TWI678935B - Enhanced index based system information distribution - Google Patents

Enhanced index based system information distribution Download PDF

Info

Publication number
TWI678935B
TWI678935B TW106133693A TW106133693A TWI678935B TW I678935 B TWI678935 B TW I678935B TW 106133693 A TW106133693 A TW 106133693A TW 106133693 A TW106133693 A TW 106133693A TW I678935 B TWI678935 B TW I678935B
Authority
TW
Taiwan
Prior art keywords
wireless device
index element
broadcast channel
sequence
system information
Prior art date
Application number
TW106133693A
Other languages
Chinese (zh)
Other versions
TW201815177A (en
Inventor
帕爾 富蘭葛
Pal Frenger
喬恩 魯尼
Johan Rune
史帝芬 瓦格
Stefan Wager
Original Assignee
瑞典商Lm艾瑞克生(Publ)電話公司
Telefonaktiebolaget Lm Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞典商Lm艾瑞克生(Publ)電話公司, Telefonaktiebolaget Lm Ericsson (Publ) filed Critical 瑞典商Lm艾瑞克生(Publ)電話公司
Publication of TW201815177A publication Critical patent/TW201815177A/en
Application granted granted Critical
Publication of TWI678935B publication Critical patent/TWI678935B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一種在一無線器件(110)中之方法包括從一網路節點(115)接收(404)一或多個傳輸(125a、125b),該一或多個傳輸包括一第一序列及與該第一序列相關聯之一廣播頻道。該方法包括基於該第一序列判定(408)一第一索引元素,及基於該廣播頻道上之資訊判定(412)一第二索引元素。該方法包括基於該第一索引元素及該第二索引元素而獲取(416)一索引值。該方法包括使用該所獲取索引值來判定(420)系統資訊。A method in a wireless device (110) includes receiving (404) one or more transmissions (125a, 125b) from a network node (115), the one or more transmissions including a first sequence and a first sequence A sequence is associated with one of the broadcast channels. The method includes determining (408) a first index element based on the first sequence, and determining (412) a second index element based on information on the broadcast channel. The method includes obtaining (416) an index value based on the first index element and the second index element. The method includes determining (420) system information using the acquired index value.

Description

加強型基於索引的系統資訊分佈Enhanced index-based system information distribution

本發明一般而言係關於無線通信且更特定言之係關於加強型基於索引的系統資訊分佈。The present invention relates generally to wireless communications and more specifically to enhanced index-based system information distribution.

對於5G-新無線電(NR)而言,考量一基於索引的系統資訊分佈概念。5G-NR提案由用於傳輸存取資訊之一兩步式機制組成,由含有系統資訊區塊組態(SIB)之集合之一系統資訊區塊表(SIB表)及提供用於選擇SIB表中之某一組態,從而定義系統資訊之一索引(SSI)之一同步信號(SS)組成。 SSI亦可視需要伴隨有表示為實體廣播頻道(PBCH)之一資料容器。PBCH含有一主資訊區塊(MIB),其允許傳遞相較於可在SSI中編碼的資訊更多的資訊。 假定使用者設備(UE)在執行一隨機存取嘗試時已知SIB表之內容。通常,UE具有一先前擷取SIB表之一儲存複本,使得其僅需接收SS且判定其索引(即,SSI)以知道其在存取網路時應使用哪一組態。 圖1圖解說明用於5G-NR之所提出系統資訊擷取之一實例。在圖1之實例中,展示兩個網路節點115a及115b及一無線器件110 (例如,一UE)。各網路節點115 (例如,一演進節點B (eNB)、gNB、傳輸接收點(TRP)或無線電基地台(RBS)之一者)傳輸一SS或一系統簽章信號。網路節點115a傳輸SS1 ,而網路節點115b傳輸SS2。連同其等的各自SS,各網路節點115亦傳輸含有無線器件110存取網路所需之一些最小系統資訊之一實體廣播頻道(PBCH)。最小系統資訊之此部分在圖1之實例中表示為MIB。因此,在圖1之實例中,網路節點115a傳輸SS1 連同MIB1 ,而網路節點115b傳輸SS2 連同MIB2 ,如藉由圖1中之標記為「SS1 + MIB1 傳輸」及「SS2 + MIB2 傳輸」之橢圓指示。 藉由讀取MIB,無線器件110接收關於如何接收SIB表之資訊。可使用一廣播格式(諸如單頻網路(SFN)傳輸)來傳輸SIB表,如藉由圖1之實例中之具有標籤SIB表傳輸之橢圓描繪。除在SS + MIB中及在SIB表中週期性地廣播之最小系統資訊以外,UE 110亦可在建立初始存取之後接收其他系統資訊(例如,藉由一專用傳輸),如藉由在圖1之實例中標記為「額外SI傳輸」之橢圓描繪。 在現有方法中,系統簽章索引(SSI)可以不同方式傳達至無線器件。在一些情況中,SSI係SS之索引或在MIB中明確傳訊SSI。然而,存在與將SSI作為SS之索引傳訊相關聯之某些缺點。舉例而言,可能期望改變一小區之系統資訊。根據現有方法,此將要求改變該小區正在使用之SS。此可導致無線器件失去同步性,且在無線器件再次找到小區之前將花費一些時間。此可藉由提前告知無線器件此情況而避免。然而,此一方法在額外組態傳訊、無線器件之額外實施方案複雜性及額外延遲方面係代價高的。作為另一實例,若一小區需要具有一個以上系統資訊變體(舉例而言,以實現不同波束中之不同PRACH時序窗),則在該小區中需要具有一個以上SS。 一替代方法係將SSI放在MIB (其在與SS傳輸相關聯之表示為PBCH之實體廣播頻道中傳輸)中。然而,此一方法亦具有缺點。即,SSI需為至少10個位元以便促成網路中之足夠數目之系統資訊變體。(舉例而言)在數個波束中依10個位元之數量級傳輸將係昂貴的。因此,需要經改良基於索引的系統資訊分佈。For 5G-New Radio (NR), consider an index-based system information distribution concept. The 5G-NR proposal consists of a two-step mechanism for transmitting and accessing information. It consists of a system information block table (SIB table), which is a set containing a system information block configuration (SIB), and provides a SIB table for selecting One of the configurations to define one of the system information index (SSI) and one synchronization signal (SS). The SSI may also be accompanied by a data container represented as a physical broadcast channel (PBCH) as needed. The PBCH contains a master information block (MIB), which allows the transfer of more information than can be encoded in the SSI. It is assumed that the content of the SIB table is known to the user equipment (UE) when performing a random access attempt. Generally, the UE has a stored copy of one of the previously retrieved SIB tables, so that it only needs to receive the SS and determine its index (ie, SSI) to know which configuration it should use when accessing the network. Figure 1 illustrates an example of proposed system information retrieval for 5G-NR. In the example of FIG. 1, two network nodes 115a and 115b and a wireless device 110 (eg, a UE) are shown. Each network node 115 (for example, one of an evolved Node B (eNB), a gNB, a transmission receiving point (TRP), or a radio base station (RBS)) transmits an SS or a system signature signal. Transmitting network node 115a SS 1, the network node 115b transmission SS2. Together with their respective SSs, each network node 115 also transmits a physical broadcast channel (PBCH), which contains some of the minimum system information required for the wireless device 110 to access the network. This part of the minimum system information is shown as MIB in the example of FIG. Therefore, in the example of FIG. 1, the network node 115a transmits SS 1 along with MIB 1 and the network node 115b transmits SS 2 along with MIB 2 as indicated by “SS 1 + MIB 1 transmission” in FIG. 1 and Elliptical indication of "SS 2 + MIB 2 transmission". By reading the MIB, the wireless device 110 receives information on how to receive the SIB table. The SIB table may be transmitted using a broadcast format, such as a single frequency network (SFN) transmission, as depicted by the ellipse transmitted by the labeled SIB table in the example of FIG. 1. In addition to the minimum system information that is broadcast periodically in the SS + MIB and in the SIB table, the UE 110 can also receive other system information (e.g., through a dedicated transmission) after establishing initial access, such as by The ellipse is labeled as "extra SI transmission" in the example of 1. In existing methods, the system signature index (SSI) can be communicated to the wireless device in different ways. In some cases, the SSI is an index of the SS or the SSI is explicitly signaled in the MIB. However, there are certain disadvantages associated with indexing the SSI as an SS. For example, it may be desirable to change the system information of a cell. According to existing methods, this will require changing the SS that the cell is using. This can cause the wireless device to lose synchronization and it will take some time before the wireless device finds the cell again. This can be avoided by informing the wireless device of this situation in advance. However, this method is costly in terms of additional configuration messaging, additional implementation complexity of the wireless device, and additional delay. As another example, if a cell needs to have more than one system information variant (for example, to implement different PRACH timing windows in different beams), then it needs to have more than one SS in the cell. An alternative approach is to place the SSI in the MIB, which is transmitted in a physical broadcast channel, denoted PBCH, associated with the SS transmission. However, this method also has disadvantages. That is, the SSI needs to be at least 10 bits in order to facilitate a sufficient number of system information variants in the network. For example, transmitting in the order of 10 bits in several beams would be expensive. Therefore, an improved index-based system information distribution is needed.

為運用現有解決方案解決上述問題,揭示一種在一無線器件中之方法。該方法包括從一網路節點接收一或多個傳輸,該一或多個傳輸包括一第一序列及與該第一序列相關聯之一廣播頻道。該方法包括基於第一序列判定一第一索引元素。該方法包括基於廣播頻道上之資訊判定一第二索引元素。該方法包括基於第一索引元素及第二索引元素而獲取一索引值。該方法包括使用所獲取索引值來判定系統資訊。 在某些實施例中,方法可包括使用經判定系統資訊來存取與網路節點相關聯之一網路。 在某些實施例中,獲取一索引值可包括導出索引值,其中所導出索引值係第一索引元素及第二索引元素之一函數。第一索引元素及第二索引元素之函數可係該第一索引元素及該第二索引元素之一串連(concatenation)。 在某些實施例中,第一序列可包括於一同步信號中。在某些實施例中,第一索引元素可包括複數個位元,且判定該第一索引元素可包括讀取包括於同步信號中之第一序列。在某些實施例中,廣播頻道可能歸因於以下之一或多者而與第一序列相關聯:同步信號隱式地定義用於廣播頻道之解調變之時間及頻率資源;及使用同步信號作為廣播頻道之一解調變參考信號。 在某些實施例中,廣播頻道可能歸因於以下之一或多者而與第一序列相關聯:使用第一索引元素來導出廣播頻道之解調變參考信號;及使用第一序列來導出廣播頻道之一頻道組態。 在某些實施例中,廣播頻道可包括一實體廣播頻道,且第二索引元素可包括包含於實體廣播頻道上之一主資訊區塊中之複數個顯式位元。在某些實施例中,方法可包括使用經判定第一索引元素對廣播頻道進行解碼。 在某些實施例中,系統資訊可包括與網路節點相關聯之一小區之系統資訊。在某些實施例中,系統資訊可包括與網路節點相關聯之複數個波束之一者之系統資訊。在某些實施例中,系統資訊可包括關於無線器件待被交遞至之一目標小區之資訊。 根據另一例示性實施例,揭示一種無線器件。該無線器件包括一接收器及耦合至該接收器之處理電路。該處理電路經組態以經由接收器從一網路節點接收一或多個傳輸,該一或多個傳輸包括一第一序列及與該第一序列相關聯之一廣播頻道。該處理電路經組態以基於第一序列判定一第一索引元素。該處理電路經組態以基於廣播頻道上之資訊判定一第二索引元素。該處理電路經組態以基於第一索引元素及第二索引元素而獲取一索引值。該處理電路經組態以使用所獲取索引值來判定系統資訊。 根據另一例示性實施例,揭示一種在一網路節點中之方法。該方法包括針對網路節點與一無線器件之間之無線通信之一或多個態樣定義系統資訊。該方法包括將一第一序列傳輸至無線器件,該第一序列使無線器件能夠基於該第一序列判定一第一索引元素。該方法包括將與第一序列相關聯之一廣播頻道傳輸至無線器件,該廣播頻道使無線器件能夠基於該廣播頻道上之資訊判定一第二索引元素,其中第一索引元素及第二索引元素使無線器件能夠獲取指示所定義系統資訊之一索引值。 在某些實施例中,索引值可係第一索引元素及第二索引元素之一函數。在某些實施例中,第一索引元素及第二索引元素之函數係該第一索引元素及該第二索引元素之一串連。 在某些實施例中,傳輸第一序列可包括傳輸包括該第一序列之一同步信號。在某些實施例中,第一索引元素可包括可藉由讀取包括於同步信號中之第一序列而判定之複數個位元。在某些實施例中,廣播頻道可能歸因於以下之一或多者而與第一序列相關聯:同步信號隱式地定義用於廣播頻道之解調變之時間及頻率資源;及使用同步信號作為廣播頻道之一解調變參考信號。 在某些實施例中,廣播頻道可能歸因於以下之一或多者而與第一序列相關聯:使用第一索引元素來導出廣播頻道之解調變參考信號;及使用第一序列來導出廣播頻道之一頻道組態。 在某些實施例中,廣播頻道可包括一實體廣播頻道,且第二索引元素包括包含於實體廣播頻道上之一主資訊區塊中之複數個顯式位元。 在某些實施例中,系統資訊可包括與網路節點相關聯之一小區之系統資訊。在某些實施例中,系統資訊可包括與網路節點相關聯之複數個波束之一者之系統資訊。在某些實施例中,系統資訊可包括關於無線器件待交遞至之一目標小區之資訊。 根據另一例示性實施例,揭示一種網路節點。該網路節點包括一傳輸器及耦合至該傳輸器之處理電路。該處理電路經組態以針對網路節點與一無線器件之間之無線通信之一或多個態樣定義系統資訊。該處理電路經組態以經由傳輸器將一第一序列傳輸至無線器件,該第一序列使無線器件能夠基於該第一序列判定一第一索引元素。該處理電路經組態以經由傳輸器將與第一序列相關聯之一廣播頻道傳輸至無線器件,該廣播頻道使無線器件能夠基於該廣播頻道上之資訊判定一第二索引元素,其中第一索引元素及第二索引元素使無線器件能夠獲取指示所定義系統資訊之一索引值。 本發明之某些實施例可提供一或多個技術優勢。舉例而言,某些實施例可有利地實現系統資訊之改變而不導致無線器件失去同步性或增大一無線器件判定系統資訊所需之時間量。作為另一實例,某些實施例可有利地避免與使用額外組態傳訊相關聯之增加成本、UE中之增大實施方案複雜性及額外延遲。作為又另一實例,某些實施例可有利地避免與傳訊大量位元相關聯之資源開支。作為又另一實例,某些實施例可有利地實現快速系統資訊改變而不改變系統同步信號且不傳訊MIB中之大量位元。熟習此項技術者可容易明白其他優勢。某些實施例可能不具有所述優勢、具有一些或全部所述優勢。In order to solve the above problems using existing solutions, a method in a wireless device is disclosed. The method includes receiving one or more transmissions from a network node, the one or more transmissions including a first sequence and a broadcast channel associated with the first sequence. The method includes determining a first index element based on a first sequence. The method includes determining a second index element based on information on a broadcast channel. The method includes obtaining an index value based on a first index element and a second index element. The method includes using the acquired index value to determine system information. In some embodiments, the method may include using the determined system information to access a network associated with a network node. In some embodiments, obtaining an index value may include deriving an index value, wherein the derived index value is a function of one of the first index element and the second index element. The function of the first index element and the second index element may be concatenation of the first index element and one of the second index element. In some embodiments, the first sequence may be included in a synchronization signal. In some embodiments, the first index element may include a plurality of bits, and determining that the first index element may include reading a first sequence included in the synchronization signal. In some embodiments, the broadcast channel may be associated with the first sequence due to one or more of the following: the synchronization signal implicitly defines the time and frequency resources used for the demodulation of the broadcast channel; and The signal serves as one of the broadcast channels to demodulate the reference signal. In some embodiments, the broadcast channel may be associated with the first sequence due to one or more of: using a first index element to derive a demodulation reference signal for the broadcast channel; and using the first sequence to derive Channel configuration for one of the broadcast channels. In some embodiments, the broadcast channel may include a physical broadcast channel, and the second index element may include a plurality of explicit bits included in a main information block on the physical broadcast channel. In some embodiments, the method may include decoding the broadcast channel using the determined first index element. In some embodiments, the system information may include system information of a cell associated with a network node. In some embodiments, the system information may include system information of one of a plurality of beams associated with a network node. In some embodiments, the system information may include information about a target cell to which the wireless device is to be handed over. According to another exemplary embodiment, a wireless device is disclosed. The wireless device includes a receiver and a processing circuit coupled to the receiver. The processing circuit is configured to receive one or more transmissions from a network node via a receiver, the one or more transmissions including a first sequence and a broadcast channel associated with the first sequence. The processing circuit is configured to determine a first index element based on the first sequence. The processing circuit is configured to determine a second index element based on the information on the broadcast channel. The processing circuit is configured to obtain an index value based on the first index element and the second index element. The processing circuit is configured to use the acquired index value to determine system information. According to another exemplary embodiment, a method in a network node is disclosed. The method includes defining system information for one or more aspects of wireless communication between a network node and a wireless device. The method includes transmitting a first sequence to a wireless device, the first sequence enabling the wireless device to determine a first index element based on the first sequence. The method includes transmitting a broadcast channel associated with the first sequence to a wireless device, the broadcast channel enabling the wireless device to determine a second index element based on information on the broadcast channel, wherein the first index element and the second index element Enables the wireless device to obtain an index value indicating the defined system information. In some embodiments, the index value may be a function of one of the first index element and the second index element. In some embodiments, the function of the first index element and the second index element is a series of one of the first index element and the second index element. In some embodiments, transmitting the first sequence may include transmitting a synchronization signal including one of the first sequence. In some embodiments, the first index element may include a plurality of bits that can be determined by reading a first sequence included in the synchronization signal. In some embodiments, the broadcast channel may be associated with the first sequence due to one or more of the following: the synchronization signal implicitly defines the time and frequency resources used for the demodulation of the broadcast channel; and the use of synchronization The signal serves as one of the broadcast channels to demodulate the reference signal. In some embodiments, the broadcast channel may be associated with the first sequence due to one or more of: using a first index element to derive a demodulation reference signal for the broadcast channel; and using the first sequence to derive Channel configuration for one of the broadcast channels. In some embodiments, the broadcast channel may include a physical broadcast channel, and the second index element includes a plurality of explicit bits included in a main information block on the physical broadcast channel. In some embodiments, the system information may include system information of a cell associated with a network node. In some embodiments, the system information may include system information of one of a plurality of beams associated with a network node. In some embodiments, the system information may include information about a target cell to which the wireless device is to be delivered. According to another exemplary embodiment, a network node is disclosed. The network node includes a transmitter and a processing circuit coupled to the transmitter. The processing circuit is configured to define system information for one or more aspects of wireless communication between a network node and a wireless device. The processing circuit is configured to transmit a first sequence to a wireless device via a transmitter, the first sequence enabling the wireless device to determine a first index element based on the first sequence. The processing circuit is configured to transmit a broadcast channel associated with the first sequence to a wireless device via a transmitter, the broadcast channel enabling the wireless device to determine a second index element based on information on the broadcast channel, wherein the first index element is The index element and the second index element enable the wireless device to obtain an index value indicating one of the defined system information. Certain embodiments of the invention may provide one or more technical advantages. For example, certain embodiments may advantageously implement changes in system information without causing the wireless device to lose synchronization or increase the amount of time required for a wireless device to determine system information. As another example, certain embodiments may advantageously avoid the increased costs associated with using additional configuration messaging, increased implementation complexity, and additional delays in the UE. As yet another example, certain embodiments may advantageously avoid resource expenditures associated with messaging a large number of bits. As yet another example, certain embodiments may advantageously enable rapid system information changes without changing the system synchronization signal and without signaling a large number of bits in the MIB. Those skilled in the art will readily understand other advantages. Certain embodiments may not have the described advantages, have some or all of the described advantages.

