TWI677845B - Water consumption monitoring device and water consumption monitoring method - Google Patents
Water consumption monitoring device and water consumption monitoring method Download PDFInfo
- Publication number
- TWI677845B TWI677845B TW107140334A TW107140334A TWI677845B TW I677845 B TWI677845 B TW I677845B TW 107140334 A TW107140334 A TW 107140334A TW 107140334 A TW107140334 A TW 107140334A TW I677845 B TWI677845 B TW I677845B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- data set
- water consumption
- sampling
- reduced
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/06—Indicating or recording devices
- G01F15/061—Indicating or recording devices for remote indication
- G01F15/063—Indicating or recording devices for remote indication using electrical means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Optimization (AREA)
- Fluid Mechanics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Computational Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Operations Research (AREA)
- Probability & Statistics with Applications (AREA)
- Evolutionary Biology (AREA)
- Algebra (AREA)
- Bioinformatics & Computational Biology (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Measuring Volume Flow (AREA)
Abstract
提供一種用水量監視方法,包括:接收累積用水量資料,並且取樣累積用水量資料以產生對應於第一時間間隔的第一資料集和第二資料集;根據門檻值過濾第一資料集和第二資料集以分別產生第一集縮資料集和第二集縮資料集;響應於第一集縮資料集與第二集縮資料集的取樣時間差值超過第一時間間隔而根據第一集縮資料集和第二集縮資料集產生插補資料集;以及根據第一集縮資料集、第二集縮資料集以及插補資料集計算總用水量。A method for monitoring water consumption is provided, including: receiving accumulated water consumption data, and sampling the accumulated water consumption data to generate a first data set and a second data set corresponding to a first time interval; and filtering the first data set and the first data set according to a threshold value. Two data sets to generate a first set of reduced data sets and a second set of reduced data sets respectively; and in response to a difference in sampling time between the first set of reduced data sets and the second set of reduced data sets exceeding a first time interval, according to the first set The reduced data set and the second reduced data set generate imputed data sets; and the total water consumption is calculated based on the first reduced data set, the second reduced data set, and the imputed data set.
Description
本發明是有關於一種監視技術,且特別是有關於一種用水量監視裝置和用水量監視方法。The present invention relates to a monitoring technology, and more particularly, to a water consumption monitoring device and a water consumption monitoring method.
現行的用水量監視設備係收集用水資料並將其不斷地累加,直到水量累進數值超過用水量計數器上限後,計數器會重置而使水量累進數值歸零。然而,採用累進式資料收集方式會遭遇各種問題,諸如通訊異常造成用水資料的回報失敗、設備暫時或永久異常導致用水資料的數值暴增或用水量計數器因達到最大值而重置進而導致用水資料的數值急速地變小等狀況。上述的狀況常造成用水量的數值異常,使得人員難以通過用水量監視設備準確地評估用水資料。The current water consumption monitoring equipment collects water data and continuously accumulates it until the water volume progressive value exceeds the upper limit of the water consumption counter, the counter is reset and the water volume progressive value returns to zero. However, the use of progressive data collection methods will encounter various problems, such as failure to report water usage due to communication anomalies, sudden increase in the value of water usage due to temporary or permanent equipment abnormality, or reset of the water usage counter due to reaching the maximum value, which will result in water usage data. The value of the value rapidly decreases. The above conditions often cause abnormal numerical values of water consumption, making it difficult for personnel to accurately evaluate water consumption data through water consumption monitoring equipment.
因此,需要提出一種可排除異常數值以及修補缺漏數值的方法,使得監視設備能正確地反映用水狀況。Therefore, there is a need to propose a method that can exclude abnormal values and repair missing values, so that the monitoring equipment can correctly reflect the water situation.
本發明提供一種用水量監視裝置,包括收發器、儲存單元以及處理單元。收發器接收累積用水量資料。儲存單元儲存多個模組。處理單元耦接收發器和儲存單元,並且存取及執行多個模組。多個模組包括資料擷取模組、資料過濾模組、資料補值模組以及資料修正模組。資料擷取模組取樣累積用水量資料以產生對應於第一時間間隔的第一資料集和第二資料集。資料過濾模組根據門檻值過濾第一資料集和第二資料集以分別產生第一集縮資料集和第二集縮資料集。資料補值模組響應於第一集縮資料集與第二集縮資料集的取樣時間差值超過第一時間間隔而根據第一集縮資料集和第二集縮資料集產生插補資料集。資料修正模組根據第一集縮資料集、第二集縮資料集以及插補資料集計算總用水量。The invention provides a water consumption monitoring device, which includes a transceiver, a storage unit, and a processing unit. The transceiver receives cumulative water usage data. The storage unit stores a plurality of modules. The processing unit is coupled to the receiver and the storage unit, and accesses and executes multiple modules. The multiple modules include a data acquisition module, a data filtering module, a data value-added module, and a data correction module. The data acquisition module samples the accumulated water consumption data to generate a first data set and a second data set corresponding to the first time interval. The data filtering module filters the first data set and the second data set according to a threshold value to generate a first set of reduced data sets and a second set of reduced data sets, respectively. The data complementation module generates an imputed data set based on the first and second datasets in response to a difference in sampling time between the first and second datasets exceeding a first time interval. . The data correction module calculates the total water consumption according to the first data set, the second data set, and the imputed data set.
