TWI677824B - 具有多個天線、積體電路、及/或感測元件的標籤總成 - Google Patents

具有多個天線、積體電路、及/或感測元件的標籤總成 Download PDF

Info

Publication number
TWI677824B
TWI677824B TW104136741A TW104136741A TWI677824B TW I677824 B TWI677824 B TW I677824B TW 104136741 A TW104136741 A TW 104136741A TW 104136741 A TW104136741 A TW 104136741A TW I677824 B TWI677824 B TW I677824B
Authority
TW
Taiwan
Prior art keywords
power
sensor
rfid tag
thermal
substrate
Prior art date
Application number
TW104136741A
Other languages
English (en)
Other versions
TW201631913A (zh
Inventor
尼可拉斯 希爾多 卡貝爾
Nicholas Theodore Gabriel
安德魯 保羅 波妮費斯
Andrew Paul BONIFAS
羅納德 大衛 傑斯米
Ronald David Jesme
Original Assignee
美商3M新設資產公司
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商3M新設資產公司, 3M Innovative Properties Company filed Critical 美商3M新設資產公司
Publication of TW201631913A publication Critical patent/TW201631913A/zh
Application granted granted Critical
Publication of TWI677824B publication Critical patent/TWI677824B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • G06K19/0707Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement being capable of collecting energy from external energy sources, e.g. thermocouples, vibration, electromagnetic radiation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0716Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising a sensor or an interface to a sensor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • G06K19/0724Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs the arrangement being a circuit for communicating at a plurality of frequencies, e.g. for managing time multiplexed communication over at least two antennas of different types
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • G06K7/10356Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers using a plurality of antennas, e.g. configurations including means to resolve interference between the plurality of antennas

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本揭露之至少一些態樣的特徵在於一種經調適以與一遠端收發器無線地通訊之射頻識別(RFID)標籤。該RFID標籤包括:一基材;及設置於該基材上之第一及第二電路,且該等第一及第二電路包含經磁耦合至彼此之個別的第一及第二天線。本揭露之至少一些態樣的特徵在於一種RFID標籤,該RFID標籤具有複數個RF電路,其中各RF電路經電氣地耦合至一感測元件。

Description

具有多個天線、積體電路、及/或感測元件的標籤總成
本揭露係關於無線感測裝置及系統。本揭露之至少部分係關於具有激發組件的無線感測裝置。本揭露之至少部分係關於穿戴式無線感測器,其用於測量一或多個熱性質。
在一實施例中,一經調適以與一遠端收發器無線地通訊之射頻識別(RFID)標籤包含:一基材;一天線,其係設置在該基材上;第一及第二積體電路(IC),其等係設置在該基材上,各IC係電氣地耦合至該天線;第一及第二加熱元件,其等係用於加熱個別的第一及第二目標區域並係電氣地耦合至個別的第一及第二IC,該等第一及第二目標區域之各者具有一熱特性,該第一目標區域之熱特性係已知,該第二目標區域之熱特性係未知,該第一目標區域係設置於該基材上並熱耦合至該第一加熱元件,該第一加熱元件及目標區域與該第二加熱元件熱隔離並經調適以與該第二目標區域熱隔離;及第一及第二感測元件,其等係熱耦合至該等個別的第一及第二加熱元件,以用於感測對應的加熱元件之一溫度,以致當該第二加熱元件熱耦合至該 第二目標區域時,該RFID標籤從一收發器無線地接收一具有一輸入形式的輸入功率,該等第一及第二IC將該輸入功率變換(transform)為具有個別的第一及第二形式之個別的第一及第二功率、並將該等第一及第二功率輸送至對應的加熱元件,該等第一及第二感測元件感測該對應的加熱元件溫度之一時變,且該RFID標籤將該第二目標區域之一熱特性無線地傳輸至該收發器,該第二目標區域之該熱特性係基於對該等第一及第二加熱元件溫度之時變的比較。
在一實施例中,一經調適以與一遠端收發器無線地通訊之射頻識別(RFID)標籤包含:一基材;及第一及第二電路,其等經設置於該基材上且包含經磁耦合至彼此之個別的第一及第二天線,該RFID標籤意欲具有一預定的共振頻率,該等第一及第二電路之各一者在缺少該等第一及第二電路之另一者的情況下係設計成具有一不同於該預定的共振頻率之共振頻率,該等共振頻率導致該RFID標籤具有該預定的共振頻率。
在一實施例中,一經調適以與一遠端收發器無線地通訊之射頻識別(RFID)標籤包含:一基材,其具有由該基材之一最外部周長所圍繞之一頂部表面區域;及第一及第二電路,其等經設置於該基材上且包含經磁耦合至彼此之個別的第一及第二天線,其中在平面圖中該等第一及第二天線在大部分的該基材之該頂部表面區域上方延伸。
在一實施例中,一經調適以與一遠端收發器無線地通訊之射頻識別(RFID)標籤包含:一基材;及第一及第二天線,其等係設置於該 基材上並在一垂直於該基材的方向上相對於彼此垂直地偏置,該等第一及第二天線之各者與該等第一及第二天線之另一者實質上重疊。
在一實施例中,一射頻識別(RFID)標籤經調適以與一遠端收發器以一標籤共振頻率無線地通訊並包含:一基材;複數個相異的電路,其等係設置於該基材上,各電路具有不同於該標籤共振頻率之一共振頻率且包含一包含至少一導電環之天線;及一或多個電氣地耦合至該天線之積體電路(IC);其中至少一相異的電路中之至少一IC具有一與至少一其他的相異電路中之至少一IC不同的識別號,且該至少一相異的電路之天線係與該至少一其他的相異電路之天線相異。
在一實施例中,一射頻識別(RFID)標籤經調適以與一遠端收發器以一標籤共振頻率無線地通訊並包含:設置於基材上之複數個天線,該複數個天線中之各天線經磁耦合至該複數個天線中之至少一其他天線;及設置於該基材上之複數個積體電路,該複數個IC中之各積體電路(IC)經電氣地耦合至該複數個天線中之一天線且經調適以將一不同的識別號傳達(communicate)至一遠端收發器,該複數個IC中之至少一IC經電氣地耦合至該複數個天線中之僅一個天線。
在一實施例中,一經調適以與一遠端收發器無線地通訊之射頻識別(RFID)標籤包含:一基材;第一及第二電子電路,其等經設置於該基材上且包含個別的第一及第二天線,該等第一及第二天線經電氣地耦合至個別的第一及第二積體電路(IC);第一及第二信號輸送元件,其等經設置於該基材上以輸送個別的第一及第二信號至個別的第一及第二目標;及第一及第二信號接收元件,其等經設置於該基 材上以感測來自該等第一及第二目標之回應於該等經輸送之第一及第二信號而產生之個別的第一及第二響應信號,該RFID標籤經調適以將基於該等所感測之第一及第二響應信號之資訊無線地傳達至一遠端收發器。
100A‧‧‧無線感測裝置
100B‧‧‧無線感測裝置
100C‧‧‧無線感測裝置;裝置
110‧‧‧基材
115‧‧‧熱散布器
115B‧‧‧感測區;第一感測區;熱隔離區
117B‧‧‧感測區;第二感測區
120‧‧‧控制電路;第一控制電路
125‧‧‧第二控制電路
130‧‧‧收發器;第一收發器
132‧‧‧第二收發器
135‧‧‧天線;收發器
140‧‧‧能量採集裝置
150‧‧‧熱源
150B‧‧‧第一激發裝置;激發裝置;第一熱源
155B‧‧‧第二激發裝置;激發裝置;第二熱源
160‧‧‧感測器
160B‧‧‧第一感測器;感測器
165B‧‧‧第二感測器;感測器
170‧‧‧能量儲存裝置
200‧‧‧RF感測器標籤;無線感測裝置
200C‧‧‧無線感測裝置
210‧‧‧基材
220‧‧‧天線
230‧‧‧熱散布器
230C‧‧‧熱散布器
231‧‧‧底部表面
232‧‧‧頂部表面
240‧‧‧感測電路
240C‧‧‧控制電路
241‧‧‧主底部表面;底部表面
242‧‧‧主頂部表面
242C‧‧‧控制器
244C‧‧‧功率源
246C‧‧‧電流感測器
248C‧‧‧電壓感測器
250C‧‧‧感測電路
300A‧‧‧RF感測器標籤
300B‧‧‧無線感測裝置
300C‧‧‧無線感測裝置
310‧‧‧基材
320‧‧‧天線
330‧‧‧第一熱散布器;第一熱區;熱隔離區
340‧‧‧第一感測電路;感測電路
342‧‧‧第一IC
344‧‧‧第一加熱元件;加熱元件
346‧‧‧第一溫度感測元件;感測元件
350‧‧‧第二熱散布器;第二熱區;感測區;熱區
360‧‧‧第二感測電路;感測電路
360C‧‧‧第一感測電路
362‧‧‧第二IC;第三感測電路;感測電路
364‧‧‧第二加熱元件;加熱元件;第四感測電路;感測電路
366‧‧‧第二溫度感測元件;感測元件
366C‧‧‧第二感測電路
400‧‧‧RFID標籤
400A‧‧‧RFID標籤
410‧‧‧基材
412‧‧‧第一RF裝置;RF裝置
414‧‧‧第二RF裝置;RF裝置
420‧‧‧第一天線
425‧‧‧第二天線
430‧‧‧第一感測區
435‧‧‧第二感測區
440‧‧‧第一電路;第一積體電路(IC)
445‧‧‧第二電路;第二積體電路(IC)
500‧‧‧無線感測裝置
510‧‧‧基材
520‧‧‧天線
530‧‧‧第一控制電路
540‧‧‧第一感測電路
550‧‧‧第二控制電路
560‧‧‧第二感測電路
600‧‧‧行動感測系統
600C‧‧‧無線感測系統
600D‧‧‧無線感測系統
610‧‧‧行動裝置
610C‧‧‧運算裝置
610D‧‧‧運算裝置
613C‧‧‧資料訊號
613D‧‧‧資料訊號
615C‧‧‧啟動訊號
615D‧‧‧啟動訊號
618‧‧‧讀取器
618C‧‧‧讀取器;NFC讀取器;NFC CR95HF讀取器
618D‧‧‧讀取器
620‧‧‧無線感測裝置
620C‧‧‧無線感測裝置
620D‧‧‧感測裝置
630‧‧‧能量採集裝置
630C‧‧‧無線裝置
632C‧‧‧無線收發器:動態NFC M24LR16E-RMC6T/2轉發器
635‧‧‧天線
635C‧‧‧環形天線;天線
640‧‧‧激發裝置
640C‧‧‧激發裝置;熱源;電阻式熱源
650‧‧‧感測器
650C‧‧‧感測器;熱感測器;溫度感測器
664‧‧‧作業系統
668‧‧‧資料儲存裝置
670‧‧‧處理器
676‧‧‧I/O
677‧‧‧使用者應用程式
678‧‧‧感測器應用程式
710A‧‧‧步驟
710B‧‧‧步驟
710C‧‧‧步驟
715A‧‧‧步驟
715B‧‧‧步驟
715C‧‧‧步驟
720A‧‧‧步驟
720B‧‧‧步驟
720C‧‧‧步驟
723C‧‧‧步驟
725A‧‧‧步驟
725B‧‧‧步驟
725C‧‧‧步驟
727C‧‧‧步驟
730A‧‧‧步驟
730B‧‧‧步驟
730C‧‧‧步驟
740A‧‧‧步驟
740B‧‧‧步驟
740C‧‧‧步驟
750A‧‧‧步驟
750B‧‧‧步驟
900‧‧‧含水感測系統
910‧‧‧運算裝置
918‧‧‧讀取器
920‧‧‧無線感測裝置
920C‧‧‧無線感測裝置
930‧‧‧基材
932‧‧‧RF電路
935‧‧‧天線
940‧‧‧熱源
945‧‧‧吸收元件
950‧‧‧熱感測器;感測器
960‧‧‧人
1000‧‧‧無線感測裝置
1020‧‧‧溫度感測器
1030‧‧‧環形天線
1050‧‧‧電阻器
1100‧‧‧無線感測裝置;感測裝置
1120‧‧‧溫度感測器;積體電路
1122‧‧‧溫度感測器;積體電路
1130‧‧‧環形天線;天線
1160‧‧‧介面板
