單位為無因次。並且圖47表格中的”第七”以下的一列,代表的是第七實施例的相關光學參數,而其他以此類推。 In addition, the relationships among important parameters in the optical imaging lens 10 of the seventh embodiment are shown in FIG. 47. The unit of the parameter Fno in Fig. 47 is dimensionless, the unit of the parameter HFOV is degree (°), and the unit of the field "EFL" and the field "SR" to the field "AAG" are millimeters (mm), other The fields are dimensionless. And the column below “seventh” in the table of FIG. 47 represents the relevant optical parameters of the seventh embodiment, and so on.

本第七實施例中提到的第一透鏡1、第二透鏡2、第三透鏡3、第四透鏡4、第五透鏡5中的參數定義大致類似於上述段落中所提到的參數定義,其差異在於:T6為第六透鏡6在光軸I上的厚度;G56為第五透鏡5的像側面56到第六透鏡6的物側面65在光軸I上的距離;G6F為第六透鏡6的像側面66到濾光片9的物側面95在光軸I上的距離;f6為第六透鏡6的焦距;n6為第六透鏡6的折射率;以及V6為第六透鏡6的阿貝係數。 The parameter definitions in the first lens 1, the second lens 2, the third lens 3, the fourth lens 4, and the fifth lens 5 mentioned in this seventh embodiment are substantially similar to the parameter definitions mentioned in the above paragraph, The difference is that T6 is the thickness of the sixth lens 6 on the optical axis I; G56 is the distance from the image side 56 of the fifth lens 5 to the object side 65 of the sixth lens 6 on the optical axis I; G6F is the sixth lens The distance from the image side 66 of the image 6 to the object side 95 of the filter 9 on the optical axis I; f6 is the focal length of the sixth lens 6; n6 is the refractive index of the sixth lens 6; Shell coefficient.

再配合參閱圖31A至圖31D,圖31A的圖式說明第七實施例其波長為650nm、555nm及470nm時在成像面99的縱向球差,圖31B與圖31C的圖式則分別說明第七實施例當其波長為650nm、555nm及470nm時在成像面99上有關弧矢方向的場曲像差及子午方向的場曲像差,圖31D的圖式則說明第七實施例當其波 長為650nm、555nm及470nm時在成像面99上的畸變像差。本第七實施例的縱向球差圖示圖31A中,每一種波長所成的曲線皆很靠近並向中間靠近,說明每一種波長不同高度的離軸光線皆集中在成像點附近,由每一波長的曲線的偏斜幅度可看出,不同高度的離軸光線的成像點偏差控制在±0.030毫米的範圍內,故本第七實施例確實明顯改善相同波長的球差,此外,三種代表波長彼此間的距離也相當接近,代表不同波長光線的成像位置已相當集中,因而使色像差也獲得明顯改善。 31A to 31D, the diagram of FIG. 31A illustrates the longitudinal spherical aberration on the imaging plane 99 of the seventh embodiment at wavelengths of 650 nm, 555 nm, and 470 nm, and the diagrams of FIGS. 31B and 31C illustrate the seventh Example When the wavelengths are 650 nm, 555 nm, and 470 nm, the field curvature aberration in the sagittal direction and the field curvature in the meridional direction are on the imaging surface 99. The diagram in FIG. 31D illustrates the seventh embodiment Distortion aberrations on the imaging plane 99 at lengths of 650 nm, 555 nm, and 470 nm. The longitudinal spherical aberration diagram of the seventh embodiment in FIG. 31A, the curves formed by each wavelength are very close to each other, indicating that off-axis rays with different heights of each wavelength are concentrated near the imaging point. It can be seen that the deviation of the curve of the wavelength curve is that the deviation of the imaging points of the off-axis rays with different heights is controlled within the range of ± 0.030 mm. Therefore, the seventh embodiment does significantly improve the spherical aberration of the same wavelength. In addition, three representative wavelengths The distances between them are also quite close, and the imaging positions representing different wavelengths of light have been quite concentrated, so that the chromatic aberration has also been significantly improved.

在圖31B與圖31C的二個場曲圖示中,三種代表波長在整個視場範圍內的場曲像差落在±0.06毫米內,說明本第七實施例的光學系統能有效消除場曲像差。而圖31D的畸變圖式則顯示本第七實施例的畸變像差維持在±29.5%的範圍內,說明本第七實施例的畸變像差已符合光學成像鏡頭的成像品質要求,據此說明本第七實施例相較於現有光學成像鏡頭,在系統長度已縮短至14.108mm左右的條件下,仍能提供較佳的成像品質,故本第七實施例能在維持良好光學性能之條件下,能夠縮短光學成像鏡頭的長度。 In the two field curvature diagrams of FIGS. 31B and 31C, the field curvature aberrations of three representative wavelengths in the entire field of view fall within ± 0.06 millimeters, indicating that the optical system of the seventh embodiment can effectively eliminate field curvature. Aberration. The distortion diagram in FIG. 31D shows that the distortion aberration of the seventh embodiment is maintained within a range of ± 29.5%, which indicates that the distortion aberration of the seventh embodiment has met the imaging quality requirements of the optical imaging lens. Compared with the existing optical imaging lens, the seventh embodiment can still provide better imaging quality under the condition that the system length has been shortened to about 14.108 mm, so the seventh embodiment can maintain good optical performance. , Can shorten the length of the optical imaging lens.

圖34為本發明的第八實施例的光學成像鏡頭的示意圖,而圖35A至圖35D為第八實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖34,請先參照圖34,本發明光學成像鏡頭10的一第八實施例,其與第七實施例大致相似,而兩者的差異如下所述:本發明的第八實施例之光學成像鏡頭10從物側A1至像 側A2沿光學成像鏡頭10的一光軸I依序包括一第一透鏡1、一第二透鏡2、一第三透鏡3、一光圈0、一第四透鏡4、一第五透鏡5、一第六透鏡6、一第七透鏡7及一濾光片9。當由一待拍攝物所發出的光線進入光學成像鏡頭10,並依序經由第一透鏡1、第二透鏡2、第三透鏡3、光圈0、第四透鏡4、第五透鏡5、第六透鏡6、第七透鏡7及濾光片9之後,會在成像面99形成一影像。 FIG. 34 is a schematic diagram of an optical imaging lens according to an eighth embodiment of the present invention, and FIGS. 35A to 35D are longitudinal spherical aberrations and various aberration diagrams of the optical imaging lens according to the eighth embodiment. Please refer to FIG. 34, and please refer to FIG. 34. An eighth embodiment of the optical imaging lens 10 of the present invention is substantially similar to the seventh embodiment, and the difference between the two is as follows: the eighth embodiment of the present invention Optical imaging lens 10 from the object side A1 to the image Side A2 includes a first lens 1, a second lens 2, a third lens 3, an aperture 0, a fourth lens 4, a fifth lens 5, and a lens along an optical axis I of the optical imaging lens 10. The sixth lens 6, a seventh lens 7 and a filter 9. When light emitted by a subject enters the optical imaging lens 10 and passes through the first lens 1, the second lens 2, the third lens 3, the aperture 0, the fourth lens 4, the fifth lens 5, and the sixth lens in order. After the lens 6, the seventh lens 7, and the filter 9, an image is formed on the imaging surface 99.

在本實施例中,光學成像鏡頭10的第七透鏡7具有一朝向物側A1且使成像光線通過之物側面75及一朝向像側A2且使成像光線通過之像側面76。 In this embodiment, the seventh lens 7 of the optical imaging lens 10 has an object side 75 that faces the object side A1 and allows imaging light to pass, and an image side 76 that faces the image side A2 and allows imaging light to pass.

第四透鏡4的像側面46的光軸區域462為凹面,且其圓周區域464為凹面。 The optical axis region 462 of the image side surface 46 of the fourth lens 4 is a concave surface, and its circumferential region 464 is a concave surface.