本發明提供一種用水量監視方法,包括:接收累積用水量資料,並且取樣累積用水量資料以產生對應於第一時間間隔的第一資料集和第二資料集;根據門檻值過濾第一資料集和第二資料集以分別產生第一集縮資料集和第二集縮資料集;響應於第一集縮資料集與第二集縮資料集的取樣時間差值超過第一時間間隔而根據第一集縮資料集和第二集縮資料集產生插補資料集;以及根據第一集縮資料集、第二集縮資料集以及插補資料集計算總用水量。The invention provides a water consumption monitoring method, which includes: receiving accumulated water consumption data, and sampling the accumulated water consumption data to generate a first data set and a second data set corresponding to a first time interval; and filtering the first data set according to a threshold value. And the second dataset to generate the first and second datasets, respectively; in response to the difference between the sampling time of the first and second datasets exceeding the first time interval, according to the first One set of reduced data sets and the second set of reduced data sets generate imputed data sets; and calculate the total water consumption based on the first set of reduced data sets, the second set of reduced data sets, and the imputed data sets.
基於上述,本發明的用水量監視裝置可對原始的用水資料進行過濾,將較為正確的取樣資料呈現給監視裝置,且還能大幅地壓縮用水資料。用水量監視裝置可對取樣資料進行內插運算以修補缺漏的用水量資料。透過本發明的用水量監視方法,用水量監視裝置可對各式異常的用水量資料進行修正。Based on the above, the water consumption monitoring device of the present invention can filter the original water consumption data, present more accurate sampling data to the monitoring device, and can also greatly compress the water consumption data. The water consumption monitoring device can interpolate the sampling data to repair the missing water consumption data. Through the water consumption monitoring method of the present invention, the water consumption monitoring device can correct various abnormal water consumption data.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are hereinafter described in detail with reference to the accompanying drawings.
為了排除異常的用水量數值並修補缺漏的用水量資料,本發明提出一種用水量監視裝置和用水量監視方法。In order to eliminate abnormal water consumption values and repair missing water consumption data, the present invention proposes a water consumption monitoring device and a water consumption monitoring method.
圖1根據本發明的實施例繪示一種用水量監視裝置10的示意圖。用水量監視裝置10可包括處理單元100、儲存單元200以及收發器300。FIG. 1 is a schematic diagram of a water consumption monitoring device 10 according to an embodiment of the present invention. The water consumption monitoring device 10 may include a processing unit 100, a storage unit 200, and a transceiver 300.
處理單元100耦接儲存單元200以及收發器300,並且存取及執行儲存於儲存單元200中的多個模組。處理單元100可例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)或其他類似元件或上述元件的組合,本發明不限於此。The processing unit 100 is coupled to the storage unit 200 and the transceiver 300, and accesses and executes a plurality of modules stored in the storage unit 200. The processing unit 100 may be, for example, a central processing unit (CPU), or other programmable general-purpose or special-purpose microprocessor (microprocessor), digital signal processor (DSP), or A stylized controller, an application specific integrated circuit (ASIC) or other similar components or a combination of the foregoing components, the present invention is not limited thereto.
儲存單元200儲存多個模組,所述模組可包括資料儲存模組201、資料擷取模組202、資料過濾模組203、資料補值模組204、門檻值設定及計算模組205以及資料修正模組206。這些模組的功能將於本文後續說明。儲存單元200可例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,本發明不限於此。The storage unit 200 stores a plurality of modules, and the modules may include a data storage module 201, a data acquisition module 202, a data filtering module 203, a data supplement module 204, a threshold value setting and calculation module 205, and Data correction module 206. The functions of these modules will be explained later in this article. The storage unit 200 may be, for example, any type of fixed or removable random access memory (RAM), read-only memory (ROM), and flash memory. ), A hard disk drive (HDD), a solid state drive (SSD), or a similar element or a combination of the foregoing elements, the present invention is not limited thereto.