隨附圖式併入並構成本說明書之一部分,且與詳細說明一起釋明本發明之優勢與原理。在圖式中:圖1A繪示一無線感測裝置之一實施例的方塊圖;圖1B繪示一無線感測裝置之另一實施例的方塊圖;圖1C繪示無線感測裝置之又另一實施例的方塊圖;圖2A為一RF感測器標籤之一實施例的簡化示意圖;圖2B為圖2A所繪示之無線感測裝置在箭頭2B處的剖面圖;圖2C為一無線感測裝置之一實施例的簡化示意圖;圖2D為一功率量測電路之一實施例的簡化示意圖;圖3A至圖3C繪示具有多個感測器之無線感測裝置之一些實施例的簡化示意圖;且圖3D為圖3A所繪示之無線感測裝置的剖面圖;圖4A及圖4B繪示具有多個感測器及/或多個RF裝置之一無線感測裝置之一些實施例的簡化示意圖;圖5繪示一具有多個感測器及一單一天線之無線感測裝置之一實施例的簡化示意圖;圖6A繪示一行動感測系統之一實施例; 圖6B繪示描繪一行動感測系統之一實例的方塊圖,該行動感測系統包括一行動裝置及一無線感測裝置;圖6C繪示一無線感測系統之一實施例;圖6D繪示一具有一個以上的無線感測裝置之無線感測系統之一實施例;圖7A繪示用於一無線感測裝置及/或系統之一實施例之操作的實例流程圖;圖7B繪示用於一具有兩個感測器之無線感測裝置或系統之一實施例之操作的實例流程圖;圖7C繪示判定一含水(hydration)位準的實例流程圖;圖8A繪示磁耦合對頻率之一實例的圖表;圖8B繪示溫度-時間曲線之一實例;圖8C為一概念實例,其指示對輸送至一熱源之功率之控制的效用;圖9A繪示含水感測系統之一實施例;圖9B顯示一熱源在一恆定輸入功率之前、期間、及之後的一示意溫度-時間曲線;圖9C繪示針對一用於測量一液體位準之無線感測裝置之一實施例之一些組件的剖面圖;圖9D繪示一用於測量一液體位準之無線感測裝置之一實施例的示意圖;圖10繪示一無線感測裝置之一實例的簡化示意圖; 圖11為一具有兩個積體電路之無線感測裝置之一實例的照片;及圖12繪示溫度對時間的實例圖表。
圖式中,相似元件符號指代相似元件。雖然上述所提出之圖式闡述本揭露之數個實施例,其他在【實施方式】中所提到的實施例亦被考慮,該等圖式可未按比例繪製。在所有情況中,本揭露係藉由例示性實施例的表示之方式而非明確的限制來說明所揭示之揭露。應理解,所屬技術領域中具有通常知識者可擬定出許多其他修改及實施例,其仍屬於本揭露之範疇及精神。
除非另有指示,本說明書及申請專利範圍中用以表示特徵之尺寸、數量、以及物理特性的所有數字,皆應理解為在所有情況下以「約(about)」一詞修飾之。因此,除非另有相反指示,否則在前述說明書以及隨附申請專利範圍中所提出的數值參數係近似值,其可依據所屬技術領域中具有通常知識者運用本文所揭示之教示所欲獲得的所欲特性而有所不同。使用端點來敘述之數字範圍包括所有歸於該範圍內的數字(例如,1至5包括1、1.5、2、2.75、3、3.80、4及5)以及該範圍內的任何範圍。
如本說明書以及隨附申請專利範圍中所使用,單數形「一(a、an)」以及「該(the)」涵蓋具有複數個指稱物的實施例,除非內文明確另有指示。如本說明書以及隨附申請專利範圍中所使用,「或(or)」一詞一般是用來包括「及/或(and/or)」的意思,除非內文明確另有指示。
若在本文中使用空間相關用語,包括但不限於「下(lower)」、「上(upper)」、「之下(beneath)」、「下方(below)」、「上方(above)」、以及「上面(on top)」,是為了便於描述一元件與其他元件的空間關係。除了圖中所繪示及本文所述之特定方位之外,此類空間相關用語還涵蓋了裝置於使用或操作中的不同方位。例如,若圖中繪示之物體經倒轉或翻轉,先前描述為在其他元件下面或之下的部分,會變成在該等其他元件的上方。
如本文中所使用,當一元件、組件或層例如描述成與另一元件、組件或層形成一「重合介面(coincident interface)」、在另一元件、組件或層「上(on)」、或者是「連接至(connected to)」、「耦合於(coupled with)」、或「接觸(in contact with)」另一元件、組件或層,此可為直接在其上、直接連接至、直接耦合於、直接接觸,或例如中介元件、組件、或層可能在該特定元件、組件、或層上,或者是中介元件、組件、或層可能連接、耦合或接觸該特定元件、組件或層。例如,當一元件、組件或層被稱為「直接位於」另一元件「上」、「直接連接至」或「直接耦合至」另一元件、或「直接與」另一元件「接觸」時,則舉例來說,不存在任何中間元件、組件或層例如,當一元件、組件或層被稱為「直接位於」另一元件「上」、「直接連接至(directly connected to)」或「直接耦合於(directly coupled with)」另一元件、或「直接與」另一元件「接觸」時,則舉例來說,不存在任何中間元件、組件或層。如本文中所使用,「電子 地耦合(electronically coupled)」及「電氣地耦合(electrically coupled)」係可互換使用。
如在本文中所使用的,層、組件、或元件可被描述為彼此相鄰。層、組件、或元件可藉由直接接觸、藉由經由一個或多個其他組件來連接、或藉由彼此並排經固持或彼此經附接而彼此相鄰。直接接觸之層、組件或元件可經描述為緊鄰。
本揭露的一些態樣係關於建基於射頻(RF)技術上之感測器的開發,其為基於無線的資料及功率轉移之能力的一有吸引力的方式。如本文中所使用,RF係用來指稱一廣泛類別的無線通訊介面,其可提供通訊及功率(包括遠場通訊及近場通訊(NFC)),其可利用一特定的通訊協定。基於RF技術的感測器致能有利的系統屬性,例如,無線讀出、被動式(免用電池)感測器操作、唯一感測器識別、與人體的相容性、及機載微處理能力。此外,日漸盛行的NFC致能智慧型裝置(例如,智慧型手機、平板、及智慧型手錶),在不需要一特殊讀取器的情況下允許基於RF的感測器之讀出。NFC包括,但不限於由NFC論壇工業協會(NFC Forum industry association)所定義的標準協定組。
本揭露的至少一些態樣的特徵在於用於測量熱性質的無線感測裝置,該等裝置可經由一無線介面傳輸感測器信號。一無線介面包括遠場通訊及NFC。在一些實施例中,無線感測裝置使用NFC作為通訊界面。本揭露之至少一些態樣的特徵在於具有一熱散布器(亦稱為熱區或散熱層)之無線感測裝置,其中該熱散布器係由與氣 體之導熱率相比具有相對較高的導熱率之固體或液體材料形成,且一熱源及一感測器係設置在該熱散布器中以允許一或多個熱性質的量測。在一些情況下,無線感測裝置包括一能量採集裝置以接收並轉換功率,且將功率供應至無線感測裝置之其他組件的至少一些。
在一些實施例中,一無線感測裝置具有一單一天線,其具有二或更多個感測器及激發裝置,其中各感測器係耦合至一具有一唯一識別符的RF裝置,且各感測器係耦合至一激發裝置。在此類實施例中,該無線感測裝置可從空間上分散的感測器提供感測器信號至一運算裝置,以基於空間資訊及感測器信號判定物理性質。
在一些實施例中,一無線感測裝置具有熱隔離區,其中各區包括一熱感測器與可選的熱源,該等熱感測器的量測可用於判定一受關注物體的熱性質。在一實施例中,該無線感測裝置具有一熱區A,其包含具有高導熱率的材料;及一區B,其係與區A熱隔離,其中區A係與一受關注物體熱接觸。在此類實施例中,可基於來自設置為近接區A之感測器A及設置為近接區B之感測器B的差動感測器信號判定該物體的熱性質。
本揭露的至少一些態樣係關於一無線感測系統,其具有本文所述之任一組態的一RF讀取器及一無線感測裝置。在一些實施例中,該無線感測系統包括多個空間上分開的感測器,並從這些感測器接收感測信號。在此類實施例的一些情況下,該無線感測系統可建立感測信號之一陣列(array)或一映射關係(map),從而評估一材料或物體在對應於感測器位置的不同部分之物理性質。在一些其他實施例 中,該無線感測系統從一無線感測裝置接收時間上分開的感測信號,以測量一物體之一物理性質。在此類實施例的一些情況下,該無線感測系統可隨時間建立一感測信號變化曲線(profile),從而基於該曲線判定該物體的物理性質。例如,該無線感測系統可以一或多個熱感測器建立一溫度-時間曲線,並判定該材料或物體內的含水量,然後進一步評估該材料或物體之一含水(hydration)或濕度位準。
一材料或一物體的熱性質包括例如導熱率、熱導、比熱容量、熱容量、熱擴散率、或類似者等。導熱率(thermal conductivity)為回應於通過一材料之一經施加的熱流量之內在溫差(intrinsic temperature difference),一般單位為每長度-溫度之功率,例如每公尺-絕對溫度之瓦特(watt per meter-Kelvin)。熱導(thermal conductance)考量到熱流量(heat flux)的截面面積及材料厚度,一般單位為每溫度之功率,例如每絕對溫度之瓦特。比熱容量(specific heat capacity)為回應於熱能之內在溫升,一般單位為每質量-溫度之能量,例如每公斤-絕對溫度之焦耳。熱容量(heat capacity)考量到材料的質量,一般單位為每溫度之能量,例如每絕對溫度之焦耳。熱擴散率為導熱率對質量密度與比熱容量之乘積的比率,並指示一材料將多快地達到一相似於其周圍環境的溫度,一般單位為每時間面積(area per time),例如每秒平方公尺(square meter per second)。
一材料或一物體可為一複合物,其中一複合物的熱性質指的是該複合物之有效或平均的熱性質。一些複合物在一分散介質中具有一分散相,該等複合物取決於所涉及的長度尺度通常稱為溶液、 膠體、或懸浮液。複合物可為單相或混相,含有固體、液體、或氣體之一或多者。
在一些實施例中,分散介質非一氣體之複合物(亦即,非氣溶膠複合物)的熱性質係經測量及/或計算。非氣溶膠複合物包括例如發泡體(亦即,氣體分散在固體或液體中)、乳化液(亦即,液體分散在液體或在固體中)、或溶膠(亦即,固體分散在液體或在固體中)。非氣溶膠複合物亦可包括例如分散在一固體或液體基質中之固體、液體、或氣體之一非均質混合物。例如,具有氧化鋁分散粒子之一丙烯酸酯黏著劑的有效導熱率係基於各材料的導熱率、混合分率、及其他性質(例如,粒子形狀)。
圖1A繪示一無線感測裝置100A之一實施例的方塊圖,無線感測裝置100A可用於測量一物體之一熱性質。如本文所述,一無線感測裝置一般在一總成中。在所繪示的實施例中,無線感測裝置100A包括:一基材110;一控制電路120,其係設置在基材110上;一收發器130,其係電子地耦合至控制電路;一天線135,其係電子地耦合至收發器並設置在基材110上;一可選的能量採集裝置140,其係設置在基材上;一可選的熱源150及一感測器160。在一些情況下,能量採集裝置140係電子地耦合至天線135。天線135經組態以例如在一RF讀取器詢問(interrogate)無線感測裝置100A時傳輸信號。
在一些組態中,無線感測裝置100A具有一可選的熱散布器115,熱散布器115包括固體、液體、或複合材料,並具有一所 欲的或已知的熱性質。在一些情況下,熱散布器115之導熱率高於基材110之導熱率。在一些其他情況下,基材為熱散布器,其經組態以在無線感測裝置用於測量物體的熱性質時與物體熱接觸。例如,熱散布器115包括一聚合物薄膜或一黏著劑層。在一些實施方式中,熱散布器115具有一大於或等於每公尺-絕對溫度0.1瓦特的導熱率。熱散布器115可包括金屬填料(例如,鋁)或陶瓷填料(例如,氮化硼)。在一些情況下,熱散布器中所用的填料係用來得到一所欲的導熱率。在一些實施例中,無線感測裝置100A可藉由提供通過熱散布器115之大致上均勻的熱通量(thermal flux)來改善量測結果的準確性。在一些情況下,無線感測裝置100A可使用熱散布器115的熱性質來判定物體的熱性質。
熱通量或熱流量為通過一介質藉由傳導(聲子)、對流(流體流動)、或輻射(光子)之熱能轉移。主要關注的熱通量係藉由傳導移動往返一熱源的熱通量,且其中熱通量係散布至一區或基材之一表面或從一區或基材之一表面散布過來。
基材110可為可撓性或剛性。在一些實施例中,基材110係可拉伸的。在一些實施例中,基材110包括聚胺甲酸酯。在一些實施例中,基材110為一聚合物薄膜。適當的聚合物薄膜包括彈性體聚胺甲酸酯、共聚酯或聚醚嵌段醯胺薄膜。
控制電路120可包括一或多個電子地連接的電子組件。控制電路120可包括被動式電子組件,例如,諸如電阻器、電容器、電感器、變壓器、二極體、及類似者。控制電路120可包括主動式電 子組件,例如,電晶體、電壓或電流源、放大器、微處理器、振盪器、類比數位轉換器、數位類比轉換器、鎖相迴路、及類似者。在一些情況下,控制電路120可形成為一積體電路或包括一積體電路。一微處理器可為一狀態機,其具有相對簡單的數位邏輯,以一預先定義的方式在二或更多個狀態之間移動;或一微控制器,其包含一指令集、數位處理方塊、記憶體、韌體、及周邊設備(例如,時鐘、記憶體控制器、及資料轉換器)。在一些情況下,控制電路120包含一微處理器及一儲存一唯一識別符的記憶體。在一些實施例中,控制電路120、收發器130、及天線135為一射頻識別(RFID)標籤的組件。
可撓性及/或可拉伸基材上的RFID標籤係在標題為「RFID Tag on Stretchable Substrate」且於2014年7月31日提出申請之美國專利申請案第62/031,581號以及標題為「RFID Tag on Flexible Substrate」且於2014年7月31日提出申請之美國專利申請案第62/031,603號中更詳細地敘述,該等申請案之全文以引用方式併入本文中。
在一些情況下,熱源150係設置為近接熱散布器115,以在熱散布器115中產生熱通量。熱源150係電子地耦合至能量採集裝置140並在熱散布器115中產生熱通量。在一些實施例中,感測器160係設置在熱散布器115中並電子地耦合至控制電路120。感測器160經組態以產生一指示一溫度的感測器信號,並提供感測器信號至控制電路120。在一些情況下,熱源150及感測器160為一積體電路 的組件。在一些實施方式中,熱源150及感測器160為一相同的電阻性元件。
熱源150(亦稱為加熱元件)可藉由焦耳加熱(Joule heating)(例如,藉由使電流通過任何具有一非零電阻的電氣組件)來產生熱。例如,熱源150可為一電子地連接至一電流源的電阻器,或者間接地為例如一金屬或磁性材料,其耦合至一變化磁場以藉由磁感應產生電流。
在一些情況下,熱源150可為一熱電裝置,其基於帕耳帖效應(Peltier effect)進行操作,例如,一熱電加熱器或冷卻器,其含有一般以電子接線串聯之一或多個p型及n型熱電材料的接面。依據電流的極性,熱電裝置之一個部分的溫度將提高而另一部分的溫度將下降,因此熱電裝置可用於加熱及/或冷卻。由於元件之非零電阻,此類熱電熱源亦可具有來自焦耳加熱的熱作用。
在一些情況下,熱源150可基於光學吸收,其係來自一蓄意的光學能量源或來自一周圍光學能量源。在一些其他情況下,熱源可包括一寄生元件或除此之外之非蓄意的加熱源或冷卻源。在一些情況下,熱源150為無線感測裝置100A中之一專用組件。在一些其他情況下,熱源150包括一或多個在無線感測裝置中操作的電子組件。例如,熱源150可包括一收發器元件,其在操作期間產生額外的加熱。作為另一實例,熱源150包括一微處理器元件,其在操作期間產生熱。