第五透鏡5的物側面55的光軸區域551為凸面,且其圓周區域553為凸面。第五透鏡5的像側面56的光軸區域561為凸面,且其圓周區域563為凸面。 The optical axis region 551 of the object-side surface 55 of the fifth lens 5 is convex, and the circumferential region 553 thereof is convex. The optical axis region 561 of the image side surface 56 of the fifth lens 5 is convex, and the circumferential region 563 thereof is convex.

第六透鏡6具有負屈光率。第六透鏡6的物側面65的光軸區域652為凹面,且其圓周區域654為凹面。第六透鏡6的像側面66的光軸區域661為凸面,且其圓周區域663為凸面。 The sixth lens 6 has a negative refractive power. The optical axis region 652 of the object side surface 65 of the sixth lens 6 is a concave surface, and the circumferential region 654 thereof is a concave surface. The optical axis region 661 of the image side surface 66 of the sixth lens 6 is convex, and the circumferential region 663 thereof is convex.

第七透鏡7具有正屈光率。第七透鏡7的物側面75的光軸區域751為凸面,且其圓周區域753為凸面。第七透鏡7的像側面76的光軸區域761為凸面,且其圓周區域763為凹面。在本實施例中,第七透鏡7的物側面75與像側面76皆為非球面。 The seventh lens 7 has a positive refractive power. An optical axis region 751 of the object-side surface 75 of the seventh lens 7 is convex, and a circumferential region 753 thereof is convex. The optical axis region 761 of the image side surface 76 of the seventh lens 7 is convex, and its circumferential region 763 is concave. In this embodiment, both the object side surface 75 and the image side surface 76 of the seventh lens 7 are aspherical surfaces.

此外,於本實施例中,第五透鏡5與第六透鏡6之間利 用膠體、膜體或膠合材料填充,而成膠合透鏡。 In addition, in this embodiment, the fifth lens 5 and the sixth lens 6 are in a favorable position. Filled with colloid, film or cement material to form a cemented lens.

在此需注意的是,為了清楚地顯示圖面,圖34中省略部分與第一、第七實施例相似面形的標號。 It should be noted that, in order to clearly show the drawing, part of the figure similar to that of the first and seventh embodiments is omitted in FIG. 34.

第八實施例之光學成像鏡頭10具有良好的熱穩定性。舉例而言,光學成像鏡頭10的焦距偏移量在20℃下為0.0000mm,光學成像鏡頭10的焦距偏移量(Focal shift)在-20℃下為-0.0008毫米(mm),而光學成像鏡頭10的焦距偏移量在80℃下為0.0240毫米(mm),但本發明不以此為限。 The optical imaging lens 10 of the eighth embodiment has good thermal stability. For example, the focal length shift of the optical imaging lens 10 is 0.0000 mm at 20 ° C, the focal shift of the optical imaging lens 10 (Focal shift) is -0.0008 millimeters (mm) at -20 ° C, and optical imaging The focal length offset of the lens 10 is 0.0240 millimeters (mm) at 80 ° C, but the invention is not limited thereto.

第八實施例的光學成像鏡頭10詳細的光學數據如圖36所示,且第八實施例的光學成像鏡頭10的整體系統焦距為1.626毫米,半視角(HFOV)為48.236°,光圈值(Fno)為1.830,系統長度為14.633毫米,像高則為2.340毫米。 The detailed optical data of the optical imaging lens 10 of the eighth embodiment is shown in FIG. 36, and the overall system focal length of the optical imaging lens 10 of the eighth embodiment is 1.626 mm, the half angle of view (HFOV) is 48.236 °, and the aperture value (Fno ) Is 1.830, the system length is 14.633 mm, and the image height is 2.340 mm.

此外,在第八實施例中,第二透鏡2、第四透鏡4、第五透鏡5、第六透鏡6與第七透鏡7的物側面25、45、55、65、75及26、46、56、66、76像側面,共計十個面均是非球面,而這些非球面是依公式(1)定義,於此不再贅述。上述表面在公式(1)中的各項非球面係數如圖37所示。其中,圖37中欄位編號25表示其為第二透鏡2的物側面25的非球面係數,其它欄位依此類推。應注意的是,由於第五透鏡5與第六透鏡6彼此膠合而為膠合透鏡,因此像側面56的非球面係數可參照物側面65的非球面係數。 In addition, in the eighth embodiment, the object sides 25, 45, 55, 65, 75, and 26, 46 of the second lens 2, the fourth lens 4, the fifth lens 5, the sixth lens 6, and the seventh lens 7 56, 66, and 76 are like sides, and a total of ten faces are aspheric, and these aspheric surfaces are defined according to formula (1), and will not be repeated here. The aspheric coefficients of the above surfaces in formula (1) are shown in FIG. 37. Wherein, the field number 25 in FIG. 37 indicates that it is the aspheric coefficient of the object side surface 25 of the second lens 2, and the other fields are deduced by analogy. It should be noted that since the fifth lens 5 and the sixth lens 6 are cemented with each other to form a cemented lens, the aspheric coefficient of the image side 56 can refer to the aspheric coefficient of the object side 65.

另外,第八實施例之光學成像鏡頭10中各重要參數間的關係如圖47所示。 In addition, the relationships among important parameters in the optical imaging lens 10 of the eighth embodiment are shown in FIG. 47.

本第八實施例中提到的第一透鏡1、第二透鏡2、第三透鏡3、第四透鏡4、第五透鏡5、第六透鏡6中的參數定義大致類似於上述段落中所提到的參數定義,其差異在於:T7為第七透鏡7在光軸I上的厚度;G67為第六透鏡6的像側面66與第七透鏡7的物側面75在光軸I上的距離;G7F為第七透鏡7的像側面76到濾光片9的物側面95在光軸上I的距離;f7為第七透鏡7的焦距;n7為第七透鏡7的折射率;以及V7為第七透鏡7的阿貝係數。 The parameter definitions in the first lens 1, the second lens 2, the third lens 3, the fourth lens 4, the fifth lens 5, and the sixth lens 6 mentioned in this eighth embodiment are substantially similar to those mentioned in the above paragraph. The differences in the parameters obtained are: T7 is the thickness of the seventh lens 7 on the optical axis I; G67 is the distance of the image side 66 of the sixth lens 6 and the object side 75 of the seventh lens 7 on the optical axis I; G7F is the distance I on the optical axis from the image side 76 of the seventh lens 7 to the object side 95 of the filter 9; f7 is the focal length of the seventh lens 7; n7 is the refractive index of the seventh lens 7; and V7 is the first Abbe coefficient of seven lenses 7.

再配合參閱圖35A至圖35D,圖35A的圖式說明第八實施例其波長為650nm、555nm及470nm時在成像面99的縱向球差,圖35B與圖35C的圖式則分別說明第八實施例當其波長為650nm、555nm及470nm時在成像面99上有關弧矢方向的場曲像差及子午方向的場曲像差,圖35D的圖式則說明第八實施例當其波長為650nm、555nm及470nm時在成像面99上的畸變像差。本第八實施例的縱向球差圖示圖35A中,每一種波長所成的曲線皆很靠近並向中間靠近,說明每一種波長不同高度的離軸光線皆集中在成像點附近,由每一波長的曲線的偏斜幅度可看出,不同高度的離軸光線的成像點偏差控制在±0.01毫米的範圍內,故本第八實施例確實明顯改善相同波長的球差,此外,三種代表波長彼此 間的距離也相當接近,代表不同波長光線的成像位置已相當集中,因而使色像差也獲得明顯改善。 35A to 35D, the diagram of FIG. 35A illustrates the longitudinal spherical aberration on the imaging plane 99 at the wavelengths of 650 nm, 555 nm, and 470 nm, and the diagrams of FIGS. 35B and 35C illustrate the eighth embodiment, respectively. Example When the wavelengths are 650 nm, 555 nm, and 470 nm, the field curvature aberration in the sagittal direction and the field curvature in the meridional direction are on the imaging surface 99. The diagram in FIG. Distortion aberrations on the imaging plane 99 at 650 nm, 555 nm, and 470 nm. The vertical spherical aberration diagram of the eighth embodiment in FIG. 35A, the curves formed by each wavelength are very close to each other, indicating that off-axis rays with different heights of each wavelength are concentrated near the imaging point. It can be seen that the deviation of the curve of the wavelength curve is that the deviation of the imaging points of off-axis rays with different heights is controlled within the range of ± 0.01 mm. Therefore, the eighth embodiment does significantly improve the spherical aberration of the same wavelength. In addition, three representative wavelengths each other The distance between them is also quite close, and the imaging positions representing different wavelengths of light have been quite concentrated, so the chromatic aberration has also been significantly improved.