收發器300傳送及接收訊號。收發器300還可以執行例如低噪聲放大(low noise amplifying,LNA)、阻抗匹配、混頻、上下變頻轉換、濾波、放大以及類似的操作。在本實施例中,收發器300用以接收累積用水量資料。舉例來說,收發器300可收集來自水表、智慧用水管理設備所回報之累積用水量資料,並將累積用水量資料傳送給儲存單元200的資料儲存模組201,以將該些資料儲存起來。累積用水量資料可包括時間、設備唯一識別碼及累積用水量等資訊。The transceiver 300 transmits and receives signals. The transceiver 300 may also perform operations such as low noise amplifying (LNA), impedance matching, mixing, up-down conversion, filtering, amplification, and the like. In this embodiment, the transceiver 300 is configured to receive the accumulated water consumption data. For example, the transceiver 300 may collect accumulated water consumption data reported from water meters and smart water management equipment, and transmit the accumulated water consumption data to the data storage module 201 of the storage unit 200 to store the data. Cumulative water usage data can include information such as time, equipment unique identification code, and cumulative water usage.
圖2根據本發明的實施例繪示一種用水量監視方法的流程圖,所述用水量監視方法可由如圖1所示的用水量監視裝置10實施。FIG. 2 illustrates a flowchart of a water consumption monitoring method according to an embodiment of the present invention. The water consumption monitoring method may be implemented by the water consumption monitoring device 10 shown in FIG. 1.
在步驟S210,收發器300可接收累積用水量資料,並且資料擷取模組202可取樣所述累積用水量資料以產生對應於第一時間間隔的第一資料集E 0'和第二資料集E N',其中第一資料集E 0'對應於第一時段、第二資料集E N'對應於第二時段,且所述第一時段早於所述第二時段。第一資料集E 0'和第二資料集E N'可分別包括M個取樣資料R j(j = 1~M,其中M為任意的正整數)。 In step S210, the transceiver 300 may receive the accumulated water consumption data, and the data acquisition module 202 may sample the accumulated water consumption data to generate a first data set E 0 ′ and a second data set corresponding to the first time interval. E N ′, where the first data set E 0 ′ corresponds to the first period, and the second data set E N ′ corresponds to the second period, and the first period is earlier than the second period. The first data set E 0 ′ and the second data set E N ′ may include M sampling data R j (j = 1 ~ M, where M is an arbitrary positive integer).
具體來說,資料儲存模組201可儲存來自於收發器300的累積用水量資料。資料擷取模組202可對儲存於資料儲存模組201的累積用水量資料進行取樣,以產生對應於第一時間間隔的一或多筆資料集E i'(i = 0~N,其中N為任意正整數)。舉例來說,資料儲存模組201可在每一取樣間隔(例如:每一分鐘)從累積用水量資料中取樣出一取樣資料,進而將M筆(例如:十五筆)取樣資料R j(j = 1~M)結合為對應於第一時間間隔(例如:每十五分鐘)的資料集E i'(i = 0~N)。詳言之,若第一時間間隔為T 1且資料擷取模組202欲於時間T進行取樣,則資料擷取模組202可基於一取樣間隔而在T S= T – 2*T 1至T E= T – T 1期間進行取樣,藉以產生由至少一筆用水量的取樣資料R j(j = 1~M)所組成的資料集E i',其中R 1對應於時間T S、R M對應於時間T E並且時間T S與時間T E相距第一時間間隔T 1。接著,資料擷取模組202可將在取樣時間在T S之前,但最接近T S的一筆取樣資料R 0取樣出來,並將取樣資料R 0連同資料集E i'傳送給資料過濾模組203。 Specifically, the data storage module 201 can store the accumulated water consumption data from the transceiver 300. The data acquisition module 202 may sample the accumulated water consumption data stored in the data storage module 201 to generate one or more data sets E i ′ (i = 0 ~ N, where N Is any positive integer). For example, the data storage module 201 may sample one piece of sampling data from the cumulative water consumption data at each sampling interval (for example, every minute), and then sample M pieces of data (for example, fifteen pieces) R j ( j = 1 ~ M) is combined into a data set E i ′ (i = 0 ~ N) corresponding to the first time interval (for example, every fifteen minutes). In detail, if the first time interval is T 1 and the data acquisition module 202 intends to sample at time T, the data acquisition module 202 may be based on a sampling interval between T S = T-2 * T 1 to Sampling during T E = T – T 1 to generate a data set E i 'composed of at least one sample of water consumption data R j (j = 1 ~ M), where R 1 corresponds to time T S , R M Corresponds to time T E and time T S is separated from time T E by a first time interval T 1 . Subsequently, data capture module 202 may be before T S, but the sum of the nearest sampled data R 0 T S is sampled out at the sampling time, and the data R 0, together with the sampling data set E i 'to the data transfer filter module 203.