在一些實施例中,熱源150係設置為近接熱散布器115。在一些情況下,熱散布器115具有一已知的熱性質,其可用來判定物體的一或多個熱性質。在一些實施方式中,熱源包括一高傳導性組件。在一些實施例中,熱源150及/或熱散布器115係與所關注的物體或材料熱接觸。熱接觸被定義為兩材料之一介面,其中當熱流量跨該介面移動時,非無限的熱接觸傳導性(thermal contact conductance)導致跨該介面之一溫度差。該介面大致上由一混相區構成,該混相區類似於所述的一些複合材料。在一些實施例中,該介面可包含具有一些粗糙處的固體區,或者在固體區內其中流體區位於彼粗糙處內。流體區可包括液體、氣體、或一混合物。在一些實施例中,該介面可具有固體或液體區,其中氣體區位於一或多個空隙中或位於一表面處。維持良好的熱接觸或熱耦合一般涉及限制流體區(尤其是彼等含有氣體者)的分率。熱介面材料一般係用於此目的,例如,彈性體墊、黏著膠帶、油脂、或類似者。有效的接觸熱導(effective contact thermal conductance)為針對一給定熱流量之跨一接觸介面面積之溫度差的倒數,一般單位為每絕對溫度每平方公尺之瓦特。有效的接觸熱導可額外以接觸區域之一有效厚度來按比例調整,以得到一有效的接觸導熱率,一般單位為每絕對溫度每公尺之瓦特。
在一些實施例中,感測器160(亦稱為感測元件)可為一熱感測器,其具有回應於溫度變化之電氣性質、光學性質、聲學性質、或類似者的可測量變化。在一些情況下,電氣熱感測器可具有為電壓、電流、或電阻之對溫度變化之一響應。一電阻式熱感測器具有 與溫度相依的電阻;一般金屬係電阻式熱裝置,其中電阻以一相對線性的關係隨著溫度增加。一熱阻器一般具有一取決於電流的電阻及回應於溫度變化之非線性電阻變化。在一些實施方式中,電氣熱感測器可基於塞貝克效應(Seebeck effect)進行操作,以將一溫度差轉換為一電壓(例如,一熱電耦(thermocouple)或熱電堆(thermopile))。
一光學溫度感測器包括一光學換能器,光學換能器從與環境未達熱平衡的物體接收電磁輻射,其中換能器溫度隨著吸收及發射輻射而變化,例如,輻射熱計(bolometer)、微輻射熱計(microbolometer)、熱電偵測器(pyroelectric detector)、或類似者。這些感測器結合光學與電氣態樣,其中當換能器藉由輻射進行加熱或冷卻時,入射及經反射的輻射係經測量並被轉換為一電氣響應。
一聲學溫度感測器仰賴通過一塊材或沿著一材料表面之力學波(mechanical wave)傳播過程中之溫度誘發的變化。一測量溫度的感測器可包含多層結構,該等結構基於各層之不同的熱膨脹性質回應於溫度而變形。變形可經電子式轉導,例如轉導為完成一電機械切換(electromechanical switch)之一經變形梁;或可經由一刻度盤或其他元件之手段轉導為一可見的指示符。
在一些情況下,能量採集裝置140包含一橋式整流器、一整流器、一二極體或電晶體整流器,並可包括一穩壓器或穩流器。在一些實施方式中,可將未經整流的電功率提供至熱源(例如,電阻器),而電子電路系統的其餘部分一般在經整流的功率上進行操作。一能量採集裝置可接收來自一蓄意輻射源或者來自一非蓄意的或周圍 的來源之功率。蓄意的輻射源可包括例如一RF讀取器。例如,取決於其電子器件、天線、及操作頻率範圍的組態,一RF讀取器可產生一近場電場或磁場,其儲存用於耦合至一或多個目標裝置中的能量;或者其可產生行進電磁波的一遠場輻射型樣(radiation pattern)、或其組合。在一些情況下,磁場可耦合至天線135及能量採集裝置140,以在無線感測裝置中從磁場感應產生一電流。
能量採集裝置140亦可耦合至一非蓄意的或周圍的來源,例如,諸如一光學源、慣性振動源、或溫度梯度源、或類似者。一光學源可為例如陽光、人工光源、或類似者。在此類實例中,能量採集裝置140可包括光伏電池,以將光學能轉換為電能。一慣性或振動能量源可為例如一馬達、一移動的運輸車輛(例如,汽車、火車、飛機等)、風、或類似者。其亦可為一生物源,例如,一運動中的人類。在此類實例中,能量採集裝置可包括一壓電裝置,其將機械能轉換為電能。能量採集裝置140可從一溫度梯度得到電能。例如,能量採集裝置可包括一基於塞貝克效應進行操作的熱電裝置,其將一哺乳動物皮膚或一容納一處理流體(process fluid)之管外側所產生的溫度梯度及熱流動轉換為電能。
在一些實施例中,熱源150係經調節。熱源150可藉由控制電路120的處理組件、藉由透過收發器130與一外部裝置之交互作用、能量採集裝置140、或藉由其組合來進行調節。在一些情況下,控制電路120調節熱源150。在一些情況下,控制電路120基於感測器信號調節熱源150。
在一些實施例中,輸送至熱源150的功率可藉由控制電路120內之一控制器來調變,例如藉由改變輸送至熱源150的電功率之量。在一些實施例中,控制電路120回應於由感測器160所提供之指示溫度的感測信號而調節電功率以維持恆定溫度或維持所欲的溫度變化率,其為一基於溫度的閉迴路控制。在一些實施例中,控制電路120調節進入熱源的電功率,以維持恆定功率或維持給熱源150之供應功率的所欲變化率,其為一基於功率的閉迴路控制。在一些其他實施例中,熱源150接收一已知但未受控制的電流、電壓、或功率,且已知的值係在稍後的(一或多個)運算步驟中用於考慮功率變化,其為一開迴路控制。在又一些其他實施例中,一開迴路型控制之實施可具應變約束(contingent constraint)(例如,從感測器160所得到之一感測信號之一最大或最小值),並於感測信號在最大或最小值之外時控制電路120使用該開迴路型控制以調整熱源150。
在一些實施例中,當一主導寄生/非意欲加熱元件進行操作時,熱源150可藉由在一時間週期期間執行量測來予以調節。此類調節可直接透過蓄意增加寄生/非意欲加熱元件之操作負載來完成。例如,控制器可指示一收發器開啟,並處理在其他情況下無意義的資料以產生額外的熱。在此類實例中,供應至收發器的功率可由控制器監控,且處理負載經過調整以維持一恆定功率或所欲的功率變化率。
在一些實施例中,無線感測裝置100A可包括一可選的能量儲存裝置170,能量儲存裝置170係設置在基材上並電子地耦合至能量採集裝置140。能量儲存裝置170可包括電容器或超級電容 器。能量儲存裝置170可短時間或長時間儲存採集自能量採集裝置140的能量。儲存在能量儲存裝置170的能量可用來提供功率至無線感測裝置100A之指定的組件,包括但不限於控制電路120、熱源150、及感測器160。當外部能量無法為能量採集裝置140所用時,無線感測裝置100A可持續以儲存在能量儲存裝置170中的功率進行操作。此外,儲存在能量儲存裝置170中的能量可用來增加可從能量採集裝置140得到的功率,致能比可單獨從能量儲存裝置170或能量採集裝置140得到的功率更高的功率可得性。
在一些實施例中,能量採集裝置140提供功率至熱源150,還可能提供功率至無線感測裝置100A的其他組件,例如,感測器160、控制電路120、及收發器130。在一些情況下,感測器160經組態以在熱源150藉由能量採集裝置140啟動前產生一第一感測器信號,並在熱源150藉由能量採集裝置140啟動後產生一第二感測器信號。在此類情況下,控制電路可基於第一及第二感測器信號判定物體之一熱性質。在一些情況下,感測器160經組態以在與能量採集裝置140啟動熱源150的接近同時產生一第一感測器信號,並在熱源150藉由能量採集裝置140啟動後產生一第二感測器信號。
收發器130可包括一傳輸器元件及/或一接收器元件。一傳輸器元件包括一或多個電磁或電聲換能器以及電子組件,以濾波、放大、及調變一或多個信號。一接收器元件包含一或多個電磁或電聲換能器,該一或多個電磁或電聲換能器可經由一切換手段與傳輸器元件之彼等共用或者可與傳輸器元件之彼等分開;及電子器件,以 將來自所接收之能量的一或多個信號濾波、放大及解調。一電磁換能器可為一天線,其可經設計以從輸入的電信號輻射電磁場並吸收電磁場成為電信號、或可經設計以與電磁近場中所儲存的能量耦合、或者輻射及近場耦合兩者之組合。一電磁換能器亦可為一發光二極體或其他光學源、或一光二極體或其他光學偵測器。一電聲換能器可為一擴音器或其他聲學源、或一麥克風或其他聲學偵測器。電磁及/或電聲換能器可組合成為一單一元件,其能夠進行從電信號至電磁或聲波能量以及從電磁或聲波能量至電信號的雙向轉導。
作為一實例,收發器130可被包括在一積體電路裝置中,例如,來自NXP Semiconductors(Eindhoven,the Netherlands)的NTAG213。作為另一實例,收發器130可為一紅外線收發器元件,其具有一發光二極體、一光二極體、及伴隨的電子器件,以經由一紅外線協定實施光學通訊,例如,來自Rohm Semiconductor(Kyoto,Japan)的RPM841-H16 IrDA Infrared Communication Module。
天線135可為一線圈天線,其經設計用於與一RF讀取器近場耦合。在一些情況下,天線135具有一螺旋形式。在一些實施方式中,天線135包含複數個實質上同心的導電環。在一些組態中,天線具有一介於第一及第二端之間的長度,該長度小於約2公尺。在一些情況下,天線135根據ISO 14443A標準、ISO 15693標準、或其他標準或專屬的通訊協定執行調變及解調。線圈天線可基於其幾何具有一電感,其與該等經電子連接的組件(通常稱之為RF組件)之電容產生一共振,用於對接近RF讀取器之頻率的一給定磁場強度增強 感應電壓。在一些實施例中,線圈天線可基於其幾何具有一電感,其與RF組件之一第一電容產生一第一共振,並與RF組件之一第二電容產生一第二共振,其中第二共振更密切地與RF讀取器的頻率匹配,將更多能量耦合至無線感測裝置100A中,此係歸因於當共振頻率更密切地與RF讀取器的頻率匹配時,對一給定讀取器磁場強度的感應電壓增強。在一些實施方式中,RF組件(包括收發器130及/或控制電路120的組件)可經組態以含有一可調諧或可切換的電容以產生至少兩個電容值(亦即,第一電容、第二電容);或可含有用於控制一外部可變電容的電路系統;或可含有允許一或多個外部電容元件接入電路或從電路斷開的電路系統。
圖1B繪示一無線感測裝置100B之另一實施例的方塊圖,無線感測裝置100B可用於測量一物體之物理性質。在所繪示的實施例中,無線感測裝置100B包括一基材110;一控制電路120;一收發器130,其係電子地耦合至控制電路;一天線135,其係電子地耦合至收發器並設置在基材110上;一可選的能量採集裝置140,其係設置在基材上;一第一激發裝置150B;一第一感測器160B;一第二激發裝置155B及一第二感測器165B。在一些情況下,能量採集裝置140係電子地耦合至天線135。在一些實施例中,無線感測裝置100B包括一可選的能量儲存裝置170。在一些情況下,能量儲存裝置170係電子地耦合至能量採集裝置140。在一些實施例中,無線感測裝置100B包括一電池(未繪示於圖1B中)。具有相同標示的組件可具有與圖1A中之對應組件相同或類似的組態、組成物、功能、及/或關係。
第一激發裝置150B及第二激發裝置155B可包括一或多個熱激發裝置、光激發裝置、聲激發裝置、振動器、電壓源、電流源、電磁體、或類似者。一激發裝置在一時間週期期間可產生一激發信號及/或多個激發信號。激發信號可包括例如一光信號、一電壓信號、一振動信號、一聲信號、加熱或冷卻信號、一電磁信號、一電流信號、或類似者。激發裝置(150B、155B)可引發一激發信號以改變一條件,且感測器(160B、165B)可感測回應於經改變的條件而改變之物體的物理特性,然後判定物體的一或多個物理特性。如圖1A所繪示之一實例,激發裝置可為一與物體熱接觸的熱源,且感測器係經選擇以測量物體的溫度變化。作為另一實例,激發裝置可為一與物體接觸的振動馬達,且感測器可為一加速計。
在一些情況下,激發裝置(150B及/或155B)可產生光能,例如,諸如光源或類似者;且對應的感測器可包括光學感測器,例如,諸如光二極體、光伏感測器、或類似者。在一些情況下,激發裝置可包括一運動源,例如,諸如振動馬達、壓電致動器、或類似者;且對應的感測器可包括一運動感測器,例如,諸如壓電感測器、加速計、或類似者。在一些其他情況下,激發裝置可包括一聲學源,例如,諸如麥克風、壓電換能器、或類似者;且對應的感測器可包括一聲感測器,例如,諸如麥克風、加速計、或類似者。在又一些其他情況下,激發裝置可包括一電源,例如,諸如電壓源、電流源、或類似者;對應的感測器可包括一電感測器,例如,諸如電壓感測器、電流感測器、相位感測器、電阻感測器、或類似者。在一些實施 方式中,無線感測裝置可包括一個以上類型的激發裝置(例如,一光學源及一運動源兩者)及/或一個以上類型的感測器(例如,一光學感測器及一運動感測器兩者)。
在一些實施例中,無線感測裝置100B可包括二或更多個感測器,其在空間上分開以測量物體之不同部分處的物理性質。感測器資料可用於例如提高量測結果的準確性、測量流率、偵測物體中的異常、或評估物體的其他性質。在一些情況下,激發裝置150B及/或155B可藉由控制電路120來進行調節。在一些情況下,激發裝置150B及/或155B可基於感測器信號藉由控制電路120來進行調節。
在一些組態中,無線感測裝置100B具有一可選的感測區115B及/或感測區117B,其包含適於一特定能量轉移的材料。例如,感測區115B及/或117B包括適於熱能轉移之一聚合物薄膜或一黏著劑層。作為另一實例,感測區115B及/或117B包括一適於將光導向物體的反射薄膜。
在一實施例中,激發裝置150B及155B係熱源。感測區115B及117B係彼此熱隔離。第一熱源150B係設置在第一感測區115B中,且係電子地耦合至能量採集裝置140。第一感測器160B係設置在第一感測區115B中,且係電子地耦合至控制電路120。第一感測器160B經組態以產生一與溫度相關聯的第一感測器信號。第二熱源155B係設置在第二感測區中,且係電子地耦合至能量採集裝置140。第二感測器165B係設置在第二感測區117B中,且係電子地耦合至控制電路120。第二感測器165B經組態以產生一與溫度相關聯的 第二感測器信號。控制電路120經組態以基於第一及第二感測器信號判定物體之一熱性質。在一些情況下,感測區117B與物體熱接觸,且在一熱隔離區115B中之感測器160B可提供基線資訊,以改善無線感測裝置100B的量測準確性。