在圖35B與圖35C的二個場曲圖示中,三種代表波長在整個視場範圍內的場曲像差落在±0.033毫米內,說明本第八實施例的光學系統能有效消除場曲像差。而圖35D的畸變圖式則顯示本第八實施例的畸變像差維持在±27.6%的範圍內,說明本第八實施例的畸變像差已符合光學成像鏡頭的成像品質要求,據此說明本第八實施例相較於現有光學成像鏡頭,在系統長度已縮短至14.633mm左右的條件下,仍能提供較佳的成像品質,故本第八實施例能在維持良好光學性能之條件下,能夠縮短光學成像鏡頭的長度。 In the two field curvature diagrams of FIG. 35B and FIG. 35C, the field curvature aberrations of three representative wavelengths in the entire field of view fall within ± 0.033 millimeters, indicating that the optical system of the eighth embodiment can effectively eliminate field curvature. Aberration. The distortion diagram in FIG. 35D shows that the distortion aberration of the eighth embodiment is maintained within a range of ± 27.6%, which indicates that the distortion aberration of the eighth embodiment has met the imaging quality requirements of the optical imaging lens. Compared with the existing optical imaging lens, the eighth embodiment can still provide better imaging quality under the condition that the system length has been shortened to about 14.633mm. Therefore, the eighth embodiment can maintain good optical performance. , Can shorten the length of the optical imaging lens.

圖38為本發明的第九實施例的光學成像鏡頭的示意圖,而圖39A至圖39D為第九實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖38,本發明光學成像鏡頭10的一第九實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3、4及5間的參數或多或少有些不同。此外,在第九實施例中,第三透鏡3的物側面35的光軸區域351為凸面,且其圓周區域353為凸面。第五透鏡5具有負屈光率。在此需注意的是,為了清楚地顯示圖面,圖38中省略與第一實施例相似面形的標號。 FIG. 38 is a schematic diagram of an optical imaging lens according to a ninth embodiment of the present invention, and FIGS. 39A to 39D are diagrams of longitudinal spherical aberration and various aberrations of the optical imaging lens according to the ninth embodiment. Please refer to FIG. 38 first, a ninth embodiment of the optical imaging lens 10 of the present invention is substantially similar to the first embodiment, and the differences between the two are as follows: each optical data, aspheric coefficient, and these lenses 1, 2 The parameters between, 3, 4, and 5 are more or less different. In addition, in the ninth embodiment, the optical axis region 351 of the object side surface 35 of the third lens 3 is convex, and the circumferential region 353 thereof is convex. The fifth lens 5 has a negative refractive power. It should be noted here that, in order to clearly show the drawing, reference numerals similar to those in the first embodiment are omitted in FIG. 38.

第九實施例的光學成像鏡頭10詳細的光學數據如圖40所示,且第九實施例的光學成像鏡頭10的整體系統焦距為2.046 毫米,半視角(HFOV)為44.641°,光圈值(Fno)為2.600,系統長度為14.951毫米,像高則為2.340毫米。 The detailed optical data of the optical imaging lens 10 of the ninth embodiment is shown in FIG. 40, and the overall system focal length of the optical imaging lens 10 of the ninth embodiment is 2.046. Mm, half-view angle (HFOV) is 44.641 °, aperture value (Fno) is 2.600, system length is 14.951 mm, and image height is 2.340 mm.

如圖41所示,則為在第九實施例中,部分透鏡的物側面與像側面在公式(1)中的各項非球面係數。 As shown in FIG. 41, in the ninth embodiment, the aspherical coefficients of the object side and the image side of some lenses in formula (1).

另外,第九實施例之光學成像鏡頭10中各重要參數間的關係如圖47所示。 In addition, the relationship between important parameters in the optical imaging lens 10 of the ninth embodiment is shown in FIG. 47.

本第九實施例的縱向球差圖示圖39A中,不同高度的離軸光線的成像點偏差控制在±0.01毫米的範圍內。在圖39B與圖39C的二個場曲像差圖示中,三種代表波長在整個視場範圍內的場曲像差落在±0.025毫米內。而圖39D的畸變像差圖式則顯示本第九實施例的畸變像差維持在±15.6%的範圍內。在本實施例中,光學成像鏡頭10的焦距偏移量在20℃下為0.0000mm,光學成像鏡頭10的焦距偏移量在-20℃下為-0.0024mm,而光學成像鏡頭10的焦距偏移量在80℃下為0.0269mm。因此,相較於現有的光學成像鏡頭,第九實施例能在具備良好之熱穩定性的情況下實現良好的成像品質。 The longitudinal spherical aberration diagram of the ninth embodiment in FIG. 39A shows that the deviations of the imaging points of the off-axis rays with different heights are controlled within a range of ± 0.01 mm. In the two field curvature aberration diagrams of FIGS. 39B and 39C, the field curvature aberrations of the three representative wavelengths in the entire field of view fall within ± 0.025 millimeters. The distortion aberration diagram of FIG. 39D shows that the distortion aberration of the ninth embodiment is maintained within a range of ± 15.6%. In this embodiment, the focal length offset of the optical imaging lens 10 is 0.0000mm at 20 ° C, the focal length offset of the optical imaging lens 10 is -0.0024mm at -20 ° C, and the focal distance of the optical imaging lens 10 is offset. The displacement was 0.0269 mm at 80 ° C. Therefore, compared with the existing optical imaging lens, the ninth embodiment can achieve good imaging quality with good thermal stability.

經由上述說明可得知,第九實施例相較於第一實施例的優點在於:第九實施例的縱向球差小於第一實施例的縱向球差。第九實施例的場曲像差小於第一實施例的場曲像差。無論是在-20度或者是在80度的環境溫度下,第九實施例的焦距偏移量的絕對值皆小於第一實施例的焦距偏移量的絕對值。 It can be known from the foregoing description that the ninth embodiment has an advantage over the first embodiment in that the longitudinal spherical aberration of the ninth embodiment is smaller than that of the first embodiment. The field curvature aberration of the ninth embodiment is smaller than that of the first embodiment. Whether at an ambient temperature of -20 degrees or 80 degrees, the absolute value of the focal length shift amount of the ninth embodiment is smaller than the absolute value of the focal length shift amount of the first embodiment.

圖42為本發明的第十實施例的光學成像鏡頭的示意圖, 而圖43A至圖43D為第十實施例之光學成像鏡頭的縱向球差與各項像差圖。請先參照圖42,本發明光學成像鏡頭10的一第十實施例,其與第一實施例大致相似,而兩者的差異如下所述:各光學數據、非球面係數及這些透鏡1、2、3、4及5間的參數或多或少有些不同。此外,第三透鏡3的物側面35的光軸區域351為凸面,且其圓周區域353為凸面。第四透鏡4具有負屈光率。第四透鏡4的像側面46的光軸區域462為凹面,且其圓周區域464為凹面。第五透鏡5的物側面55的光軸區域551為凸面,且其圓周區域553為凸面。第五透鏡5的像側面56的光軸區域561為凸面,且其圓周區域563為凸面。在此需注意的是,為了清楚地顯示圖面,圖42中省略與第一實施例相似面形的標號。 FIG. 42 is a schematic diagram of an optical imaging lens according to a tenth embodiment of the present invention. 43A to 43D are diagrams of longitudinal spherical aberration and various aberrations of the optical imaging lens of the tenth embodiment. Please refer to FIG. 42 first, a tenth embodiment of the optical imaging lens 10 of the present invention is substantially similar to the first embodiment, and the differences between the two are as follows: each optical data, aspheric coefficient, and these lenses 1, 2 The parameters between, 3, 4, and 5 are more or less different. In addition, the optical axis region 351 of the object side surface 35 of the third lens 3 is convex, and the circumferential region 353 thereof is convex. The fourth lens 4 has a negative refractive power. The optical axis region 462 of the image side surface 46 of the fourth lens 4 is a concave surface, and its circumferential region 464 is a concave surface. The optical axis region 551 of the object-side surface 55 of the fifth lens 5 is convex, and the circumferential region 553 thereof is convex. The optical axis region 561 of the image side surface 56 of the fifth lens 5 is convex, and the circumferential region 563 thereof is convex. It should be noted here that, in order to clearly show the drawing, reference numerals similar to those in the first embodiment are omitted in FIG. 42.