如上文中描述,存在與傳達系統資訊之一索引之現有方法相關聯之缺點。使用SSI作為SS之索引(或明確地傳訊MIB中之SSI)可能使得難以改變一小區之系統資訊,導致失去無線器件之同步性及在無線器件再次找到小區之前之增加時間。提前向無線器件系統告知資訊之改變在額外組態傳訊、無線器件中之額外實施方案複雜性及額外延遲方面係代價高的。類似地,將SSI放在MIB (其在與SS傳輸相關聯之表示為PBCH之實體廣播頻道中傳輸)中要求SSI係至少10個位元,但促成網路中之足夠數目之系統資訊變體所需之開支係大的。 本發明預期可解決與現有方法相關聯之此等及其他缺點之各種實施例。在一些情況中,此使用用於基於索引的系統資訊分佈之一經改良方法來達成。根據一個例示性實施例,一網路節點(例如,一gNB或一eNB)針對該網路節點與一無線器件(例如,一UE)之間之無線通信之一或多個態樣定義系統資訊。網路節點將一第一序列傳輸至無線器件,該第一序列使無線器件能夠基於該第一序列判定一第一索引元素。網路節點將與第一序列相關聯之一廣播頻道傳輸至無線器件,該廣播頻道使無線器件能夠基於該廣播頻道上之資訊判定一第二索引元素,其中第一索引元素及第二索引元素使無線器件能夠獲取指示所定義系統資訊之一索引值。 根據另一例示性實施例,一無線器件(例如,一UE)從一網路節點接收一或多個傳輸,該一或多個傳輸包括一第一序列及與該第一序列相關聯之一廣播頻道。無線器件基於第一序列判定一第一索引元素。該無線器件基於廣播頻道上之資訊判定一第二索引元素。該無線器件基於第一索引元素及第二索引元素而獲取一索引值。該無線器件使用所獲取索引值來判定系統資訊。在某些實施例中,無線器件使用經判定系統資訊來存取與網路節點相關聯之一網路。 本發明之某些實施例可提供一或多個技術優勢。舉例而言,某些實施例可有利地實現系統資訊之改變而不導致無線器件失去同步性或增大一無線器件判定系統資訊所需之時間量。作為另一實例,某些實施例可有利地避免與使用額外組態傳訊相關聯之增加成本、UE中之增大實施方案複雜性及額外延遲。作為又另一實例,某些實施例可有利地避免與傳訊大量位元相關聯之資源開支。作為又另一實例,某些實施例可有利地實現快速系統資訊改變而不改變系統同步信號且不傳訊MIB中之大量位元。熟習此項技術者可容易明白其他優勢。某些實施例可能不具有所述優勢、具有一些或全部所述優勢。 圖2圖解說明一無線器件如何擷取使其能夠執行一實體隨機存取頻道(PRACH)傳輸且接收一隨機存取回應(RAR)之最小系統資訊之一實例。更特定言之,圖2圖解說明例示性信號及無線器件如何隨時間(在X軸上描繪)使用該等信號來擷取執行隨機存取程序(以SS開始且以RAR之接收結束)所需之組態資料。 以執行初始存取為目標之一無線器件(例如,一UE)之第一步驟係在一適合載波頻率上搜尋並偵測SS 205。當偵測到SS 205時,無線器件與網路同步且可從SS 205導出如何接收MIB 210。MIB 210可在與SS 205之關係固定之資源上廣播且亦可用可從SS 205導出之一序列擾碼。注意,在NR中,MIB 210將在尚未藉由第三代合作夥伴計畫(3GPP)完全定義之一實體廣播頻道(NR-PBCH)上傳輸。此頻道在一定程度上類似於用於長期演進(LTE)之對應PBCH。然而,NR中之MIB之內容不同於LTE中之MIB之內容,但本文中將使用相同術語來指示在與系統同步信號相關聯之一實體頻道中傳輸之一條資訊。 MIB 210含有協助無線器件驗證任何先前儲存之SIB參數之資訊。作為一個實例,MIB 210中含有之資訊可係協助無線器件驗證任何先前儲存之SIB參數之一值標籤。儘管圖2之實例將資訊圖解說明為一值標籤,然資訊可呈其他形式。舉例而言,資訊可呈一版本號或一雜湊之形式。MIB 210亦含有指導無線器件如何接收廣播SIB 215之組態資料。SIB傳輸組態資料可包含(舉例而言)時間及頻率資源、解調變參考信號(DMRS)、擾碼及其他適合資訊。作為一額外實例,在一些情況中,SIB傳輸組態資料可包含結合SIB 215傳輸之一SS之一索引/序列。若SIB資訊(或SIB資訊之部分)以一表之形式結構化,其中僅將應用表中之一個條目或一組條目(而表中之其他條目中之資訊可應用於其他小區中),則無線器件亦可從SS 205/ MIB 210導出一表索引,其指出可應用條目(或條目組)。 廣播SIB 215提供至少最小組態資料(最小系統資訊)以允許無線器件執行初始存取。因此,當無線器件接收SIB時,其接收PRACH 220之組態資料。PRACH 220之組態資料可包含(舉例而言)時間及頻率資源。另外,SIB 215中之資訊包含使無線器件能夠接收RAR 225之組態資料。此組態資料組態針對RAR 225之一實體頻道,其中主要分量係待結合RAR 225傳輸之一SS,從而允許無線器件偵測RAR 225並對其進行解碼。一專用SS將促成從除SS 205以外之另一(不工作)天線埠傳輸RAR 225。專用同步信號對於未經授權頻帶中之部署亦將係有用的,其中RAR 225之傳輸可經延遲且時序對於無線器件而言未知。另外,若高增益波束形成用於RAR 225,則專用SS將幫助無線器件調諧自動增益控制(AGC)。 在接收SIB 215且擷取所包含組態資料之後,無線器件可根據SIB中之組態資料藉由在PRACH 220上傳輸一隨機存取前置項且接收後續RAR 225而起始初始存取程序。 圖3係圖解說明根據某些實施例之一網路300之一實施例之一方塊圖。網路300包含一或多個無線器件110及一或多個網路節點115 (在圖3之例示性實施例中包含網路節點115a及115b)。無線器件110包括處理器820、記憶體830、介面810及天線840。網路節點115a包括處理器920、記憶體930、介面910/940及天線950。此等組件可一起工作以便提供網路節點及/或無線器件功能性,諸如提供網路300中之無線連接。 舉例而言,無線器件110可經由一無線介面與網路節點115通信。舉例而言,無線器件110可將無線信號125a、125b傳輸至網路節點115之一或多者,及/或從網路節點115之一或多者接收無線信號125a、125b。無線信號125a、125b可含有語音訊務、資料訊務、控制信號及/或任何其他適合資訊。在一些實施例中,與一網路節點115相關聯之無線信號覆蓋之一區域可被稱為一小區。在一些實施例中,無線器件110可具有器件間(D2D)能力。因此,無線器件110可能夠從另一無線器件接收信號及/或將信號直接傳輸至另一無線器件。 在某些實施例中,網路節點115可與一無線電網路控制器介接。無線電網路控制器可控制網路節點115且可提供某些無線電資源管理功能、行動性管理功能及/或其他適合功能。在某些實施例中,無線電網路控制器之功能可包含於網路節點115中。無線電網路控制器可與一核心網路節點介接。在某些實施例中,無線電網路控制器可經由一互連網路320與核心網路節點介接。互連網路320可係指能夠傳輸音訊、視訊、信號、資料、訊息或前述內容之任何組合之任何互連系統。互連網路320可包含一或多個網際網路協定(IP)網路、公用交換電話網路(PSTN)、封包資料網路、光學網路、公用或私人資料網路、區域網路(LAN)、無線區域網路(WLAN)、有線網路、無線網路、都會區域網路(MAN)、廣域網路(WAN)、一區域、地區性或全球通信或電腦網路(諸如網際網路)、一企業內網路或包含其等之組合之任何其他適合通信鏈路之全部或一部分以實現器件之間之通信。 在一些實施例中,核心網路節點可管理通信工作階段之建立及無線器件110之各種其他功能性。無線器件110可使用非存取層級層來與核心網路節點交換某些信號。在非存取層級傳訊中,無線器件110與核心網路節點之間之信號可通透地通過RAN。在某些實施例中,網路節點115可經由一節點間介面(諸如(舉例而言)一X2介面)與一或多個網路節點介接。 如上文中描述,網路300之例示性實施例可包含一或多個無線器件110、及能夠與無線器件110(直接或間接)通信之一或多個不同類型之網路節點115。 在一些實施例中,使用非限制術語無線器件。本文中描述之無線器件110可係能夠、經組態、經配置及/或可操作以與網路節點115及/或另一無線器件無線地通信之任何類型之無線器件。無線地通信可涉及使用電磁信號、無線電波、紅外信號及/或適於透過空氣傳遞資訊之其他類型之信號來傳輸及/或接收無線信號。在特定實施例中,無線器件可經組態以在無直接人類互動之情況下傳輸及/或接收資訊。例如,一無線器件可經設計以在藉由一內部或外部事件觸發時或回應於來自一網路之請求而按一預定排程將資訊傳輸至網路。通常,一無線器件可表示能夠、經組態用於、經配置用於及/或可操作用於無線通信之任何器件,舉例而言無線電通信器件。無線器件之實例包含(但不限於) UE,諸如智慧型電話。進一步實例包含無線攝影機、無線致能平板電腦、膝上型電腦嵌入設備(LEE)、膝上型電腦安裝設備(LME)、USB硬體鎖(dongle)及/或無線客戶端設備(customer-premises equipment (CPE))。無線器件110亦可係一無線電通信器件、目標器件、D2D UE、機器型通信(MTC) UE或能夠進行機器間(M2M)通信之UE、低成本及/或低複雜性UE、配備有UE之一感測器或任何其他適合器件。 作為一個特定實例,無線器件110可表示經組態用於根據由3GPP發佈之一或多個通信標準(諸如3GPP之GSM、UMTS、LTE及/或5G標準)進行通信之一UE。如本文中使用,一「UE」可能不一定具有在擁有及/或操作相關器件之人類使用者之意義上之「使用者」。代替地,一UE可表示意欲出售給人類使用者或由人類使用者操作但可能最初並非與一特定人類使用者相關聯之一器件。 無線器件110可舉例而言藉由實施副鏈路通信之一3GPP標準而支援D2D通信,且在此情況中可被稱為一D2D通信器件。 作為又另一特定實例,在一物聯網(IOT)案例中,一無線器件可表示執行監測及/或量測,且將此等監測及/或量測之結果傳輸至另一無線器件及/或一網路節點之一機器或其他器件。無線器件在此情況中可係一M2M器件,其在一3GPP背景內容中可被稱為一MTC器件。作為一個特定實例,無線器件可係實施3GPP窄帶物聯網(NB-IoT)標準之一UE。此等機器或器件之特定實例係感測器、計量器件(諸如功率計)、工業機械或家用或個人器具(例如,冰箱、電視機、個人可穿戴用品(諸如手錶)等)。在其他案例中,一無線器件可表示能夠監測及/或報告其操作狀態或與其操作相關聯之其他功能之一工具或其他設備。 如上文中描述之無線器件110可表示一無線連接之端點,在該情況中器件可被稱為一無線終端。此外,如上文中描述之一無線器件可係行動的,在該情況中其亦可被稱為一行動器件或一行動終端。 如圖3中描繪,無線器件110可係任何類型之無線端點、行動站、行動電話、無線局部線路電話、智慧型電話、使用者設備、桌上型電腦、PDA、手機、平板電腦、膝上型電腦、VoIP電話或手機,其能夠將資料及/或信號無線地發送至一網路節點(諸如網路節點115)及/或其他無線器件且從其等無線地接收資料及/或信號。無線器件110包括處理器820、記憶體830、介面810及天線840。無線器件110之組件描繪為定位在一單一較大方塊內之單一方塊,然而實務上,一無線器件可包括組成一單一圖解說明組件之多個不同實體組件(例如,記憶體830可包括多個離散微晶片,各微晶片表示總儲存容量之一部分)。 處理器820可係一微處理器、控制器、微控制器、中央處理單元、數位信號處理器、特定應用積體電路、場可程式化閘陣列、或任何其他適合運算器件、資源、或可操作以單獨或結合其他無線器件110組件(諸如記憶體830)提供無線器件110功能性之硬體、軟體及/或編碼邏輯之組合之一或多者之一組合。此功能性可包含提供本文中論述之各種無線特徵,包含本文中揭示之特徵或益處之任一者。 記憶體830可係任何形式之揮發性或非揮發性記憶體,包含(無限制)永久儲存器、固態記憶體、遠端安裝記憶體、磁性媒體、光學媒體、隨機存取記憶體(RAM)、唯讀記憶體(ROM)、可移除媒體、或任何其他適合本端或遠端記憶體組件。記憶體830可儲存由無線器件110利用之任何適合資料、指令或資訊,包含軟體及編碼邏輯。可使用記憶體830來儲存藉由處理器820進行之任何計算及/或經由介面810接收之任何資料。 介面810可用於無線器件110與網路節點115之間之傳訊及/或資料之無線通信中。舉例而言,介面810可執行允許無線器件110經由一無線連接從網路節點115發送且接收資料可能需要之任何格式化、編碼或轉譯。介面810亦可包含可耦合至天線840或係天線840之一部分之一無線電傳輸器及/或接收器。無線電可接收將經由一無線連接發出至網路節點115之數位資料。無線電可將數位資料轉換成具有適當頻道及頻寬參數之一無線電信號。接著,無線電信號可經由天線840傳輸至網路節點115。 天線840可係能夠無線地傳輸及接收資料及/或信號之任何類型之天線。在一些實施例中,天線840可包括可操作以在(舉例而言) 2 GHz與66 GHz之間傳輸/接收無線電信號之一或多個全向、扇區或平板天線。在一些實施例中,天線840可能夠在此範圍外傳輸/接收信號。作為一個實例,在一5G系統中操作之一天線840可支援較低頻率(例如,低至700 MHz)之傳輸/接收。為了簡單起見,就正使用一無線信號之程度,天線840可被視為介面810之一部分。 再者,在一些實施例中,使用通用術語「網路節點」。如本文中使用,「網路節點」係指能夠、經組態、經配置及/或可操作以與一無線器件及/或與無線通信網路中之實現及/或提供對無線器件之無線存取之其他設備直接或間接通信之設備。網路節點之實例包含(但不限於)存取點(AP),特定言之無線電存取點。一網路節點可表示基地台(BS),諸如無線電基地台。無線電基地台之特定實例包含節點B、演進節點B (eNB)及gNB。基地台可基於其等提供之覆蓋量(或換言之,其等之傳輸功率位準)進行分類且接著亦可被稱為超微型基地台、微型基地台、小型基地台或巨型基地台。「網路節點」亦包含一分佈式無線電基地台之一或多個(或全部)部分,諸如集中式數位單元及/或遠端無線電單元(RRU),有時稱為遠端無線電前端(RRH)。此等遠端無線電單元可或可不與一天線整合作為一天線整合無線電。一分佈式無線電基地台之部分亦可被稱為一分佈式天線系統(DAS)中之節點。 作為一特定非限制實例,一基地台可係一中繼節點或控制一中繼之一中繼供體節點。 網路節點之又進一步實例包含多標準無線電(MSR)無線電設備(諸如MSR BS)、網路控制器(諸如無線電網路控制器(RNC)或基地台控制器(BSC))、基地收發站(BTS)、傳輸點、傳輸節點、多小區/多播協調實體(MCE)、核心網路節點(例如,MSC、MME等)、操作及維護(O&M)節點、操作支援系統(OSS)節點、自組織網路(SON)節點、定位節點(例如,演進伺服行動位置中心(E-SMLC))、驅動測試之最小化(MDT)、或任何其他適合網路節點。然而,更一般地,網路節點可表示能夠、經組態、經配置及/或可操作以實現及/或提供對無線通信網路之一無線器件存取或提供一些服務至已存取無線通信網路之一無線器件之任何適合器件(或器件群組)。 在圖3中,網路節點115a包括處理器920、記憶體930、介面910/940及天線950。此等組件被描繪為定位在一單一較大方塊內之單一方塊。然而,實務上,網路節點115a可包括組成一單一圖解說明組件之多個不同實體組件(例如,介面910/940可包括用於耦合線進行一有線連接及耦合一無線電收發器進行一無線連接之終端)。作為另一實例,網路節點115a可係一虛擬網路節點,其中多個不同實體單獨組件相互作用以提供網路節點115a之功能性(例如,處理器920可包括定位在三個單獨殼體中之三個單獨處理器,其中各處理器負責網路節點115a之一特定例項之一不同功能)。類似地,網路節點115a可由多個實體單獨組件(例如,一節點B組件及一RNC組件、一BTS組件及一BSC組件等)構成,該等組件可能各自具有其等自身的各自處理器、儲存器及介面組件。在其中網路節點115a包括多個單獨組件(例如,BTS及BSC組件)之某些案例中,可在數個網路節點間共用單獨組件之一或多者。舉例而言,一單一RNC可控制多個節點B。在此一案例中,各唯一節點B及BSC對可係一單獨網路節點。在一些實施例中,網路節點115a可經組態以支援多個無線電存取技術(RAT)。在此等實施例中,一些組件可複製(例如,用於不同RAT之單獨記憶體930)且一些組件可再使用(例如,相同天線950可由RAT共用)。 處理器920可係一微處理器、控制器、微控制器、中央處理單元、數位信號處理器、特定應用積體電路、場可程式化閘陣列、或任何其他適合運算器件、資源、或可操作以單獨或結合其他網路節點115a組件(諸如記憶體930)提供網路節點115a功能性之硬體、軟體及/或編碼邏輯之組合之一或多者之一組合。舉例而言,處理器920可執行儲存於記憶體930中之指令。此功能性可包含提供本文中論述之各種無線特徵至一或多個無線器件(諸如無線器件110),包含本文中揭示之特徵或益處之任一者。 記憶體930可包括任何形式之揮發性或非揮發性電腦可讀記憶體,包含(無限制)永久儲存器、固態記憶體、遠端安裝記憶體、磁性媒體、光學媒體、RAM、ROM、可移除媒體、或任何其他適合本端或遠端記憶體組件。記憶體930可儲存由網路節點115a利用之任何適合指令、資料或資訊,包含軟體及編碼邏輯。可使用記憶體930來儲存藉由處理器920進行之任何計算及/或經由介面910/940接收之任何資料。 網路節點115a亦包括介面910/940,該介面910/940可用於網路節點115a、網路115b及/或無線器件110之間之傳訊及/或資料之有線或無線通信中。舉例而言,介面910/940可執行允許網路節點115a經由一有線連接從網路115b發送且接收資料可能需要之任何格式化、編碼或轉譯。介面910/940亦可包含可耦合至天線950或係天線950之一部分之一無線電傳輸器及/或接收器。無線電可接收待經由一無線連接發出至其他網路節點或無線器件之數位資料。無線電可將數位資料轉換成具有適當頻道及頻寬參數之一無線電信號。接著,無線電信號可經由天線950傳輸至適當接收者(例如,無線器件110)。 天線950可係能夠無線地傳輸及接收資料及/或信號之任何類型之天線。在一些實施例中,天線950可包括可操作以在(舉例而言) 2 GHz與66 GHz之間傳輸/接收無線電信號之一或多個全向、扇區或平板天線。在一些實施例中,天線950可能夠在此範圍外傳輸/接收信號。作為一個實例,在一5G系統中操作之一天線950可支援較低頻率(例如,低至700 MHz)之傳輸/接收。可使用一全向天線來在任何方向上傳輸/接收無線電信號,可使用一扇區天線來從一特定區域內之器件傳輸/接收無線電信號,且一平板天線可係用於以一相對直線傳輸/接收無線電信號之一視線天線。 如本文中使用,術語「無線電節點」一般用於指代無線器件及網路節點兩者,如各自在上文中分別進行描述。 諸如網路節點及無線器件之術語應被視為非限制的且特定言之不暗示該兩者之間之某一層次關係;一般而言,「網路節點」可被視作器件1且「無線器件」可被視作器件2,且此兩個器件經由某一無線電頻道彼此通信。 下文中關於圖7至圖12更詳細地描述無線器件110、網路節點115及其他網路節點(諸如無線電網路控制器或核心網路節點)之例示性實施例。 儘管圖3圖解說明網路300之一特定配置,然本發明預期本文中描述之各種實施例可應用於具有任何適合組態之多種網路。舉例而言,網路300可包含任何適合數目之無線器件110及網路節點115,以及適於支援無線器件之間或一無線器件與另一通信器件(諸如一陸線電話)之間之通信之任何額外元件。在不同實施例中,無線網路300可包括任何數目之有線或無線網路、網路節點、基地台、控制器、無線器件、中繼站、及/或可促成或參與資料及/或信號經由有線或無線連接之通信之任何其他組件。 此外,儘管某些實施例可被描述為在一NR網路中實施,然實施例可使用任何適合組件在任何適當類型之電信系統中實施,且適用於任何RAT或多RAT系統,其中一無線器件接收及/或傳輸信號(例如,資料)。舉例而言,本文中描述之各種實施例可能適用於LTE、先進LTE、5G、UMTS、HSPA、GSM、cdma2000、WCDMA、WiMax、UMB、WiFi、另一適合RAT或一或多個RAT之任何適合組合。因此,網路300可表示任何類型之通信、電信、資料、蜂巢式及/或無線電網路或其他類型之系統。在特定實施例中,網路300可經組態以根據特定標準或其他類型之預定義規則或程序操作。因此,無線通信網路之特定實施例可實施通信標準,諸如全球行動通信系統(GSM)、通用行動電信系統(UMTS)、長期演進(LTE)及/或其他適合2G、3G、4G或5G標準;無線區域網路(WLAN)標準,諸如IEEE 802.11標準;及/或任何其他適當無線通信標準,諸如微波存取全球互通(WiMax)、藍芽及/或ZigBee標準。 儘管可在下行鏈路(DL)中之無線傳輸之背景內容中描述某些實施例,然本發明預期各種實施例同等地適用於上行鏈路(UL)中。 儘管可在任何適當類型之系統中使用任何適合組件來實施本文中描述之解決方案,然可在一無線網路(諸如圖3中圖解說明之例示性無線通信網路)中實施所描述解決方案之特定實施例。在圖3之例示性實施例中,無線通信網路提供通信及其他類型之服務至一或多個無線器件。在圖解說明之實施例中,無線通信網路包含促成無線器件對藉由無線通信網路提供之服務之存取及/或使用之網路節點之一或多個例項。無線通信網路可進一步包含適於支援無線器件之間或一無線器件與另一通信器件(諸如一陸線電話)之間之通信之任何額外元件。 現將在下文中參考隨附圖式更充分地描述本文中預期之一些實施例。然而,其他實施例含於本發明之範疇內且本發明不應解釋為僅限於本文中陳述之實施例;實情係,藉由實例提供此等實施例以將本發明概念之範疇傳遞給熟習此項技術者。貫穿描述,相同元件符號係指相同元件。 應注意,在適當的情況下,本文中揭示之任何實施例之任何特徵可應用於任何其他實施例。同樣地,任何實施例之任何優勢可應用於其他實施例且反之亦然。將從以下描述明白所附實施例之其他目的、特徵及優勢。 通常,本文中使用之全部術語應根據其等在技術領域中之普通意義進行解釋,除非本文中另外明確定義。對「一(a)/一(an)/該元件、裝置、組件、構件、步驟等」之全部引用應開放地解釋為指代元件、裝置、組件、構件、步驟等之至少一個例項,除非另外明確規定。不必依揭示之精確順序執行本文中揭示之任何方法之步驟,除非明確規定。 如上文中描述,本發明預期可解決與傳達系統資訊之一索引之現有方法相關聯之缺點之各種實施例。在某些實施例中,一網路節點(諸如網路節點115a)針對網路節點115a與無線器件110之間之無線通信之一或多個態樣定義系統資訊。網路節點115a將一第一序列傳輸至無線器件110。第一序列使無線器件110能夠基於該第一序列判定一第一索引元素。在某些實施例中,第一序列可包括於一SS中。在某些實施例中,網路節點115a可藉由傳輸包括第一序列之SS而傳輸該第一序列。 網路節點115a亦將與第一序列相關聯之一廣播頻道傳輸至無線器件110。廣播頻道可以多種方式與第一序列相關聯。作為一個實例,歸因於SS隱式地定義用於廣播頻道之解調變之時間及頻率資源,廣播頻道可與第一序列相關聯。作為另一實例,在某些實施例中,歸因於SS用作廣播頻道之一DMRS,廣播頻道可與第一序列相關聯。作為又另一實例,歸因於使用第一索引元素來導出廣播頻道之DMRS,廣播頻道可與第一序列相關聯。作為又另一實例,在某些實施例中,歸因於使用第一序列來導出廣播頻道之一頻道組態,廣播頻道可與第一序列相關聯。 廣播頻道使無線器件110能夠基於廣播頻道上之資訊判定一第二索引元素。第一索引元素及第二索引元素使無線器件110能夠獲取指示所定義系統資訊之一索引值。 舉例而言,無線器件110從網路節點115a (即,第一序列及與該第一序列相關聯之廣播頻道)接收傳輸。無線器件110基於第一序列判定一第一索引元素,且基於廣播頻道上之資訊判定一第二索引元素。如上所述,在某些實施例中,第一序列可包括於一SS中。在某些實施例中,第一索引元素可包括複數個位元,且無線器件110可藉由讀取包括於SS中之第一序列而判定第一索引元素。在某些實施例中,廣播頻道可包括一實體廣播頻道,且第二索引元素可包括包含於實體廣播頻道上之一主資訊區塊中之複數個顯式位元。在某些實施例中,無線器件110可使用經判定第一索引元素對廣播頻道進行解碼。 無線器件110基於第一索引元素及第二索引元素而獲取一索引值。無線器件110使用所獲取索引值來判定系統資訊。在某些實施例中,無線器件110使用經判定系統資訊來存取與網路節點115a相關聯之一網路(例如,網路300)。 無線器件110可以多種方式獲取索引值。作為一個實例,無線器件110可藉由導出索引值而獲取該索引值。所導出索引值可係第一索引元素及第二索引元素之一函數。函數可係任何適合函數。作為一個實例,第一索引元素及第二索引元素之函數可係該第一索引元素及該第二索引元素之一串連。在某些實施例中,無線器件110可藉由將第一索引元素及第二索引元素應用於一二維表以便獲取索引值而獲取該索引值。 現將在下文中更充分地描述由本發明預期之實施例之一些例示性使用情況。然而,其他實施例含於本發明之範疇內且本文中描述之概念不應解釋為限於僅本文中陳述之實施例;實情係,藉由實例提供此等實施例以將概念之範疇傳遞給熟習此項技術者。 根據一第一例示性使用情況,系統資訊可包括與網路節點相關聯之一小區之系統資訊。在此一案例中,無線器件110可讀取一SIB表傳輸(例如,若UE尚未如此做)。無線器件110可儲存SIB表。網路節點115a傳輸呈一SS (包含一實體小區識別碼(PCI))之形式之一第一序列。在一些情況中,SS可包含一主SS (PSS)及一輔SS (SSS),可從其等判定PCI。 網路節點115a亦傳輸一廣播頻道(例如,PBCH)。廣播頻道可包含一MIB。廣播頻道可與SS相關聯。在一些情況中,廣播頻道可與SS一起傳輸。舉例而言,SS及廣播頻道可能在以下意義上相關:SS隱式地定義用於PBCH解調變之時間及頻率資源;使用SS作為PBCH之一解調變參考信號;及/或使用SS索引(例如,PCI)來導出PBCH之一解調變參考信號。 無線器件110掃描來自網路節點115a之SS傳輸且選擇其等之一者(例如,其接收之最強SS,其在此例示性使用情況中係與網路節點115a相關聯之SS)。無線器件110判定PCI作為第一索引元素。在一些情況中,可從SS之一索引導出PCI。使用對PCI之瞭解,無線器件110可對廣播頻道(例如,此例示性使用情況中之PBCH)進行解碼。在此第一例示性使用情況中,PBCH含有包含一CELL_SI_CONFIG欄位中之一第二索引元素之一MIB。CELL_SI_CONFIG可包括包含於廣播頻道上之MIB中之少量位元。無線器件110從MIB判定CELL_SI_CONFIG元素。在此例示性使用情況中,使用MIB中之少量位元來指示系統資訊之一個變體。對於各PCI,允許不同變體(例如,16個變體)。舉例而言,MIB可含有用於導出索引值(即,此實例中之SSI)之4個位元,如下文中更詳細地描述。 根據此第一例示性使用情況,無線器件110基於第一索引元素及第二索引元素而獲取索引值(在此例示性使用情況中表示為一系統簽章索引(SSI))。舉例而言,無線器件110可以來自SS(在下文方程式1中表示為PCI)及CELL_SI_CONFIG之全部位元或位元之一子集為一函數導出索引值(即,SSI)。此展示在下文方程式1中:其中SSI係索引值,PCI表示第一索引元素(即,SS之索引(例如,10個位元)),且CELL_SI_CONFIG表示第二索引元素(即,包含於廣播頻道(即,在此例示性使用情況中之PBCH)內之MIB中之少量位元(例如,4個位元))。 函數可係任何適合函數。舉例而言,在某些實施例中,函數可係PCI位元及CELL_SI_CONFIG位元之一串連。CELL_SI_CONFIG位元指出不同系統資訊集(舉例而言,在一SIB表中)且可用於修改任何初始存取參數。可使用其他函數。舉例而言,一個函數可係僅使用PCI中之M個最高有效位元且使彼等位元與CELL_SI_CONFIG中之位元串連。在某些實施例中,待應用之函數亦可在廣播頻道(例如,PBCH)中傳訊。 在此例示性使用情況之一些實施方案中,藉由第一索引元素及第二索引元素之函數之操作而形成一位元欄位。在此一案例中,藉由函數形成之位元欄位可轉換成無線器件110可使用以從無線器件110已儲存之SIB表選擇SIB之一索引值。接著,無線器件110可根據所導出系統資訊存取網路。 根據一第二例示性使用情況,系統資訊可包括與網路節點相關聯之複數個波束之一者之系統資訊。在某些實施例中,網路節點115a可傳輸複數個波束。在一小區內,將存在多個波束。舉例而言,在高頻帶(例如,超過6 GHz)中操作之一小區可具有至多64個波束。對於中頻帶(例如,在3 GHz與6 GHz之間),波束之最大數目將係8,且對於低頻帶(例如,低於3 GHz),波束之最大數目將係4。為對64個波束進行編碼,需要六個位元之資訊來指示一無線器件處於哪一波束中。各波束將具有指示該波束之系統資訊之一索引值。為指示此系統資訊,網路節點115a在各波束中傳輸一SS區塊索引,且各波束將具有一不同SS區塊索引。 對於SS區塊索引,網路節點115a傳輸一序列(例如,一DMRS)、以及包含含有額外資訊之一MIB之一廣播頻道(例如,PBCH)。藉由NR-PBCH之DMRS傳遞一第一索引元素。舉例而言,DMRS可指示用作一索引值之總計六個位元之前三個位元。在對NR-PBCH進行解碼時,無線器件110首先可估計八個可能DMRS序列之哪一個最可能用作DMRS序列且此向無線器件110提供SS區塊索引之至多三個位元(亦稱為SS區塊索引之隱式位元)。在PBCH中透過MIB中之三個顯式位元傳遞一第二索引元素。DMRS序列之三個隱式位元及PBCH中之三個顯式位元一起使無線器件110能夠獲取指示波束索引之索引值,該索引值接著用於判定該波束之系統資訊。 舉例而言,無線器件110可接收包含一序列(例如,DMRS)及PBCH (其包含MIB)之SS區塊索引。無線器件110使用DMRS來對PBCH進行解碼。舉例而言,無線器件110可能知道可用於對PBCH進行解碼之固定數目之可能DMRS序列(例如,八個不同DMRS序列候選者)。無線器件110嘗試使用可能DMRS序列之一或多者來對PBCH進行解碼。一旦無線器件110已判定正確DMRS,無線器件110便判定第一索引元素作為藉由DMRS序列指示之三個隱式位元。接著,無線器件110對PBCH進行解碼,且能夠判定第二索引元素(即,包含於PBCH之MIB中之三個顯式位元)。無線器件110基於第一索引元素及第二索引元素而獲取索引值。舉例而言,無線器件110可使用藉由DMRS指示之三個位元及包含於MIB中之三個顯式位元之一串連來獲取索引值。接著,無線器件110可使用所獲取索引值來判定一波束之系統資訊。 根據一第三例示性使用情況,上文中描述之實施例可用於按需系統資訊之索引。在此一案例中,與一網路節點115相關聯之各小區可能屬於一系統資訊區域ID。一些SIB可能在包含複數個小區之整個系統資訊區域中有效。在此一案例中,網路節點115a傳輸一序列(例如,一PCI),可從該序列判定一第一索引元素。從一主同步信號及輔同步信號(分別表示為NR-PSS及NR-SSS)之序列索引直接導出PCI。另外,網路節點115a傳輸包含一第二索引元素之一廣播頻道。舉例而言,網路節點115a可廣播關於一或多個SIB或含有多個SIB之系統資訊訊息之一或多個值標籤、及與小區相關聯之一SI區域ID。值標籤及與小區相關聯之系統資訊區域ID可一起組成第二索引元素。值標籤及系統資訊區域ID可作為剩餘最小系統資訊(RMSI)廣播(在一實體下行鏈路控制頻道(PDCCH)上排程且在一實體下行鏈路共用頻道(PDSCH)上傳輸)。用於RMSI廣播之頻道與PCI相關聯,其中從PCI導出頻道組態。 無線器件110接收序列(即,在此第三例示性使用情況中提供PCI之PSS/SSS)及經廣播值標籤及系統資訊區域ID。無線器件110判定PCI作為第一索引元素,且判定值標籤及系統資訊區域ID作為第二索引元素。無線器件110基於PCI、值標籤及系統資訊區域ID而獲取一索引值。接著,無線器件110可使用所獲取索引值來判定系統資訊。 根據一第四例示性使用情況,本文中描述之實施例可應用於載波聚合。舉例而言,在某些實施例中,網路節點115a可在多個分量載波上傳輸SS區塊。各分量載波將與一頻率位置相關聯。SS區塊索引可包含指示一PCI之一PSS/SSS序列。無線器件110接收SS區塊。為存取分量載波,無線器件110從PSS/SSS序列判定呈PCI之形式之一第一索引元素。無線器件110判定呈分量載波之頻率位置之形式之一第二索引元素。基於經判定第一索引值(即,在此第四例示性使用情況中之PCI)及經判定第二索引值(即,在此第四例示性使用情況中之分量載波之頻率位置),無線器件110獲取一索引值。無線器件110使用所獲取索引值來獲取分量載波之系統資訊。 根據一第五例示性使用情況,系統資訊可包括關於無線器件待交遞至之一目標小區之資訊。當無線器件110從一個小區行進至另一小區時,無線器件110可在執行交遞之前從源小區提前獲得資訊。在進入目標小區後,無線器件110可判定呈目標小區之一PCI之形式之一第一索引元素(舉例而言,基於一序列,諸如藉由網路節點115a傳輸之PSS/SSS)。另外,無線器件110從藉由網路節點115a廣播之目標小區中之一波束之一波束索引(其可包含於PBCH之一MIB中)判定一第二索引元素。基於第一索引元素(即,在此第五例示性使用情況中之PCI)及第二索引元素(即,在此第五例示性使用情況中之波束索引),無線器件110獲取一索引值。舉例而言,無線器件110可將第一索引元素及第二索引元素應用於一二維表以獲取指示目標小區中之波束之系統資訊之索引值。 圖4係根據某些實施例之在一無線器件中之一方法400之一流程圖。方法400從步驟404開始,其中無線器件從一網路節點接收一或多個傳輸,該一或多個傳輸包括一第一序列及與該第一序列相關聯之一廣播頻道。在某些實施例中,無線器件可係一UE。 在某些實施例中,第一序列可包括於一SS中。在某些實施例中,廣播頻道可能歸因於以下之一或多者而與第一序列相關聯:SS隱式地定義用於廣播頻道之解調變之時間及頻率資源;及使用SS作為廣播頻道之一解調變參考信號。 在步驟408,無線器件基於第一序列判定一第一索引元素。在某些實施例中,第一索引元素可包括複數個位元,且判定該第一索引元素可包括讀取包括於SS中之第一序列。 在某些實施例中,廣播頻道可能歸因於以下之一或多者而與第一序列相關聯:使用第一索引元素來導出廣播頻道之解調變參考信號;及使用第一序列來導出廣播頻道之一頻道組態。 在步驟412,無線器件基於廣播頻道上之資訊判定一第二索引元素。在某些實施例中,廣播頻道可包括一實體廣播頻道,且第二索引元素可包括包含於實體廣播頻道上之一MIB中之複數個顯式位元。在某些實施例中,方法可包括使用經判定第一索引元素對廣播頻道進行解碼。 在步驟416,無線器件基於第一索引元素及第二索引元素而獲取一索引值。在某些實施例中,獲取一索引值可包括導出索引值,其中所導出索引值係第一索引元素及第二索引元素之一函數。第一索引元素及第二索引元素之函數可係該第一索引元素及該第二索引元素之一串連。 在步驟420,無線器件使用所獲取索引值來判定系統資訊。在某些實施例中,方法可包括使用經判定系統資訊來存取與網路節點相關聯之一網路。在某些實施例中,系統資訊可包括與網路節點相關聯之一小區之系統資訊。在某些實施例中,系統資訊可包括與網路節點相關聯之複數個波束之一者之系統資訊。在某些實施例中,系統資訊可包括關於無線器件待交遞至之一目標小區之資訊。 圖5係根據某些實施例之在一網路節點中之一方法500之一流程圖。方法500從步驟504開始,其中網路節點針對網路節點與一無線器件之間之無線通信之一或多個態樣定義系統資訊。在某些實施例中,無線器件可係一UE。 在步驟508,網路節點將一第一序列傳輸至無線器件,該第一序列使無線器件能夠基於該第一序列判定一第一索引元素。在某些實施例中,傳輸第一序列可包括傳輸包括該第一序列之一SS。在某些實施例中,第一索引元素可包括可藉由讀取包括於SS中之第一序列而判定之複數個位元。 在步驟512,網路節點將與第一序列相關聯之一廣播頻道傳輸至無線器件,該廣播頻道使無線器件能夠基於該廣播頻道上之資訊判定一第二索引元素,其中第一索引元素及第二索引元素使無線器件能夠獲取指示所定義系統資訊之一索引值。在某些實施例中,索引值可係第一索引元素及第二索引元素之一函數。在某些實施例中,第一索引元素及第二索引元素之函數係該第一索引元素及該第二索引元素之一串連。在某些實施例中,系統資訊可包括與網路節點相關聯之一小區之系統資訊。在某些實施例中,系統資訊可包括與網路節點相關聯之複數個波束之一者之系統資訊。在某些實施例中,系統資訊可包括關於無線器件待交遞至之一目標小區之資訊。 在某些實施例中,廣播頻道可能歸因於以下之一或多者而與第一序列相關聯:SS隱式地定義用於廣播頻道之解調變之時間及頻率資源;及使用SS作為廣播頻道之一解調變參考信號。在某些實施例中,廣播頻道可能歸因於以下之一或多者而與第一序列相關聯:使用第一索引元素來導出廣播頻道之解調變參考信號;及使用第一序列來導出廣播頻道之一頻道組態。 在某些實施例中,廣播頻道可包括一實體廣播頻道,且第二索引元素包括包含於實體廣播頻道上之一主資訊區塊中之複數個顯式位元。 圖6係根據某些實施例之在一無線器件中之一方法600之一流程圖。方法600從步驟604開始,其中無線器件讀取一SS且判定一實體小區識別碼。在某些實施例中,無線器件可係一UE。在某些實施例中,無線器件可判定系統資訊組態之一表(例如,SIB表)。在某些實施例中,無線器件可儲存SIB表。在某些實施例中,無線器件可藉由掃描SS傳輸且選擇其等之一者(例如,其接收之最強SS)而讀取SS。在某些實施例中,無線器件可判定實體小區識別碼(PCI)作為SS之索引。 在步驟608,無線器件接收連同SS一起傳輸之一實體廣播頻道。在步驟612,無線器件從所接收實體廣播頻道判定一組小區系統資訊組態位元。在某些實施例中,無線器件可使用對PCI之瞭解來對實體廣播頻道進行解碼。在某些實施例中,實體廣播頻道含有一MIB,其中一個元素係小區系統資訊組態位元。在某些實施例中,小區系統資訊組態位元可經定位在一CELL_SI_CONFIG欄位中。 在步驟616,無線器件藉由組合實體小區識別碼與小區系統資訊組態位元而判定用於從系統資訊組態之一表選擇一系統資訊組態之一系統簽章索引。在某些實施例中,系統簽章索引可係用於從由數個同步組態組成之一表選擇一系統資訊區塊組態之一新索引。在某些實施例中,系統簽章索引可經判定為實體小區識別碼及小區系統資訊組態位元集之一函數。在某些實施例中,函數可係實體小區識別碼及小區系統資訊組態位元集之一串連。在某些實施例中,函數可串連實體小區識別碼中之M個最高有效位元且串連彼等位元與小區系統資訊組態位元集中之位元。在某些實施例中,一位元欄位可藉由函數形成且可轉換成用於從SIB表選擇系統資訊區塊之一索引。 在步驟620,無線器件藉由從系統資訊組態之表選擇系統簽章索引內之系統資訊而判定系統資訊區塊。 在步驟624,無線器件根據系統資訊區塊中提供之資訊存取網路。 圖7係根據某些實施例之一例示性UE之一方塊示意圖。如圖7中展示,UE 700係上文中描述之一例示性無線器件110。UE 700包含一天線705、無線電前端電路710、處理電路715及一電腦可讀儲存媒體730。天線705可包含一或多個天線或天線陣列,且經組態以發送及/或接收無線信號,且連接至無線電前端電路710。在某些替代實施例中,無線器件700可不包含天線705,且天線705可代替地與無線器件700分離且可透過一介面或埠連接至無線器件700。 無線電前端電路710可包括各種濾波器及放大器,連接至天線705及處理電路715,且經組態以調節在天線705與處理電路715之間傳達之信號。在某些替代實施例中,UE 700可不包含無線電前端電路710,且處理電路715可代替地在無無線電前端電路710之情況下連接至天線705。 處理電路715可包含射頻(RF)收發器電路、基頻處理電路及應用處理電路之一或多者。在一些實施例中,RF收發器電路、基頻處理電路及應用處理電路可處於單獨晶片組上。在替代實施例中,基頻處理電路及應用處理電路之部分或全部可組合至一個晶片組中,且RF收發器電路可處於一單獨晶片組上。在又替代實施例中,RF收發器電路及基頻處理電路之部分或全部可處於相同晶片組上,且應用處理電路可處於一單獨晶片組上。在其他替代實施例中,RF收發器電路、基頻處理電路及應用處理電路之部分或全部可組合在相同晶片組中。處理電路715可包含(舉例而言)一或多個中央處理單元(CPU)、一或多個微處理器、一或多個特定應用積體電路(ASIC)及/或一或多個場可程式化閘陣列(FPGA)。 在特定實施例中,本文中描述為由一無線器件提供之一些或全部功能性可藉由處理電路715執行儲存於一電腦可讀儲存媒體730上之指令而提供。在替代實施例中,可藉由處理電路715在不執行儲存於一電腦可讀媒體上之指令之情況下(諸如以一硬佈線方式)提供一些或全部功能性。在彼等特定實施例之任一者中,無論是否執行儲存於一電腦可讀儲存媒體上之指令,據稱處理電路可經組態以執行所描述功能性。由此功能性提供之益處不限於單獨的處理電路715或不限於UE 700之其他組件,而由UE整體享有,及/或大體上由終端使用者及無線網路享有。 天線705、無線電前端電路710及/或處理電路715可經組態以執行本文中被描述為由一UE或無線器件執行之任何接收操作。可從一網路節點及/或另一無線器件接收任何資訊、資料及/或信號。 處理電路715可經組態以執行本文中被描述為由一無線器件執行之任何判定操作。如藉由處理電路715執行之判定可包含:處理由處理電路715藉由(舉例而言)將所獲取資訊轉換成其他資訊;比較所獲取資訊或經轉換資訊與儲存於無線器件中之資訊;及/或基於所獲取資訊或經轉換資訊執行一或多個操作而獲取之資訊,且因該處理而作出一判定。 天線705、無線電前端電路710及/或處理電路715可經組態以執行本文中被描述為由一無線器件執行之任何傳輸操作。可將任何資訊、資料及/或信號傳輸至一網路節點及/或另一無線器件。 電腦可讀儲存媒體730大體上可操作以儲存指令,諸如一電腦程式、軟體、包含邏輯、規則、程式碼、表等之一或多者之一應用程式、及/或能夠由一處理器執行之其他指令。電腦可讀儲存媒體730之實例包含電腦記憶體(舉例而言,RAM或ROM)、大容量儲存媒體(舉例而言,一硬碟)、可移除儲存媒體(舉例而言,一光碟(CD)或一數位視訊碟片(DVD))、及/或儲存可由處理電路715使用之資訊、資料及/或指令之任何其他揮發性或非揮發性非暫時性電腦可讀及/或電腦可執行記憶體器件。在一些實施例中,處理電路715及電腦可讀儲存媒體730可被視為整合的。 UE 700之替代實施例可包含除圖7中展示之組件以外之額外組件,其等可負責提供UE之功能性(包含本文中描述之功能性之任一者及/或支援上文中描述之解決方案所必需之任何功能性)之某些態樣。作為僅僅一個實例,UE 700可包含輸入介面、器件及電路720、及輸出介面、器件及電路725。輸入介面、器件及電路720經組態以允許資訊輸入至UE 700中,且連接至處理電路715以允許處理電路715處理輸入資訊。舉例而言,輸入介面、器件及電路720可包含一麥克風、一近接或其他感測器、鍵/按鈕、一觸控顯示器、一或多個相機、一USB埠或其他輸入元件。輸出介面、器件及電路725經組態以允許資訊從UE 700輸出,且連接至處理電路715以允許處理電路715從UE 700輸出資訊。舉例而言,輸出介面、器件或電路725可包含一揚聲器、一顯示器、振動電路、一USB埠、一頭戴式耳機介面或其他輸出元件。使用一或多個輸入及輸出介面720、725、器件及電路,UE 300可與終端使用者及/或無線網路通信,且允許其等受益於本文中描述之功能性。 作為另一實例,UE 700可包含電源735。電源735可包括電力管理電路。電源735可從一電力供應器接收電力,該電力供應器可能包括於電源735中或在電源735外部。舉例而言,UE 700可包括呈連接至電源735或整合在電源735中之一電池或電池組之形式之一電力供應器。亦可使用其他類型之電源,諸如光伏器件。作為一進一步實例,UE 700可能可經由一輸入電路或介面(諸如一電纜)連接至一外部電力供應器(諸如一電插座),藉此外部電力供應器將電力供應至電源735。電源735可連接至無線電前端電路710、處理電路715及/或電腦可讀儲存媒體730且經組態以向包含處理電路715之UE 700供應用於執行本文中描述之功能性之電力。 UE 700亦可包含用於整合至無線器件700中之不同無線技術(諸如(舉例而言) GSM、WCDMA、LTE、NR、WiFi或藍芽無線技術)之多組處理電路715、電腦可讀儲存媒體730、無線電電路710及/或天線705。此等無線技術可整合至相同或不同晶片組及無線器件700內之其他組件中。 圖8係根據某些實施例之一例示性無線器件110之一方塊示意圖。無線器件110可係指與一節點及/或與一蜂巢式或行動通信系統中之另一無線器件通信之任何類型之無線器件。無線器件110之實例包含一行動電話、一智慧型電話、一PDA (個人數位助理)、一攜帶型電腦(例如,膝上型電腦、平板電腦)、一感測器、一致動器、一數據機、一機器型通信(MTC)器件/機器間(M2M)器件、膝上型電腦嵌入設備(LEE)、膝上型電腦安裝設備(LME)、USB硬體鎖、一D2D功能器件、或可提供無線通信之另一器件。在一些實施例中,一無線器件110亦可被稱為一UE、一站(STA)、一器件或一終端。無線器件110包含收發器810、處理電路820及記憶體830。在一些實施例中,收發器810促成(例如,經由天線840)將無線信號傳輸至網路節點115且從網路節點115接收無線信號,處理電路820執行指令以提供上文中被描述為由無線器件110提供之一些或全部功能性,且記憶體830儲存由處理電路820執行之指令。 處理電路820可包含在一或多個模組中實施以執行指令且操控資料以執行無線器件110之一些或全部所描述功能(諸如上文中關於圖1至圖6描述之無線器件110之功能)之硬體及軟體之任何適合組合。在一些實施例中,處理電路820可包含(舉例而言)一或多個電腦、一或多個中央處理單元(CPU)、一或多個微處理器、一或多個應用程式、一或多個特定應用積體電路(ASIC)、一或多個場可程式化閘陣列(FPGA)及/或其他邏輯。 記憶體830大體上可操作以儲存指令,諸如一電腦程式、軟體、包含邏輯、規則、演算法、程式碼、表等之一或多者之一應用程式、及/或能夠由處理電路820執行之其他指令。記憶體830之實例包含電腦記憶體(舉例而言,RAM或ROM)、大容量儲存媒體(舉例而言,一硬碟)、可移除儲存媒體(舉例而言,一CD或一DVD)、及/或儲存可由處理電路820使用之資訊、資料及/或指令之任何其他揮發性或非揮發性非暫時性電腦可讀及/或電腦可執行記憶體器件。 無線器件110之其他實施例可包含除圖8中展示之組件以外之額外組件,其等可負責提供無線器件之功能性(包含上文中描述之功能性之任一者及/或任何額外功能性(包含支援上文中描述之解決方案所必需之任何功能性))之某些態樣。作為僅僅一個實例,無線器件110可包含輸入器件及電路、輸出器件及一或多個同步單元或電路,其等可係處理電路820之部分。輸入器件包含用於將資料鍵入至無線器件110中之機構。舉例而言,輸入器件可包含輸入機構,諸如一麥克風、輸入元件、一顯示器等。輸出器件可包含用於以音訊、視訊及/或紙本(hard copy)格式輸出資料之機構。舉例而言,輸出器件可包含一揚聲器、一顯示器等。 圖9係根據某些實施例之一例示性網路節點115之一方塊示意圖。網路節點115可係任何類型之無線電網路節點或與一UE及/或與另一網路節點通信之任何網路節點。網路節點115之實例包含一eNodeB、一gNB、一節點B、一基地台、一無線存取點(例如,一Wi-Fi存取點)、一低功率節點、一基地收發站(BTS)、中繼、供體節點控制中繼、傳輸點、傳輸節點、遠端RF單元(RRU)、遠端無線電前端(RRH)、多標準無線電(MSR)無線電節點(諸如MSR BS)、分佈式天線系統(DAS)中之節點、O&M、OSS、SON、定位節點(例如,E-SMLC)、MDT或任何其他適合網路節點。網路節點115可遍及網路100部署為一同質部署、異質部署或混合部署。一同質部署可大體上描述由相同(或類似)類型之網路節點115及/或類似覆蓋範圍及小區大小及站間距離組成之一部署。一異質部署可大體上描述使用具有不同小區大小、傳輸功率、容量及站間距離之多種類型之網路節點115之部署。舉例而言,一異質部署可包含遍及一巨型小區佈局放置之複數個低功率節點。混合部署可包含同質部分及異質部分之一混合物。 網路節點115可包含收發器910、處理電路920、記憶體930及網路介面940之一或多者。在一些實施例中,收發器910促成(例如,經由天線950)將無線信號傳輸至無線器件110且從無線器件110接收無線信號,處理電路920執行指令以提供上文中被描述為由一網路節點115提供之一些或全部功能性,記憶體930儲存由處理電路920執行之指令,且網路介面940將信號傳達至後端網路組件,諸如一閘道器、開關、路由器、網際網路、公用交換電話網路(PSTN)、核心網路節點或無線電網路控制器130等。 處理電路920可包含在一或多個模組中實施以執行指令且操控資料以執行網路節點115之一些或全部所描述功能(諸如上文中關於圖1至圖6描述之功能)之硬體及軟體之任何適合組合。在一些實施例中,處理電路920可包含(舉例而言)一或多個電腦、一或多個CPU、一或多個微處理器、一或多個應用程式、一或多個ASIC、一或多個FPGA及/或其他邏輯。 記憶體930大體上可操作以儲存指令,諸如一電腦程式、軟體、包含邏輯、規則、演算法、程式碼、表等之一或多者之一應用程式、及/或能夠由處理電路920執行之其他指令。記憶體930之實例包含電腦記憶體(舉例而言,RAM或ROM)、大容量儲存媒體(舉例而言,一硬碟)、可移除儲存媒體(舉例而言,一CD或一DVD)、及/或儲存資訊之任何其他揮發性或非揮發性非暫時性電腦可讀及/或電腦可執行記憶體器件。 在一些實施例中,網路介面940通信耦合至處理電路920且可係指可操作以接收網路節點115之輸入、從網路節點115發送輸出、執行輸入或輸出或該兩者之適合處理、與其他器件通信或前述內容之任何組合之任何適合器件。網路介面940可包含適當硬體(例如,埠、數據機、網路介面卡等)及軟體(包含協定轉換及資料處理能力)以透過一網路通信。 網路節點115之其他實施例可包含除圖9中展示之組件以外之額外組件,其等可負責提供無線電網路節點之功能性(包含上文中描述之功能性之任一者及/或任何額外功能性(包含支援上文中描述之解決方案所必需之任何功能性))之某些態樣。各種不同類型之網路節點可包含具有相同實體硬體但經組態(例如,經由程式化)以支援不同無線電存取技術之組件,或可表示部分或完全不同實體組件。 圖10係根據某些實施例之一例示性無線電網路控制器或核心網路節點130之一方塊示意圖。網路節點之實例可包含一行動交換中心(MSC)、一伺服GPRS支援節點(SGSN)、一行動性管理實體(MME)、一無線電網路控制器(RNC)、一基地台控制器(BSC)等等。無線電網路控制器或核心網路節點130包含處理電路1020、記憶體1030及網路介面1040。在一些實施例中,處理電路1020執行指令以提供上文中被描述為由網路節點提供之一些或全部功能性,記憶體1030儲存由處理電路1020執行之指令,且網路介面1040將信號傳達至任何適合節點,諸如一閘道器、開關、路由器、網際網路、公用交換電話網路(PSTN)、網路節點115、無線電網路控制器或核心網路節點130等。 處理電路1020可包含在一或多個模組中實施以執行指令且操控資料以執行無線電網路控制器或核心網路節點130之一些或全部所描述功能之硬體及軟體之任何適合組合。在一些實施例中,處理電路1020可包含(舉例而言)一或多個電腦、一或多個CPU、一或多個微處理器、一或多個應用程式、一或多個ASIC、一或多個FPGA及/或其他邏輯。 記憶體1030大體上可操作以儲存指令,諸如一電腦程式、軟體、包含邏輯、規則、演算法、程式碼、表等之一或多者之一應用程式、及/或能夠由處理電路1020執行之其他指令。記憶體1030之實例包含電腦記憶體(舉例而言,RAM或ROM)、大容量儲存媒體(舉例而言,一硬碟)、可移除儲存媒體(舉例而言,一CD或一DVD)、及/或儲存資訊之任何其他揮發性或非揮發性非暫時性電腦可讀及/或電腦可執行記憶體器件。 在一些實施例中,網路介面1040通信耦合至處理電路1020且可係指可操作以接收網路節點之輸入、從網路節點發送輸出、執行輸入或輸出或該兩者之適合處理、與其他器件通信或前述內容之任何組合之任何適合器件。網路介面1040可包含適當硬體(例如,埠、數據機、網路介面卡等)及軟體(包含協定轉換及資料處理能力)以透過一網路通信。 網路節點之其他實施例可包含除圖10中展示之組件以外之額外組件,其等可負責提供網路節點之功能性(包含上文中描述之功能性之任一者及/或任何額外功能性(包含支援上文中描述之解決方案所必需之任何功能性))之某些態樣。 圖11係根據某些實施例之一例示性無線器件之一示意性方塊圖。無線器件110可包含一或多個模組。舉例而言,無線器件110可包含一判定模組1110、一通信模組1120、一接收模組1130、一輸入模組1140、一顯示模組1150及任何其他適合模組。在一些實施例中,可使用一或多個處理器(諸如上文中關於圖8描述之處理電路820)來實施判定模組1110、通信模組1120、接收模組1130、輸入模組1140、顯示模組1150或任何其他適合模組之一或多者。在某些實施例中,各種模組之兩者或兩者以上之功能可組合至一單一模組中。無線器件110可執行用於上文中關於圖1至圖6描述之加強型基於索引的系統資訊分佈之方法。 判定模組1110可執行無線器件110之處理功能。舉例而言,判定模組1110可基於第一序列判定一第一索引元素。作為另一實例,判定模組1110可基於廣播頻道上之資訊判定一第二索引元素。作為又另一實例,判定模組1110可基於第一索引元素及第二索引元素而獲取一索引值。作為又另一實例,判定模組1110可使用所獲取索引值來判定系統資訊。作為另一實例,判定模組1110可使用經判定系統資訊來存取與網路節點相關聯之一網路。作為另一實例,判定模組1110可導出索引值,其中所導出索引值係第一索引元素及第二索引元素之一函數。作為另一實例,判定模組1110可藉由讀取包括於一SS中之第一序列而判定第一索引元素。作為另一實例,判定模組1110可使用經判定第一索引元素對廣播頻道進行解碼。 