在一實施例中,一絕熱器係設置在感測區115B及117B之間。絕熱器可包括例如發泡體、氣隙、或類似者。發泡體可包括例如任何具有空隙的固體材料,例如,一具有開孔式(open-cell)或閉孔式(closed-cell)空隙的聚合物材料或者一非織物聚合物材料。亦藉由幾何來提供絕熱,例如藉由區間分開距離對區間跨距之截面面積的比率;當該比率較大時,需要一較大的溫度差來轉移一給定量的熱。
在一些情況下,第一感測區115B及/或第二感測區117B係位於基材110上。在一些其他情況下,第一感測區115B及/或第二感測區117B未在基材110上。在圖1B所繪示之一實施例中,控制電路120接收來自感測器160B及165B兩者的感測資料。在一些情況下,控制電路120包括一微處理器,以基於由感測器160B及165B兩者所收集的資料判定物體的物理性質。在一些其他情況下,控制電路120經由收發器130傳輸感測器資料以供進一步的處理。
圖1C繪示無線感測裝置100C之又另一實例的方塊圖,裝置100C可用於測量一物體之一或多個物理性質。在所繪示的實施例中,無線感測裝置100C包括一基材110;一第一控制電路120;一第一收發器130,其係電子地耦合至第一控制電路120;一第二控制電路125;一第二收發器132,其係電子地耦合至第二控制電 路125;一天線135,其係電子地耦合至收發器130及/或135並設置在基材110上;一可選的能量採集裝置140,其係設置在基材上;一第一激發裝置150B;一第一感測器160B;一第二激發裝置155B及一第二感測器165B。在一些情況下,能量採集裝置140係電子地耦合至天線135。在一些情況下,無線感測裝置100C包括一第二天線,其係連接至第二收發器132,而天線135係連接至第一收發器130。具有相同標示的組件可具有與圖1A及1B中之對應組件相同或類似的組態、組成物、功能、及/或關係。
在本文所述之任一個無線感測裝置中的一或多個組件(例如,控制電路、收發器、熱源、激發裝置、感測器、能量採集裝置、及能量儲存裝置)可製成一封入一電子封裝內的積體電路。在一些實施方式中,本文所述之無線感測裝置為不包括主動式功率組件(例如,電池)的被動式感測裝置。在一些其他實施方式中,本文所述之無線感測裝置為包括主動式功率組件的主動式感測裝置。在一些情況下,本文所述之無線感測裝置的實施例係內建在一單一的電子封裝中。在一些情況下,這些無線感測裝置可內建在一NFC或RFID(射頻識別)標籤中作為一可定址的感測器。
圖1B及1C所繪示之具有二或更多個感測器的實施例可具有一些效益,例如,標籤尺寸縮小、製程簡化、多個感測電路具有對相同的功率場/磁場位準或一預先定義比率的功率場/磁場位準的存取、一具有多個感測器之裝置的構造,其致能差動(differential)感測架構及/或致能空間(spatial)映射/感測。在圖1C所繪示的實施例中,將 一單一天線135用於多個感測電路可消除解諧兩間隔相近之天線元件的磁耦合。雖然圖1B及1C在無線感測裝置中繪示兩個感測器及/或激發裝置,所屬技術領域中具有通常知識者應輕易地設計出具有兩個以上感測器及/或激發裝置之一無線感測裝置。
圖2A為一RF感測器標籤200之一實施例的簡化示意圖;圖2B為無線感測裝置200在箭頭2B處的剖面圖。RF感測器標籤200包括一基材210;一天線220,其係設置在基材210上;一可選的熱散布器230;及一感測電路240,其係電子地耦合至天線220。感測電路240係設置在熱散布器230中。在一些實施例中,感測電路240可包括一收發器;一記憶體,其儲存一唯一識別符;一感測元件;及一加熱元件,其用於加熱一目標區域。在一些其他實施例中,感測電路240包括一能量採集裝置。在一些情況下,僅部分的感測電路240設置在熱散布器230中。在一些情況下,感測元件係熱耦合至加熱元件,以用於感測加熱元件之一溫度,以致當加熱元件熱耦合至一目標區域時,RF感測器標籤200從一收發器無線地接收一具有一第一形式的第一功率,感測電路240將第一功率變換為一具有不同於第一形式之一第二形式的第二功率,並將第二功率輸送至加熱元件,感測元件感測加熱元件溫度之一時變,且RF感測器標籤200將目標區域之一熱特性無線地傳輸至收發器,該目標區域之該熱特性係基於加熱元件溫度之經感測的時變。在一些情況下,第一形式可為由一交變磁場所感應產生之循環交流電流及交流電壓。在一些情況下,第二形式可為該交流電壓及電流之一經整流的版本。在一些實施例中,藉由 一電容器或其他手段濾波一經整流的電壓及電流可產生接近直流的電流及電壓作為第二形式。第二形式可替代地為一藉由感測電路變換為一不同於第一形式之量值、頻率、及/或相位的交流電流及電壓。
在一些情況下,基材210係可撓的及/或可拉伸的。在一些情況下,RF感測器標籤200包括一積體電路(IC),其包含感測電路240之至少部分。在此類情況下,天線具有一介於第一及第二端之間的長度,且IC係電氣地連接至天線的第一及第二端。在一些情況下,IC包括記憶體、無線收發器、及加熱元件。在一些其他情況下,IC包括記憶體、無線收發器及感測元件。在又其他情況下,IC包括記憶體、無線收發器、加熱元件、及感測元件。
在一些實施例中,熱散布器230係設置在IC之一主表面上並經調適以實質上均勻地跨目標區域分配來自加熱元件的熱,其中該IC的該主表面為一主頂部表面242及IC之一主底部表面241。在一些情況下,熱散布器具有一與IC的底部表面接觸之頂部表面232以及一用於熱接觸目標區域之相對的底部表面231,IC的底部表面241及熱散布器230的頂部表面232實質上彼此重疊。在一些情況下,熱散布器230之底部表面231的一面積大於熱散布器230之頂部表面232的一面積。在一些其他情況下,熱散布器230之底部表面231的一面積小於熱散布器230之頂部表面232的一面積。
在一些情況下,加熱元件亦為溫度感測元件。在一些實施方式中,功率的第一形式係一AC形式,且第二形式係一DC形式。在一些情況下,第二形式包含第一形式之一經整流的表現 (rectified representation)。在一些情況下,感測電路240控制第二功率之一量值。
在一些實施例中,RF感測器標籤從一無線收發器無線地接收一具有一第一形式之未知的第一功率,且其中電子電路將該未知的第一功率變換為一已知的第二功率,該已知的第二功率具有一不同於該第一形式的第二形式。在一些情況下,感測元件藉由產生一信號來感測加熱元件溫度之一時變,該信號與加熱元件溫度具有一已知的關係。在一些情況下,感測元件藉由產生一信號來感測加熱元件溫度之一時變,該信號實質上與加熱元件溫度成比例。在一些實施方式中,當感測電路將第一功率變換為第二功率時,感測電路係經調適以在第二功率大於一最大臨限值時減小第二功率的一量值。在一些情況下,感測電路係經調適以藉由改變RF感測器標籤之一共振頻率來改變第二功率的量值。在一些實施例中,無線地傳輸至收發器之目標區域的熱特性包括目標區域的導熱率、目標區域的熱擴散率、及/或目標區域的熱容量。
在一些實施例中,RF感測器標籤200係經調適以與一以一第一射頻發射功率之遠端收發器無線地通訊(communicate),其中感測電路240係經調適以將RF感測器標籤200之一共振頻率解諧離開第一射頻,以控制由RF感測器標籤從遠端收發器所接收之第一功率的一量值。在一些情況下,RF感測器標籤200係經調適以與一以一第一射頻發射功率之遠端收發器無線地通訊,其中感測電路240係經調適以將RF感測器標籤之一共振頻率調諧離開第一射頻,然後將經 解諧的共振頻率調諧回到第一射頻。在一些情況下,RF感測器標籤200係經調適以與一以一第一射頻發射功率之遠端收發器無線地通訊,以致感測電路240經調適以在RF感測器標籤200之一共振頻率漂移離開第一射頻時,將RF感測器標籤200之經漂移的共振頻率調諧回到第一射頻。
一般而言,從遠端收發器至RFID標籤之最大功率轉移在RFID標籤的共振頻率與自遠端收發器所發射之功率的頻率相同時發生。在一些情況下,當RFID標籤與遠端收發器緊密近接時,可能將多於RFID標籤所需的功率轉移至RFID標籤。在此情況下,RFID標籤可感測過量功率的可得性,並將RFID標籤的共振頻率自功率由遠端收發器發射時之頻率解諧來予以反應,從而藉由降低功率自遠端收發器轉移至RFID標籤的效率而減少RFID標籤可得的功率。解諧導致RFID標籤的共振頻率不同於從遠端收發器發射功率時的頻率,其中標籤之經解諧的共振頻率係處於一頻率,該頻率係大於或小於從遠端收發器發射功率之頻率的頻率。在此實例中,RFID標籤的共振頻率係與RFID標籤之一調諧電容相依,該調諧電容與RFID標籤之一環形天線的電感共振。因此,RFID標籤的共振頻率可藉由修改此電容的值來修改。此電容之修改可藉由將額外的電容與一基值之此電容並聯地電子耦合、或者自此基值之電容電子地斷開並聯電容。在一替代組態中,此基值之電容之修改可藉由將一變容二極體與此基值之電容並聯地耦合、以及藉由修改跨變容二極體存在之一DC偏壓而修改變容二極體的電容。
另一解諧RFID標籤以降低從遠端收發器轉移至RFID標籤的功率之效率的手段係減少RFID標籤之Q因數,例如藉由減少RFID標籤天線的Q因數。RFID標籤天線的Q(或品質因數)為天線中所儲存之能量對由天線所耗散之能量的比率,其中由於天線電阻之故,能量可作為一磁場被儲存,並作為熱被耗散。雖然許多參數有助於從一遠端收發器至一RFID標籤的功率轉移效率,RFID標籤天線的Q因數在一些情況下對功率轉移效率可具有直接的影響。RFID標籤天線的Q因數可藉由將一額外的電阻與RFID標籤天線串聯地耦合或者藉由將一電阻與RFID標籤天線並聯地耦合來減少。此電阻可藉由一控制器電路來控制。在一些情況下,當RFID標籤與遠端收發器緊密近接時,可能將多於RFID標籤所需的功率轉移至RFID標籤。在此情況下,RFID標籤可感測過量功率的可得性,並降低從遠端收發器至RFID標籤的功率轉移效率來予以反應,此係藉由修改耦合至RFID標籤天線之一電阻來減少RFID標籤天線的Q因數,而減少RFID標籤的Q因數。一耦合至RFID標籤之天線之電子地受控的電阻可以一場效電晶體、變容二極體、電晶體開關、或任何控制一電阻之類比或數位手段來實施。
圖2C為一無線感測裝置200C之一實施例的簡化示意圖。無線感測裝置200C包括一基材210;一天線220,其係設置在基材210上;一控制電路240C;一熱散布器230C;及一感測電路250C,其係電子地耦合至控制電路240C。感測電路250C係設置在熱散布器230C中。在 一些實施例中,感測電路250C可包括一感測器及一熱源。在一些情況下,控制電路240C調節感測電路250C中的熱源。
在圖2D所繪示之一實例中,控制電路240C包含一功率量測電路,以幫助調節熱源。功率測量電路包括一控制器242C、一功率源244C、一連接至熱源的電壓感測器248C、一連接至熱源的電流感測器246C。藉由將經感測的電流與經感測的電壓相乘來計算輸送至熱源的功率。若此經計算的功率高於或低於所欲的功率位準,由功率源輸送至熱源的功率便相應地由控制器進行修改。
圖3A至圖3C繪示具有多個感測器之無線感測裝置之一些實施例的簡化示意圖;而圖3D為圖3A所繪示之無線感測裝置的剖面圖。如圖3A所繪示之RF感測器標籤300A(或稱之為無線感測裝置)包括一基材310、一天線320、一可選的第一熱散布器330、一第一感測電路340且電子地耦合至天線320、一可選的第二熱散布器350、及一第二感測電路360,其電子地耦合至天線320。第一熱區330及第二熱區350係彼此熱隔離。第一及/或第二感測電路(340、360)可包括收發器、控制電路、能量採集裝置、能量儲存裝置、熱源、及感測器之一或多個組件。在一實施例中,感測電路340提供一參考感測信號,而感測電路360與受關注的物體熱接觸並提供指示溫度的感測信號。在一些情況下,感應加熱將導致在熱隔離區330有比在與物體熱接觸之熱區350更大的溫升,允許考慮對熱源的輸入功率之變化的差動量測(differential measurement)。例如,在一無線感測裝置包含一用於與一RF讀取器併用之一RFID標籤的情況下,可得的輸 入功率可隨著RF讀取器磁場參數、相對於RF讀取器頻率的RFID標籤共振頻率、隨著環境因素的參數變化、或其他因素而改變。
在一些情況下,第一感測電路340包括一第一IC 342,其係設置在基材上,且第二感測電路360包括一第二IC 362,其中各IC係電氣地耦合至天線320。在一些實施方式中,第一感測電路340包括一第一加熱元件344,且第二感測電路360包括一第二加熱元件364,其中各加熱元件加熱一個別的第一及第二目標區域,且係電氣地耦合至個別的第一及第二IC(342、362)。在一些情況下,第一及第二目標區域之各者具有一熱特性,其中第一目標區域的熱特性係已知的,且第二目標區域的熱特性係未知的。在一些情況下,第一目標區域係設置在基材310上並熱耦合至第一加熱元件344,其中第一加熱元件及第一目標區域係與第二加熱元件熱隔離,並經調適以與第二目標區域熱隔離。
在一些實施例中,第一感測電路340包括一第一溫度感測元件346,且第二感測電路360包括一第二溫度感測元件366,其中各感測元件(346、366)係熱耦合至個別的第一及第二加熱元件(344、364),以用於感測對應的加熱元件(344、364)之一溫度。
在一些實施例中,當第二加熱元件364熱耦合至第二目標區域時,RF感測器標籤300A從一收發器無線地接收一具有一輸入形式的輸入功率,第一及第二IC(342、362)將輸入功率變換為具有不同於輸入形式之個別的第一及第二形式之個別的第一及第二功率,並輸送第一及第二功率至對應的加熱元件(344、364)。在一些情況下, 第一及第二感測元件(346、366)感測對應的加熱元件溫度之一時變,且RF感測器標籤300A將第二目標區域之一熱特性無線地傳輸至收發器,該第二目標區域之該熱特性係基於對第一及第二加熱元件溫度之時變的比較。在一些情況下,RF感測器標籤300A包括一IC,該IC包含第一及第二IC(342、362)。
在一些情況下,第一功率及第二功率具有對彼此的一已知比率。例如,第一功率的量值等於第二功率的量值。作為另一實例,第一功率的量值係第二功率之量值的三分之一。在一些情況下,第一功率及/或第二功率具有對輸入功率的一已知比率。例如,第一功率的量值係輸入功率之量值的三分之一。在一些實施例中,輸入功率為AC形式。在一些情況下,第一形式及/或第二形式為一AC形式。在一些其他情況下,第一形式及/或第二形式係一DC形式。