第十實施例的光學成像鏡頭10詳細的光學數據如圖44所示,且第十實施例的光學成像鏡頭10的整體系統焦距為2.255毫米,半視角(HFOV)為52.800°,光圈值(Fno)為2.600,系統長度為14.997毫米,像高則為2.340毫米。 The detailed optical data of the tenth embodiment of the optical imaging lens 10 is shown in FIG. 44. The overall system focal length of the tenth embodiment of the optical imaging lens 10 is 2.255 mm, the half angle of view (HFOV) is 52.800 °, and the aperture value (Fno ) Is 2.600, the system length is 14.997 mm, and the image height is 2.340 mm.

如圖45所示,則為在第十實施例中,部分透鏡的物側面與像側面在公式(1)中的各項非球面係數。 As shown in FIG. 45, in the tenth embodiment, the aspherical coefficients of the object side and the image side of some lenses in formula (1).

另外,第十實施例之光學成像鏡頭10中各重要參數間的關係如圖47所示。 In addition, the relationships among important parameters in the optical imaging lens 10 of the tenth embodiment are shown in FIG. 47.

本第十實施例的縱向球差圖示圖43A中,不同高度的離軸光線的成像點偏差控制在±0.033毫米的範圍內。在圖43B與圖43C的二個場曲像差圖示中,三種代表波長在整個視場範圍內的 場曲像差落在±0.041毫米內。而圖43D的畸變像差圖式則顯示本第十實施例的畸變像差維持在±24%的範圍內。在本實施例中,光學成像鏡頭10的焦距偏移量在20℃下為0.0000mm,光學成像鏡頭10的焦距偏移量在-20℃下為-0.0018mm,而光學成像鏡頭10的焦距偏移量在80℃下為0.0037mm。因此,相較於現有的光學成像鏡頭,第十實施例能在具備良好之熱穩定性的情況下實現良好的成像品質。 In the longitudinal spherical aberration diagram of this tenth embodiment, in FIG. 43A, the deviation of the imaging points of the off-axis rays of different heights is controlled within a range of ± 0.033 mm. In the two field curvature aberration diagrams of FIG. 43B and FIG. 43C, three representative wavelengths over the entire field of view The field curvature aberration falls within ± 0.041 mm. The distortion aberration diagram of FIG. 43D shows that the distortion aberration of the tenth embodiment is maintained within a range of ± 24%. In this embodiment, the focal length offset of the optical imaging lens 10 is 0.0000mm at 20 ° C, the focal length offset of the optical imaging lens 10 is -0.0018mm at -20 ° C, and the focal distance of the optical imaging lens 10 is offset. The displacement was 0.0037 mm at 80 ° C. Therefore, compared with the existing optical imaging lens, the tenth embodiment can achieve good imaging quality with good thermal stability.

經由上述說明可得知,第十實施例相較於第一實施例的優點在於:第十實施例的半視角大於第一實施例的半視角。無論是在-20度或者是在80度的環境溫度下,第十實施例的焦距偏移量的絕對值皆小於第一實施例的焦距偏移量的絕對值。 It can be known from the above description that the tenth embodiment has an advantage over the first embodiment in that the half-view angle of the tenth embodiment is greater than that of the first embodiment. Whether at an ambient temperature of -20 degrees or 80 degrees, the absolute value of the focal length shift amount of the tenth embodiment is smaller than the absolute value of the focal length shift amount of the first embodiment.

承上述,在本發明實施例的光學成像鏡頭10中,第一透鏡1是從物側A1到像側A2數來的第一個透鏡、第一透鏡1的屈光率等於零毫米-1且第一透鏡1採用成本較低的玻璃材質、搭配第二透鏡2是從第一透鏡1到像側A2數來具有屈光率的第一個透鏡且第二透鏡2採用成本較低的塑膠材質、第三透鏡3是從第一透鏡1到像側A2數來具有屈光率的第二個透鏡且第三透鏡3具有正屈光率、第四透鏡4是從光圈0到像側A2數來具有屈光率的第一個透鏡且第四透鏡4的物側面45與像側面46中的至少其中一面為非球面、第五透鏡5是從光圈0到像側A2數來具有屈光率的第二個透鏡且第五透鏡5的物側面55且像側面56皆為非球面,本發明實施例的光學成像鏡頭10藉由上述的搭配設計,有利於抵禦 風吹、雨淋、日曬等各種惡劣環境的測試,並且適於用以提供熱穩定、大半視角、低成本且畸變像差維持在±30%範圍內的車用鏡頭。 Continuing from the above, in the optical imaging lens 10 according to the embodiment of the present invention, the first lens 1 is the first lens from the object side A1 to the image side A2. The refractive index of the first lens 1 is equal to zero mm -1 and the A lens 1 is made of a lower cost glass material, and a second lens 2 is a first lens having a refractive power from the number of the first lens 1 to the image side A2, and the second lens 2 is made of a lower cost plastic material. The third lens 3 is a second lens having refractive power from the first lens 1 to the image side A2, the third lens 3 has a positive refractive power, and the fourth lens 4 is from the aperture 0 to the image side A2. The first lens having refractive power and at least one of the object-side surface 45 and the image-side surface 46 of the fourth lens 4 is aspherical, and the fifth lens 5 has refractive power from the aperture 0 to the number of image sides A2. The object side 55 and the image side 56 of the second lens and the fifth lens 5 are aspheric. The optical imaging lens 10 according to the embodiment of the present invention is designed to be resistant to wind, rain, and sun, etc. Tests in harsh environments and is suitable for providing thermal stability, large half-view angles, low cost and distortion aberration dimensions Car in the range of ± 30% with the lens.

本發明各實施例的縱向球差、像散像差、畸變皆符合使用規範。另外,紅、綠、藍三種代表波長在不同高度的離軸光線皆集中在成像點附近,由每一曲線的偏斜幅度可看出不同高度的離軸光線的成像點偏差皆獲得控制而具有良好的球差、像差、畸變抑制能力。進一步參閱成像品質數據,紅、綠、藍三種代表波長彼此間的距離亦相當接近,顯示本發明在各種狀態下對不同波長光線的集中性佳而具有優良的色散抑制能力,而能產生優異的成像品質。 The longitudinal spherical aberration, astigmatic aberration, and distortion of the embodiments of the present invention all conform to the use specification. In addition, the three off-axis rays of red, green, and blue at different heights are concentrated near the imaging point. The deviation of each curve shows that the deviation of the imaging points of off-axis rays of different heights is controlled and has Good spherical aberration, aberration, distortion suppression ability. Further referring to the imaging quality data, the distances of the three representative wavelengths of red, green, and blue are also quite close to each other, indicating that the present invention has good concentration of different wavelengths of light in various states and has excellent dispersion suppression capabilities, which can produce excellent Imaging quality.

在本發明的實施例的光學成像鏡頭10中,還可以進一步符合1.250≦L2A1R/ImgH≦2.200的條件式,有利於使半視角與系統像高維持較佳範圍以達到大半視角的設計。 In the optical imaging lens 10 according to the embodiment of the present invention, the conditional expression of 1.250 ≦ L2A1R / ImgH ≦ 2.200 may be further met, which is beneficial to maintaining a better range of the half angle of view and the system image height to achieve a design of the majority of the angle of view.