在一些實施例中,資料儲存模組201可儲存對應於資料集E i'的統計資料。在一些實施例中,資料過濾模組203和資料補值模組204可對資料集進行處理,進而產生分別對應於資料集E i'的多筆統計資料。每一筆統計資料可代表第一時間間隔內,所有原始用水量之取樣資料的統計結果,其可包括時間區間起始時間、時間區間結束時間、首筆用水量的取樣資料、末筆用水量的取樣資料、第一時間間隔內的原始取樣資料筆數、設備唯一識別碼等資訊。 In some embodiments, the data storage module 201 may store statistical data corresponding to the data set E i ′. In some embodiments, the data filtering module 203 and the data supplementing module 204 can process the data set, and then generate a plurality of statistical data corresponding to the data set E i ′. Each piece of statistical data can represent the statistical results of all the original water consumption sampling data in the first time interval, which can include the time interval start time, the time interval end time, the first water consumption sample data, and the last water consumption sample. Data, the number of original sampling data in the first time interval, and equipment unique identifier.
接著,在步驟S220,資料過濾模組203可根據門檻值過濾資料集E i'以產生集縮資料集(aggregate data set)E i。圖3根據本發明的實施例更進一步地繪示用水量監視方法之步驟S220的流程圖。 Next, in step S220, the data filtering module 203 may filter the data set E i ′ according to a threshold value to generate an aggregate data set E i . FIG. 3 further illustrates a flowchart of step S220 of the water consumption monitoring method according to an embodiment of the present invention.
在步驟S221,門檻值設定及計算模組205確認是否存在為了因應突發狀況(例如:臨時用水需求增加導致合理的用水量暴增)而由人工設定的人工輸入門檻值(例如:每一取樣間隔內最大容許的用水量增幅)。若不存在人工輸入門檻值,則在步驟S222,門檻值設定及計算模組205可利用過去的用水量資料計算門檻值。例如,門檻值設定及計算模組205可取得過往三年同樣時間區段內的每一取樣間隔的用水量增幅,並以用水量增幅中的最大者作為門檻值。In step S221, the threshold value setting and calculation module 205 confirms whether there is a manually input threshold value (for example, each sampling) that is manually set in response to an unexpected situation (for example, a sudden increase in reasonable water consumption caused by an increase in temporary water demand). Maximum allowable increase in water use during the interval). If there is no manual input threshold value, in step S222, the threshold value setting and calculation module 205 may calculate the threshold value by using the past water consumption data. For example, the threshold value setting and calculation module 205 may obtain the increase in water consumption for each sampling interval in the same time period in the past three years, and use the largest one of the increase in water consumption as the threshold.
在步驟S223,門檻值設定及計算模組205可判斷資料集E i'中的一第二取樣資料(例如:R j)與一第一取樣資料(例如:R j-1)的差值是否超過門檻值,其中第一取樣資料R j-1的取樣時間早於第二取樣資料R j的取樣時間。若步驟S223的判斷結果為是,則進入步驟S224,若步驟S223的判斷結果為否,則進入步驟S225。 In step S223, the threshold setting and calculation module 205 can determine whether a difference between a second sampling data (for example: R j ) and a first sampling data (for example: R j-1 ) in the data set E i ′ is Exceeds the threshold, wherein the sampling time of the first sampling data R j-1 is earlier than the sampling time of the second sampling data R j . If the determination result of step S223 is YES, the process proceeds to step S224, and if the determination result of step S223 is no, the process proceeds to step S225.
在步驟S224,資料過濾模組203可將第二取樣資料R j自資料集E i'移出。這個步驟的目的是為了將不合理的用水量暴增(即:取樣資料R j-1和R j之間的用水量差異大於門檻值)的取樣資料自資料集E i'中移除。 In step S224, the data filtering module 203 may remove the second sampling data R j from the data set E i ′. The purpose of this step is to remove the unreasonable increase in water consumption (that is, the difference between the water consumption between the sampling data R j-1 and R j is greater than the threshold) from the data set E i ′.