在圖3B所繪示的實例中,無線感測裝置300B包括一基材310;一天線320,其係設置在基材310上;一第一熱散布器330;一第一感測電路340,其係設置在第一熱散布器330中並電子地耦合至天線320;一第二熱散布器350;及一第二感測電路360;一第三感測電路362;以及一第四感測電路364,其係設置在第二熱散布器350中。第一熱散布器330及第二熱散布器350係熱隔離。感測電路360、362、及364在空間上係分開的。感測電路(340、360、362、及364)可包括收發器、控制電路、熱源、能量採集裝置、能量儲存裝置、及感測器的一或多個組件。在一實施例中,感測電路340提供一參考感測信號,而感測電路360、362、及364與受關注的物體 熱接觸並提供指示物體不同部分之溫度的感測信號。在一些情況下,感測電路360、362、及364可放置在一表面上或三維空間中之任何所欲位置或任意位置。
在圖3C所繪示的實例中,無線感測裝置300C包括一基材310;一天線320,其係設置在基材310上;一第一感測電路360C及一第二感測電路366C。在一些實施例中,無線感測裝置300C包括一感測區350。第一及/或第二感測電路(360C、366C)可包括收發器、控制電路、能量採集裝置、能量儲存裝置、熱源、及感測器之一或多個組件。在一些實施例中,第一感測電路360C及第二感測電路366C具有一已知的相對布局。在一些情況下,第一感測電路360C包括一熱源及一感測器,而第二感測電路366C包括一感測器但無一熱源。在此類情況下,第二感測電路366C可提供一量測,其指示在時域或頻域之任一者中之一對第一感測電路360C中之熱源啟動的響應。
圖4A繪示具有多個感測器及/或多個RF裝置之一無線感測裝置之一實施例的簡化示意圖。如圖4A所繪示,RFID標籤400A包括一基材410、一第一RF裝置412、及一第二RF裝置414,其中RF裝置412及414兩者係設置在基材410上。第一RF裝置412包括一第一天線420及一第一電路440,第一電路440係電子地耦合至第一天線420。在一些情況下,第一電路440係設置在一可選的第一感測區430中。類似地,第二RF裝置414包括一第二天線425及一第二電路445,第二電路445係電子地耦合至第二天線425。在一些情況下,第二電路445係設置在一可選的第二感測區435中。第一 及/或第二電路(440、445)可包括收發器、控制電路、能量採集裝置、能量儲存裝置、激發裝置、及感測器之一或多個組件。在一實施例中,第一及第二電路(440及445)提供差動或空間現象的感測器資料,其中感測器的空間分布可經由RFID標籤400的組態來控制。圖4A所繪示的實施例顯示設置在一相同的平坦表面上的兩天線。在一些情況下,與感測電路耦合之二或更多個天線可設置在不同表面上,或者以一天線與另一天線重疊之一方式設置。
在圖4A所繪示的實例中,無線感測裝置結合兩個共振電路,其可改變共振頻率。例如,對具有一或多個線匝的兩個環形天線而言,在一平坦的線圈組態中,處於彼此近接的狀態下,兩相異環形天線的磁耦合k可導致共振以一較低頻率發生,如圖8A所繪示者。在設計一含有兩共振電路的無線感測裝置時,磁耦合可藉由兩電路之間的相對方位來控制。由於可控制耦合,電子組件可經選擇,以致所得的共振頻率在所欲的頻率範圍內。例如,針對一50pF之負載電容及13.56MHz之所欲的所得共振頻率的共振電路,表1顯示基於磁耦合(k)之共振頻率偏移及電感變化。
在一些實施例中,第一及第二天線(420、425)係磁性地彼此耦合。在一些情況下,RFID標籤400A係意欲具有一預定的共振頻率,第一及第二RF裝置(412、414)的各一者在缺少另一者的情況下係設計成具有一不同於該預定的頻率的共振頻率,該等共振頻率導致RFID標籤400A具有該預定的共振頻率。在一些情況下,經磁耦合之第一及第二天線(420、425)之一磁耦合因數的一量值係至少0.1。在一些情況下,經磁耦合之第一及第二天線(420、425)之一磁耦合因數的量值係介於0.1及0.9之間。在一些情況下,各相異的RF裝置(412、414)的共振頻率與標籤共振頻率至少有5%的不同。在一些情況下,RF裝置(412、414)具有一相同的共振頻率。在一實施例中,第一及第二RF裝置(412、414)經組態以將來自個別的第一及第二電路(440、445)之不同的第一及第二資訊無線地傳達至一相同的遠端收發器。在一組態中,複數個IC中的至少一IC(440或445)電氣地耦合至複數個天線中的僅一個天線。
在一實施例中,第一及第二電路(440、445)係積體電路(IC)。在一些情況下,第一及第二天線(420、425)係電氣地耦合至設置在基材上之個別的第一及第二積體電路(IC)(440、445)。
在一些情況下,第一及第二天線(420、425)係電氣地耦合至設置在基材上之一相同的積體電路(IC)。在一些情況下,IC(440、445)之各者具有一相異的識別號。
在一些組態中,第一及第二天線(420、425)係在一垂直於基材的方向上相對於彼此垂直地偏置。在一些情況下,第一及第二 天線(420、425)之各者係實質上與第一及第二天線的另一者重疊。在一些實施例中,第一及第二天線(420、425)實質上是相同的。
在圖4B所繪示的實例平面圖中,第一及第二天線(420、425)彼此重疊。在一些組態中,基材410具有由基材之最外部周長所圍繞之一頂部表面區域,且在平面圖中,第一及第二天線(420、425)在大部分的基材頂部表面區域上方延伸。
圖5繪示一具有多個感測器及一單一天線之無線感測裝置之一實施例的簡化示意圖。無線感測裝置500包括一基材510;一天線520;一第一控制電路530,其係電子地耦合至天線520;一第一感測電路540,其係電子地耦合至第一控制電路530;一第二控制電路550,其係耦合至天線520;及一第二感測電路560,其係電子地耦合至第二控制電路550。第一及/或第二控制電路(530、550)可包括收發器、微處理器、一儲存一唯一識別符的記憶體、一能量採集裝置、一能量儲存裝置的一或多個組件。第一及/或第二感測電路(540、560)可包括激發裝置及感測器的一或多個組件。在包括一激發裝置之感測電路的實施例中,感測電路中的感測器在激發裝置啟動前及/或啟動後產生感測信號。在一些實施例中,第一及第二感測電路(540及560)提供回應於差動或空間現象之感測器資料的感測信號,其中感測器的空間分布可經由無線感測裝置500的組態來控制。
圖6A繪示一行動感測系統600之一實施例。行動感測系統600包括一行動裝置610及一或多個無線感測裝置620。無線感測裝置620可使用本揭露中所述之無線感測裝置組態的任一者或任一 組合。在所繪示的實施例中,無線感測裝置620包括一天線635、一能量採集裝置630、一激發裝置640、及一感測器650。在一些情況下,能量採集裝置630係電子地耦合至激發裝置640,以提供功率至激發裝置640。在一些實施例中,無線感測裝置620經組態以測量物體之一熱性質,並在無線感測裝置被詢問時傳輸與溫度相關聯之一資料信號。例如,無線感測裝置620係與一受關注物體熱接觸。作為另一實例,無線感測裝置620為一穿戴式電子裝置,其在被穿戴時將與人類皮膚緊密近接。一讀取器618係連接至行動裝置610或與行動裝置610整合,其經組態以詢問無線感測裝置並接收資料信號。行動裝置610中的處理器(未繪示於圖6A中)係電子地耦合至讀取器。處理器經組態以基於資料信號判定物體的熱性質。
在一些實施例中,激發裝置可藉由來自能量採集裝置630的功率調節或藉由一蓄意的輻射源予以調節。在一些情況下,無線感測裝置620係一射頻(RF)感測裝置,且讀取器618係一RF讀取器。在一些實施方式中,RF讀取器可變更其電磁場輸出的工作週期(duty cycle)及/或振幅,以選擇性地改變施加至無線感測裝置620的功率量。作為另一實例,行動裝置610可提供一光源至無線感測裝置620。在此類實例中,一行動裝置LED可變更導向無線感測裝置620之光輸出的工作週期或振幅。此類調變可基於傳回讀取器618或行動裝置610的感測資訊或功率資訊或兩者來達成。或者,此類調變可基於藉由一RF讀取器的阻抗量測來達成。在一些情況下,測量到的阻抗之各種參數(例如,共振頻率、共振品質因數、及阻抗量值的最大 值)可用於推斷被轉移至無線感測裝置620中的功率量;由於變數(例如,基於幾何、對準、及相對方位、以及共振參數之歸因於環境因素的變化之讀取器及電路間的耦合)之故,此推斷可為重要的。
在圖6A的實例中,行動裝置610係繪示為一行動電話。不過,在其他實例中,行動裝置610可以是一平板電腦、個人數位助理(PDA)、膝上型電腦、媒體播放器、電子書閱讀器、穿戴運算裝置(例如,手錶、眼鏡、手套),或適合用於執行本文所述技術的任何其他類型的可移動或不可移動運算裝置。
圖6B繪示描繪一行動感測系統之一實例的方塊圖,行動感測系統包括一行動裝置610及一根據本文所述之技術進行操作的無線感測裝置620。為了實例的目的,將相對於圖6A的行動裝置610說明圖6B的行動裝置,且具有相同標示之用於無線感測裝置620的組件可具有與圖6A中的對應組件相同或類似的組態、組成物、功能、及/或關係。
在此實例中,行動裝置610包括各種硬體元件,該等硬體元件提供用於該裝置之操作的核心功能。例如,行動裝置610包括一或多個可程式化處理器670,其經組態以依據可執行指令(即,程式碼)操作,通常是儲存在一電腦可讀取媒體或資料儲存裝置668中,諸如靜態隨機存取記憶體(SRAM)裝置或快閃記憶體裝置。I/O676可包括一或多個裝置,諸如一鍵盤、相機鍵、電源按鈕、音量按鈕、首頁按鈕、返回按鈕、選單按鈕,或呈現裝置。行動裝置610可包括未顯示於圖6B中之額外的離散數位邏輯或類比電路系統。
大致而言,作業系統664在處理器670上執行並提供用於一或多個使用者應用程式677(通常稱為「app」)之一作業環境,包括感測器應用程式678。例如,使用者應用程式677包含儲存在電腦可讀取儲存裝置內(例如,資料儲存裝置668)的可執行程式碼以供處理器670執行。另舉其他實例,使用者應用程式677可包含韌體或在某些實例中可實施在離散邏輯中。
在操作過程中,行動裝置610接收來自無線感測裝置620的資料。例如,讀取器618可詢問無線感測裝置620,並接收感測信號及將感測信號提供至處理器670。大致而言,行動裝置610將感測器資料儲存在資料儲存裝置668內,以供感測器應用程式678及/或其他使用者應用程式677存取及處理。
一物體或一材料的熱性質可基於例如圖6A所繪示之一感測系統中的熱感測器或圖1A所繪示之一感測裝置中的熱感測器所收集的資料予以判定。例如,與一熱源熱接觸之一材料的導熱率、熱擴散率、及熱容量可藉由知曉隨時間而變動之輸入功率及溫度曲線連同包括一分析架構及關於幾何、其他材料性質、及類似者之參數的校準資訊來進行判定。複合材料之有效的熱性質可以類似方法判定。
計算與一熱源熱接觸之材料的導熱率及熱擴散率的一個方法係藉由使用瞬態平面熱源(TPS)分析。本方法一般係在熱源可表示為一平面熱源的時候使用。實驗由施加功率至一熱源以及測量功率與溫度-時間曲線所構成。一測量溫度-時間曲線之實例係顯示於圖8B。一正方形平面的瞬態加熱已顯示為遵循方程式(1):
Figure TWI677824B_D0002
其中△T(τ)為加熱器的平均溫升,Po為所施加的功率,2a為正方形熱源之一側的長度,k為與加熱器熱接觸之材料之各向同性(isotropic)的導熱率,H(τ)為無維度的特定時間常數,且τ係在方程式(2)中定義:
Figure TWI677824B_D0003
其中α為與加熱器熱接觸之材料的熱擴散率,且t為時間。H(τ)為無維度的特定時間常數,並可如方程式(3)般地進行計算:
Figure TWI677824B_D0004
導熱率可從方程式(4)來判定:
Figure TWI677824B_D0005
其中△Tss為穩態溫度變化。根據圖8B,穩態溫度變化為10.59℃。在a=0.0025m、0.01W之恆定的施加功率、及H(τ=∞)之下,周圍材料的導熱率經計算為0.044W/mK。
可透過一迭代法以一最小平方擬合法(可使用其他方法)擬合方程式(1)與圖8B資料集合,從完整的溫度時間響應計算出熱擴散率。使用本方法,熱擴散率經判定為20×10-6m2/s。
若周圍材料的密度已知,則可根據方程式(5)計算周圍材料的熱容量(Cp)
Figure TWI677824B_D0006
例如,若周圍材料的密度為1200g/m3,則熱容量為周圍材料之1.83J/gK。可在例如Gustafsson S.E.之期刊文章Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials,Rev.Sci.Instrum.,第62卷,第797至804頁,1991中找到關於熱性質量測的更多資訊,其全文以引用方式併入本文中。
圖6C繪示一無線感測系統600C之一實施例。無線感測系統600C包括一讀取器618C及一或多個無線感測裝置620C(亦即,所繪示之一感測裝置),其等可測量一物體之一物理性質。在一些情況下,無線感測系統600C包括一運算裝置610C,其中讀取器618C係連接至運算裝置610C或與運算裝置610C整合。運算裝置610C可包括一或多個處理器、微處理器、電腦、伺服器、及其他周邊裝置。無線感測裝置可使用本揭露中所述之無線感測裝置組態的任一者或任一組合。在所繪示的實施例中,無線感測裝置620C包括一無 線裝置630C,無線裝置630C包括一無線收發器632C;及一天線635C,其係電子地耦合至無線收發器632C;一激發裝置640C;及一感測器650C,其係電子地耦合至無線收發器632C。在一些情況下,天線635C係電子地耦合至激發裝置640C,以提供功率至激發裝置640C。在一些其他情況下,讀取器618C傳輸一啟動信號615C至無線感測裝置620C,以啟動激發裝置640C。在一些實施例中,感測器650C產生一與物體之物理性質相關聯的感測信號,且無線收發器632C經組態以經由天線635C傳輸一與感測信號相關聯的資料信號613C。讀取器618C經組態以接收資料信號613C。在一些實施例中,運算裝置610C經組態以基於資料信號613C判定物體的物理性質。在一些實施方式中,讀取器618C進一步經組態以基於資料信號613C調整啟動信號615C。
作為一實例,無線感測裝置620C包括一熱源640C及一熱感測器650C,其中熱源640C及熱感測器650C係與受關注的物體熱接觸。在一些情況下,無線感測裝置620C可使用一溫度相依電阻器作為熱源640C及熱感測器650C兩者。當輸送功率至此電阻器時,其產生熱能,且此相同電阻器之一電阻測量可用於測量溫度。當使用此電阻器產生一熱激發時,輸送相對大量的功率至此電阻器可為有利的。當測量此電阻器的電阻時,可將相對少的功率輸送至電阻器,以最小化溫度量測期間的加熱。