在本發明的實施例的光學成像鏡頭10中,還可以進一步符合ImgH/SR≦2.800的條件式,且有利於實現大光圈與大系統像高的設計,較佳的可符合1.500≦ImgH/SR≦2.800的條件式。 In the optical imaging lens 10 according to the embodiment of the present invention, the conditional formula of ImgH / SR ≦ 2.800 can be further met, and it is beneficial to realize the design of large aperture and large system image height, and it can better meet 1.500 ≦ ImgH / SR. A conditional expression of ≦ 2.800.

在本發明的實施例的光學成像鏡頭10中,還可以進一步符合5.000≦TTL/EFL的條件式,有利於增加半視角,較佳的可符合5.000≦TTL/EFL≦9.000。 In the optical imaging lens 10 according to the embodiment of the present invention, the conditional formula of 5.000 ≦ TTL / EFL can be further met, which is beneficial to increase the half angle of view, and can better meet 5.000 ≦ TTL / EFL ≦ 9.000.

在本發明的實施例的光學成像鏡頭10中,還可以進一步將第一透鏡1的物側面15與像側面16設計為平面,藉由此設計 可一次批量鍍膜加工再裁切可避免研磨玻璃後定性分析以及模造玻璃等程序有利於大幅降低製造難度與製造成本,與第三透鏡相加的兩片玻璃透鏡成本等同市面上第一片具有負屈光率玻璃透鏡的成本。 In the optical imaging lens 10 according to the embodiment of the present invention, the object-side surface 15 and the image-side surface 16 of the first lens 1 may be further designed as a plane, and thus designed It can be processed in one batch and then cut to avoid the qualitative analysis after grinding the glass and the process of molding the glass, which will greatly reduce the difficulty and cost of manufacturing. The cost of the two glass lenses added to the third lens is equivalent to the negative of the first lens The cost of diopter glass lenses.

在本發明的實施例的光學成像鏡頭10中,還可以進一步將第三透鏡3的物側面35設計為平面,藉由此設計可有利於提升公差的組裝效率。 In the optical imaging lens 10 according to the embodiment of the present invention, the object-side surface 35 of the third lens 3 can be further designed as a flat surface, and thus the assembly efficiency of the tolerance can be improved by the design.

在本發明的實施例的光學成像鏡頭10中具有屈光率的透鏡不超過六片有利於降低設計難度以達到降低成本的目的。 In the optical imaging lens 10 of the embodiment of the present invention, there are no more than six lenses with refractive power, which is beneficial to reduce the difficulty of design and achieve the purpose of reducing costs.

在本發明的實施例的光學成像鏡頭10中,還可以進一步將第四透鏡4與第五透鏡5膠合,並搭配第四透鏡4的像側面46設計為非球面以及第五透鏡5的物側面55設計為非球面,藉由此設計有利於降低各種像差以提高成像品質。 In the optical imaging lens 10 according to the embodiment of the present invention, the fourth lens 4 and the fifth lens 5 may be further cemented, and the image side 46 of the fourth lens 4 is designed as an aspheric surface and the object side of the fifth lens 5. The 55 is designed as an aspheric surface. This design is beneficial to reduce various aberrations and improve imaging quality.

在本發明的實施例的光學成像鏡頭10中,還可以進一步將部分的透鏡採用塑膠材質而進一步降低成本,舉例來說,光學成像鏡頭10中的部分的透鏡可更符合以下的條件式的任一者:12.000≦V2/n2≦19.000或32.000≦V2/n2≦37.000、12.000≦V4/n4≦19.000或32.000≦V4/n4≦37.000、12.000≦V5/n5≦19.000或32.000≦V5/n5≦37.000,其中符合上述任一條件式範圍的透鏡其材料即為成本較低的塑膠材質。 In the optical imaging lens 10 of the embodiment of the present invention, a part of the lenses can be further made of plastic material to further reduce the cost. For example, some of the lenses in the optical imaging lens 10 can better meet any of the following conditional expressions. One: 12.000 ≦ V2 / n2 ≦ 19.000 or 32.000 ≦ V2 / n2 ≦ 37.000, 12.000 ≦ V4 / n4 ≦ 19.000 or 32.000 ≦ V4 / n4 ≦ 37.000, 12.000 ≦ V5 / n5 ≦ 19.000 or 32.000 ≦ V5 / n5 ≦ 37.000 Among them, the lens that meets any of the above conditional expressions is made of a plastic material with a lower cost.

在本發明的實施例的光學成像鏡頭10中,還可以將第三透鏡3採用玻璃材質,並配合將第三透鏡3設置於光圈0前方, 而可使光學成像鏡頭10在-20℃~80℃環境中的焦距偏移量的絕對值小於0.045毫米。舉例來說,第三透鏡3可更符合以下的條件式的任一者:V3/n3≦11.000,20.000≦V3/n3≦31.000或38.000≦V3/n3≦66.000,其中符合上述任一條件式範圍的第三透鏡3其材料即為成本較低的玻璃材質。 In the optical imaging lens 10 according to the embodiment of the present invention, the third lens 3 may also be made of glass, and the third lens 3 may be set in front of the aperture 0 in cooperation with the third lens 3. The absolute value of the focal length offset of the optical imaging lens 10 in an environment of -20 ° C to 80 ° C can be less than 0.045 mm. For example, the third lens 3 may better meet any one of the following conditional expressions: V3 / n3 ≦ 11.000, 20.000 ≦ V3 / n3 ≦ 31.000 or 38.000 ≦ V3 / n3 ≦ 66.000, in which any one of the above conditional expression ranges is met. The material of the third lens 3 is a glass material with lower cost.

再配合參閱圖46至圖47,圖46至圖47為上述第一實施例至第十實施例的各項光學參數的表格圖。 46 to FIG. 47, FIG. 46 to FIG. 47 are tabular diagrams of various optical parameters of the first embodiment to the tenth embodiment.

對於符合以下條件式,至少其中之一的目的為使系統焦距與光學各參數維持一適當值,避免任一參數過大而不利於該光學成像系統整體之像差的修正,或是避免任一參數過小而影響組裝或是提高製造上之困難度。 For the following conditional expressions, at least one of the purposes is to maintain the system focal length and the optical parameters to an appropriate value, to avoid any parameter being too large to be beneficial to the correction of the overall aberration of the optical imaging system, or to avoid any parameter Too small to affect assembly or increase manufacturing difficulty.

其中,光學成像鏡頭10可符合(EFL+T5)/G23≦2.400的條件式,較佳地可符合0.200≦(EFL+T5)/G23≦2.400的條件式;光學成像鏡頭10可符合(EFL+T1)/T4≦4.700的條件式,較佳地可符合0.800≦(EFL+T1)/T4≦4.700的條件式;光學成像鏡頭10可符合(EFL+G34)/(T2+G12)≦3.800的條件式,較佳地可符合1.000≦(EFL+G34)/(T2+G12)≦3.800的條件式;光學成像鏡頭10可符合(EFL+T2)/(T1+T5)≦2.000的條件式,較佳地可符合0.500≦(EFL+T2)/(T1+T5)≦2.000的條件式;光學成像鏡頭10可符合(EFL+ALT)/AAG≦4.000的條件 式,較佳地可符合1.100≦(EFL+ALT)/AAG≦4.000的條件式。 Among them, the optical imaging lens 10 can meet the conditional expression of (EFL + T5) /G23≦2.400, preferably can satisfy the conditional expression of 0.200 ≦ (EFL + T5) /G23≦2.400; the optical imaging lens 10 can meet (EFL + The conditional expression of T1) /T4≦4.700 can preferably meet the conditional expression of 0.800 ≦ (EFL + T1) /T4≦4.700; the optical imaging lens 10 can meet (EFL + G34) / (T2 + G12) ≦ 3.800. The conditional expression can preferably meet the conditional expression of 1.000 ≦ (EFL + G34) / (T2 + G12) ≦ 3.800; the optical imaging lens 10 can meet the conditional expression of (EFL + T2) / (T1 + T5) ≦ 2.000, Preferably it can meet the conditional expression of 0.500 ≦ (EFL + T2) / (T1 + T5) ≦ 2.000; the optical imaging lens 10 can meet the condition of (EFL + ALT) /AAG≦4.000 The formula can preferably meet the conditional formula of 1.100 ≦ (EFL + ALT) /AAG≦4.000.