在步驟S225,資料過濾模組203判斷第二取樣資料R j是否為資料集E i'中的最末筆取樣資料R M。若判斷結果否,則資料過濾模組203在步驟S226時使j = j + 1,並且再次執行步驟S223。若R j即為最末筆取樣資料R M,則進入步驟S227。資料過濾模組203可用尚未遭移出的取樣資料組成集縮資料集E i(i = 0~N)。在執行完步驟S227後,可進入步驟S230。 In step S225, the data filtering module 203 determines whether the second sampling data R j is the last sampling data R M in the data set E i ′. If the judgment result is no, the data filtering module 203 sets j = j + 1 in step S226 and executes step S223 again. If R j is the last sampling data R M , go to step S227. The data filtering module 203 may use the sampled data that has not been removed to form the condensed data set E i (i = 0 ~ N). After executing step S227, the process may proceed to step S230.
簡而言之,在步驟S220的過程中,資料過濾模組203可對每一筆資料集E i'進行過濾並產生對應的多筆集縮資料集E i。 In short, in the process of step S220, the data filtering module 203 can filter each data set E i ′ and generate a corresponding plurality of reduced data set E i .
回到圖2,在步驟S230,資料補值模組204可響應於第一集縮資料集E 0與第二集縮資料集E N的取樣時間差值超過第一時間間隔而根據第一集縮資料集E 0和第二集縮資料集E N產生插補資料集E k(k = 1~N-1)。具體來說,在獲得多筆集縮資料集E i後,資料補值模組204會先從多筆集縮資料集E i(i = 0~N)中決定可用來當作線性內插運算之依據的第一集縮資料集E 0以及第二集縮資料集E N。 Returning to FIG. 2, in step S230, the data complementing module 204 may respond to the first set of reduced data sets E 0 and the second set of reduced data sets E N with a sampling time difference exceeding the first time interval according to the first set. The reduced data set E 0 and the second reduced data set E N generate an imputed data set E k (k = 1 ~ N-1). Specifically, after obtaining multiple sets of reduced data sets E i , the data complementing module 204 first determines from the multiple sets of reduced data sets E i (i = 0 ~ N) that they can be used as a linear interpolation operation. The first set of reduced data sets E 0 and the second set of reduced data sets E N.
首先,資料補值模組204會依序判斷每一集縮資料集E i內是否存在取樣資料。若一集縮資料集E i內不存在取樣資料,代表對應於所述集縮資料集E i的資料集E i'內的所有取樣資料都被資料過濾模組203所過濾,因而所述集縮資料集E i不具有任何的取樣資料,且所述集縮資料集E i不適合作為第二集縮資料集E N。相對來說,若所述集縮資料集E i內存在取樣資料,代表與所述集縮資料集E i對應的資料集E i'中,存在至少有一筆取樣資料未被資料過濾模組203所過濾。如此,則資料補值模組204可將所述集縮資料集E i作為第二集縮資料集E N。 First, the data supplementation module 204 sequentially judges whether sampling data exists in each of the reduced data sets E i . If a constriction of all sampled data sampled data does not exist within the data set E i, corresponding to the representative data sets within the constriction data set E i E i 'have been filtered data filtering module 203, and thus the current collector The reduced data set E i does not have any sampling data, and the reduced data set E i is not suitable as the second reduced data set E N. In contrast, if the data set E i constriction sampled data in memory, and representative of the current data set E i corresponding to the reduced data set E i ', there is not at least a sum of sampled data filter module 203 Profile Filtered. In this way, the data supplement module 204 may use the intensive data set E i as the second intensive data set E N.
在取得第二集縮資料集E N後,資料補值模組204可自資料儲存模組201取出其取樣時間早於第二集縮資料集E N之取樣時間、具有至少一筆取樣資料以及其取樣時間最接近第二集縮資料集E N之取樣時間的一集縮資料集E i以作為第一集縮資料集E 0。接著,資料補值模組204可判斷第一集縮資料集E 0與第二集縮資料集E N之間是否存在其他的無效的集縮資料集E i(即:不具有任何取樣資料的集縮資料集E i)。資料儲存模組201可儲存第一集縮資料集E 0與第二集縮資料集E N,以備日後查詢。 After obtaining the reduced second current data set E N, 204 data module's complement data storage module 201 may be removed from the sampling time which is earlier than the second current sampling time of reduced data set E N, having at least a sum of sampled data and its A set of reduced data sets E i whose sampling time is closest to the sampling time of the second set of reduced data sets E N is taken as the first set of reduced data sets E 0 . Then, the data complementing module 204 can determine whether there are other invalid set of reduced data sets E i between the first set of reduced data sets E 0 and the second set of reduced data sets E N (ie: Reduced data set E i ). The data storage module 201 can store the first set of reduced data sets E 0 and the second set of reduced data sets E N for future query.