控制輸送至此電阻器的功率可用來判定無線感測裝置所附接之物體的熱性質。圖8C為一概念實例,其指示控制輸送至一熱 源之功率的效用。此實例包括三個循序時間間隔:從0至0.1s的時間間隔1、從0.1至0.5s的時間間隔2、及從0.5至1.0s的時間間隔3。在時間間隔1及3期間,輸送至電阻器的功率相對小,但足以測量電阻以判定溫度。在時間間隔2期間,輸送至電阻器的功率相對大,亦即,10mW。在時間間隔2期間,可見到電阻器的電阻從10歐姆增加至接近11歐姆。在時間間隔3期間,可見到電阻器的電阻從接近11歐姆下降至稍微超出10歐姆。例如傳導性、容量、及擴散率的熱性質可例如使用所述之TPS分析從這些類型的曲線來判定。
在一些實施例中,讀取器618C及/或無線感測裝置620C中之一控制電路控制隨時間推移的激發量值(亦即,供應給激發裝置的功率)。在一些情況下,讀取器618C及/或無線感測裝置620C中之一控制電路回應於隨時間之所測量的感測器信號變化控制激發。例如,若感測器信號的變化不足,則讀取器618C及/或無線感測裝置620C中之一控制電路可增加激發的量值或持續時間;而若感測器信號有大變化,讀取器618C及/或無線感測裝置620C中之一控制電路可減少激發的量值或持續時間,以例如確保響應維持在感測系統的動態範圍內。在一些情況下,讀取器618C及/或無線感測裝置620C中之一控制電路藉由提供一具有已知值或一已知的功率-時間曲線的恆定功率來控制激發。
圖6D繪示一具有一個以上的無線感測裝置之無線感測系統600D之一實施例。無線感測系統600D包括一讀取器618D及三或更多個感測裝置620D。在一些情況下,無線感測系統600D包括一 運算裝置610D,其中讀取器618D係連接至運算裝置610D或與運算裝置610D整合。運算裝置610D可包括一或多個處理器、微處理器、電腦、伺服器、及其他周邊裝置。感測裝置620D可使用本揭露中所述之無線感測裝置組態的任一者或任一組合。在一些實施例中,讀取器618D經組態以傳輸一啟動信號至感測裝置620D的至少一些,以啟動感測裝置620D中的激發裝置(未繪示)。此外,讀取器618D經組態以接收來自感測裝置620D的資料信號。在一些情況下,感測裝置620D的至少一些係設置在彼此不同的位置。在一些組態中,讀取器618D經組態以協調至感測裝置620D之各者之啟動信號的傳輸,其係使用一關於感測裝置620D之位置的型樣(pattern),例如,個別地、同時地啟動激發裝置、或其他時間或空間型樣。
在一些實施例中,感測裝置620D的至少一些係設置為近接一物體,且運算裝置610D經組態以基於由感測裝置620D所產生的資料信號判定物體的物理性質。在一些情況下,感測裝置620D的至少一者經組態以傳輸一參考資料信號,參考資料信號對應於一獨立於物體之物理性質的參考感測器信號,且運算裝置610D使用參考資料信號來判定物體的物理性質。
在一些實施例中,感測裝置620D的一些僅包括激發裝置而無感測器,亦稱之為致動裝置。在一些情況下,一致動裝置係設置在一不同於一包括一感測器之感測裝置的位置。在此類實施例中,讀取器618D經組態以傳輸一啟動信號615D至致動裝置,以啟動激發裝置並接收來自感測裝置的資料信號613D。
圖7A繪示用於一無線感測裝置及/或系統(例如,圖1A所繪示的無線感測裝置或圖6A所繪示的無線感測系統)之一實施例之操作的實例流程圖。首先,能量採集裝置接收並轉換功率(步驟710A)。接下來,感測器產生一初始感測器信號,其指示溫度T(0)(步驟715A)。能量採集裝置提供功率至熱源(步驟720A),其亦可以任一順序與步驟715A接近同時發生。之後,感測器產生感測器信號,其指示溫度T(n)(步驟725A)。接收感測器信號之無線感測裝置中的控制電路或一運算裝置運算出一指示溫度差△T=T(n)-T(0)的信號;以及一指示溫度變化率dT/dn=T(n)-T(n-1)的信號(步驟730A)。控制電路或運算裝置判定是否達到一熱穩態,其中dT/dn係小於或等於一預定的臨限及/或其他條件。若未達到穩態,則感測器持續產生指示溫度的感測器信號T(n)(步驟725A)。若已達到穩態,則控制電路或運算裝置基於△T(步驟750A)運算出熱性質並可停用熱源。
圖7B繪示用於一具有兩個感測器之無線感測裝置及/或系統(例如,圖1B所繪示的無線感測裝置或圖6D所繪示的無線感測系統)之一實施例之操作的實例流程圖。在一些實施例中,二個以上的感測器可被包括在無線感測裝置或系統中,以使用類似的步驟判定熱性質。首先,能量採集裝置接收並轉換功率(步驟710B)。接下來,兩個感測器產生指示溫度T1(0)及T2(0)的初始感測器信號(步驟715B)。能量採集裝置提供功率至(一或多個)熱源(步驟720B),其亦可以任一順序與步驟715B接近同時發生。之後,感測 器產生感測器信號,該等信號指示溫度T1(n)及T2(n),該等溫度T1(n)及T2(n)指示溫度(步驟725B)。接收感測器信號之無線感測裝置中的控制電路或一運算裝置運算指示相對於分別由兩個感測器所測量到的初始溫度之溫度差的信號(△T1=T1(n)-T1(0)、△T2=T2(n)-T2(0))以及指示分別由兩個感測器所測量之溫度變化率的信號(dT1/dn=T1(n)-T1(n-1)、dT2/dn=T2(n)-T2(n-1))(步驟730B)。控制電路或運算裝置判定在何處達到一熱穩態,其中dT1/dn及/或dT2/dn小於一預定的臨限及/或其他條件。若未達到穩態,則感測器持續產生感測器信號T1,2(n)(步驟725B)。若已達到穩態,則控制電路或運算裝置基於△T1,2運算一或多個熱性質(步驟750B),並可停用熱源。
圖9A繪示含水(hydration)感測系統900之一實施例。含水感測系統900包括一運算裝置910、一讀取器918、及一或多個無線感測裝置920,其可設置為與人960的皮膚熱接觸或者可用來判定一材料的液體含量。在一些情況下,讀取器918係連接至運算裝置910或與運算裝置910整合。運算裝置910可包括一或多個處理器、微處理器、電腦、伺服器、及其他周邊裝置。無線感測裝置920可使用本揭露中所述之無線感測裝置組態的任一者或任一組合。在所繪示的實施例中,無線感測裝置920包括一基材930;一RF電路932;一天線935,其係設置在基材930上並電子地耦合至RF電路932;一熱源940;及一感測器950,其係熱耦合至熱源940,以用於感測熱源940的一溫度。在一些實施例中,當熱源940熱耦合至一目標區域時,無線感測裝置920從一收發器無線地接收一具有一第一形式的第 一功率,RF電路932將第一功率變換為一具有不同於第一形式之一第二形式的第二功率,並將第二功率輸送至熱源940,感測器950感測熱源溫度之一時變,且RF電路932無線地傳輸熱源溫度之經感測的時變。讀取器918經組態以接收熱源溫度之經感測的時變,且運算裝置910經組態以基於熱源溫度之經感測的時變判定一指示含水位準的含水指示符。在一些實施例中,無線感測裝置920包括一處理器,以基於熱源溫度之經感測的時變判定一指示含水位準的含水指示符。
圖9B顯示一熱源在一恆定輸入功率之前、期間、及之後的示意溫度-時間曲線。曲線之時標(time scale)及溫升隨著所施加之功率、熱源之形狀與熱性質、及與熱源熱接觸之周圍材料的熱性質而變化。為了定量熱量測,需要熱源的熱性質及幾何性質。溫度-時間曲線可被分成三個相異區,如圖9B所繪示。第一區為非穩態加熱區,在其此處觀察到溫升。從此區,可由升溫率來判定周圍材料的熱擴散率。曲線的第二區為穩態區;即在其中達到一最大及穩態溫度的區。從此區,可判定周圍材料的導熱率。穩態下的溫度隨著材料的導熱率反向地改變。第三區為移除施加至熱源的功率後之非穩態冷卻區。類似於第一區,溫度減少率可用來測量周圍材料的熱擴散率。圖9B顯示一加熱器的溫度-時間曲線,但本文中所述之實施例對作為一冷卻器之一熱源適用。
在一些情況下,一材料或一物體之有效熱性質可與濕氣含量相依。例如,像是人類或其他具有生物細胞及組織連同一特殊水分率的哺乳動物之一皮膚區,其中該皮膚區的有效導熱率將相對於該 區中之水對組織的比率而改變。皮膚之濕度(或含水)位準的判定可透過一查找表或一分析方程式來判定,其係基於熱擴散率、導熱率、熱容量、或其組合之經測量的(一或多個)值、或者與(一或多個)值成比例的指數。例如,乾燥的人類皮膚的導熱率可為0.2至0.3W/m-K的等級;正常的人類皮膚的導熱率可為0.3至0.4W/mK的等級;經含水(hydrated)的人類皮膚的導熱率可為0.4至0.55W/m-K的等級;且人類排汗的導熱率可在0.55至0.7W/m-K的範圍內。
例如,在Skin Thermal Conductivity A Reliable Index of Skin Blood Flow and Skin Hydration,A.DITTMAR,Laboratory of Thermoregulation,U.A.181 C.N.R.S.,Lyon,France,April 5,1989中所討論之一分析方法已報告透過方程式(6)從皮膚的導熱率(kskin)測量皮膚的濕氣含量
Figure TWI677824B_D0007
圖7C繪示使用本文所述之任一無線感測裝置或任一無線感測系統判定一含水位準的實例流程圖。一些步驟(例如,步驟710C、步驟727C)係感測系統的可選步驟。首先,在熱源啟動之前或在熱源剛啟動之時,無線感測裝置產生一第一感測器信號(步驟710C)。接下來,啟動熱源(步驟715C)。無線感測裝置產生一系列的感測信號(步驟720C)。無線感測裝置或系統基於該系列感測信號的至少一些判定一熱性質(步驟730C)。熱性質可包括例如導熱率、熱容量、熱擴散率、及類似者。無線感測裝置或系統進一步基於 所判定的熱性質及一參考資料產生一指示物體之含水位準的含水指示符(740C)。參考資料可為一分析函數、一查找表、一矩陣、一常數、或其組合。
在一些情況下,無線感測裝置或系統使用該系列的系列信號(例如,感測器信號的變化率小於一預定臨限)來評估是否達到一熱穩態(步驟723C)。在一些情況下,無線感測裝置或系統基於第一感測器信號及達到熱穩態之時或之後所產生的感測器信號判定物體之一導熱率,其中含水指示符係基於導熱率而產生。在一些實施方式中,熱源係在達到熱穩態之後停用(步驟725C)。感測裝置在熱源停用之後產生一系列的冷卻感測信號(步驟727C)。在一些情況下,無線感測裝置或系統基於該系列冷卻感測信號的至少一些判定物體之一熱擴散率,其中含水指示符係基於熱擴散率而產生。
在一些實施例中,如圖9C及圖9D所繪示者,一無線感測裝置920C可經設計以測量一液體位準。無線感測裝置920C包括一吸收元件945,其可吸收液體,例如,汗水(sweat)、傷口分泌物、冷凝液、汗液(perspiration)、油、或類似者。在圖9C所繪示的實施例中,吸收元件945係與熱耦合至感測器950之熱源940熱接觸。圖9D繪示無線感測裝置920C之另一實例,其包括與熱源940及熱感測器950熱接觸之吸收元件945,該熱源940及該熱感測器950可例如為一經整合的組件。在一些情況下,吸收元件945及熱源940/熱感測器950係設置為彼此近接並形成熱接觸。在一些其他情況下,吸收元件945及熱源940/熱感測器950係實體接觸。在一些情況下,熱源940/ 熱感測器950係設置在吸收元件945上或至少部分地設置在吸收元件945中。吸收元件可包括(一或多個)吸收材料,例如,諸如多孔材料、一天然或合成海綿、吸水膠體、超吸收聚合物、一成形體、一紗布、一非織貼片(non-woven patch)、或類似者。海棉可由纖維素、聚酯或其他聚合物製成。超吸收聚合物可例如包括聚丙烯酸酯/聚丙烯醯胺共聚物、聚乙烯醇共聚物。無線感測裝置920C可包括其他組件,例如,圖9A所繪示之無線感測裝置920中的組件。
在一實施例中,無線感測裝置920C為一RF感測器,其包括:一基材;一天線,其係設置在基材上;一RF電路,其係電氣地耦合至天線,RF電路包含一處理器;一吸收元件(例如,945),其包含吸收材料;一熱源(例如,940),其係電氣地耦合至RF電路,並熱耦合至吸收元件;以及一感測元件(例如,950),其係熱耦合至熱源,以用於感測該熱源之一溫度,以致在吸收元件被用於吸收液體之後,RF感測器從一收發器無線地接收一具有一第一形式的第一功率,RF電路將第一功率變換為一具有不同於第一形式之一第二形式的第二功率,並將第二功率輸送至熱源,感測元件感測熱源溫度之一時變,且處理器基於熱源溫度之經感測的時變判定一指示液體位準的指示符。一無線感測裝置或系統可使用一類似於圖7C所繪示的流程圖,以收集感測器資料並判定一指示一液體位準的指示符。
實例 實例1
無線感測裝置-組裝及溫升率
如圖10所繪示,一無線感測裝置1000係以下列方式組裝。取得自Digikey(Thief River Falls,MN)之具有溫度感測器1020的5.0mm×5.0mm×0.9mm之AMS SL13A封裝RFID積體電路係電氣地連接至一環形天線1030,環形天線1030包含取得自Digikey(Thief River Falls,MN)之經固體琺瑯質塗布的26 AWG銅線。環形天線1030係以直徑90mm之經固體琺瑯質塗布之26 AWG銅線的四個圓形線匝製造。具有溫度感測器1020之AMS SL13A封裝RFID積體電路亦電氣地連接至取得自Digikey(Thief River Falls,MN)之具有850Ω值的1.0mm×0.5mm×0.4mm之0402尺寸的電阻器1050。環形天線1030係連接至針腳5及6(「ANT1」及「ANT2」),且電阻器係跨具有溫度感測器1020之AMS SL13A封裝RFID積體電路的端子3(「VEXT」)及12(「VSS」)連接。
選擇表面安裝電阻器的值,以在電壓(V)達到一最大的3.4V時,限制熱源電流(I)至最大指定值4mA。此發生在無線感測裝置1000位於由一讀取器所發射的最大磁場中、且電阻器中提供13.6mW(例如,P=VI)的熱源功率的時候。一般而言,處於一真空中或在至周圍環境之最小熱轉移的情況下耗散13.6mW之0402尺寸的電阻器組件將經歷接近每秒22.6℃的初始溫升率。或者,若其處於類似的環境條件下,且熱連接至具有溫度感測器1020之AMS SL13A封裝RFID積體電路,則初始溫升率將減少至約每秒0.4℃,此係歸因於 SL13A封裝之大上許多的體積。溫升率係藉由使用方程式(6)分別基於氧化鋁及矽的熱容量而計算得到的:
Figure TWI677824B_D0008