作為另一實例,在某些實施例中,判定模組1110可讀取一SS且判定一實體小區識別碼。判定模組1110可從所接收實體廣播頻道判定一小區系統資訊組態位元集。判定模組1110可藉由組合實體小區識別碼與小區系統資訊組態位元而判定用於從系統資訊組態之一表選擇一系統資訊組態之一系統簽章索引。判定模組1110可藉由從系統資訊組態之表選擇具有系統簽章索引之系統資訊而判定系統資訊區塊。判定模組1110可根據系統資訊區塊中提供之資訊存取網路。 判定模組1110可包含一或多個處理器或包含於一或多個處理器中,諸如上文中關於圖8描述之處理電路820。判定模組1110可包含經組態以執行上文中描述之判定模組1110及/或處理電路820之功能之任一者之類比及/或數位電路。在某些實施例中,可在一或多個相異模組中執行上文中描述之判定模組1110之功能。 通信模組1120可執行無線器件110之傳輸功能。舉例而言,通信模組1120可使用經判定系統資訊來存取與網路節點相關聯之一網路。作為另一實例,通信模組1120可根據系統資訊區塊中提供之資訊存取網路。通信模組1120可包含一傳輸器及/或一收發器,諸如上文中關於圖8描述之收發器810。通信模組1120可包含經組態以無線地傳輸訊息及/或信號之電路。在特定實施例中,通信模組1120可從判定模組1110接收用於傳輸之訊息及/或信號。在某些實施例中,可在一或多個相異模組中執行上文中描述之通信模組1120之功能。 接收模組1130可執行無線器件110之接收功能。舉例而言,接收模組1130可從一網路節點接收一或多個傳輸,該一或多個傳輸包括一第一序列及與該第一序列相關聯之一廣播頻道。作為另一實例,接收模組1130可接收連同SS一起傳輸之一實體廣播頻道。接收模組1130可包含一接收器及/或一收發器。接收模組1130可包含一接收器及/或一收發器,諸如上文中關於圖8描述之收發器810。接收模組1130可包含經組態以無線地接收訊息及/或信號之電路。在特定實施例中,接收模組1130可將所接收訊息及/或信號傳達至判定模組1110。在某些實施例中,可在一或多個相異模組中執行上文中描述之接收模組1130之功能。 輸入模組1140可接收意欲用於無線器件110之使用者輸入。舉例而言,輸入模組可接收鍵按壓、按鈕按壓、觸摸、滑動、音訊信號、視訊信號及/或任何其他適當信號。輸入模組可包含一或多個鍵、按鈕、槓桿、開關、觸控螢幕、麥克風及/或相機。輸入模組可將所接收信號傳達至判定模組1110。在某些實施例中,可在一或多個相異模組中執行上文中描述之輸入模組1140之功能。 顯示模組1150可將信號呈現在無線器件110之一顯示器上。顯示模組1150可包含顯示器及/或經組態以將信號呈現在顯示器上之任何適當電路及硬體。顯示模組1150可從判定模組1110接收信號以呈現於顯示器上。在某些實施例中,可在一或多個相異模組中執行上文中描述之顯示模組1150之功能。 判定模組1110、通信模組1120、接收模組1130、輸入模組1140及顯示模組1150可包含硬體及/或軟體之任何適合組態。無線器件110可包含除圖11中展示之模組以外之額外模組,其等可負責提供任何適合功能性,包含上文中描述之功能性之任一者及/或任何額外功能性(包含支援本文中描述之各種解決方案所必需之任何功能性)。 圖12係根據某些實施例之一例示性網路節點115之一示意性方塊圖。網路節點115可包含一或多個模組。舉例而言,網路節點115可包含判定模組1210、通信模組1220、接收模組1230及任何其他適合模組。在一些實施例中,可使用一或多個處理器(諸如上文中關於圖9描述之處理電路920)來實施判定模組1210、通信模組1220、接收模組1230或任何其他適合模組之一或多者。在某些實施例中,各種模組之兩者或兩者以上之功能可組合至一單一模組中。網路節點115可執行用於上文中關於圖1至圖6描述之加強型基於索引的系統資訊分佈之方法。 判定模組1210可執行網路節點115之處理功能。作為一實例,判定模組1210可針對網路節點與一無線器件之間之無線通信之一或多個態樣定義系統資訊。 判定模組1210可包含一或多個處理器或包含於一或多個處理器中,諸如上文中關於圖9描述之處理電路920。判定模組1210可包含經組態以執行上文中描述之判定模組1210及/或處理電路920之功能之任一者之類比及/或數位電路。在某些實施例中,可在一或多個相異模組中執行判定模組1210之功能。 通信模組1220可執行網路節點115之傳輸功能。作為一個實例,通信模組1220可將一第一序列傳輸至無線器件,該第一序列使無線器件能夠基於該第一序列判定一第一索引元素。作為另一實例,通信模組1220可將與第一序列相關聯之一廣播頻道傳輸至無線器件,該廣播頻道使無線器件能夠基於該廣播頻道上之資訊判定一第二索引元素,其中第一索引元素及第二索引元素使無線器件能夠獲取指示所定義系統資訊之一索引值。作為又另一實例,通信模組1220可傳輸包括第一序列之一SS。 通信模組1220可將訊息傳輸至無線器件110之一或多者。通信模組1220可包含一傳輸器及/或一收發器,諸如上文中關於圖9描述之收發器910。通信模組1220可包含經組態以無線地傳輸訊息及/或信號之電路。在特定實施例中,通信模組1220可從判定模組1210或任何其他模組接收用於傳輸之訊息及/或信號。在某些實施例中,可在一或多個相異模組中執行通信模組1220之功能。 接收模組1230可執行網路節點115之接收功能。接收模組1230可從一無線器件接收任何適合資訊。接收模組1230可包含一接收器及/或一收發器,諸如上文中關於圖9描述之收發器910。接收模組1230可包含經組態以無線地接收訊息及/或信號之電路。在特定實施例中,接收模組1230可將所接收訊息及/或信號傳達至判定模組1210或任何其他適合模組。在某些實施例中,可在一或多個相異模組中執行接收模組1230之功能。 判定模組1210、通信模組1220及接收模組1230可包含硬體及/或軟體之任何適合組態。網路節點115可包含除圖12中展示之模組以外之額外模組,其等可負責提供任何適合功能性,包含上文中描述之功能性之任一者及/或任何額外功能性(包含支援本文中描述之各種解決方案所必需之任何功能性)。 可在不背離本發明之範疇之情況下對本文中描述之系統及裝置作出修改、添加或省略。系統及裝置之組件可經整合或分離。此外,系統及裝置之操作可藉由更多、更少或其他組件執行。額外地,可使用包括軟體、硬體及/或其他邏輯之任何適合邏輯來執行系統及裝置之操作。如在此文件中使用,「各」係指一集之各成員或一集之一子集之各成員。 可在不背離本發明之範疇之情況下對本文中描述之方法作出修改、添加或省略。方法可包含更多、更少或其他步驟。額外地,可以任何適合順序執行步驟。 儘管已按照某些實施例描述本發明,然熟習此項技術者將明白實施例之變更及置換。相應地,實施例之上述描述不限制本發明。其他改變、替換及變更在不背離如藉由以下發明申請專利範圍定義之本發明之精神及範疇之情況下係可能的。 前述描述中使用之縮寫詞包含: 3GPP 第三代合作夥伴計畫 AGC 自動增益控制 AP 存取點 ASIC 特定應用積體電路 BER 區塊錯誤率 BS 基地台 BSC 基地台控制器 BTS 基地收發站 CD 光碟 CPE 客戶端設備 CPU 中央處理單元 CRC 循環冗餘檢查 D2D 器件間 DAS 分佈式天線系統 DL 下行鏈路 DMRS 解調變參考信號 DVD 數位視訊碟片 eNB 演進節點B E-SMLC 演進伺服行動位置中心 FPGA 場可程式化閘陣列 GPS 全球定位系統 IoT 物聯網 IP 網際網路協定 LAN 區域網路 LEE 膝上型電腦嵌入設備 LME 膝上型電腦安裝設備 LTE 長期演進 M2M 機器間 MAC 訊息認證碼 MAN 城域網路 MCE 多小區/多播協調實體 MCS 調變位準及編碼方案 MDT 驅動測試之最小化 MIB 主資訊區塊 MIMO 多輸入多輸出 MME 行動性管理實體 MSC 行動交換中心 MSR 多標準無線電 MTC 機器型通信 NAS 非存取層 NB-IoT 窄頻物聯網 NR 新無線電 O&M 操作及管理 OSS 操作支援系統 PBCH 實體廣播頻道 PCI 實體小區識別碼 PDCCH 實體下行鏈路控制頻道 PDSCH 實體下行鏈路共用頻道 PRACH 實體隨機存取頻道 PSS 主同步信號 PSTN 公用交換電話網路 RAM 隨機存取記憶體 RAN 無線電存取網路 RAR 隨機存取回應 RAT 無線電存取技術 RNC 無線電網路控制器 RMSI 剩餘最小系統資訊 ROM 唯讀記憶體 RRC 無線電資源控制 RRH 遠端無線電前端 RRU 遠端無線電單元 SFN 單頻網路 SIB 系統資訊區塊 SS 同步信號 SSI 系統簽章索引 SSS 輔同步信號 SON 自組織網路 TR 技術報告 UE 使用者設備 UL 上行鏈路 WAN 廣域網路 WLAN 無線區域網路As described above, there are disadvantages associated with existing methods of communicating an index of system information. Using SSI as the index of the SS (or explicitly signaling the SSI in the MIB) may make it difficult to change the system information of a cell, resulting in loss of synchronization of the wireless device and increased time before the wireless device finds the cell again. Informing the wireless device system in advance of information changes is costly in terms of additional configuration messaging, additional implementation complexity, and additional delays in the wireless device. Similarly, placing the SSI in the MIB (which is transmitted in the physical broadcast channel denoted PBCH associated with the SS transmission) requires that the SSI be at least 10 bits, but facilitates a sufficient number of system information variants in the network The expenses required are large. The present invention contemplates various embodiments that address these and other disadvantages associated with existing methods. In some cases, this is achieved using an improved method for index-based system information distribution. According to an exemplary embodiment, a network node (for example, a gNB or an eNB) defines system information for one or more aspects of wireless communication between the network node and a wireless device (for example, a UE). . The network node transmits a first sequence to the wireless device, and the first sequence enables the wireless device to determine a first index element based on the first sequence. The network node transmits a broadcast channel associated with the first sequence to the wireless device, and the broadcast channel enables the wireless device to determine a second index element based on the information on the broadcast channel, wherein the first index element and the second index element Enables the wireless device to obtain an index value indicating the defined system information. According to another exemplary embodiment, a wireless device (eg, a UE) receives one or more transmissions from a network node, the one or more transmissions include a first sequence and one associated with the first sequence Broadcast channel. The wireless device determines a first index element based on the first sequence. The wireless device determines a second index element based on the information on the broadcast channel. The wireless device obtains an index value based on the first index element and the second index element. The wireless device uses the acquired index value to determine system information. In some embodiments, the wireless device uses the determined system information to access a network associated with a network node. Certain embodiments of the invention may provide one or more technical advantages. For example, certain embodiments may advantageously implement changes in system information without causing the wireless device to lose synchronization or increase the amount of time required for a wireless device to determine system information. As another example, certain embodiments may advantageously avoid the increased costs associated with using additional configuration messaging, increased implementation complexity, and additional delays in the UE. As yet another example, certain embodiments may advantageously avoid resource expenditures associated with messaging a large number of bits. As yet another example, certain embodiments may advantageously enable rapid system information changes without changing the system synchronization signal and without signaling a large number of bits in the MIB. Those skilled in the art will readily understand other advantages. Certain embodiments may not have the described advantages, have some or all of the described advantages. FIG. 2 illustrates an example of how a wireless device retrieves minimal system information that enables it to perform a physical random access channel (PRACH) transmission and receive a random access response (RAR). More specifically, FIG. 2 illustrates how exemplary signals and wireless devices use these signals over time (depicted on the X-axis) to capture the random access procedures required (starting with SS and ending with RAR reception). Configuration data. The first step of a wireless device (eg, a UE) targeted at performing initial access is to search for and detect SS 205 on a suitable carrier frequency. When the SS 205 is detected, the wireless device is synchronized with the network and can derive from the SS 205 how to receive the MIB 210. MIB 210 can be broadcast on resources with a fixed relationship with SS 205 and a sequence scrambling code can be derived from SS 205. Note that in the NR, the MIB 210 will be transmitted on a physical broadcast channel (NR-PBCH) which has not been fully defined by the 3rd Generation Partnership Project (3GPP). This channel is somewhat similar to the corresponding PBCH used for Long Term Evolution (LTE). However, the content of the MIB in NR is different from the content of MIB in LTE, but the same terminology will be used herein to indicate that a piece of information is transmitted in a physical channel associated with the system synchronization signal. MIB 210 contains information that assists the wireless device in verifying any previously stored SIB parameters. As an example, the information contained in MIB 210 may assist the wireless device in verifying a value tag of any previously stored SIB parameter. Although the example of FIG. 2 illustrates the information as a value label, the information may take other forms. For example, the information can be in the form of a version number or a hash. MIB 210 also contains configuration information that instructs wireless devices how to receive broadcast SIB 215. SIB transmission configuration data may include, for example, time and frequency resources, demodulation reference signal (DMRS), scrambling code, and other suitable information. As an additional example, in some cases, the SIB transmission configuration data may include an index / sequence of one of the SSs combined with the SIB 215 transmission. If the SIB information (or part of the SIB information) is structured in the form of a table where only one entry or a group of entries in the table will be applied (while the information in the other entries in the table can be applied to other cells), then The wireless device may also derive a table index from the SS 205 / MIB 210, which indicates the applicable entries (or groups of entries). The broadcast SIB 215 provides at least minimal configuration information (minimum system information) to allow the wireless device to perform initial access. Therefore, when the wireless device receives the SIB, it receives the configuration data of the PRACH 220. The configuration data of PRACH 220 may include, for example, time and frequency resources. In addition, the information in SIB 215 contains configuration data that enables wireless devices to receive RAR 225. This configuration data configuration is directed to one of the physical channels of RAR 225, where the main component is an SS to be transmitted in conjunction with RAR 225, thereby allowing wireless devices to detect and decode RAR 225. A dedicated SS will facilitate transmission of RAR 225 from another (inoperative) antenna port other than SS 205. Dedicated synchronization signals will also be useful for deployment in unlicensed frequency bands, where the transmission of RAR 225 can be delayed and the timing is unknown to the wireless device. In addition, if high-gain beamforming is used for RAR 225, a dedicated SS will help wireless devices tune automatic gain control (AGC). After receiving the SIB 215 and retrieving the included configuration data, the wireless device can initiate the initial access procedure by transmitting a random access preamble over the PRACH 220 and receiving subsequent RAR 225 according to the configuration data in the SIB. . FIG. 3 is a block diagram illustrating one embodiment of a network 300 according to some embodiments. The network 300 includes one or more wireless devices 110 and one or more network nodes 115 (network nodes 115a and 115b are included in the exemplary embodiment of FIG. 3). The wireless device 110 includes a processor 820, a memory 830, an interface 810, and an antenna 840. The network node 115a includes a processor 920, a memory 930, an interface 910/940, and an antenna 950. These components may work together to provide network node and / or wireless device functionality, such as providing wireless connectivity in the network 300. For example, the wireless device 110 can communicate with the network node 115 via a wireless interface. For example, the wireless device 110 may transmit the wireless signals 125a, 125b to one or more of the network nodes 115, and / or receive the wireless signals 125a, 125b from one or more of the network nodes 115. The wireless signals 125a, 125b may contain voice traffic, data traffic, control signals, and / or any other suitable information. In some embodiments, an area covered by the wireless signal associated with a network node 115 may be referred to as a cell. In some embodiments, the wireless device 110 may have inter-device (D2D) capability. Therefore, the wireless device 110 may be able to receive signals from another wireless device and / or transmit signals directly to another wireless device. In some embodiments, the network node 115 may interface with a radio network controller. The radio network controller may control the network node 115 and may provide certain radio resource management functions, mobility management functions, and / or other suitable functions. In some embodiments, the functions of the radio network controller may be included in the network node 115. The radio network controller can interface with a core network node. In some embodiments, the radio network controller may interface with the core network node via an internet 320. The internet 320 may refer to any internet system capable of transmitting audio, video, signals, data, messages, or any combination of the foregoing. Internet 320 may include one or more Internet Protocol (IP) networks, public switched telephone networks (PSTN), packet data networks, optical networks, public or private data networks, and local area networks (LANs) , Wireless local area network (WLAN), wired network, wireless network, metropolitan area network (MAN), wide area network (WAN), a regional, regional or global communication or computer network (such as the Internet), All or part of an intranet or any other suitable communication link containing a combination thereof to enable communication between devices. In some embodiments, the core network node may manage the establishment of communication sessions and various other functionalities of the wireless device 110. The wireless device 110 may use a non-access hierarchy layer to exchange certain signals with core network nodes. In non-access level messaging, signals between the wireless device 110 and the core network node can pass through the RAN transparently. In some embodiments, the network node 115 may interface with one or more network nodes via an inter-node interface, such as, for example, an X2 interface. As described above, an exemplary embodiment of the network 300 may include one or more wireless devices 110 and one or more different types of network nodes 115 capable of communicating (directly or indirectly) with the wireless devices 110. In some embodiments, the non-limiting term wireless device is used. The wireless device 110 described herein may be any type of wireless device capable of, configured, configured, and / or operable to wirelessly communicate with the network node 115 and / or another wireless device. Wirelessly communicating may involve transmitting and / or receiving wireless signals using electromagnetic signals, radio waves, infrared signals, and / or other types of signals suitable for transmitting information through the air. In a particular embodiment, the wireless device may be configured to transmit and / or receive information without direct human interaction. For example, a wireless device may be designed to transmit information to the network on a predetermined schedule when triggered by an internal or external event or in response to a request from a network. Generally, a wireless device may mean any device capable of, configured for, configured for, and / or operable for wireless communication, such as a radio communication device. Examples of wireless devices include, but are not limited to, UEs, such as smart phones. Further examples include wireless cameras, wireless enabled tablets, laptop embedded devices (LEE), laptop installation devices (LME), USB dongle, and / or wireless client devices (customer-premises equipment (CPE)). The wireless device 110 may also be a radio communication device, a target device, a D2D UE, a machine type communication (MTC) UE or a UE capable of inter-machine (M2M) communication, a low cost and / or low complexity UE, a UE equipped with a UE A sensor or any other suitable device. As one specific example, the wireless device 110 may represent one UE configured to communicate according to one or more communication standards issued by 3GPP, such as the GSM, UMTS, LTE, and / or 5G standards of 3GPP. As used herein, a "UE" may not necessarily have a "user" in the sense of a human user who owns and / or operates the associated device. Alternatively, a UE may indicate a device that is intended to be sold to or operated by a human user but may not initially be associated with a particular human user. The wireless device 110 may support D2D communication by, for example, implementing a 3GPP standard for secondary link communication, and may be referred to as a D2D communication device in this case. As yet another specific example, in a case of the Internet of Things (IOT), a wireless device may perform monitoring and / or measurement, and transmit the results of such monitoring and / or measurement to another wireless device and / Or a machine or other device at a network node. The wireless device in this case may be an M2M device, which may be referred to as an MTC device in a 3GPP context. As a specific example, the wireless device may be a UE that implements the 3GPP Narrowband Internet of Things (NB-IoT) standard. Specific examples of such machines or devices are sensors, metering devices (such as power meters), industrial machinery or household or personal appliances (for example, refrigerators, televisions, personal wearables (such as watches), etc.). In other cases, a wireless device may represent a tool or other device capable of monitoring and / or reporting its operational status or other functions associated with its operation. The wireless device 110 as described above may represent an endpoint of a wireless connection, in which case the device may be referred to as a wireless terminal. In addition, as described above, a wireless device may be mobile, in which case it may also be referred to as a mobile device or a mobile terminal. As depicted in FIG. 3, the wireless device 110 may be any type of wireless endpoint, mobile station, mobile phone, wireless local line phone, smart phone, user equipment, desktop computer, PDA, mobile phone, tablet computer, laptop A laptop, VoIP phone or mobile phone capable of wirelessly transmitting and receiving data and / or signals to and from a network node (such as network node 115) and / or other wireless devices . The wireless device 110 includes a processor 820, a memory 830, an interface 810, and an antenna 840. The components of the wireless device 110 are depicted as a single block positioned within a single larger block. However, in practice, a wireless device may include multiple different physical components that make up a single illustrated component (for example, the memory 830 may include multiple Discrete microchips, each microchip representing a portion of the total storage capacity). The processor 820 may be a microprocessor, controller, microcontroller, central processing unit, digital signal processor, application specific integrated circuit, field programmable gate array, or any other suitable computing device, resource, or It operates to provide one or more of a combination of hardware, software, and / or coded logic of the wireless device 110 functionality, alone or in combination with other wireless device 110 components, such as memory 830. This functionality may include providing various wireless features discussed herein, including any of the features or benefits disclosed herein. Memory 830 can be any form of volatile or non-volatile memory, including (unrestricted) permanent storage, solid-state memory, remote-mounted memory, magnetic media, optical media, random access memory (RAM) , Read-only memory (ROM), removable media, or any other suitable local or remote memory component. The memory 830 may store any suitable data, instructions or information utilized by the wireless device 110, including software and encoding logic. The memory 830 may be used to store any calculations performed by the processor 820 and / or any data received via the interface 810. The interface 810 may be used for wireless communication of communication and / or data between the wireless device 110 and the network node 115. For example, the interface 810 may perform any formatting, encoding, or translation that may be required to allow the wireless device 110 to send and receive data from the network node 115 via a wireless connection. The interface 810 may also include a radio transmitter and / or receiver that may be coupled to the antenna 840 or a part of the antenna 840. The radio can receive digital data to be sent to the network node 115 via a wireless connection. The radio can convert digital data into a radio signal with the appropriate channel and bandwidth parameters. The radio signal can then be transmitted to the network node 115 via the antenna 840. The antenna 840 may be any type of antenna capable of wirelessly transmitting and receiving data and / or signals. In some embodiments, the antenna 840 may include one or more omnidirectional, sector or flat antennas operable to transmit / receive radio signals between, for example, 2 GHz and 66 GHz. In some embodiments, the antenna 840 may be capable of transmitting / receiving signals outside this range. As an example, one of the antennas 840 operating in a 5G system may support lower frequency (e.g., as low as 700 MHz) transmission / reception. For simplicity, the antenna 840 may be considered as part of the interface 810 to the extent that a wireless signal is being used. Furthermore, in some embodiments, the general term "network node" is used. As used herein, "network node" means capable, configured, configured, and / or operable to communicate with a wireless device and / or with a wireless communication network and / or provide wireless access to a wireless device Access to other devices Devices that communicate directly or indirectly. Examples of network nodes include, but are not limited to, access points (AP), specifically radio access points. A network node may represent a base station (BS), such as a radio base station. Specific examples of radio base stations include Node B, Evolved Node B (eNB), and gNB. Base stations can be classified based on the amount of coverage they provide (or, in other