假設第一集縮資料集E 0的首筆取樣資料的取樣時間為T S0、末筆取樣資料的取樣時間為T E0,並且第二集縮資料集E N的首筆取樣資料的取樣時間為T SN、末筆取樣資料的取樣時間為T EN。若T SN減去T S0大於第一時間間隔T1,代表第一集縮資料集E 0與第二集縮資料集E N之間存在其他無效的集縮資料集E i(即:集縮資料集E i中不存在任何的取樣資料)。資料補值模組204可對進行第一集縮資料集E 0與第二集縮資料集E N線性內插運算來修補對應該些無效集縮資料集的取樣資料。例如,資料補值模組204可透過線性內插運算以根據第一集縮資料集E 0與第二集縮資料集E N計算出插補資料集E k(k = 1~N-1)的首筆取樣資料和末筆取樣資料,其中第一集縮資料集E 0對應於第一時段、第二集縮資料集E N對應於第二時段、插補資料集E k對應於第三時段、所述第一時段早於所述第二時段並且所述第三時段在所述第一時段和所述第二時段之間。資料儲存模組201可儲存計算好的插補資料集E k,以備日後查詢。 Suppose the sampling time of the first sampling data of the first set of reduced data set E 0 is T S0 , the sampling time of the last sampling data is T E0 , and the sampling time of the first sampling data of the second set of reduced data set E N is T The sampling time of SN and last sampling data is T EN . If T SN minus T S0 is greater than the first time interval T1, it means that there are other invalid set data sets E i between the first set data set E 0 and the second set data set E N (that is, set data There is no sampling data in the set E i ). Profile module 204 may make the value of the reduced data set for the first current and the second current E 0 reduced data set E N linear interpolation operation data for the sample patch to be some constriction invalid data set. For example, the data interpolation module 204 may calculate the interpolation data set E k (k = 1 ~ N-1) based on the first data set E 0 and the second data set E N through linear interpolation. The first and last samples of data, where the first set of reduced data set E 0 corresponds to the first period, the second set of reduced data set E N corresponds to the second period, and the imputed data set E k corresponds to the third period , The first period is earlier than the second period and the third period is between the first period and the second period. The data storage module 201 can store the calculated interpolation data set E k for future query.
在一些實施例中,資料補值模組204可透過線性內插運算以根據插補資料集E k的首筆取樣資料和末筆取樣資料來修補被過濾的取樣資料,使插補資料集E k包括M個取樣資料R j(j = 1~M,其中M為任意的正整數)。資料儲存模組201可儲存修補後的插補資料集E k,以備日後查詢。 In some embodiments, the complement value data module 204 through a linear interpolation can be used to repair operations to be filtered sampled data sampled according to first document data interpolated data set E k and the last stroke of the sampled data, so that interpolation data set E k Include M sampling data R j (j = 1 ~ M, where M is any positive integer). The data storage module 201 can store the repaired interpolation data set E k for future query.
另一方面,資料補值模組204還可以根據第一集縮資料集E 0與第二集縮資料集E N的統計量計算出插補資料集E k(k = 1~N-1)的統計量,如公式(1)所示。 公式(1) 其中v(a)代表a的統計量、N代表集縮資料集的總數,所述統計量可例如是變異量、標準差或平均值等,本發明不限於此。 On the other hand, the data complementation module 204 can also calculate the interpolation data set E k (k = 1 ~ N-1) based on the statistics of the first set of reduced data sets E 0 and the second set of reduced data sets E N. Statistics, as shown in formula (1). Formula (1) Where v (a) represents a statistic of a, and N represents the total number of intensive data sets, and the statistic may be, for example, a variation amount, a standard deviation, or an average value, and the present invention is not limited thereto.