對於以下條件式,至少其中之一的目的為使各透鏡的厚度與間隔維持一適當值,避免任一參數過大而不利於該光學成像鏡頭整體之薄型化,或是避免任一參數過小而影響組裝或是提高製造上之困難度。 For the following conditional expressions, the purpose of at least one of them is to maintain a proper value for the thickness and interval of each lens, to avoid any parameter being too large to be detrimental to the overall thinning of the optical imaging lens, or to prevent any parameter from being too small and affecting Assembly or manufacturing difficulties.

其中,光學成像鏡頭10可符合TL/BFL≦6.000的條件式,較佳地可符合,2.300≦TL/BFL≦6.000的條件式;光學成像鏡頭10可符合(T1+T5+G12+G45)/T3≦3.100的條件式,較佳地可符合,0.800≦(T1+T5+G12+G45)/T3≦3.100的條件式;光學成像鏡頭10可符合(T1+T2+G12+G45)/G34≦9.200的條件式,較佳地可符合,1.300≦(T1+T2+G12+G45)/G34≦9.200的條件式。 Among them, the optical imaging lens 10 can meet the conditional expression of TL / BFL ≦ 6.000, preferably can meet the conditional expression of 2.300 ≦ TL / BFL ≦ 6.000; the optical imaging lens 10 can meet (T1 + T5 + G12 + G45) / The conditional expression of T3 ≦ 3.100, preferably can be satisfied, the conditional expression of 0.800 ≦ (T1 + T5 + G12 + G45) /T3≦3.100; the optical imaging lens 10 can satisfy (T1 + T2 + G12 + G45) / G34 ≦ The conditional expression of 9.200 can preferably meet the conditional expression of 1.300 ≦ (T1 + T2 + G12 + G45) /G34≦9.200.

此外,另可選擇實施例參數之任意組合關係增加鏡頭限制,以利於本發明相同架構的鏡頭設計。 In addition, any combination of the parameters of the embodiment may be selected to increase the lens limitation, which is beneficial to the lens design of the same architecture of the present invention.

有鑑於光學系統設計的不可預測性,在本發明的架構之下,符合上述條件式能較佳地使本發明望遠鏡頭長度縮短、光圈增大、成像品質提升,或組裝良率提升而改善先前技術的缺點。 In view of the unpredictability of the design of the optical system, under the framework of the present invention, meeting the above conditions can better shorten the telescope lens of the present invention, increase the aperture, increase the imaging quality, or improve the assembly yield to improve the previous Disadvantages of technology.

本發明之各個實施例所揭露之光學參數的組合比例關係所得的包含最大最小值以內的數值範圍皆可據以實施。 The numerical ranges including the maximum and minimum values obtained from the combined proportional relationship of the optical parameters disclosed in the embodiments of the present invention can be implemented accordingly.

雖然本發明已以實施例揭露如上,然其並非用以限定本 發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Inventions, anyone with ordinary knowledge in the technical field to which they belong can make minor changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be defined by the scope of the attached patent application as follows: quasi.

Claims (20)