words, their transmission power levels) and then can also be referred to as ultra-micro base stations, micro base stations, small base stations, or giant base stations. A "network node" also contains one or more (or all) parts of a distributed radio base station, such as a centralized digital unit and / or a remote radio unit (RRU), sometimes called a remote radio front end (RRH ). These remote radio units may or may not be integrated with an antenna as an antenna integrated radio. A portion of a distributed radio base station may also be referred to as a node in a distributed antenna system (DAS). As a specific non-limiting example, a base station may be a relay node or a relay donor node controlling a relay. Further examples of network nodes include multi-standard radio (MSR) radios (such as MSR BS), network controllers (such as radio network controller (RNC) or base station controller (BSC)), base transceiver stations ( BTS), transmission point, transmission node, multi-cell / multicast coordination entity (MCE), core network node (e.g., MSC, MME, etc.), operation and maintenance (O & M) node, operation support system (OSS) node, self-service Organizational network (SON) nodes, positioning nodes (e.g., Evolved Servo Mobile Location Center (E-SMLC)), test-driven minimization (MDT), or any other suitable network node. However, more generally, a network node may mean capable, configured, configured, and / or operable to implement and / or provide access to a wireless device of a wireless communication network or provide some services to an accessed wireless device. Any suitable device (or group of devices) of a wireless device in a communication network. In FIG. 3, the network node 115a includes a processor 920, a memory 930, an interface 910/940, and an antenna 950. These components are depicted as a single block positioned within a single larger block. However, in practice, the network node 115a may include a plurality of different physical components constituting a single illustrated component (for example, the interface 910/940 may include a coupling line for a wired connection and a radio transceiver for a wireless connection Terminal). As another example, the network node 115a may be a virtual network node in which multiple separate entities of different components interact to provide the functionality of the network node 115a (e.g., the processor 920 may include three separate housings Of the three separate processors, each of which is responsible for a different function of a particular instance of network node 115a). Similarly, the network node 115a may be composed of multiple entity separate components (for example, a node B component and an RNC component, a BTS component and a BSC component, etc.), and these components may each have its own respective processor, Storage and interface components. In some cases where the network node 115a includes multiple separate components (e.g., BTS and BSC components), one or more of the separate components may be shared among several network nodes. For example, a single RNC can control multiple Node Bs. In this case, each unique node B and BSC pair can be a separate network node. In some embodiments, the network node 115a may be configured to support multiple radio access technologies (RATs). In such embodiments, some components may be duplicated (e.g., separate memory 930 for different RATs) and some components may be reused (e.g., the same antenna 950 may be shared by the RATs). The processor 920 may be a microprocessor, controller, microcontroller, central processing unit, digital signal processor, application specific integrated circuit, field programmable gate array, or any other suitable computing device, resource, or It operates to provide one or more of a combination of hardware, software, and / or coding logic of the network node 115a functionality, alone or in combination with other network node 115a components, such as the memory 930. For example, the processor 920 may execute instructions stored in the memory 930. This functionality may include providing various wireless features discussed herein to one or more wireless devices (such as wireless device 110), including any of the features or benefits disclosed herein. Memory 930 may include any form of volatile or non-volatile computer-readable memory, including (unlimited) permanent storage, solid-state memory, remote-mounted memory, magnetic media, optical media, RAM, ROM, Remove the media, or any other suitable local or remote memory component. The memory 930 may store any suitable instructions, data or information utilized by the network node 115a, including software and encoding logic. The memory 930 may be used to store any calculations performed by the processor 920 and / or any data received via the interfaces 910/940. The network node 115a also includes an interface 910/940. The interface 910/940 can be used in wired or wireless communication for communication and / or data between the network node 115a, the network 115b, and / or the wireless device 110. For example, the interfaces 910/940 may perform any formatting, encoding, or translation that may be required to allow the network node 115a to send and receive data from the network 115b via a wired connection. The interfaces 910/940 may also include a radio transmitter and / or receiver that may be coupled to the antenna 950 or a part of the antenna 950. The radio can receive digital data to be sent to other network nodes or wireless devices via a wireless connection. The radio can convert digital data into a radio signal with the appropriate channel and bandwidth parameters. The radio signal may then be transmitted to an appropriate receiver (eg, the wireless device 110) via the antenna 950. The antenna 950 may be any type of antenna capable of transmitting and receiving data and / or signals wirelessly. In some embodiments, the antenna 950 may include one or more omnidirectional, sector, or flat antennas operable to transmit / receive radio signals between, for example, 2 GHz and 66 GHz. In some embodiments, the antenna 950 may be capable of transmitting / receiving signals outside this range. As an example, one of the antennas 950 operating in a 5G system may support lower frequency (eg, as low as 700 MHz) transmission / reception. An omnidirectional antenna can be used to transmit / receive radio signals in any direction, a sector antenna can be used to transmit / receive radio signals from devices in a specific area, and a flat panel antenna can be used to transmit in a relatively straight line One of the line of sight antennas for receiving / receiving radio signals. As used herein, the term "radio node" is generally used to refer to both wireless devices and network nodes, as described separately above. Terms such as network nodes and wireless devices should be considered non-limiting and specifically do not imply a hierarchical relationship between the two; in general, "network nodes" can be considered as devices 1 and " A "wireless device" can be considered as device 2, and the two devices communicate with each other via a certain radio channel. Exemplary embodiments of wireless device 110, network node 115, and other network nodes, such as a radio network controller or a core network node, are described in more detail below with respect to FIGS. 7-12. Although FIG. 3 illustrates one particular configuration of the network 300, the present invention contemplates that the various embodiments described herein may be applied to a variety of networks having any suitable configuration. For example, the network 300 may include any suitable number of wireless devices 110 and network nodes 115, and is adapted to support communication between wireless devices or between a wireless device and another communication device, such as a landline telephone. Any additional components. In various embodiments, the wireless network 300 may include any number of wired or wireless networks, network nodes, base stations, controllers, wireless devices, relay stations, and / or may facilitate or participate in data and / or signals via wired Or any other component of a wirelessly connected communication. In addition, although certain embodiments may be described as being implemented in an NR network, the embodiments may be implemented in any suitable type of telecommunications system using any suitable component and applicable to any RAT or multi-RAT system, one of which The device receives and / or transmits signals (eg, data). For example, the various embodiments described herein may be applicable to LTE, advanced LTE, 5G, UMTS, HSPA, GSM, cdma2000, WCDMA, WiMax, UMB, WiFi, another suitable RAT, or any suitable one or more RATs combination. Thus, the network 300 may represent any type of communication, telecommunications, data, cellular and / or radio network, or other type of system. In a particular embodiment, the network 300 may be configured to operate according to certain standards or other types of predefined rules or procedures. Therefore, specific embodiments of the wireless communication network may implement communication standards such as Global System for Mobile Communications (GSM), Universal Mobile Telecommunications System (UMTS), Long Term Evolution (LTE), and / or other suitable 2G, 3G, 4G, or 5G standards ; Wireless Local Area Network (WLAN) standards, such as IEEE 802. 11 standards; and / or any other appropriate wireless communication standard, such as microwave access global interoperability (WiMax), Bluetooth, and / or ZigBee standards. Although certain embodiments may be described in the context of wireless transmission in the downlink (DL), the present invention contemplates that various embodiments are equally applicable in the uplink (UL). Although any suitable component may be used in any suitable type of system to implement the solution described herein, the described solution may be implemented in a wireless network, such as the exemplary wireless communication network illustrated in FIG. 3 Specific embodiment. In the exemplary embodiment of FIG. 3, the wireless communication network provides communication and other types of services to one or more wireless devices. In the illustrated embodiment, the wireless communication network includes one or more instances of network nodes that facilitate wireless device access to and / or use of services provided through the wireless communication network. A wireless communication network may further include any additional elements adapted to support communication between wireless devices or between a wireless device and another communication device, such as a landline telephone. Some embodiments contemplated herein will now be described more fully hereinafter with reference to the accompanying drawings. However, other embodiments are within the scope of the present invention and the present invention should not be construed as being limited to the embodiments set forth herein; in fact, these embodiments are provided by way of example to convey the scope of the inventive concept to those familiar with this Project technicians. Throughout the description, the same element symbols refer to the same elements. It should be noted that where appropriate, any feature of any embodiment disclosed herein may be applied to any other embodiment. Likewise, any advantage of any embodiment can be applied to other embodiments and vice versa. Other objects, features, and advantages of the attached embodiments will be apparent from the following description. Generally, all terms used herein should be interpreted according to their ordinary meaning in the technical field, unless explicitly defined otherwise herein. All references to "one (a) / one (an) / the element, device, component, component, step, etc." shall be interpreted openly to refer to at least one instance of the element, device, component, component, step, etc. Unless otherwise specified. The steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless explicitly stated. As described above, the present invention contemplates various embodiments that can address the shortcomings associated with existing methods of communicating an index of system information. In some embodiments, a network node (such as network node 115a) defines system information for one or more aspects of wireless communication between network node 115a and wireless device 110. The network node 115a transmits a first sequence to the wireless device 110. The first sequence enables the wireless device 110 to determine a first index element based on the first sequence. In some embodiments, the first sequence may be included in an SS. In some embodiments, the network node 115a may transmit the first sequence by transmitting the SS including the first sequence. The network node 115a also transmits a broadcast channel associated with the first sequence to the wireless device 110. The broadcast channel can be associated with the first sequence in a variety of ways. As an example, due to the SS implicitly defining the time and frequency resources used for the demodulation of the broadcast channel, the broadcast channel may be associated with the first sequence. As another example, in some embodiments, the broadcast channel may be associated with the first sequence due to the DM serving as one of the broadcast channels. As yet another example, due to the use of the first index element to derive the DMRS of the broadcast channel, the broadcast channel may be associated with the first sequence. As yet another example, in some embodiments, a broadcast channel may be associated with the first sequence due to the use of the first sequence to derive a channel configuration of one of the broadcast channels. The broadcast channel enables the wireless device 110 to determine a second index element based on the information on the broadcast channel. The first index element and the second index element enable the wireless device 110 to obtain an index value indicating one of the defined system information. For example, the wireless device 110 receives a transmission from a network node 115a (ie, a first sequence and a broadcast channel associated with the first sequence). The wireless device 110 determines a first index element based on the first sequence, and determines a second index element based on the information on the broadcast channel. As mentioned above, in some embodiments, the first sequence may be included in an SS. In some embodiments, the first index element may include a plurality of bits, and the wireless device 110 may determine the first index element by reading a first sequence included in the SS. In some embodiments, the broadcast channel may include a physical broadcast channel, and the second index element may include a plurality of explicit bits included in a main information block on the physical broadcast channel. In some embodiments, the wireless device 110 may decode the broadcast channel using the determined first index element. The wireless device 110 obtains an index value based on the first index element and the second index element. The wireless device 110 uses the acquired index value to determine system information. In some embodiments, the wireless device 110 uses the determined system information to access a network (eg, network 300) associated with the network node 115a. The wireless device 110 can obtain the index value in various ways. As an example, the wireless device 110 can obtain the index value by deriving the index value. The derived index value can be a function of one of the first index element and the second index element. The function can be any suitable function. As an example, the function of the first index element and the second index element may be a series of one of the first index element and the second index element. In some embodiments, the wireless device 110 may obtain the index value by applying the first index element and the second index element to a two-dimensional table in order to obtain the index value. Some exemplary use cases of embodiments contemplated by the present invention will now be described more fully below. However, other embodiments are included in the scope of the present invention and the concepts described herein should not be construed as being limited to the embodiments set forth herein; in fact, these embodiments are provided by way of example to convey the scope of concepts to familiarity The technical person. According to a first exemplary use case, the system information may include system information of a cell associated with a network node. In this case, the wireless device 110 can read an SIB table transmission (for example, if the UE has not already done so). The wireless device 110 may store a SIB table. The network node 115a transmits a first sequence in the form of an SS (including a physical cell identification code (PCI)). In some cases, the SS may include a primary SS (PSS) and a secondary SS (SSS) from which PCI may be determined. The network node 115a also transmits a broadcast channel (e.g., PBCH). The broadcast channel may include a MIB. A broadcast channel may be associated with the SS. In some cases, the broadcast channel may be transmitted with the SS. For example, SS and broadcast channels may be related in the following sense: SS implicitly defines time and frequency resources for PBCH demodulation; uses SS as one of the PBCH demodulation reference signals; and / or uses SS index (Eg, PCI) to derive one of the PBCH demodulation reference signals. The wireless device 110 scans the SS transmission from the network node 115a and selects one of them (eg, the strongest SS it receives, which in this exemplary use case is the SS associated with the network node 115a). The wireless device 110 determines PCI as the first index element. In some cases, PCI may be derived from one of the SS indexes. Using knowledge of PCI, the wireless device 110 may decode a broadcast channel (eg, the PBCH in this exemplary use case). In this first exemplary use case, the PBCH contains a MIB containing a second index element in a CELL_SI_CONFIG field. CELL_SI_CONFIG may include a small number of bits in the MIB included on the broadcast channel. The wireless device 110 determines a CELL_SI_CONFIG element from the MIB. In this exemplary use case, a small number of bits in the MIB are used to indicate a variant of the system information. For each PCI, different variants are allowed (eg, 16 variants). For example, the MIB may contain 4 bits used to derive the index value (ie, the SSI in this example), as described in more detail below. According to this first exemplary use case, the wireless device 110 obtains an index value based on the first index element and the second index element (represented as a system signature index (SSI) in this exemplary use case). For example, the wireless device 110 may derive an index value (ie, SSI) from all the bits or a subset of the bits of CELL_SI_CONFIG from SS (represented as PCI in Equation 1 below) and CELL_SI_CONFIG. This is shown in Equation 1 below:Where SSI is the index value, PCI represents the first index element (i.e., SS index (for example, 10 bits)), And CELL_SI_CONFIG represents the second index element (i.e., Included in a broadcast channel (i.e. A small number of bits in the MIB (e.g., PBCH in this exemplary use case) (e.g., 4 bits)).  The function can be any suitable function. For example, In some embodiments, The function can be a series of one of the PCI bit and the CELL_SI_CONFIG bit. The CELL_SI_CONFIG bit indicates different sets of system information (for example, In an SIB table) and can be used to modify any initial access parameters. Other functions can be used. For example, A function may use only the M most significant bits in PCI and concatenate their bits with the bits in CELL_SI_CONFIG. In some embodiments, Functions to be applied are also available on broadcast channels (for example, PBCH).  In some embodiments of this exemplary use case, A one-bit field is formed by the operation of the functions of the first index element and the second index element. In this case, The bit field formed by the function can be converted into an index value that the wireless device 110 can use to select an SIB from the SIB table stored by the wireless device 110. then, The wireless device 110 can access the network according to the derived system information.  According to a second exemplary use case, The system information may include system information of one of the plurality of beams associated with the network node. In some embodiments, The network node 115a can transmit a plurality of beams. Within a community, There will be multiple beams. For example, In high frequency bands (e.g., One cell operating in more than 6 GHz) may have up to 64 beams. For mid-band (for example, Between 3 GHz and 6 GHz), The maximum number of beams will be 8, And for low frequency bands (e.g., Below 3 GHz), The maximum number of beams will be 4. To encode the 64 beams, Six bits of information are needed to indicate which beam a wireless device is in. Each beam will have an index value indicating the system information for that beam. To indicate this system information, The network node 115a transmits an SS block index in each beam, And each beam will have a different SS block index.  For SS block index, The network node 115a transmits a sequence (e.g., -DMRS), And a broadcast channel containing one MIB with additional information (for example, PBCH). A first index element is passed through the DMRS of the NR-PBCH. For example, The DMRS may indicate three bits before a total of six bits used as an index value. When decoding the NR-PBCH, The wireless device 110 can first estimate which of the eight possible DMRS sequences is most likely to be used as the DMRS sequence and this provides the wireless device 110 with up to three bits of the SS block index (also known as the implicit bit of the SS block index ). A second index element is passed in the PBCH through three explicit bits in the MIB. The three implicit bits of the DMRS sequence and the three explicit bits in the PBCH together enable the wireless device 110 to obtain an index value indicating the beam index, The index value is then used to determine the system information of the beam.  For example, The wireless device 110 may receive a sequence including (e.g., DMRS) and PBCH (which contains MIB) SS block index. The wireless device 110 uses DMRS to decode the PBCH. For example, The wireless device 110 may know a fixed number of possible DMRS sequences that can be used to decode the PBCH (e.g., Eight different DMRS sequence candidates). The wireless device 110 attempts to decode the PBCH using one or more of the possible DMRS sequences. Once the wireless device 110 has determined the correct DMRS, The wireless device 110 determines the first index element as the three implicit bits indicated by the DMRS sequence. then, The wireless device 110 decodes the PBCH, And can determine the second index element (i.e., (Three explicit bits included in the PBCH's MIB). The wireless device 110 obtains an index value based on the first index element and the second index element. For example, The wireless device 110 may obtain the index value by concatenating the three bits indicated by the DMRS and one of the three explicit bits included in the MIB. then, The wireless device 110 may use the acquired index value to determine the system information of a beam.  