其中△T為溫度(單位:℃),△t為時間(單位:秒),P為功率(單位:每秒焦耳),cp為比熱容量(單位:每克-℃之焦耳),ρ為質量密度(單位:每立方毫米之克),且V為體積(單位:立方毫米)。計算參數及結果係包含在表2中。
無線感測裝置1000之一使用目的是在與一受關注材料(例如,人類皮膚)接觸時測量有效的局部熱導。在此一類情況下,所感應產生之穩態溫升將為輸入功率P(單位:瓦特)與熱阻Rth(單位:每瓦特之℃)之乘積,如方程式(7)中所表示者:△T=P×Rth (7)
以13.6mW的加熱以及給定0.3℃的最小相對溫度量測解析度(最小△T解析度),裝置可測量低至每瓦特22℃的熱阻(最小可測量的Rth)以至高達無線感測裝置1000之最大溫度限制容許的熱阻;對標準模式下具有60℃的溫度量測限制之AMS SL13A而言,針對13.6mW的加熱之最大可測量熱阻為約每瓦特3000℃,其對應於高於20℃的周圍溫度(ambient temperature)下之40℃穩態偏離。一較小的溫度解析度或較大的輸入功率將減少最小可測量熱阻,如表3及表4所指示者。先前於本文所述之瞬態平面熱源法為一實例,其中熱阻Rth的值為以加熱器元件之橫向尺寸及常數因數所按比例調整之材料的有效導熱率的倒數。
實例2
無線感測裝置-差動
一具有一第一及第二積體電路的無線感測裝置係電氣地連接至一單一天線,第一及第二積體電路各具有一唯一識別號,如圖11所表示者。一無線感測裝置1100係以下列方式組裝。兩個取得自Digikey(Thief River Falls,MN)之具有溫度感測器1120、1122的5.0mm×5.0mm×0.9mm之AMS SL13A封裝RFID積體電路係電氣地連接至一環形天線1030,環形天線1030包含取得自Digikey(Thief River Falls,MN)之經固體琺瑯質塗布的26 AWG銅線,該等之連接係透過具有銅墊及跡線之FR4介面板1160,介面板1160經組態以允許天線1130及積體電路1120、1122之並聯連接。具有溫度感測器1120、1122之AMS SL13A封裝RFID積體電路兩者係以取得自Digikey(Thief River Falls,MN)之短長度的經固體琺瑯質塗布的34 AWG銅線連接至介面板1160。環形天線1130係使用直徑60mm的經固體琺瑯質塗布之26 AWG銅線的四個圓形線匝製造。環形天線1130係經設計以在13.56MHz以2.75μH的意欲電感與50pF共振。60mm直徑圓形線圈之實際環形天線電感高於意欲值,並產生約13.17MHz的共振,因此藉由將圓形天線壓縮成一橢圓形(如圖11所繪示者)來降低其電感,以達成接近13.56MHz的標籤之共振。環形天線1130係透過介面板1160連接至具有溫度感測器1120、1122之AMS SL13A封裝RFID積體電路的針腳5及6(「ANT1」及「ANT2」)。此實例中的熱源為各 積體電路1120、1122內藉由各積體電路經由天線與一讀取器磁場產生交互作用所感應產生的焦耳加熱。
無線感測裝置1100係藉由取得自3M Company(St.Paul,MN)之3M射頻識別(RFID)讀取器型號810及讀取器天線型號870,經由一通用串列匯流排(USB)纜線連接至一膝上型個人電腦(PC)運行測試軟體來測試。測試由下列構成:經由PC操作讀取器以使用ISO 15693 RFID通訊協定查詢唯一安全識別符(SID)的存在。軟體報告所讀取之唯一SID的編號及數量。發現針對此組態之最大讀取範圍為18cm。
無線感測裝置1100亦使用取得自Digikey(Thief River Falls,MN)之料號為AS3911-DK-ST-ND之一RFID讀取器AMS AS3911 General Purpose Demo Kit Rev 1.0及其隨附的PC軟體來進行測試,以產生圖12中之實例的溫度對時間資料。各積體電路內的熱源係藉由調變讀取器的磁場來控制,其係藉由在讀取器磁場經去能且積體電路1120、1122主要懸置空中的情況下,將感測裝置1100放置為近接讀取器,接著在圖12的零時間(zero time)致能讀取器磁場並從各積體電路1120、1122查詢一第一溫度。在資料以讀取器定址積體電路之一者而週期性地經取得時,讀取器的磁場維持被致能,其中第一溫度被減去以產生圖12所示的相對溫度。藉由交替地定址另一積體電路之報告所收集到的資料係類似的。
實例3
無線感測裝置-含水監控(單一線匝環)
如圖10所繪示,一無線感測裝置1000係以下列方式組裝。取得自Digikey(Thief River Falls,MN)之具有溫度感測器1020的5.0mm×5.0mm×0.9mm之AMS SL13A-AQFT封裝RFID積體電路係以34 AWG銅電感器線電氣地連接至一78mm×84mm×0.08mm的環形天線1030。環形天線1030係使用取得自3MTM Company(Saint Paul,MN)之3MTM銅帶的單環製造。將取得自Digikey(Thief River Falls,MN)之0603尺寸的NP0型陶瓷調諧電容器之總計606pF的並聯電容連接至環形天線。無線感測裝置1000被固定至100mm×100mm×3.3mm的發泡層,發泡層係來自從3MTM Company(Saint Paul,MN)取得之90612 TegadermTM發泡黏著劑敷料。
使用LG Nexus 5智慧型手機以定製的安卓(Android)應用程式取得到乾及濕兩種量測,該應用程式提供無線功率、分析溫度資料點、及計算時間-溫度臨限、以及指示TegadermTM發泡黏著劑敷料層的狀態。以15mm的固定垂直間隔在一相對於發泡黏著劑敷料的側向位置以LG Nexus 5智慧型手機執行分析。
量測係在乾燥時以及在施配受控量的去離子水(跨發泡體之底部表面分布)之後執行。針對每一條件間隔三分鐘重複執行各量測三次,以允許NFC積體電路回到接近周圍溫度。結果係包含在表5中。
組態係經設計成對局部介電率的變化(例如,近接水)不敏感。所測得的天線共振條件在測試期間未顯著改變,指示所觀察到的機制係基於熱轉移的變化而非輸入電功率的變化。針對每一條件所測得的共振係總結於表6。
實例4
無線感測裝置-含水監控(四個線匝環)
如圖10所繪示,一無線感測裝置1000係以下列方式組裝。取得自Digikey(Thief River Falls,MN)之具有溫度感測器1020的5.0mm×5.0mm×0.9mm之AMS SL13A-AQFT封裝RFID積體電路係電氣地連接至一環形天線1030,環形天線1030包含取得自Digikey(Thief River Falls,MN)之經固體琺瑯質塗布的34 AWG銅線。環形天線1030係使用直徑50mm的經固體琺瑯質塗布之34 AWG銅線的四個圓形線匝製造。取得自Digikey(Thief River Falls,MN)之24pF的0603尺寸的NPO型陶瓷調諧電容器係連接至環形天線1030。無線感測裝置1000被固定至100mm×100mm×3.3mm的發泡層,發泡層來自從3MTM Company(Saint Paul,MN)取得之90612 TegadermTM發泡黏著劑敷料。
使用LG Nexus 5智慧型手機以定製的安卓(Android)應用程式取得到乾及濕兩種量測,該應用程式提供無線功率、分析溫度資料點、及計算時間-溫度臨限、以及指示TegadermTM發泡黏著劑敷料的狀態。以15mm的固定垂直間隔在一相對於發泡黏著劑敷料的側向位置以LG Nexus 5智慧型手機執行分析。
量測係在乾燥時以及在施配受控量的去離子水(跨發泡體之底部表面分布)之後執行。針對每一條件間隔三分鐘重複執行各量測三次,以允許NFC積體電路回到接近周圍溫度。結果係包含在表7中。
熱轉移效應被共振偏移干擾,其導致水滲入發泡體時待轉移的電功率較少。所測得的共振係總結於表8中。
實例5
無線感測裝置-汗水監控
如圖6所示之一無線感測裝置620C係以下列方式組裝。取得自STMicroelectronics(Geneva,Switzerland)之STM20-DD9F超低電流精密類比溫度感測器650C係熱連接至500Ω電阻式熱源640C,熱源640C包含取得自Digikey(Thief River Falls,MN)之兩個並聯的0402尺寸的1000Ω電阻器。溫度感測器650C及電阻式熱源640C係放置在一內部製成的可撓性電路之兩個相對表面上,該可撓性電路係以銅/聚醯亞胺/銅的三個12μm層所建構。一用於量測的感測器尖端係以取得自3MTM Company(Saint Paul,MN)之9836丙烯酸酯黏著劑薄膜固定至位於一總成的中央表面之發泡體的底部層,該總成具有兩層取得自3MTM Company(Saint Paul,MN)之具有2.4mm標稱厚度之25mm×25mm的MSX-6916B開孔式(open-cell)聚胺甲酸酯發泡體。兩層發泡體之頂部層的內部表面係以取得自3MTM Company(Saint Paul,MN)之9836丙烯酸酯黏著劑薄膜塗布,以保護 其免於濕氣滲入。一環形天線635C係以位於一印刷電路板的相對表面上之銅跡線的兩個圓形線匝製造,銅跡線具有17μm的厚度、3.4mm的跡線寬度、及50mm的外部直徑。將一包含取得自Digikey(Thief River Falls,MN)之0603尺寸的NPO型陶瓷調諧電容器之350pF的並聯電容連接至環形天線635C,以產生13.66MHz的共振頻率及50的品質因數。
具有串列通訊介面及非揮發性記憶體積體電路之動態NFC M24LR16E-RMC6T/2轉發器632C係電氣地連接至環形天線與一STM32L052C8T6微控制器,兩者均取得自STMicroelectronics(Geneva,Switzerland)並用於功率及分析目的。溫度感測器及電阻式熱源係各電氣地連接至微控制器。取得自STMicroelectronics之NFC CR95HF讀取器618C展示板(搭載亦取得自STMicroelectronics之對應的M24LRxx Application Software)係放置在印刷電路板上方25mm處以收集量測。
表9表示針對漸進地添加去離子水至發泡體底部層的實驗條件。在各情況下,欲仿效流體的均勻分布,將一受控體積的去離子水施配至一鋁板上。發泡體的底部層係放置到水滴上,之後再進行多次的壓縮及釋放以使流體分布遍及底部發泡層。接著,發泡體的底部層係經秤重,且為了與周圍熱隔離而重新與發泡體的頂部片件組裝,並以NFC讀取器618C及無線感測裝置620C執行一以無線方式提供功率的量測。一量測係藉由NFC讀取器618C經由一啟動信號615C來觸發,啟動信號615C為無線地寫入至無線收發器632C內之 一記憶體位置的形式。在無線感測裝置中以規律間隔記錄施加至熱源電阻的溫度及電壓,並將該等作為資料信號613C上傳到NFC讀取器。資料集ID「A6」係在發泡體被允許在周圍條件下持續乾燥一星期後所測得的。表9之「在0.7mg/cm2/min之等效分鐘」欄係各個別量的水以每分鐘每平方公分0.7mg水之均勻的流率積聚至底部發泡體之25×25mm表面中所將耗費的時間量(單位:分鐘)。表9之「發泡體1.5cm3體積之水%」欄係底部發泡層的體積之百分比(在假設水質量密度為每立方公分1克的情況下)。
結果係顯示於表10中,且係呈現為每單位平均熱功率之相對溫度,代表由於導熱率及熱擴散率增加隨著流體濃度增加而溫升減少。相對溫度△T係定義為始於初始溫度值的變化:T-TI,其中TI為初始溫度。在這些資料集中所記錄的熱功率係介於8.2及8.8毫瓦特之間,並針對各資料集計算一平均值。表10中的值係從以50毫秒間隔收集到的原始資料取平均值;使用一秒寬度的平均窗,將中心定在各整秒上。
表11表示表9中的實驗條件及表10中的結果之一複製試驗,惟替換掉控制資料集ID「A6」(發泡體在其中被允許在實驗結束後持續乾燥一星期),在表11中,存在控制資料集ID「A8」,其係在將發泡體曝露至程序(該程序仿效水的添加但無水滴存在於鋁板上)後的乾燥狀態之一重複。表11資料集中所記錄的熱功率係介於7.8及8.2毫瓦特之間。結果係含在表12中,如針對表10所述般地進行處理。
例示性實施例
實施例A1.一種在一總成中用於測量一物體之熱性質之無線感測裝置,其包含:一熱散布器,其包含固體或液體材料,該熱散布器具有一第一主表面及一相對於該第一主表面之第二主表面,該熱散布器經組態以在使用該無線感測裝置的過程中與該物體熱接觸;一控制電路;一無線收發器,其係電子地耦合至該控制電路;一能量採集裝置;一熱源,其係設置為近接該熱散布器之該第二主表面,該熱源係電子地耦合至該能量採集裝置並經組態以產生一熱通量至該熱散布器之該第一主表面,其中該能量採集裝置提供功率給該熱源;及一感測器,其係電子地耦合至該控制電路並與該熱源熱接觸,其中該感測器經組態以產生一與溫度相關聯之感測器信號,並將該感測器信號提供至該控制電路。
實施例A2.如實施例A1之無線感測裝置,其進一步包含:一天線,其係電子地耦合至該收發器及該能量採集裝置。
實施例A3.如實施例A2之無線感測裝置,其進一步包含:一基材,其中該天線係設置在該基材上。
實施例A4.如實施例A3之無線感測裝置,其中該天線經組態以在一讀取器詢問該無線感測裝置時接收一第一功率,且該能量採集裝置經組態以將該第一功率轉換為一第二功率。
實施例A5.如實施例A1至A4之無線感測裝置,其進一步包含: 一耦合裝置,其經組態以維持該熱散布器及該物體之間的熱接觸。
實施例A6.如實施例A5之無線感測裝置,其中該耦合裝置包含一導熱黏著劑層、彈性耦合器、及機械耦合器的至少一者。
實施例A7.如實施例A1至A6之無線感測裝置,其中該熱源包含該控制電路之至少一組件。
實施例A8.如實施例A1之無線感測裝置,其中該熱源及該感測器係一相同的電阻性元件。
實施例A9.如實施例A1至A8之任一者之無線感測裝置,其中該控制電路包含一微處理器及一儲存一唯一識別符的記憶體。
實施例A10.如實施例A1至A9之無線感測裝置,其中該能量採集裝置包含一橋式整流器、一二極體整流器、一電晶體整流器、一穩壓器、及一穩流器的至少一者。
實施例A11.如實施例A1至A10之無線感測裝置,其中該無線感測裝置調節提供該熱源的功率。
實施例A12.如實施例A11之無線感測裝置,其中該無線感測裝置基於該感測器信號調節該熱源。
實施例A13.如實施例A12之無線感測裝置,其中該無線感測裝置基於該感測器信號停用該熱源。
實施例A14.如實施例A1至A13之無線感測裝置,其中該感測器經組態以在該熱源啟動前產生一第一感測器信號,並在該熱源啟動後產生一第二感測器信號。