在步驟S240,資料修正模組206可根據第一集縮資料集E 0、第二集縮資料集E N以及插補資料集E k計算總用水量。資料儲存模組201可將計算出的總用水量儲存,以備日後查詢。詳言之,資料修正模組206可根據分別對應於第一集縮資料集E 0、第二集縮資料集E N以及插補資料集E k的多筆首筆取樣資料以及多筆末筆取樣資料計算總用水量,如公式(2)所示。 公式(2) 其中U代表第一時段和第二時段之間的總用水量、f(a)代表集縮資料a的首筆取樣資料、l(a)代表集縮資料集a的末筆取樣資料、m(a, b)代表如公式(3)所示的條件方程式。 公式(3) In step S240, the data correction module 206 can calculate the total water consumption according to the first set of reduced data sets E 0 , the second set of reduced data sets E N, and the interpolation data sets E k . The data storage module 201 can store the calculated total water consumption for future inquiry. In detail, according to the data correction module 206 may correspond to the first current reduced data set E 0, the second header compression and a plurality of data sets T E N T first data interpolation sampled data set and the plurality of E k T sampling end of the pen The data calculate the total water consumption, as shown in formula (2). Formula (2) where U represents the total water consumption between the first period and the second period, f (a) represents the first sampling data of the intensive data set a, and l (a) represents the last sampling data of the intensive data set a , M (a, b) represents the conditional equation shown in formula (3). Formula (3)
綜上所述,本發明的用水量監視裝置可對原始的用水資料進行過濾,將無意義或異常的取樣資料(例如:用水量暴增的取樣資料)移除,進而將較為正確的取樣資料呈現給監視裝置,且還能大幅地壓縮用水資料。用水量監視裝置可對取樣資料進行內插運算以修補缺漏的用水量資料,還可以根據少量的取樣資料計算出總用水量。透過本發明的用水量監視方法,用水量監視裝置可對各式異常的用水量資料進行修正。To sum up, the water consumption monitoring device of the present invention can filter the original water consumption data, remove meaningless or abnormal sampling data (for example, sampling data of a surge in water consumption), and then more accurate sampling data Presented to the monitoring device, and can also greatly compress water data. The water consumption monitoring device can interpolate the sampling data to repair missing water consumption data, and can also calculate the total water consumption based on a small amount of sampling data. Through the water consumption monitoring method of the present invention, the water consumption monitoring device can correct various abnormal water consumption data.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.
10‧‧‧用水量監視裝置10‧‧‧ Water consumption monitoring device
100‧‧‧處理單元 100‧‧‧ processing unit
200‧‧‧儲存單元 200‧‧‧Storage unit
201‧‧‧資料儲存模組 201‧‧‧Data Storage Module
202‧‧‧資料擷取模組 202‧‧‧Data Acquisition Module
203‧‧‧資料過濾模組 203‧‧‧Data Filtering Module
204‧‧‧資料補值模組 204‧‧‧Data Supplement Module
205‧‧‧門檻值設定及計算模組 205‧‧‧Threshold setting and calculation module
206‧‧‧資料修正模組 206‧‧‧Data Correction Module
300‧‧‧收發器 300‧‧‧ Transceiver
S210、S220、S221、S222、S223、S224、S225、S226、S227、S230、S240‧‧‧步驟 S210, S220, S221, S222, S223, S224, S225, S226, S227, S230, S240‧‧‧ steps
圖1根據本發明的實施例繪示一種用水量監視裝置的示意圖。 圖2根據本發明的實施例繪示一種用水量監視方法的流程圖。 圖3根據本發明的實施例更進一步地繪示用水量監視方法之步驟的流程圖。FIG. 1 is a schematic diagram of a water consumption monitoring device according to an embodiment of the present invention. FIG. 2 is a flowchart illustrating a method for monitoring water consumption according to an embodiment of the present invention. FIG. 3 is a flowchart illustrating steps of a water consumption monitoring method according to an embodiment of the present invention.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107140334A TWI677845B (en) | 2018-11-14 | 2018-11-14 | Water consumption monitoring device and water consumption monitoring method |
CN201910240046.3A CN111189502B (en) | 2018-11-14 | 2019-03-27 | Water consumption monitoring device and water consumption monitoring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107140334A TWI677845B (en) | 2018-11-14 | 2018-11-14 | Water consumption monitoring device and water consumption monitoring method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI677845B true TWI677845B (en) | 2019-11-21 |
TW202018652A TW202018652A (en) | 2020-05-16 |
Family
ID=69189012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107140334A TWI677845B (en) | 2018-11-14 | 2018-11-14 | Water consumption monitoring device and water consumption monitoring method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111189502B (en) |
TW (1) | TWI677845B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010099348A1 (en) * | 2009-02-25 | 2010-09-02 | Aquacue, Inc. | Systems and methods of interaction with water usage information |
TW201635226A (en) * | 2015-03-31 | 2016-10-01 | ming-you Shen | Monitoring method for water network |
TW201743279A (en) * | 2016-06-15 | 2017-12-16 | Jhih Ming Chen | Seniors symptom analysis system based on amount of water consumption for determining whether a household meets the criteria for seniors symptoms according to water consumption of the household in a specific period of time |