According to a third exemplary use case, The embodiments described above can be used for indexing on-demand system information. In this case, Each cell associated with a network node 115 may belong to a system information area ID. Some SIBs may be valid in the entire system information area containing multiple cells. In this case, The network node 115a transmits a sequence (e.g., A PCI), A first index element can be determined from the sequence. PCI is directly derived from the sequence indexes of a primary synchronization signal and a secondary synchronization signal (represented as NR-PSS and NR-SSS, respectively). In addition, The network node 115a transmits a broadcast channel including a second index element. For example, The network node 115a may broadcast one or more value tags about one or more SIBs or system information messages containing multiple SIBs, And one of the SI area IDs associated with the cell. The value tag and the system information area ID associated with the cell may together form a second index element. The value tag and the system information area ID can be used as the remaining minimum system information (RMSI) broadcast (scheduled on a physical downlink control channel (PDCCH) and transmitted on a physical downlink shared channel (PDSCH)). The channel used for RMSI broadcasting is associated with PCI, The channel configuration is exported from PCI.  The wireless device 110 receives a sequence (i.e., In this third exemplary use case, the PSS / SSS of the PCI) and the broadcast value tag and the system information area ID are provided. The wireless device 110 determines PCI as the first index element, The determination value label and the system information area ID are used as the second index element. The wireless device 110 is based on PCI, An index value is obtained by the value label and the system information area ID. then, The wireless device 110 may use the acquired index value to determine system information.  According to a fourth exemplary use case, The embodiments described herein are applicable to carrier aggregation. For example, In some embodiments, The network node 115a may transmit SS blocks on multiple component carriers. Each component carrier will be associated with a frequency location. The SS block index may include a PSS / SSS sequence indicating a PCI. The wireless device 110 receives an SS block. To access component carriers, The wireless device 110 determines a first index element in the form of PCI from the PSS / SSS sequence. The wireless device 110 determines a second index element in the form of a frequency position of the component carrier. Based on the determined first index value (i.e., PCI in this fourth exemplary use case) and the determined second index value (i.e., The frequency position of the component carrier in this fourth exemplary use case), The wireless device 110 obtains an index value. The wireless device 110 uses the acquired index value to obtain system information of the component carrier.  According to a fifth exemplary use case, The system information may include information about a target cell to be delivered by the wireless device. When the wireless device 110 travels from one cell to another cell, The wireless device 110 may obtain information from the source cell in advance before performing the handover. After entering the target cell, The wireless device 110 may determine a first index element in the form of a PCI of a target cell (for example, Based on a sequence, (Such as PSS / SSS transmitted via network node 115a). In addition, The wireless device 110 determines a second index element from a beam index (which may be included in a MIB of a PBCH) of a beam in a target cell broadcast by the network node 115a. Based on the first index element (ie, PCI in this fifth exemplary use case) and the second index element (ie, Beam index in this fifth exemplary use case), The wireless device 110 obtains an index value. For example, The wireless device 110 may apply the first index element and the second index element to a two-dimensional table to obtain an index value indicating system information of a beam in a target cell.  FIG. 4 is a flowchart of a method 400 in a wireless device according to some embodiments. The method 400 starts at step 404, Where the wireless device receives one or more transmissions from a network node, The one or more transmissions include a first sequence and a broadcast channel associated with the first sequence. In some embodiments, The wireless device may be a UE.  In some embodiments, The first sequence may be included in an SS. In some embodiments, The broadcast channel may be associated with the first sequence due to one or more of the following: SS implicitly defines time and frequency resources used for demodulation of broadcast channels; And use SS as one of the broadcasting channels to demodulate the reference signal.  At step 408, The wireless device determines a first index element based on the first sequence. In some embodiments, The first index element may include a plurality of bits, And determining the first index element may include reading a first sequence included in the SS.  In some embodiments, The broadcast channel may be associated with the first sequence due to one or more of the following: Using a first index element to derive a demodulation reference signal of a broadcast channel; And use the first sequence to derive one channel configuration of the broadcast channel.  At step 412, The wireless device determines a second index element based on the information on the broadcast channel. In some embodiments, The broadcast channel may include a physical broadcast channel, And the second index element may include a plurality of explicit bits included in one MIB on the physical broadcast channel. In some embodiments, The method may include decoding the broadcast channel using the determined first index element.  At step 416, The wireless device obtains an index value based on the first index element and the second index element. In some embodiments, Obtaining an index value may include deriving the index value, The derived index value is a function of the first index element and the second index element. The function of the first index element and the second index element may be a concatenation of the first index element and one of the second index element.  At step 420, The wireless device uses the acquired index value to determine system information. In some embodiments, The method may include using the determined system information to access a network associated with the network node. In some embodiments, The system information may include system information of a cell associated with the network node. In some embodiments, The system information may include system information of one of the plurality of beams associated with the network node. In some embodiments, The system information may include information about a target cell to be delivered by the wireless device.  FIG. 5 is a flowchart of a method 500 in a network node according to some embodiments. The method 500 starts at step 504, The network node defines system information for one or more aspects of wireless communication between the network node and a wireless device. In some embodiments, The wireless device may be a UE.  At step 508, The network node transmits a first sequence to the wireless device, The first sequence enables the wireless device to determine a first index element based on the first sequence. In some embodiments, Transmitting the first sequence may include transmitting an SS including one of the first sequences. In some embodiments, The first index element may include a plurality of bits that can be determined by reading the first sequence included in the SS.  At step 512, The network node transmits one of the broadcast channels associated with the first sequence to the wireless device, The broadcast channel enables the wireless device to determine a second index element based on the information on the broadcast channel, The first index element and the second index element enable the wireless device to obtain an index value indicating one of the defined system information. In some embodiments, The index value may be a function of one of the first index element and the second index element. In some embodiments, The function of the first index element and the second index element is a series of the first index element and one of the second index element. In some embodiments, The system information may include system information of a cell associated with the network node. In some embodiments, The system information may include system information of one of the plurality of beams associated with the network node. In some embodiments, The system information may include information about a target cell to be delivered by the wireless device.  In some embodiments, The broadcast channel may be associated with the first sequence due to one or more of the following: SS implicitly defines time and frequency resources used for demodulation of broadcast channels; And use SS as one of the broadcasting channels to demodulate the reference signal. In some embodiments, The broadcast channel may be associated with the first sequence due to one or more of the following: Using a first index element to derive a demodulation reference signal of a broadcast channel; And use the first sequence to derive one channel configuration of the broadcast channel.  In some embodiments, The broadcast channel may include a physical broadcast channel, And the second index element includes a plurality of explicit bits included in a main information block on the physical broadcast channel.  FIG. 6 is a flowchart of a method 600 in a wireless device according to some embodiments. The method 600 starts at step 604, The wireless device reads an SS and determines a physical cell identification code. In some embodiments, The wireless device may be a UE. In some embodiments, The wireless device can determine a table of system information configuration (for example, SIB table). In some embodiments, Wireless devices can store SIB tables. In some embodiments, The wireless device can scan the SS transmission and select one of them (e.g., It receives the strongest SS) and reads the SS. In some embodiments, The wireless device can determine the physical cell identification code (PCI) as the index of the SS.  At step 608, The wireless device receives one of the physical broadcast channels transmitted along with the SS. At step 612, The wireless device determines a set of cell system information configuration bits from the received entity broadcast channel. In some embodiments, Wireless devices can use the knowledge of PCI to decode physical broadcast channels. In some embodiments, The physical broadcast channel contains a MIB, One element is the cell system information configuration bit. In some embodiments, The community system information configuration bit can be located in a CELL_SI_CONFIG field.  At step 616, The wireless device determines a system signature index for selecting a system information configuration from a table of system information configurations by combining the physical cell identification code and the system information configuration bits of the cell. In some embodiments, The system signature index can be used to select a new index of a system information block configuration from a table consisting of several synchronized configurations. In some embodiments, The system signature index can be determined as a function of the physical cell identification code and the cell system information configuration bit set. In some embodiments, The function may be connected in series with one of the physical cell identifier and one of the cell system information configuration bits. In some embodiments, The function can concatenate the M most significant bits in the physical cell identification code and concatenate them with the bits in the cell system information configuration bit set. In some embodiments, A one-bit field can be formed by a function and can be converted into an index for selecting one of the system information blocks from the SIB table.  At step 620, The wireless device determines the system information block by selecting the system information in the system signature index from the system information configuration table.  At step 624, The wireless device accesses the network based on the information provided in the system information block.  FIG. 7 is a block diagram of an exemplary UE according to one of some embodiments. As shown in Figure 7, The UE 700 is one of the exemplary wireless devices 110 described above. UE 700 includes an antenna 705, Radio front-end circuit 710, The processing circuit 715 and a computer-readable storage medium 730. The antenna 705 may include one or more antennas or antenna arrays, And configured to send and / or receive wireless signals, And connected to the radio front-end circuit 710. In some alternative embodiments, The wireless device 700 may not include the antenna 705. And the antenna 705 may be separately separated from the wireless device 700 and may be connected to the wireless device 700 through an interface or a port.  The radio front-end circuit 710 may include various filters and amplifiers, Connected to antenna 705 and processing circuit 715, And it is configured to adjust the signal communicated between the antenna 705 and the processing circuit 715. In some alternative embodiments, The UE 700 may not include the radio front-end circuit 710, And the processing circuit 715 may instead be connected to the antenna 705 without the radio front-end circuit 710.  The processing circuit 715 may include a radio frequency (RF) transceiver circuit, One or more of a baseband processing circuit and an application processing circuit. In some embodiments, RF transceiver circuit, The baseband processing circuit and the application processing circuit may be on separate chipsets. In an alternative embodiment, Part or all of the baseband processing circuit and the application processing circuit can be combined into one chipset, And the RF transceiver circuit can be on a separate chipset. In yet another alternative embodiment, Some or all of the RF transceiver circuit and the fundamental frequency processing circuit may be on the same chipset, And the application processing circuit can be on a separate chipset. In other alternative embodiments, RF transceiver circuit, Part or all of the baseband processing circuit and the application processing circuit can be combined in the same chipset. The processing circuit 715 may include, for example, one or more central processing units (CPUs), One or more microprocessors, One or more application specific integrated circuits (ASICs) and / or one or more field programmable gate arrays (FPGAs).  In a specific embodiment, Some or all of the functionality described herein as being provided by a wireless device may be provided by the processing circuit 715 executing instructions stored on a computer-readable storage medium 730. In an alternative embodiment, Some or all of the functionality may be provided by the processing circuit 715 without executing instructions stored on a computer-readable medium, such as in a hard-wired manner. In any of their specific embodiments, Whether or not the instructions stored on a computer-readable storage medium are executed, It is claimed that the processing circuit can be configured to perform the described functionality. The benefits provided by this functionality are not limited to individual processing circuits 715 or other components of the UE 700, And enjoyed by the UE as a whole, And / or generally enjoyed by end users and wireless networks.  Antenna 705, The radio front-end circuit 710 and / or the processing circuit 715 may be configured to perform any receiving operation described herein as being performed by a UE or a wireless device. Can receive any information from a network node and / or another wireless device, Information and / or signals.  The processing circuit 715 may be configured to perform any decision operation described herein as being performed by a wireless device. The determination performed by the processing circuit 715 may include: The processing is performed by the processing circuit 715 by, for example, converting the acquired information into other information; Compare the acquired or converted information with the information stored in the wireless device; And / or information obtained based on the obtained information or the conversion of information to perform one or more operations, And a judgment is made as a result of this processing.  Antenna 705, The radio front-end circuit 710 and / or the processing circuit 715 may be configured to perform any transmission operation described herein as being performed by a wireless device. Any information, Data and / or signals are transmitted to a network node and / or another wireless device.  The computer-readable storage medium 730 is generally operable to store instructions, Such as a computer program, software, Contains logic, rule, Code, One or more applications, And / or other instructions that can be executed by a processor. Examples of computer-readable storage media 730 include computer memory (for example, RAM or ROM), Mass storage media (for example, A hard drive), Removable storage media (for example, A compact disc (CD) or a digital video disc (DVD)), And / or store information that can be used by processing circuit 715, Information and / or instructions for any other volatile or non-volatile non-transitory computer-readable and / or computer-executable memory device. In some embodiments, The processing circuit 715 and the computer-readable storage medium 730 may be considered as integrated.  Alternative embodiments of the UE 700 may include additional components in addition to the components shown in FIG. 7, They may be responsible for providing certain aspects of the functionality of the UE, including any of the functionality described herein and / or any functionality necessary to support the solution described above. As just one example, UE 700 can include an input interface, Devices and circuits 720, And output interface, Device and circuit 725. Input interface, Devices and circuits 720 are configured to allow information to be entered into the UE 700, And connected to the processing circuit 715 to allow the processing circuit 715 to process the input information. For example, Input interface, The device and circuit 720 may include a microphone, A proximity or other sensor, Key / button, A touch display, One or more cameras, A USB port or other input component. Output interface, Devices and circuits 725 are configured to allow information to be output from the UE 700, And connected to the processing circuit 715 to allow the processing circuit 715 to output information from the UE 700. For example, Output interface, The device or circuit 725 may include a speaker, A display, Vibration circuit, A USB port, A headphone interface or other output element. Using one or more input and output interfaces 720, 725, Devices and circuits, UE 300 can communicate with end users and / or wireless networks, And allow them to benefit from the functionality described in this article.  As another example, The UE 700 may include a power source 735. The power supply 735 may include a power management circuit. The power source 735 can receive power from a power supply, The power supply may be included in or external to the power source 735. For example, The UE 700 may include a power supply in the form of a battery or battery pack connected to or integrated in the power source 735. Other types of power can also be used, Such as photovoltaic devices. As a further example, The UE 700 may be connectable to an external power supply (such as an electrical outlet) via an input circuit or interface (such as a cable), Thereby, the external power supply supplies power to the power source 735. The power supply 735 can be connected to the radio front-end circuit 710, The processing circuit 715 and / or the computer-readable storage medium 730 are configured to supply power to the UE 700 including the processing circuit 715 for performing the functions described herein.  The UE 700 may also include different wireless technologies such as (for example) GSM, WCDMA, LTE, NR, WiFi or Bluetooth wireless technology) multiple sets of processing circuits 715, Computer-readable storage media 730, Radio circuit 710 and / or antenna 705. These wireless technologies can be integrated into the same or different chipset and other components within the wireless device 700.  FIG. 8 is a block schematic diagram of an exemplary wireless device 110 according to one of some embodiments. The wireless device 110 may refer to any type of wireless device that communicates with a node and / or with another wireless device in a cellular or mobile communication system. Examples of the wireless device 110 include a mobile phone, A smart phone, A PDA (Personal Digital Assistant), A portable computer (for example, Laptop, tablet), A sensor, Actuator, A modem, A machine type communication (MTC) device / machine-to-machine (M2M) device, Laptop Embedded Devices (LEE), Laptop installation equipment (LME), USB hardware lock, A D2D function device, Or another device that can provide wireless communication. In some embodiments, A wireless device 110 may also be referred to as a UE, One stop (STA), A device or a terminal. The wireless device 110 includes a transceiver 810, Processing circuit 820 and memory 830. In some embodiments, The transceiver 810 facilitates (e.g., Transmitting and receiving wireless signals to and from the network node 115 via the antenna 840), The processing circuit 820 executes instructions to provide some or all of the functionality described above as being provided by the wireless device 110, And the memory 830 stores the instructions executed by the processing circuit 820.  The processing circuit 820 may include one or more modules implemented to execute instructions and manipulate data to perform some or all of the functions described by the wireless device 110 (such as the functions of the wireless device 110 described above with reference to FIGS. 1 to 6). Any suitable combination of hardware and software. In some embodiments, The processing circuit 820 may include, for example, one or more computers, One or more central processing units (CPUs), One or more microprocessors, One or more apps, One or more application specific integrated circuits (ASICs), One or more fields can be programmed with a gate array (FPGA) and / or other logic.  