一種光學成像鏡頭,從一物側至一像側沿一光軸依序包括一第一透鏡、一第二透鏡、一第三透鏡、一光圈、一第四透鏡及一第五透鏡,且該第一透鏡至該第五透鏡各自包括一朝向該物側且使成像光線通過的物側面及一朝向該像側且使成像光線通過的像側面;該第一透鏡是從該物側到該像側數來的屈光率等於零毫米-1的第一個透鏡;該第二透鏡是從該第一透鏡到該像側數來具有屈光率的第一個透鏡;該第三透鏡是從該第一透鏡到該像側數來具有屈光率的第二個透鏡,該第三透鏡具有正屈光率;該第四透鏡是從該光圈到該像側數來具有屈光率的第一個透鏡,該第四透鏡的該物側面與該第四透鏡的該像側面中的至少其中一面為非球面;以及該第五透鏡是從該光圈到該像側數來具有屈光率的第二個透鏡,該第五透鏡的該物側面與該第五透鏡的該像側面皆為非球面,其中該光學成像鏡頭在-20℃~80℃環境中的焦距偏移量的絕對值小於0.045毫米。An optical imaging lens includes a first lens, a second lens, a third lens, an aperture, a fourth lens, and a fifth lens in order along an optical axis from an object side to an image side. Each of the first lens to the fifth lens includes an object side facing the object side and passing imaging light and an image side facing the image side and passing imaging light; the first lens is from the object side to the image The first lens having a refractive index equal to zero mm -1 from the side; the second lens is the first lens having the refractive index from the first lens to the image side; the third lens is from the The first lens has a second refractive index from the image side, and the third lens has a positive refractive index; the fourth lens has the first refractive index from the aperture to the image side. At least one of the object side of the fourth lens and the image side of the fourth lens is an aspheric surface; and the fifth lens is the first lens having a refractive power from the aperture to the number of image sides. Two lenses, the object side of the fifth lens and the image side of the fifth lens are both Spherical, wherein the absolute value of the focal length of the imaging lens at -20 ℃ ~ 80 ℃ environment offset less than 0.045 mm. 如申請專利範圍第1項的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:1.250≦L2A1R/ImgH≦2.200,其中,L2A1R為該第二透鏡的該物側面的一有效半徑,且ImgH為該光學成像鏡頭的一像高。For example, the optical imaging lens of the first patent application scope, wherein the optical imaging lens more satisfies the following conditional formula: 1.250 ≦ L2A1R / ImgH ≦ 2.200, where L2A1R is an effective radius of the object side of the second lens, and ImgH is an image height of the optical imaging lens. 如申請專利範圍第1項的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:ImgH/SR≦2.800,其中,ImgH為該光學成像鏡頭的一像高,且SR為該光圈的一有效半徑。For example, the optical imaging lens of the first patent application scope, wherein the optical imaging lens more satisfies the following conditional formula: ImgH / SR ≦ 2.800, where ImgH is an image height of the optical imaging lens, and SR is one of the aperture Effective radius. 一種光學成像鏡頭,從一物側至一像側沿一光軸依序包括一第一透鏡、一第二透鏡、一第三透鏡、一光圈、一第四透鏡及一第五透鏡,且該第一透鏡至該第五透鏡各自包括一朝向該物側且使成像光線通過的物側面及一朝向該像側且使成像光線通過的像側面;該第一透鏡是從該物側到該像側數來的屈光率等於零毫米-1的第一個透鏡;該第二透鏡是從該第一透鏡到該像側數來具有屈光率的第一個透鏡;該第三透鏡是從該第一透鏡到該像側數來具有屈光率的第二個透鏡;該第四透鏡是從該光圈到該像側數來具有屈光率的第一個透鏡,該第四透鏡的該物側面與該第四透鏡的該像側面中的至少其中一面為非球面;該第五透鏡是從該光圈到該像側數來具有屈光率的第二個透鏡,該第五透鏡的該物側面與該第五透鏡的該像側面皆為非球面;其中,該光學成像鏡頭滿足以下的條件式:1.250≦L2A1R/ImgH≦2.200,其中,L2A1R為該第二透鏡的該物側面的一有效半徑,且ImgH為該光學成像鏡頭的一像高。An optical imaging lens includes a first lens, a second lens, a third lens, an aperture, a fourth lens, and a fifth lens in order along an optical axis from an object side to an image side. Each of the first lens to the fifth lens includes an object side facing the object side and passing imaging light and an image side facing the image side and passing imaging light; the first lens is from the object side to the image The first lens having a refractive index equal to zero mm -1 from the side; the second lens is the first lens having the refractive index from the first lens to the image side; the third lens is from the The first lens has a refractive power from the number of the image side to the second lens; the fourth lens is the first lens having the refractive power from the aperture to the number of the image side, and the object of the fourth lens At least one of the side surface and the image side surface of the fourth lens is aspheric; the fifth lens is a second lens having a refractive power from the aperture to the image side, and the object of the fifth lens Both the side surface and the image side surface of the fifth lens are aspheric; wherein the optical imaging lens Under conditions sufficient to formula: 1.250 ≦ L2A1R / ImgH ≦ 2.200, wherein a is the effective radius of the object side surface of the second lens for L2A1R, and that a high image ImgH optical imaging lens. 如申請專利範圍第1項或第4項的光學成像鏡頭,其中該光學成像鏡頭更滿足以下任一條件式:12.000≦V2/n2≦19.000或32.000≦V2/n2≦37.000,其中,V2為該第二透鏡的一阿貝係數,且n2為該第二透鏡的一折射率。For example, the optical imaging lens of the first or fourth item of the patent application scope, wherein the optical imaging lens further satisfies any of the following conditional expressions: 12.000 ≦ V2 / n2 ≦ 19.000 or 32.000 ≦ V2 / n2 ≦ 37.000, where V2 is the An Abbe coefficient of the second lens, and n2 is a refractive index of the second lens. 如申請專利範圍第1項或第4項的光學成像鏡頭,其中該光學成像鏡頭更滿足以下任一條件式:V3/n3≦11.000、20.000≦V3/n3≦31.000或38.000≦V3/n3≦66.000,其中,V3為該第三透鏡的一阿貝係數,且n3為該第三透鏡的一折射率。For example, the optical imaging lens of the first or fourth item of the patent application scope, wherein the optical imaging lens satisfies any of the following conditional expressions: V3 / n3 ≦ 11.000, 20.000 ≦ V3 / n3 ≦ 31.000 or 38.000 ≦ V3 / n3 ≦ 66.000 , Where V3 is an Abbe coefficient of the third lens, and n3 is a refractive index of the third lens. 如申請專利範圍第1項或第4項的光學成像鏡頭,其中該第一透鏡的該物側面與該第一透鏡的該像側面皆為平面。For example, the optical imaging lens of the first or fourth scope of the patent application, wherein both the object side of the first lens and the image side of the first lens are flat. 如申請專利範圍第1項或第4項的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:(EFL+T5)/G23≦2.400,其中,EFL為該光學成像鏡頭的一系統焦距,T5為該第五透鏡在該光軸上的一厚度,且G23為該第二透鏡與該第三透鏡之間在該光軸上的一空氣間隙。For example, the optical imaging lens of the first or fourth item of the patent application scope, wherein the optical imaging lens more satisfies the following conditional expression: (EFL + T5) /G23≦2.400, where EFL is a system focal length of the optical imaging lens , T5 is a thickness of the fifth lens on the optical axis, and G23 is an air gap on the optical axis between the second lens and the third lens. 如申請專利範圍第1項或第4項的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:(EFL+G34)/(T2+G12)≦3.800,EFL為該光學成像鏡頭的一系統焦距,G34為該第三透鏡與該第四透鏡之間在該光軸上的一空氣間隙,T2為該第二透鏡在該光軸上的一厚度,且G12為該第一透鏡與該第二透鏡之間在該光軸上的一空氣間隙。For example, the optical imaging lens of the first or fourth item of the patent application scope, wherein the optical imaging lens more satisfies the following conditional expression: (EFL + G34) / (T2 + G12) ≦ 3.800, EFL is one of the optical imaging lenses. System focal length, G34 is an air gap on the optical axis between the third lens and the fourth lens, T2 is a thickness of the second lens on the optical axis, and G12 is the first lens and the An air gap between the second lenses on the optical axis. 如申請專利範圍第1項或第4項的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:(T1+T5+G12+G45)/T3≦3.100,T1為該第一透鏡在該光軸上的一厚度,T5為該第五透鏡在該光軸上的一厚度,G12為該第一透鏡與該第二透鏡之間在該光軸上的一空氣間隙,G45為該第四透鏡與該第五透鏡之間在該光軸上的一空氣間隙,且T3為該第三透鏡在該光軸上的一厚度。For example, the optical imaging lens of the first or fourth scope of the patent application, wherein the optical imaging lens more satisfies the following conditional expression: (T1 + T5 + G12 + G45) /T3≦3.100, T1 is the first lens in the A thickness on the optical axis, T5 is a thickness of the fifth lens on the optical axis, G12 is an air gap on the optical axis between the first lens and the second lens, and G45 is the fourth An air gap on the optical axis between the lens and the fifth lens, and T3 is a thickness of the third lens on the optical axis. 如申請專利範圍第1項或第4項的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:(EFL+ALT)/AAG≦4.000,EFL為該光學成像鏡頭的一系統焦距,ALT為該第一透鏡、該第二透鏡、該第三透鏡、該第四透鏡與該第五透鏡在該光軸上的一厚度總和,且AAG為該第一透鏡與該第二透鏡之間在該光軸上的一空氣間隙、該第二透鏡與該第三透鏡之間在該光軸上的一空氣間隙、該第三透鏡與該第四透鏡之間在該光軸上的一空氣間隙以及該第四透鏡與該第五透鏡之間在該光軸上的一空氣間隙的一空氣間隙總和。For example, the optical imaging lens of the first or fourth item of the patent application scope, wherein the optical imaging lens more satisfies the following conditional expression: (EFL + ALT) /AAG≦4.000, EFL is a system focal length of the optical imaging lens, ALT Is a total thickness of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens on the optical axis, and AAG is between the first lens and the second lens. An air gap on the optical axis, an air gap on the optical axis between the second lens and the third lens, and an air gap on the optical axis between the third lens and the fourth lens And an air gap sum of an air gap on the optical axis between the fourth lens and the fifth lens. 如申請專利範圍第4項的光學成像鏡頭,其中該光學成像鏡頭在-20℃~80℃環境中的焦距偏移量的絕對值小於0.045毫米。For example, the optical imaging lens of the fourth scope of the patent application, wherein the absolute value of the focal length offset of the optical imaging lens in an environment of -20 ° C to 80 ° C is less than 0.045 mm. 如申請專利範圍第1項或第4項的光學成像鏡頭,其中該光學成像鏡頭更滿足以下任一條件式:12.000≦V4/n4≦19.000或32.000≦V4/n4≦37.000,其中,V4為該第四透鏡的一阿貝係數,且n4為該第四透鏡的一折射率。For example, the optical imaging lens of the first or fourth item of the patent application scope, wherein the optical imaging lens satisfies any of the following conditional expressions: 12.000 ≦ V4 / n4 ≦ 19.000 or 32.000 ≦ V4 / n4 ≦ 37.000, where V4 is the An Abbe coefficient of the fourth lens, and n4 is a refractive index of the fourth lens. 如申請專利範圍第1項或第4項的光學成像鏡頭,其中該光學成像鏡頭更滿足以下任一條件式:12.000≦V5/n5≦19.000或32.000≦V5/n5≦37.000,其中,V5為該第五透鏡的一阿貝係數,且n5為該第五透鏡的一折射率。For example, the optical imaging lens of the first or fourth item of the patent application scope, wherein the optical imaging lens satisfies any of the following conditional expressions: 12.000 ≦ V5 / n5 ≦ 19.000 or 32.000 ≦ V5 / n5 ≦ 37.000, where V5 is the An Abbe coefficient of the fifth lens, and n5 is a refractive index of the fifth lens. 如申請專利範圍第1項或第4項的光學成像鏡頭,其中該第三透鏡的該物側面為平面。For example, the optical imaging lens of the first or fourth scope of the patent application, wherein the object side of the third lens is a flat surface. 如申請專利範圍第1項或第4項的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:5.000≦TTL/EFL,其中TTL為該第一透鏡的該物側面到一成像面在該光軸上的一距離,且EFL為該光學成像鏡頭的一系統焦距。For example, the optical imaging lens of the first or fourth item of the patent application scope, wherein the optical imaging lens more satisfies the following conditional formula: 5.000 ≦ TTL / EFL, where TTL is the side of the object of the first lens to an imaging surface at A distance on the optical axis, and EFL is a system focal length of the optical imaging lens. 如申請專利範圍第1項或第4項的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:(EFL+T1)/T4≦4.700,EFL為該光學成像鏡頭的一系統焦距,T1為該第一透鏡在該光軸上的一厚度,且T4為該第四透鏡在該光軸上的一厚度。For example, the optical imaging lens of the first or fourth item of the patent application scope, wherein the optical imaging lens more satisfies the following conditional expression: (EFL + T1) /T4≦4.700, EFL is a system focal length of the optical imaging lens, T1 Is a thickness of the first lens on the optical axis, and T4 is a thickness of the fourth lens on the optical axis. 如申請專利範圍第1項或第4項的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:(EFL+T2)/(T1+T5)≦2.000,EFL為該光學成像鏡頭的一系統焦距,T2為該第二透鏡在該光軸上的一厚度,T1為該第一透鏡在該光軸上的一厚度,且T5為該第五透鏡在該光軸上的一厚度。For example, the optical imaging lens of item 1 or 4 of the patent application scope, wherein the optical imaging lens more satisfies the following conditional expression: (EFL + T2) / (T1 + T5) ≦ 2.000, EFL is one of the optical imaging lenses. System focal length, T2 is a thickness of the second lens on the optical axis, T1 is a thickness of the first lens on the optical axis, and T5 is a thickness of the fifth lens on the optical axis. 如申請專利範圍第1項或第4項的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:(T1+T2+G12+G45)/G34≦9.200,T1為該第一透鏡在該光軸上的一厚度,T2為該第二透鏡在該光軸上的一厚度,G12為該第一透鏡與該第二透鏡之間在該光軸上的一空氣間隙,G45為該第四透鏡與該第五透鏡之間在該光軸上的一空氣間隙,且G34為該第三透鏡與該第四透鏡之間在該光軸上的一空氣間隙。For example, the optical imaging lens of the first or fourth scope of the patent application, wherein the optical imaging lens more satisfies the following conditional expression: (T1 + T2 + G12 + G45) /G34≦9.200, T1 is the first lens in the A thickness on the optical axis, T2 is a thickness of the second lens on the optical axis, G12 is an air gap on the optical axis between the first lens and the second lens, and G45 is the fourth An air gap on the optical axis between the lens and the fifth lens, and G34 is an air gap on the optical axis between the third lens and the fourth lens. 如申請專利範圍第1項或第4項的光學成像鏡頭,其中該光學成像鏡頭更滿足以下的條件式:TL/BFL≦6.000,TL為該第一透鏡的該物側面到該第五透鏡的該像側面在該光軸上的一距離,且BFL為該第五透鏡的該像側面至一成像面在該光軸上的一距離。For example, the optical imaging lens of the first or fourth scope of the patent application, wherein the optical imaging lens more satisfies the following conditional expression: TL / BFL ≦ 6.000, TL is the object side of the first lens to the fifth lens A distance of the image side on the optical axis, and BFL is a distance of the image side of the fifth lens to an imaging plane on the optical axis.
TW107147875A 2018-12-28 2018-12-28 Optical imaging lens TWI679465B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107147875A TWI679465B (en) 2018-12-28 2018-12-28 Optical imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107147875A TWI679465B (en) 2018-12-28 2018-12-28 Optical imaging lens