CN108387285A (en) * | 2018-02-28 | 2018-08-10 | 上海康斐信息技术有限公司 | Pass through the water meter judgement method and system that water is abnormal and stops loss in time |
CN207881777U (en) * | 2018-02-24 | 2018-09-18 | 浙江恩沃新能源科技有限公司 | A kind of intelligent water meter system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4439195B2 (en) * | 2003-03-26 | 2010-03-24 | 大阪瓦斯株式会社 | Utility consumer equipment operation recognition device |
CN101458868A (en) * | 2008-12-23 | 2009-06-17 | 上海城市水资源开发利用国家工程中心有限公司 | Data collection method used for remote wireless meter reading system |
CN107122853A (en) * | 2017-04-25 | 2017-09-01 | 杭州电子科技大学 | A kind of water supply network Real-time dispatch system and method |
CN107153985A (en) * | 2017-04-30 | 2017-09-12 | 国网江苏省电力公司常州供电公司 | A kind of excavation of user side multi-energy data and analysis method |
CN108629631A (en) * | 2018-05-08 | 2018-10-09 | 北京晶成物联科技有限公司 | Remote meter reading method and device |
-
2018
- 2018-11-14 TW TW107140334A patent/TWI677845B/en active
-
2019
- 2019-03-27 CN CN201910240046.3A patent/CN111189502B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010099348A1 (en) * | 2009-02-25 | 2010-09-02 | Aquacue, Inc. | Systems and methods of interaction with water usage information |
TW201635226A (en) * | 2015-03-31 | 2016-10-01 | ming-you Shen | Monitoring method for water network |
TW201743279A (en) * | 2016-06-15 | 2017-12-16 | Jhih Ming Chen | Seniors symptom analysis system based on amount of water consumption for determining whether a household meets the criteria for seniors symptoms according to water consumption of the household in a specific period of time |
CN207881777U (en) * | 2018-02-24 | 2018-09-18 | 浙江恩沃新能源科技有限公司 | A kind of intelligent water meter system |
CN108387285A (en) * | 2018-02-28 | 2018-08-10 | 上海康斐信息技术有限公司 | Pass through the water meter judgement method and system that water is abnormal and stops loss in time |
Also Published As
Publication number | Publication date |
---|---|
CN111189502A (en) | 2020-05-22 |
TW202018652A (en) | 2020-05-16 |
CN111189502B (en) | 2022-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109783486B (en) | Data cleaning method and device and server | |
CN102521080B (en) | Computer data recovery method for electricity-consumption information collecting system for power consumers | |
CN114978956B (en) | Method and device for detecting abnormal mutation points of performance of intelligent city network equipment | |
CN116089405A (en) | Power consumption data outlier detection and cleaning method based on DBSCAN and KNN algorithms | |
US20240361192A1 (en) | Temperature treatment method and apparatus | |
CN114817645A (en) | Time sequence data storage and reading method, device, equipment and storage medium | |
TWI677845B (en) | Water consumption monitoring device and water consumption monitoring method | |
CN111061705B (en) | Effective data cleaning method, device, medium and terminal equipment | |
CN110308339B (en) | Frequency converter direct-current bus capacitor fault diagnosis method based on evidence reasoning rule | |
CN109560978B (en) | Network flow detection method, device and system and computer readable storage medium | |
CN107462290B (en) | Water flow statistical method and device | |
CN113051525B (en) | Method, device, equipment and medium for analyzing key quality index KQI | |
CN116448219A (en) | Oil level abnormality detection method, apparatus, device, and computer-readable storage medium | |
JP6571027B2 (en) | Data storage device and data storage program | |
CN113075259B (en) | Method and device for monitoring condensation approaching temperature of electric refrigerator in real time | |
CN102306198B (en) | Method and device for converging performance data | |
CN112148764B (en) | Feature screening method, device, equipment and storage medium | |
TWI634736B (en) | Virtual sunshine amount estimating method and solar power field warning system | |
CN111695829A (en) | Index fluctuation period calculation method and device, storage medium and electronic equipment | |
CN111355624B (en) | Self-adaptive equipment performance acquisition method and device | |
CN117407264B (en) | Method, device, computer equipment and medium for predicting memory aging residual time | |
CN114327264B (en) | Time sequence data compression method, device and equipment | |
CN118468202B (en) | Remote water quality risk early warning system based on cloud platform | |
CN117472898B (en) | Fusion-based power distribution network abnormal data error correction method and system | |
CN110377592B (en) | Data preprocessing method and device for quantifying variable to virtual variable and terminal equipment |