The memory 830 is generally operable to store instructions, Such as a computer program, software, Contains logic, rule, Algorithm, Code, One or more applications, And / or other instructions that can be executed by the processing circuit 820. Examples of memory 830 include computer memory (for example, RAM or ROM), Mass storage media (for example, A hard drive), Removable storage media (for example, A CD or a DVD), And / or store information that can be used by the processing circuit 820, Information and / or instructions for any other volatile or non-volatile non-transitory computer-readable and / or computer-executable memory device.  Other embodiments of the wireless device 110 may include additional components in addition to the components shown in FIG. 8, They may be responsible for providing some functionality of the wireless device (including any of the functionality described above and / or any additional functionality (including any functionality necessary to support the solution described above)) kind. As just one example, The wireless device 110 may include input devices and circuits, Output devices and one or more synchronization units or circuits, These may be part of the processing circuit 820. The input device includes a mechanism for entering data into the wireless device 110. For example, The input device may include an input mechanism, Such as a microphone, Input components, A monitor, etc. Output devices can include Organizations that export data in video and / or hard copy format. For example, The output device can include a speaker, A monitor, etc.  FIG. 9 is a block diagram of an exemplary network node 115 according to one of the embodiments. The network node 115 may be any type of radio network node or any network node that communicates with one UE and / or with another network node. Examples of network node 115 include an eNodeB, One gNB, A node B, A base station, A wireless access point (e.g., A Wi-Fi access point), A low power node, A base transceiver station (BTS), relay, Donor node controls relay, Transfer point, Transmission nodes, Remote RF unit (RRU), Remote Radio Front End (RRH), Multi-standard radio (MSR) radio nodes (such as MSR BS), Nodes in a distributed antenna system (DAS), O & M, OSS, SON, Anchor nodes (e.g., E-SMLC), MDT or any other suitable network node. Network node 115 can be deployed as homogeneous deployment throughout network 100, Heterogeneous or hybrid deployment. A homogeneous deployment may generally describe one deployment consisting of the same (or similar) type of network node 115 and / or similar coverage area and cell size and inter-site distance. A heterogeneous deployment can generally describe the use of different cell sizes, Transmission power, Deployment of various types of network nodes 115 of capacity and distance between stations. For example, A heterogeneous deployment may include multiple low-power nodes placed throughout a giant cell layout. A hybrid deployment can include a mixture of one homogeneous part and one heterogeneous part.  The network node 115 may include a transceiver 910, Processing circuit 920, One or more of the memory 930 and the network interface 940. In some embodiments, The transceiver 910 facilitates (e.g., Transmitting and receiving wireless signals to and from the wireless device 110 via the antenna 950), The processing circuit 920 executes instructions to provide some or all of the functionality described above as being provided by a network node 115, The memory 930 stores instructions executed by the processing circuit 920, And the network interface 940 transmits signals to the back-end network components, Such as a gateway, switch, router, Internet, Public Switched Telephone Network (PSTN), A core network node or a radio network controller 130 and the like.  The processing circuit 920 may include hardware implemented in one or more modules to execute instructions and manipulate data to perform some or all of the functions described in the network node 115 (such as the functions described above with respect to FIGS. 1-6) And any suitable combination of software. In some embodiments, The processing circuit 920 may include, for example, one or more computers, One or more CPUs, One or more microprocessors, One or more apps, One or more ASICs, One or more FPGAs and / or other logic.  The memory 930 is generally operable to store instructions, Such as a computer program, software, Contains logic, rule, Algorithm, Code, One or more applications, And / or other instructions that can be executed by the processing circuit 920. Examples of memory 930 include computer memory (for example, RAM or ROM), Mass storage media (for example, A hard drive), Removable storage media (for example, A CD or a DVD), And / or any other volatile or non-volatile non-transitory computer-readable and / or computer-executable memory device that stores information.  In some embodiments, Network interface 940 is communicatively coupled to processing circuit 920 and may refer to being operable to receive input from network node 115, Send output from network node 115, Perform input or output or a suitable processing of both, Any suitable device that communicates with other devices or any combination of the foregoing. The network interface 940 may include appropriate hardware (e.g., port, Modem, Network interface cards, etc.) and software (including protocol conversion and data processing capabilities) to communicate over a network.  Other embodiments of the network node 115 may include additional components in addition to the components shown in FIG. 9, They may be responsible for providing the functionality of a radio network node (including any of the functionality described above and / or any additional functionality (including any functionality necessary to support the solution described above)) Some aspects. Different types of network nodes can include but be configured with the same physical hardware (for example, (Programmed) to support components of different radio access technologies, Or may represent part or completely different physical components.  FIG. 10 is a block diagram of an exemplary radio network controller or core network node 130 according to one of some embodiments. Examples of network nodes may include a mobile switching center (MSC), A servo GPRS support node (SGSN), A mobility management entity (MME), A radio network controller (RNC), A base station controller (BSC) and so on. The radio network controller or core network node 130 includes a processing circuit 1020, Memory 1030 and network interface 1040. In some embodiments, The processing circuit 1020 executes instructions to provide some or all of the functionality described above as being provided by a network node, The memory 1030 stores instructions executed by the processing circuit 1020, And the network interface 1040 communicates the signal to any suitable node, Such as a gateway, switch, router, Internet, Public Switched Telephone Network (PSTN), Network node 115, Radio network controller or core network node 130, etc.  The processing circuit 1020 may include any suitable combination of hardware and software implemented in one or more modules to execute instructions and manipulate data to perform some or all of the functions described by the radio network controller or core network node 130. In some embodiments, The processing circuit 1020 may include, for example, one or more computers, One or more CPUs, One or more microprocessors, One or more apps, One or more ASICs, One or more FPGAs and / or other logic.  The memory 1030 is generally operable to store instructions, Such as a computer program, software, Contains logic, rule, Algorithm, Code, One or more applications, And / or other instructions that can be executed by the processing circuit 1020. Examples of memory 1030 include computer memory (for example, RAM or ROM), Mass storage media (for example, A hard drive), Removable storage media (for example, A CD or a DVD), And / or any other volatile or non-volatile non-transitory computer-readable and / or computer-executable memory device that stores information.  In some embodiments, The network interface 1040 is communicatively coupled to the processing circuit 1020 and may refer to being operable to receive input from a network node, Sending output from network nodes, Perform input or output or a suitable processing of both, Any suitable device that communicates with other devices or any combination of the foregoing. The network interface 1040 may include appropriate hardware (e.g., port, Modem, Network interface cards, etc.) and software (including protocol conversion and data processing capabilities) to communicate over a network.  Other embodiments of the network node may include additional components in addition to the components shown in FIG. 10, They may be responsible for providing some of the functionality of the network nodes (including any of the functionality described above and / or any additional functionality (including any functionality necessary to support the solution described above)) Appearance.  11 is a schematic block diagram of an exemplary wireless device according to one of some embodiments. The wireless device 110 may include one or more modules. For example, The wireless device 110 may include a determination module 1110, A communication module 1120, A receiving module 1130, An input module 1140, A display module 1150 and any other suitable module. In some embodiments, One or more processors (such as the processing circuit 820 described above with respect to FIG. 8) may be used to implement the determination module 1110, Communication module 1120, Receiving module 1130, Input module 1140, Display module 1150 or one or more of any other suitable modules. In some embodiments, The functions of two or more of various modules can be combined into a single module. The wireless device 110 may perform the method for the enhanced index-based system information distribution described above with reference to FIGS. 1 to 6.  The determination module 1110 can perform processing functions of the wireless device 110. For example, The determination module 1110 may determine a first index element based on the first sequence. As another example, The determination module 1110 may determine a second index element based on the information on the broadcast channel. As yet another example, The determination module 1110 may obtain an index value based on the first index element and the second index element. As yet another example, The determination module 1110 may use the obtained index value to determine the system information. As another example, The determination module 1110 may use the determined system information to access a network associated with a network node. As another example, The judgment module 1110 can derive an index value, The derived index value is a function of the first index element and the second index element. As another example, The determination module 1110 may determine a first index element by reading a first sequence included in an SS. As another example, The determination module 1110 may decode the broadcast channel using the determined first index element.  As another example, In some embodiments, The determination module 1110 can read an SS and determine a physical cell identification code. The determination module 1110 can determine a cell system information configuration bit set from the received physical broadcast channel. The determination module 1110 may determine a system signature index for selecting a system information configuration from a table of system information configurations by combining a physical cell identification code and a cell system information configuration bit. The determination module 1110 can determine a system information block by selecting system information having a system signature index from a system information configuration table. The determination module 1110 can access the network according to the information provided in the system information block.  The determination module 1110 may include or be included in one or more processors. A processing circuit 820 such as described above with respect to FIG. 8. Decision module 1110 may include analog and / or digital circuits configured to perform any of the functions of decision module 1110 and / or processing circuit 820 described above. In some embodiments, The functions of the determination module 1110 described above may be performed in one or more distinct modules.  The communication module 1120 may perform a transmission function of the wireless device 110. For example, The communication module 1120 may use the determined system information to access a network associated with the network node. As another example, The communication module 1120 can access the network according to the information provided in the system information block. The communication module 1120 may include a transmitter and / or a transceiver, A transceiver 810 such as described above with respect to FIG. 8. The communication module 1120 may include circuits configured to transmit messages and / or signals wirelessly. In a specific embodiment, The communication module 1120 may receive messages and / or signals for transmission from the determination module 1110. In some embodiments, The functions of the communication module 1120 described above may be performed in one or more distinct modules.  The receiving module 1130 may perform a receiving function of the wireless device 110. For example, The receiving module 1130 can receive one or more transmissions from a network node. The one or more transmissions include a first sequence and a broadcast channel associated with the first sequence. As another example, The receiving module 1130 may receive one physical broadcast channel transmitted together with the SS. The receiving module 1130 may include a receiver and / or a transceiver. The receiving module 1130 may include a receiver and / or a transceiver, A transceiver 810 such as described above with respect to FIG. 8. The receiving module 1130 may include circuitry configured to receive messages and / or signals wirelessly. In a specific embodiment, The receiving module 1130 may transmit the received messages and / or signals to the determination module 1110. In some embodiments, The functions of the receiving module 1130 described above may be performed in one or more distinct modules.  The input module 1140 may receive user input intended for the wireless device 110. For example, The input module can receive key presses, Button press, touch, slide, Audio signals, Video signals and / or any other appropriate signals. The input module can include one or more keys, Button, lever, switch, Touch screen, Microphone and / or camera. The input module can communicate the received signal to the determination module 1110. In some embodiments, The functions of the input module 1140 described above may be performed in one or more distinct modules.  The display module 1150 can present signals on a display of the wireless device 110. The display module 1150 may include a display and / or any suitable circuitry and hardware configured to present signals on the display. The display module 1150 can receive signals from the determination module 1110 to be presented on a display. In some embodiments, The functions of the display module 1150 described above may be performed in one or more distinct modules.  Decision module 1110, Communication module 1120, Receiving module 1130, The input module 1140 and the display module 1150 may include any suitable configuration of hardware and / or software. The wireless device 110 may include additional modules in addition to the modules shown in FIG. 11, They may be responsible for providing any suitable functionality, Contains any of the functionality described above and / or any additional functionality (including any functionality necessary to support the various solutions described herein).  FIG. 12 is a schematic block diagram of an exemplary network node 115 according to one of some embodiments. The network node 115 may include one or more modules. For example, The network node 115 may include a determination module 1210, Communication module 1220, Receive module 1230 and any other suitable module. In some embodiments, The decision module 1210, such as the processing circuit 920 described above with respect to FIG. 9, may be implemented using one or more processors, Communication module 1220, The receiving module 1230 or one or more of any other suitable modules. In some embodiments, The functions of two or more of various modules can be combined into a single module. The network node 115 may perform the method for the enhanced index-based system information distribution described above with respect to FIGS. 1 to 6.  The determination module 1210 can perform processing functions of the network node 115. As an example, The determination module 1210 may define system information for one or more aspects of wireless communication between the network node and a wireless device.  The determination module 1210 may include or be included in one or more processors. A processing circuit 920 such as described above with respect to FIG. 9. Decision module 1210 may include analog and / or digital circuits configured to perform any of the functions of decision module 1210 and / or processing circuit 920 described above. In some embodiments, The function of the determination module 1210 may be performed in one or more distinct modules.  The communication module 1220 can perform a transmission function of the network node 115. As an example, The communication module 1220 can transmit a first sequence to the wireless device, The first sequence enables the wireless device to determine a first index element based on the first sequence. As another example, The communication module 1220 may transmit a broadcast channel associated with the first sequence to the wireless device, The broadcast channel enables the wireless device to determine a second index element based on the information on the broadcast channel, The first index element and the second index element enable the wireless device to obtain an index value indicating one of the defined system information. As yet another example, The communication module 1220 can transmit one SS including a first sequence.  The communication module 1220 can transmit messages to one or more of the wireless devices 110. The communication module 1220 may include a transmitter and / or a transceiver, A transceiver 910 such as described above with respect to FIG. 9. The communication module 1220 may include circuits configured to transmit messages and / or signals wirelessly. In a specific embodiment, The communication module 1220 may receive messages and / or signals for transmission from the determination module 1210 or any other module. In some embodiments, The function of the communication module 1220 may be performed in one or more distinct modules.  The receiving module 1230 may perform a receiving function of the network node 115. The receiving module 1230 can receive any suitable information from a wireless device. The receiving module 1230 may include a receiver and / or a transceiver, A transceiver 910 such as described above with respect to FIG. 9. The receiving module 1230 may include circuitry configured to receive messages and / or signals wirelessly. In a specific embodiment, The receiving module 1230 may communicate the received messages and / or signals to the determination module 1210 or any other suitable module. In some embodiments, The function of the receiving module 1230 may be performed in one or more distinct modules.  Decision module 1210, The communication module 1220 and the receiving module 1230 may include any suitable configuration of hardware and / or software. The network node 115 may include additional modules in addition to the modules shown in FIG. 12, They may be responsible for providing any suitable functionality, Contains any of the functionality described above and / or any additional functionality (including any functionality necessary to support the various solutions described herein).  Modifications to the systems and devices described herein may be made without departing from the scope of the invention, Add or omit. The components of systems and devices may be integrated or separated. In addition, The operation of systems and devices can be achieved by more, Fewer or other components execute. Additionally, Available including software, Any suitable logic of hardware and / or other logic to perform the operations of the system and device. As used in this file, "Each" means each member of a episode or each member of a subset of an episode.  Modifications to the methods described herein may be made without departing from the scope of the invention, Add or omit. Methods can include more, Fewer or other steps. Additionally, The steps can be performed in any suitable order.  Although the invention has been described in terms of certain embodiments, However, those skilled in the art will understand the changes and substitutions of the embodiments. Correspondingly, The above description of the examples does not limit the invention. Other changes, Substitutions and changes are possible without departing from the spirit and scope of the invention as defined by the following patent application scope.  The abbreviations used in the preceding description include:  3GPP 3rd Generation Partnership Project AGC Automatic Gain Control AP Access Point ASIC Specific Application Integrated Circuit BER Block Error Rate BS Base Station BSC Base Station Controller BTS Base Transceiver Station CD Disc CPE Client Device CPU Central Processing Unit CRC Cyclic redundancy check D2D inter-device DAS distributed antenna system DL downlink DMRS demodulation reference signal DVD digital video disc eNB evolved node B E-SMLC evolved servo action position center FPGA field programmable gate array GPS global positioning system IoT IoT IP Internet Protocol LAN Local Area Network LAN Laptop Embedded Device LME Laptop Installed Device LTE Long Term Evolution M2M MAC Message Authentication Code MAN Metropolitan Area Network Multicast / Multicast Coordination Entity MCS Modulation level and coding scheme MDT drive test minimized MIB main information block MIMO multiple input multiple output MME mobility management entity MSC mobile switching center MSR multi-standard radio MTC machine type communication NAS non-access layer NB-IoT narrowband IoT NR new radio O & M operation and management OSS operation support system PBCH physical broadcast frequency PCI physical cell identifier PDCCH physical downlink control channel PDSCH physical downlink shared channel PRACH physical random access channel PSS primary synchronization signal PSTN public switched telephone network RAM random access memory RAN radio access network RAR random Access Response RAT Radio Access Technology RNC Radio Network Controller RMSI Remaining Minimum System Information ROM Read-Only Memory RRC Radio Resource Control RRH Remote Radio Front End RRU Remote Radio Unit SFN Single Frequency Network SIB System Information Block SS Synchronization Signal SSI system signature index SSS secondary synchronization signal SON ad hoc network TR technical report UE user equipment UL uplink WAN wide area network WLAN wireless area network