Publications (2)

Publication Number Publication Date
TWI679465B true TWI679465B (en) 2019-12-11
TW202026690A TW202026690A (en) 2020-07-16

Family

ID=69582332

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107147875A TWI679465B (en) 2018-12-28 2018-12-28 Optical imaging lens

Country Status (1)

Country Link
TW (1) TWI679465B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201219882A (en) * 2010-11-10 2012-05-16 Largan Precision Co Optical imaging lens assembly
TW201317660A (en) * 2012-10-31 2013-05-01 玉晶光電股份有限公司 Optical lens
TW201329500A (en) * 2012-09-07 2013-07-16 玉晶光電股份有限公司 Optical lens assembly
CN105137573A (en) * 2015-09-11 2015-12-09 舜宇光学(中山)有限公司 Day-night dual-purpose wide-angle focus-fixing all-plastic monitoring lens
TWI622798B (en) * 2017-08-01 2018-05-01 大立光電股份有限公司 Optical image capturing system, imaging apparatus and electronic device
TW201823797A (en) * 2015-11-26 2018-07-01 南韓商三星電機股份有限公司 Optical imaging system
TWI637212B (en) * 2017-10-27 2018-10-01 大立光電股份有限公司 Optical imaging lens assembly, image capturing unit and electronic device
TW201837525A (en) * 2017-04-14 2018-10-16 大立光電股份有限公司 Photographing lens assembly, image capturing unit and electronic device
TW201839441A (en) * 2017-04-17 2018-11-01 大立光電股份有限公司 Optical image capturing lens assembly, imaging apparatus and electronic device
TWI642991B (en) * 2017-12-25 2018-12-01 大立光電股份有限公司 Photographing lens assembly, imaging apparatus and electronic device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201219882A (en) * 2010-11-10 2012-05-16 Largan Precision Co Optical imaging lens assembly
TW201329500A (en) * 2012-09-07 2013-07-16 玉晶光電股份有限公司 Optical lens assembly
TW201317660A (en) * 2012-10-31 2013-05-01 玉晶光電股份有限公司 Optical lens
CN105137573A (en) * 2015-09-11 2015-12-09 舜宇光学(中山)有限公司 Day-night dual-purpose wide-angle focus-fixing all-plastic monitoring lens
TW201823797A (en) * 2015-11-26 2018-07-01 南韓商三星電機股份有限公司 Optical imaging system
TW201837525A (en) * 2017-04-14 2018-10-16 大立光電股份有限公司 Photographing lens assembly, image capturing unit and electronic device
TW201839441A (en) * 2017-04-17 2018-11-01 大立光電股份有限公司 Optical image capturing lens assembly, imaging apparatus and electronic device
TWI622798B (en) * 2017-08-01 2018-05-01 大立光電股份有限公司 Optical image capturing system, imaging apparatus and electronic device
TWI637212B (en) * 2017-10-27 2018-10-01 大立光電股份有限公司 Optical imaging lens assembly, image capturing unit and electronic device
TWI642991B (en) * 2017-12-25 2018-12-01 大立光電股份有限公司 Photographing lens assembly, imaging apparatus and electronic device

Also Published As

Publication number Publication date
TW202026690A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
TWI670538B (en) Optical imaging lens
TWI682192B (en) Optical imaging lens
TWI721480B (en) Optical imaging lens
TW201930944A (en) Optical imaging lens
TWI673535B (en) Optical imaging lens
TWI776321B (en) Optical imaging lens
TWI692655B (en) Optical imaging lens
TW202328730A (en) Optical imaging lens
TWI779553B (en) Optical imaging lens
TWI709785B (en) Optical imaging lens
TW202206879A (en) Optical imaging lens
TW202225766A (en) Optical imaging lens
TW201839448A (en) Optical imaging lens
TWI779459B (en) Optical imaging lens
TWI803892B (en) Optical imaging lens
TWI758101B (en) Optical imaging lens
TWI738354B (en) Optical imaging lens
TWI727556B (en) Optical imaging lens
TWI679465B (en) Optical imaging lens
TWI647507B (en) Optical imaging lens
TW202202890A (en) Optical imaging lens
TW202202893A (en) Optical imaging lens
TWI806132B (en) Optical imaging lens
TWI784857B (en) Optical imaging lens
TWI792884B (en) Optical imaging lens