110‧‧‧無線器件110‧‧‧Wireless device

115‧‧‧網路節點115‧‧‧ network node

115a‧‧‧網路節點115a‧‧‧Network Node

115b‧‧‧網路節點115b‧‧‧Network Node

125a‧‧‧無線信號125a‧‧‧ wireless signal

125b‧‧‧無線信號125b‧‧‧ wireless signal

130‧‧‧無線電網路控制器/核心網路節點130‧‧‧Radio Network Controller / Core Network Node

205‧‧‧同步信號(SS)205‧‧‧Sync Signal (SS)

210‧‧‧主資訊區塊(MIB)210‧‧‧ Master Information Block (MIB)

215‧‧‧廣播系統資訊區塊(SIB)215‧‧‧ Broadcasting System Information Block (SIB)

220‧‧‧實體隨機存取頻道(PRACH)220‧‧‧ Physical Random Access Channel (PRACH)

225‧‧‧隨機存取回應(RAR)225‧‧‧RAR

300‧‧‧網路300‧‧‧Internet

320‧‧‧互連網路320‧‧‧internet

400‧‧‧方法400‧‧‧Method

404‧‧‧步驟404‧‧‧step

408‧‧‧步驟408‧‧‧step

412‧‧‧步驟412‧‧‧step

416‧‧‧步驟416‧‧‧step

420‧‧‧步驟420‧‧‧step

500‧‧‧方法500‧‧‧method

504‧‧‧步驟504‧‧‧step

508‧‧‧步驟508‧‧‧step

512‧‧‧步驟512‧‧‧step

600‧‧‧方法600‧‧‧ Method

604‧‧‧步驟604‧‧‧step

608‧‧‧步驟608‧‧‧step

612‧‧‧步驟612‧‧‧step

616‧‧‧步驟616‧‧‧step

620‧‧‧步驟620‧‧‧step

624‧‧‧步驟624‧‧‧step

700‧‧‧使用者設備(UE)/無線器件700‧‧‧User Equipment (UE) / Wireless Device

705‧‧‧天線705‧‧‧antenna

710‧‧‧無線電前端電路710‧‧‧Radio front-end circuit

715‧‧‧處理電路715‧‧‧Processing circuit

720‧‧‧輸入介面、器件及電路720‧‧‧ input interface, device and circuit

725‧‧‧輸出介面、器件及電路725‧‧‧output interface, device and circuit

730‧‧‧電腦可讀儲存媒體730‧‧‧ computer-readable storage media

735‧‧‧電源735‧‧‧ Power

810‧‧‧介面/收發器810‧‧‧Interface / Transceiver

820‧‧‧處理器820‧‧‧Processor

830‧‧‧記憶體830‧‧‧Memory

840‧‧‧天線840‧‧‧ Antenna

910‧‧‧介面/收發器910‧‧‧Interface / Transceiver

920‧‧‧處理器/處理電路920‧‧‧Processor / Processing Circuit

930‧‧‧記憶體930‧‧‧Memory

940‧‧‧介面/網路介面940‧‧‧Interface / Internet Interface

950‧‧‧天線950‧‧‧ Antenna

1020‧‧‧處理電路1020‧‧‧Processing Circuit

1030‧‧‧記憶體1030‧‧‧Memory

1040‧‧‧網路介面1040‧‧‧Interface

1110‧‧‧判定模組1110‧‧‧Judgment Module

1120‧‧‧通信模組1120‧‧‧Communication Module

1130‧‧‧接收模組1130‧‧‧Receiving Module

1140‧‧‧輸入模組1140‧‧‧input module

1150‧‧‧顯示模組1150‧‧‧Display Module

1210‧‧‧判定模組1210‧‧‧Judgment Module

1220‧‧‧通信模組1220‧‧‧Communication Module

1230‧‧‧接收模組1230‧‧‧Receiving module

為了更完整理解所揭示實施例及其等特徵及優勢,現參考結合隨附圖式進行之以下描述,其中: 圖1圖解說明用於5G-NR之所提出系統資訊擷取之一實例; 圖2圖解說明根據某些實施例之一無線器件如何擷取使其能夠執行一PRACH傳輸且接收一RAR之最小系統資訊之一實例; 圖3係圖解說明根據某些實施例之一網路之一實施例之一方塊圖; 圖4係根據某些實施例之在一無線器件中之一方法之一流程圖; 圖5係根據某些實施例之在一網路節點中之一方法之一流程圖; 圖6係根據某些實施例之在一無線器件中之一方法之一流程圖; 圖7係根據某些實施例之一例示性UE之一方塊示意圖; 圖8係根據某些實施例之一例示性無線器件之一方塊示意圖; 圖9係根據某些實施例之一例示性網路節點之一方塊示意圖; 圖10係根據某些實施例之一例示性無線電網路控制器或核心網路節點之一方塊示意圖; 圖11係根據某些實施例之一例示性無線器件之一方塊示意圖;及 圖12係根據某些實施例之一例示性網路節點之一方塊示意圖。For a more complete understanding of the disclosed embodiments and their features and advantages, reference is now made to the following description in conjunction with the accompanying drawings, where: FIG. 1 illustrates an example of the proposed system information extraction for 5G-NR; 2 illustrates one example of how a wireless device captures minimal system information that enables it to perform a PRACH transmission and receive an RAR according to one of some embodiments; FIG. 3 illustrates one of the networks according to some embodiments A block diagram of one embodiment; FIG. 4 is a flowchart of a method in a wireless device according to some embodiments; FIG. 5 is a flowchart of a method in a network node according to some embodiments FIG. 6 is a flowchart of a method in a wireless device according to some embodiments; FIG. 7 is a block diagram of an exemplary UE according to some embodiments; FIG. 8 is a block diagram according to some embodiments A block diagram of an exemplary wireless device; FIG. 9 is a block diagram of an exemplary network node according to one of the embodiments; FIG. 10 is an exemplary radio network controller or core according to one of the embodiments. network One point of a block schematic; FIG. 11 schematic view showing one case in accordance with one embodiment of the certain exemplary embodiments the wireless device block diagram; and FIG. 12 schematic view showing an exemplary according to one certain embodiment of the network node block.

Claims (48)

一種在一無線器件(110)中之方法,其包括: 從一網路節點(115)接收(404)一或多個傳輸(125a、125b),該一或多個傳輸包括一第一序列及與該第一序列相關聯之一廣播頻道; 基於該第一序列判定(408)一第一索引元素; 基於該廣播頻道上之資訊判定(412)一第二索引元素; 基於該第一索引元素及該第二索引元素獲取(416)一索引值;及 使用該所獲取索引值來判定(420)系統資訊。A method in a wireless device (110), comprising: receiving (404) one or more transmissions (125a, 125b) from a network node (115), the one or more transmissions including a first sequence and A broadcast channel associated with the first sequence; determining (408) a first index element based on the first sequence; determining (412) a second index element based on information on the broadcast channel; based on the first index element And the second index element obtains (416) an index value; and uses the acquired index value to determine (420) system information. 如請求項1之方法,其包括使用該經判定系統資訊來存取與該網路節點相關聯之一網路(300)。The method of claim 1, comprising using the determined system information to access a network (300) associated with the network node. 如請求項1之方法,其中獲取一索引值包括: 導出該索引值,其中該所導出索引值係該第一索引元素及該第二索引元素之一函數。The method of claim 1, wherein obtaining an index value comprises: deriving the index value, wherein the derived index value is a function of the first index element and the second index element. 如請求項3之方法,其中該第一索引元素及該第二索引元素之該函數係該第一索引元素及該第二索引元素之一串連。The method of claim 3, wherein the function of the first index element and the second index element is a series of one of the first index element and the second index element. 如請求項1之方法,其中該第一序列係包括於一同步信號中。The method of claim 1, wherein the first sequence is included in a synchronization signal. 如請求項5之方法,其中: 該第一索引元素包括複數個位元;且 判定該第一索引元素包括讀取包括於該同步信號中之該第一序列。The method of claim 5, wherein: the first index element includes a plurality of bits; and determining the first index element includes reading the first sequence included in the synchronization signal. 如請求項5之方法,其中該廣播頻道歸因於以下之一或多者而與該第一序列相關聯: 該同步信號隱式地定義用於該廣播頻道之解調變之時間及頻率資源;及 使用該同步信號作為該廣播頻道之一解調變參考信號。The method of claim 5, wherein the broadcast channel is associated with the first sequence due to one or more of the following: The synchronization signal implicitly defines time and frequency resources for demodulation of the broadcast channel ; And using the synchronization signal as one of the broadcast channels to demodulate a reference signal. 如請求項1之方法,其中該廣播頻道歸因於以下之一或多者而與該第一序列相關聯: 使用該第一索引元素來導出該廣播頻道之該解調變參考信號;及 使用該第一序列來導出該廣播頻道之一頻道組態。The method of claim 1, wherein the broadcast channel is associated with the first sequence due to one or more of: using the first index element to derive the demodulation reference signal of the broadcast channel; and using The first sequence derives a channel configuration of one of the broadcast channels. 如請求項1之方法,其中該廣播頻道包括一實體廣播頻道,且該第二索引元素包括包含於該實體廣播頻道上之一主資訊區塊中之複數個顯式位元。The method of claim 1, wherein the broadcast channel includes a physical broadcast channel and the second index element includes a plurality of explicit bits included in a main information block on the physical broadcast channel. 如請求項1之方法,其包括使用該經判定第一索引元素對該廣播頻道進行解碼。A method as claimed in item 1, comprising decoding the broadcast channel using the determined first index element. 如請求項1之方法,其中該系統資訊包括與該網路節點相關聯之一小區之系統資訊。The method of claim 1, wherein the system information includes system information of a cell associated with the network node. 如請求項1之方法,其中該系統資訊包括與該網路節點相關聯之複數個波束之一者之系統資訊。The method of claim 1, wherein the system information includes system information of one of a plurality of beams associated with the network node. 如請求項1之方法,其中該系統資訊包括關於該無線器件待交遞至之一目標小區之資訊。The method of claim 1, wherein the system information includes information about a target cell to which the wireless device is to be delivered. 一種在一網路節點(115)中之方法,其包括: 針對該網路節點與一無線器件(110)之間之無線通信之一或多個態樣定義(504)系統資訊; 將一第一序列傳輸(508)至該無線器件,該第一序列使該無線器件能夠基於該第一序列判定一第一索引元素;及 將與該第一序列相關聯之一廣播頻道傳輸(512)至該無線器件,該廣播頻道使該無線器件能夠基於該廣播頻道上之資訊判定一第二索引元素,其中該第一索引元素及該第二索引元素使該無線器件能夠獲取指示該所定義系統資訊之一索引值。A method in a network node (115), comprising: defining (504) system information for one or more aspects of wireless communication between the network node and a wireless device (110); Transmitting (508) a sequence to the wireless device, the first sequence enabling the wireless device to determine a first index element based on the first sequence; and transmitting (512) a broadcast channel associated with the first sequence to For the wireless device, the broadcast channel enables the wireless device to determine a second index element based on the information on the broadcast channel, wherein the first index element and the second index element enable the wireless device to obtain indication of the defined system information One of the index values. 如請求項14之方法,其中該索引值係該第一索引元素及該第二索引元素之一函數。The method of claim 14, wherein the index value is a function of the first index element and the second index element. 如請求項15之方法,其中該第一索引元素及該第二索引元素之該函數係該第一索引元素及該第二索引元素之一串連。The method of claim 15, wherein the function of the first index element and the second index element is a series of one of the first index element and the second index element. 如請求項14之方法,其中傳輸該第一序列包括傳輸包括該第一序列之一同步信號。The method of claim 14, wherein transmitting the first sequence includes transmitting a synchronization signal including one of the first sequence. 如請求項17之方法,其中該第一索引元素包括可藉由讀取包括於該同步信號中之該第一序列而判定之複數個位元。The method of claim 17, wherein the first index element includes a plurality of bits that can be determined by reading the first sequence included in the synchronization signal. 如請求項17之方法,其中該廣播頻道歸因於以下之一或多者而與該第一序列相關聯: 該同步信號隱式地定義用於該廣播頻道之解調變之時間及頻率資源;及 使用該同步信號作為該廣播頻道之一解調變參考信號。The method of claim 17, wherein the broadcast channel is associated with the first sequence due to one or more of the following: The synchronization signal implicitly defines time and frequency resources for demodulation of the broadcast channel ; And using the synchronization signal as one of the broadcast channels to demodulate a reference signal. 如請求項14之方法,其中該廣播頻道歸因於以下之一或多者而與該第一序列相關聯: 使用該第一索引元素來導出該廣播頻道之該解調變參考信號;及 使用該第一序列來導出該廣播頻道之一頻道組態。The method of claim 14, wherein the broadcast channel is associated with the first sequence due to one or more of: using the first index element to derive the demodulation reference signal of the broadcast channel; and using The first sequence derives a channel configuration of one of the broadcast channels. 如請求項14之方法,其中該廣播頻道包括一實體廣播頻道,且該第二索引元素包括包含於該實體廣播頻道上之一主資訊區塊中之複數個顯式位元。The method of claim 14, wherein the broadcast channel includes a physical broadcast channel, and the second index element includes a plurality of explicit bits included in a main information block on the physical broadcast channel. 如請求項14之方法,其中該系統資訊包括與該網路節點相關聯之一小區之系統資訊。The method of claim 14, wherein the system information includes system information of a cell associated with the network node. 如請求項14之方法,其中該系統資訊包括與該網路節點相關聯之複數個波束之一者之系統資訊。The method of claim 14, wherein the system information includes system information of one of a plurality of beams associated with the network node. 如請求項14之方法,其中該系統資訊包括關於該無線器件待交遞至之一目標小區之資訊。The method of claim 14, wherein the system information includes information about a target cell to which the wireless device is to be delivered. 一種無線器件(110),其包括: 一接收器(710、810);及 處理電路(715、820),其耦合至該接收器,該處理電路經組態以: 經由該接收器從一網路節點(115)接收(404)一或多個傳輸(125a、125b),該一或多個傳輸包括一第一序列及與該第一序列相關聯之一廣播頻道; 基於該第一序列判定(408)一第一索引元素; 基於該廣播頻道上之資訊判定(412)一第二索引元素; 基於該第一索引元素及該第二索引元素而獲取(416)一索引值;及 使用該所獲取索引值來判定(420)系統資訊。A wireless device (110) includes: a receiver (710, 810); and a processing circuit (715, 820) coupled to the receiver, the processing circuit is configured to: from the network via the receiver The road node (115) receives (404) one or more transmissions (125a, 125b), the one or more transmissions including a first sequence and a broadcast channel associated with the first sequence; and determining based on the first sequence (408) a first index element; determining (412) a second index element based on the information on the broadcast channel; obtaining (416) an index value based on the first index element and the second index element; and using the The obtained index value determines (420) system information. 如請求項25之無線器件,其中該處理電路經組態以使用該經判定系統資訊來存取與該網路節點相關聯之一網路(300)。The wireless device of claim 25, wherein the processing circuit is configured to use the determined system information to access a network (300) associated with the network node. 如請求項25之無線器件,其中經組態以獲取一索引值之該處理電路包括經組態以執行以下內容之處理電路: 導出該索引值,其中該所導出索引值係該第一索引元素及該第二索引元素之一函數。The wireless device of claim 25, wherein the processing circuit configured to obtain an index value includes a processing circuit configured to perform the following: derive the index value, wherein the derived index value is the first index element And one of the functions of the second index element. 如請求項27之無線器件,其中該第一索引元素及該第二索引元素之該函數係該第一索引元素及該第二索引元素之一串連。The wireless device of claim 27, wherein the function of the first index element and the second index element is a series of one of the first index element and the second index element. 如請求項25之無線器件,其中該第一序列係包括於一同步信號中。The wireless device of claim 25, wherein the first sequence is included in a synchronization signal. 如請求項29之無線器件,其中: 該第一索引元素包括複數個位元;且 經組態以判定該第一索引元素之該處理電路包括經組態以讀取包括於該同步信號中之該第一序列之處理電路。The wireless device of claim 29, wherein: the first index element includes a plurality of bits; and the processing circuit configured to determine the first index element includes a circuit configured to read a signal included in the synchronization signal The first sequence of processing circuits. 如請求項29之無線器件,其中該廣播頻道歸因於以下之一或多者而與該第一序列相關聯: 該同步信號隱式地定義用於該廣播頻道之解調變之時間及頻率資源;及 使用該同步信號作為該廣播頻道之一解調變參考信號。The wireless device of claim 29, wherein the broadcast channel is associated with the first sequence due to one or more of the following: The synchronization signal implicitly defines a time and frequency for demodulation of the broadcast channel Resources; and demodulating a reference signal using the synchronization signal as one of the broadcast channels. 如請求項25之無線器件,其中該廣播頻道歸因於以下之一或多者而與該第一序列相關聯: 使用該第一索引元素來導出該廣播頻道之該解調變參考信號;及 使用該第一序列來導出該廣播頻道之一頻道組態。The wireless device of claim 25, wherein the broadcast channel is associated with the first sequence due to one or more of: using the first index element to derive the demodulation reference signal of the broadcast channel; and The first sequence is used to derive a channel configuration of one of the broadcast channels. 如請求項25之無線器件,其中該廣播頻道包括一實體廣播頻道,且該第二索引元素包括包含於該實體廣播頻道上之一主資訊區塊中之複數個顯式位元。The wireless device of claim 25, wherein the broadcast channel includes a physical broadcast channel, and the second index element includes a plurality of explicit bits included in a main information block on the physical broadcast channel. 如請求項25之無線器件,其中該處理電路經組態以使用該經判定第一索引元素對該廣播頻道進行解碼。The wireless device of claim 25, wherein the processing circuit is configured to decode the broadcast channel using the determined first index element. 如請求項25之無線器件,其中該系統資訊包括與該網路節點相關聯之一小區之系統資訊。The wireless device of claim 25, wherein the system information includes system information of a cell associated with the network node. 如請求項25之無線器件,其中該系統資訊包括與該網路節點相關聯之複數個波束之一者之系統資訊。The wireless device of claim 25, wherein the system information includes system information of one of a plurality of beams associated with the network node. 如請求項25之無線器件,其中該系統資訊包括關於該無線器件待交遞至之一目標小區之資訊。For example, the wireless device of claim 25, wherein the system information includes information about a target cell to which the wireless device is to be delivered. 一種網路節點(115),其包括: 一傳輸器(910);及 處理電路(920),其耦合至該傳輸器,該處理電路經組態以: 針對該網路節點與一無線器件(110)之間之無線通信之一或多個態樣定義(504)系統資訊; 經由該傳輸器將一第一序列傳輸(508)至該無線器件,該第一序列使該無線器件能夠基於該第一序列判定一第一索引元素;及 經由該傳輸器將與該第一序列相關聯之一廣播頻道傳輸(512)至該無線器件,該廣播頻道使該無線器件能夠基於該廣播頻道上之資訊判定一第二索引元素,其中該第一索引元素及該第二索引元素使該無線器件能夠獲取指示該所定義系統資訊之一索引值。A network node (115) includes: a transmitter (910); and a processing circuit (920) coupled to the transmitter, the processing circuit is configured to: for the network node and a wireless device ( 110) One or more aspects of wireless communication between (504) system information are defined; a first sequence is transmitted (508) to the wireless device via the transmitter, the first sequence enabling the wireless device to be based on the The first sequence determines a first index element; and transmits (512) a broadcast channel associated with the first sequence to the wireless device via the transmitter, the broadcast channel enabling the wireless device to be based on the broadcast channel. The information determines a second index element, wherein the first index element and the second index element enable the wireless device to obtain an index value indicating the defined system information. 如請求項38之網路節點,其中該索引值係該第一索引元素及該第二索引元素之一函數。For example, the network node of item 38, wherein the index value is a function of the first index element and the second index element. 如請求項39之網路節點,其中該第一索引元素及該第二索引元素之該函數係該第一索引元素及該第二索引元素之一串連。For example, the network node of item 39, wherein the function of the first index element and the second index element is a series of one of the first index element and the second index element. 如請求項38之網路節點,其中經組態以傳輸該第一序列之該處理電路包括經組態以傳輸包括該第一序列之一同步信號之處理電路。The network node of claim 38, wherein the processing circuit configured to transmit the first sequence includes a processing circuit configured to transmit a synchronization signal including the first sequence. 如請求項41之網路節點,其中該第一索引元素包括可藉由讀取包括於該同步信號中之該第一序列而判定之複數個位元。For example, the network node of claim 41, wherein the first index element includes a plurality of bits that can be determined by reading the first sequence included in the synchronization signal. 如請求項41之網路節點,其中該廣播頻道歸因於以下之一或多者而與該第一序列相關聯: 該同步信號隱式地定義用於該廣播頻道之解調變之時間及頻率資源;及 使用該同步信號作為該廣播頻道之一解調變參考信號。If the network node of claim 41, wherein the broadcast channel is associated with the first sequence due to one or more of the following: the synchronization signal implicitly defines a time for demodulation of the broadcast channel and Frequency resources; and demodulating a reference signal using the synchronization signal as one of the broadcast channels. 如請求項38之網路節點,其中該廣播頻道歸因於以下之一或多者而與該第一序列相關聯: 使用該第一索引元素來導出該廣播頻道之該解調變參考信號;及 使用該第一序列來導出該廣播頻道之一頻道組態。If the network node of claim 38, wherein the broadcast channel is associated with the first sequence due to one or more of the following: using the first index element to derive the demodulation reference signal of the broadcast channel; And using the first sequence to derive a channel configuration of the broadcast channel. 如請求項38之網路節點,其中該廣播頻道包括一實體廣播頻道,且該第二索引元素包括包含於該實體廣播頻道上之一主資訊區塊中之複數個顯式位元。For example, the network node of claim 38, wherein the broadcast channel includes a physical broadcast channel, and the second index element includes a plurality of explicit bits included in a main information block on the physical broadcast channel. 如請求項38之網路節點,其中該系統資訊包括與該網路節點相關聯之一小區之系統資訊。For example, the network node of item 38, wherein the system information includes system information of a cell associated with the network node. 如請求項38之網路節點,其中該系統資訊包括與該網路節點相關聯之複數個波束之一者之系統資訊。For example, the network node of item 38, wherein the system information includes system information of one of a plurality of beams associated with the network node. 如請求項38之網路節點,其中該系統資訊包括關於該無線器件待交遞至之一目標小區之資訊。If the network node of item 38 is requested, the system information includes information about a target cell to which the wireless device is to be delivered.
TW106133693A 2016-09-30 2017-09-29 Enhanced index based system information distribution TWI678935B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662402322P 2016-09-30 2016-09-30
US62/402,322 2016-09-30

Publications (2)

Publication Number Publication Date
TW201815177A TW201815177A (en) 2018-04-16
TWI678935B true TWI678935B (en) 2019-12-01

Family

ID=60186332

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106133693A TWI678935B (en) 2016-09-30 2017-09-29 Enhanced index based system information distribution

Country Status (2)

Country Link
TW (1) TWI678935B (en)
WO (1) WO2018060903A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3416427A1 (en) 2017-06-16 2018-12-19 Panasonic Intellectual Property Corporation of America User equipment and base station participating in a system information acquisition procedure
US11327140B2 (en) * 2018-07-19 2022-05-10 Qualcomm Incorporated Beam index and link index dependent sequence generation for positioning beacon
GB2577514B (en) * 2018-09-26 2023-03-29 Tcl Communication Ltd Inter-RAT selection

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103703734A (en) * 2011-07-27 2014-04-02 Lg电子株式会社 Method for transmitting an uplink reference signal in a multi-node system and terminal using same
US20150016239A1 (en) * 2012-03-09 2015-01-15 Lg Electronics Inc. Method and apparatus for setting reference signal
WO2016080878A1 (en) * 2014-11-20 2016-05-26 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for verifying system information
WO2016134760A1 (en) * 2015-02-25 2016-09-01 Telefonaktiebolaget Lm Ericsson (Publ) Hierarchical access information tables for controlling of access to a cellular network
US20160262088A1 (en) * 2014-10-02 2016-09-08 Telefonaktiebolaget L M Ericsson (Publ) System Information Distribution in Multi-Operator Scenarios
WO2016144222A1 (en) * 2015-03-10 2016-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods, network node and wireless device for handling access information

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103703734A (en) * 2011-07-27 2014-04-02 Lg电子株式会社 Method for transmitting an uplink reference signal in a multi-node system and terminal using same
US20150016239A1 (en) * 2012-03-09 2015-01-15 Lg Electronics Inc. Method and apparatus for setting reference signal
US20160262088A1 (en) * 2014-10-02 2016-09-08 Telefonaktiebolaget L M Ericsson (Publ) System Information Distribution in Multi-Operator Scenarios
WO2016080878A1 (en) * 2014-11-20 2016-05-26 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for verifying system information
WO2016134760A1 (en) * 2015-02-25 2016-09-01 Telefonaktiebolaget Lm Ericsson (Publ) Hierarchical access information tables for controlling of access to a cellular network
WO2016144222A1 (en) * 2015-03-10 2016-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods, network node and wireless device for handling access information

Also Published As

Publication number Publication date
TW201815177A (en) 2018-04-16
WO2018060903A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
KR102319800B1 (en) Resolution of system information between EPS and 5GS
US10499318B2 (en) Provisioning transmission pools for inter-carrier prose direct discovery
US11240769B2 (en) System information for narrowband
US11122625B2 (en) User equipment, network node and methods performed therein
US20210068167A1 (en) Random Access Coverage Enhancement Level Ramp Up Procedure
TWI710271B (en) Frequency determination for device-to-device transmissions and receptions
CN110235474B (en) Wireless device, network node and communication system for establishing communication
US11653369B2 (en) Explicit configuration of paging and control channel in system information
JP2019537368A (en) Device and method for enabling matching paging occasions for lightly connected wireless devices
TWI678935B (en) Enhanced index based system information distribution
TWI594653B (en) A method and apparatus for detecting the proximity of a user's device
US20190059100A1 (en) Methods to map cif and serving cells