實施例A15.如實施例A13之無線感測裝置,其中該控制電路經組態以基於該第一及第二感測器信號判定該物體之一熱性質。
實施例A16.如實施例A15之無線感測裝置,其中該控制電路提供一具有一已知的功率量值之大致上恆定的功率至該熱源,其中該控制電路基於該第一感測器信號、該第二感測器信號、及該已知的功率量值判定該物體之一熱性質。
實施例A17.如實施例A2之無線感測裝置,其中該控制電路包含一整合式電容,其中在一讀取器詢問該無線感測裝置時,該無線感測裝置接收功率,且其中該控制電路基於該感測器信號及/或該已接收的功率修改該整合式電容。
實施例A18.一種在一總成中用於測量一物體之一熱性質之無線感測裝置,其包含:一天線及一收發器,該收發器經組態以無線地接收一第一功率;一能量採集裝置,其經組態以將該第一功率變換(transform)為一第二功率;一熱源,其係電子地耦合至該能量採集裝置,其中該能量採集裝置提供該第二功率至該熱源;一控制電路,其包含一微處理器;及一感測器,其係電子地耦合至該控制電路並熱耦合至該熱源,其中該感測器經組態以在該熱源啟動前產生一第一感測器信號,並在該熱源後啟動產生一第二感測器信號,且其中該控制電路經組態以基於該第一及第二感測器信號判定該物體之一熱性質。
實施例A19.如實施例A18之無線感測裝置,其進一步包含:一基材;及一熱散布器,其包含固體或液體材料,該熱散布器 經組態以與該物體熱接觸,其中該熱源及該感測器係設置在該熱散布器中。
實施例A20.如實施例A18至A19之無線感測裝置,其中該控制電路調節該熱源之一輸出。
實施例A21.如實施例A20之無線感測裝置,其中該控制電路基於由該感測器所產生之該第二感測器信號調節該熱源。
實施例A22.如實施例A18至A21之無線感測裝置,其中該熱源及該感測器係一相同的電阻性元件。
實施例A23.如實施例A18至A22之無線感測裝置,其中該控制電路包含一微處理器及一儲存一唯一識別符的記憶體。
實施例A24.如實施例A18至A23之無線感測裝置,其中該能量採集裝置包含一橋式整流器、一二極體整流器、一電晶體整流器、一穩壓器、及一穩流器。
實施例B1.一種無線感測裝置,其經組態以測量一物體之一物理性質,並包含:一基材;一天線,其係設置在該基材上;一第一控制電路,其係電子地耦合至該天線,該第一控制電路包含一儲存一第一唯一識別符的第一記憶體及一第一收發器;一第二控制電路,其係電子地耦合至該天線,該第二控制電路包含一儲存一第二唯一識別符的第二記憶體及一第二收發器;一第一激發裝置,其經組態以產生一第一激發信號,以改變該物體之一物理性質;一第一感測器,其係電子地耦合至該第一控制電路,其中該第一感測器經組態以產生一與該物理性質相關聯之第一感測器信號;及一第二感測器,其 係電子地耦合至該第二控制電路,其中該第二感測器經組態以產生一第二感測器信號。
實施例B2.如實施例B1之無線感測裝置,其中該第一激發裝置包含熱激發裝置、光激發裝置、聲激發裝置、振動器、電壓源、電流源、及電磁體的至少一者。
實施例B3.如實施例B2之無線感測裝置,其中該第一感測器或該第二感測器包含熱感測器、光二極體、麥克風、加速計、電壓感測器、電流感測器、及磁力計的至少一者。
實施例B4.如實施例B1至B3之無線感測裝置,其進一步包含:一第一感測區,其中該第一激發裝置及該第一感測器係設置在該第一感測區中。
實施例B5.如實施例B4之無線感測裝置,其進一步包含:一第二感測區,其中該第二感測器係設置在該第二感測區中。
實施例B6.如實施例B5之無線感測裝置,其中該第一感測器及該第二感測器係熱感測器,且其中該第一感測區及該第二區係經熱隔離。
實施例B7.如實施例B1至B6之無線感測裝置,其進一步包含:一第二激發裝置,其經組態以產生一第二激發信號。
實施例B8.如實施例B1至B7之無線感測裝置,其中該天線經組態以在一讀取器詢問時提供功率至該無線感測裝置。
實施例B9.如實施例B1至B8之無線感測裝置,其進一步包含:一能量採集裝置,其係電子地耦合至該天線,並經組態以提供功率至該第一感測器及該第二感測器。
實施例B10.如實施例B9之無線感測裝置,其中該能量採集裝置包含一橋式整流器、一二極體整流器、一電晶體整流器、一穩壓器、及一穩流器的至少一者。
實施例B11.如實施例B1至B10之無線感測裝置,其進一步包含:一處理器,其係電子地耦合至該第一控制電路及該第二控制電路,其中該處理器經組態以基於該第一感測器信號及該第二感測器信號判定一指示該物體之該物理性質的指示符。
實施例B12.如實施例B1至B11之無線感測裝置,其中該第二感測器信號係與該物體之該物理性質相關聯。
實施例B13.如實施例B1至B12之無線感測裝置,其中該第一控制電路調節該第一激發裝置。
實施例B14.如實施例B13之無線感測裝置,其中該第一控制電路使用該第一感測器信號調節該第一激發裝置。
實施例B15.一種無線感測裝置,其經組態以測量一物體之一熱性質,並包含:一第一熱散布器及一第二熱散布器,其係與該第一熱散布器熱隔離;一RF電路及一天線,其係電子地耦合至該RF電路;一能量採集裝置;一第一熱源,其係設置在該第一熱散布器中,並電子地耦合至該能量採集裝置;一第一感測器,其係熱耦合至該第一熱源,其中該第一感測器經組態以產生一與溫度相關聯之第一 感測器信號;一第二熱源,其係設置在該第二熱散布器中,並電子地耦合至該能量採集裝置;及一第二感測器,其係熱耦合至該第二熱源,其中該第二感測器經組態以產生一與溫度相關聯之第二感測器信號,其中該能量採集裝置經組態以提供一第一功率至該第一熱源以及一第二功率至該第二熱源,其中該第一功率對該第二功率具有一已知的比率。
實施例B16.如實施例B15之無線感測裝置,其中該第二熱源係與該物體熱接觸。
實施例B17.如實施例B15至B16之無線感測裝置,其中該第一熱源及該第一感測器係一相同的電阻性元件。
實施例B18.如實施例B15至B17之無線感測裝置,其中該RF電路包含一微處理器及一儲存一唯一識別符的記憶體。
實施例B19.如實施例B15至B18之無線感測裝置,其中該能量採集裝置包含一橋式整流器、一二極體整流器、一電晶體整流器、一穩壓器、及一穩流器的至少一者。
實施例B20.如實施例B18之無線感測裝置,其中該RF電路經組態以基於該第一及第二感測器信號判定該物體之一熱性質。
實施例B21.如實施例B15至B20之無線感測裝置,其中該第一功率等於該第二功率。
實施例C1.一種在一總成中的RF含水(hydration)感測器,其包含:一基材; 一天線,其係設置在該基材上;一RF電路,其係電氣地耦合至該天線,該RF電路包含一處理器;一熱源,其係電氣地耦合至該RF電路,以用於改變一目標區域之一熱條件;及一感測元件,其係熱耦合至該熱源,以用於感測該熱源之一溫度,以致當該熱源熱耦合至該目標區域時,該RF含水感測器從一收發器無線地接收一具有一第一形式的第一功率,該RF電路將該第一功率變換為一具有不同於該第一形式之一第二形式的第二功率,並將該第二功率輸送至該熱源,該感測元件感測該熱源溫度之一時變,且該處理器基於該熱源溫度之該經感測的時變判定一指示含水位準的含水指示符。
實施例C2.如實施例C1之RF含水感測器,其進一步包含:一記憶體,其儲存一與含水位準相關聯的參考資料,且其中該處理器經組態以使用該參考資料判定該含水指示符。
實施例C3.如實施例C1或C2之RF含水感測器,其中該RF電路控制該第二功率之一量值。
實施例C4.如實施例C1至C3之任一者之RF含水感測器,其中該RF電路經組態以調整供應至該熱源之功率的持續時間。
實施例C5.如實施例C1至C4之任一者之RF含水感測器,其進一步包含:一熱散布器,其包含一固體或液體材料,其中該熱源係設置為近接該熱散布器。
實施例C6.如實施例C5之RF含水感測器,其中該熱散布器係經調適以在該熱散布器與該目標區域熱接觸時實質上均勻地跨該目標區域分配來自該熱源的熱通量。
實施例C7.如實施例C1至C6之任一者之RF含水感測器,其中該第一形式為一AC形式,且該第二形式為一DC形式。
實施例C8.如實施例C1至C7之任一者之RF含水感測器,其中該RF含水感測器經組態以從一收發器無線地接收一具有一第一形式之未知的第一功率,且其中該RF電路將該未知的第一功率變換為一已知的第二功率,該已知的第二功率具有一不同於該第一形式的第二形式。
實施例C9.如實施例C1至C8之任一者之RF含水感測器,其中該RF電路經組態以藉由改變該RF含水感測器之一共振頻率來改變該第二功率的該量值。
實施例C10.如實施例C1至C9之任一者之RF含水感測器,其中該處理器經組態以判定是否達到一熱穩態,且其中該RF電路基於該熱源溫度之該經感測的時變在該熱穩態之後停用該熱源。
實施例C11.如實施例C1至C10之任一者之RF含水感測器,其中該感測元件在該熱源停用後感測該熱源溫度之一冷卻時變,且其中該處理器基於該熱源溫度之該經感測的冷卻時變判定該目標區域之一熱擴散率,且其中該處理器使用該目標區域之該經判定的熱擴散率判定該含水指示符。
實施例C12.如實施例C1至C11之任一者之RF含水感測器,其中該RF含水感測器係經調適以與一以一第一射頻發射功率之遠端收發器無線地通訊,其中該RF電路係經調適以將該RF含水感測器之一共振頻率解諧離開該第一射頻,以控制由該RF含水感測器從該遠端收發器所接收之該第一功率之一量值。
實施例C13.如實施例C1至C12之任一者之RF含水感測器,其中該基材為可撓的。
實施例C14.如實施例C1至C13之任一者之RF含水感測器,其中該基材為可拉伸的。
實施例C15.一種用於測量一液體位準的RF感測器,其包含:一基材;一天線,其係設置在該基材上;一RF電路,其係電氣地耦合至該天線,該RF電路包含一處理器;一吸收元件,其包含吸收材料;一熱源,其係電氣地耦合至該RF電路,並熱耦合至該吸收元件;及一感測元件,其係熱耦合至該熱源,以用於感測該熱源之一溫度,以致在該吸收元件被用於吸收液體之後,該RF感測器從一收發器無線地接收一具有一第一形式的第一功率,該RF電路將該第一功率變換為一具有不同於該第一形式之一第二形式的第二功 率,並將該第二功率輸送至該熱源,該感測元件感測該熱源溫度之一時變,且該處理器基於該熱源溫度之該經感測的時變判定一指示液體位準的指示符。
實施例C16.如實施例C15之RF感測器,其中吸收材料包含一多孔材料、一天然或合成海綿、吸水膠體、及超吸收聚合物的至少一者。
實施例C17.如實施例C15或C16之RF感測器,其中該RF電路控制該第二功率之一量值。
實施例C18.如實施例C15至C17之任一者之RF感測器,其中該RF電路經組態以調整供應至該熱源之功率的持續時間。
實施例C19.如實施例C15至C18之任一者之RF感測器,其中該第一形式為一AC形式,且該第二形式為一DC形式。
實施例C20.一種使用一或多個處理器及一感測器判定含水位準的方法,該感測器具有一設置為近接一物體的熱源,該方法包含以下步驟:無線地啟動該熱源;藉由該感測器來產生一系列感測信號;基於該系列感測信號的至少一些藉由該一或多個處理器來判定該物體之一熱性質;及基於該經判定的熱性質及一參考資料藉由該一或多個處理器來產生一指示該物體之含水位準的含水指示符。
實施例C21.如實施例C20之方法,其進一步包含: 產生一第一感測信號;藉由該一或多個處理器來評估是否達到一熱穩態;其中該判定步驟包含基於該第一感測信號及在達到該熱穩態時所產生之該系列感測信號的至少一者判定該物體之一導熱率,且其中該含水指示符係基於該經判定的導熱率而產生。
實施例C22.如實施例C20或C21之方法,其進一步包含:藉由該一或多個處理器來評估是否達到一熱穩態;在達到該熱穩態之後停用該熱源。
實施例C23.如實施例C20至C22之任一者之方法,其進一步包含:在該熱源停用之後,產生一系列的冷卻感測信號;其中該判定步驟包含基於該系列的冷卻感測信號的至少一些判定該物體之一熱擴散率,且其中該含水指示符係基於該經判定的熱擴散率而產生。
實施例C24.如實施例C20至C23之任一者之方法,其中該參考資料包含一分析函數、一查找表、一矩陣、及一常數的至少一者。
實施例C25.如實施例C20至C24之任一者之方法,其進一步包含:當該感測器被設置到一具有一已知熱性質的參考材料時,藉由該感測器產生一校準信號,其中該判定步驟包含使用該校準信號判定該物體之該熱性質。
實施例C26.一種RF含水感測系統,其包含:一RF感測器標籤,其包含:一基材;一天線,其係設置在該基材上;一RF電路,其係電氣地耦合至該天線;一熱源,其係電氣地耦合至該RF電路,以用於改變一目標區域之一熱條件;及一感測元件,其係熱耦合至該熱源,以用於感測該熱源之一溫度,以致當該熱源熱耦合至一目標區域時,該RF感測器標籤從一收發器無線地接收一具有一第一形式的第一功率,該RF電路將該第一功率變換為一具有一第二形式的第二功率,並將該第二功率輸送至該熱源,該感測元件感測該熱源溫度之一時變,且該RF感測器標籤無線地傳輸該熱源溫度之該經感測的時變;一RF讀取器,其經組態以無線地傳輸一詢問功率該RF感測器標籤,並接收該熱源溫度之該經感測的時變;一處理器,其係電子地耦合至該RF讀取器,並經組態以基於該熱源溫度之該經感測的時變判定一指示含水位準的含水指示符。
實施例C27.如實施例C26之RF含水感測系統,其進一步包含:一記憶體,其儲存一與含水位準相關聯的參考資料,且其中該處理器經組態以使用該參考資料判定該含水指示符。
實施例C28.如實施例C26或C27之RF含水感測系統,其中該RF電路控制該第二功率之一量值。
實施例C29.如實施例C26至C28之任一者之RF含水感測系統,其中該RF電路經組態以調整供應至該熱源之功率的持續時間。
實施例C30.如實施例C26至C29之任一者之RF含水感測系統,其中該RF感測器標籤進一步包含:一熱散布器,其包含一固體或液體材料,其中該熱源係設置為近接該熱散布器。
實施例C31.如實施例C30之RF含水感測系統,其中該熱散布器係經調適以在該熱散布器與該目標區域熱接觸時實質上均勻地跨該目標區域分配來自該熱源的熱通量。
實施例C32.如實施例C26至C31之任一者之RF含水感測系統,其中該第一形式為一AC形式,且該第二形式為一DC形式。
實施例C33.如實施例C26至C32之任一者之RF含水感測系統,其中該RF感測器標籤經組態以從一收發器無線地接收一具有一第一形式之未知的第一功率,且其中該RF電路將該未知的第一功率變換為一已知的第二功率,該已知的第二功率具有一不同於該第一形式的第二形式。
實施例C34.如實施例C26至C33之任一者之RF含水感測系統,其中該RF讀取器經組態以基於該熱源溫度之經感測的時變改變該詢問功率。
實施例C35.如實施例C26至C34之任一者之RF含水感測系統,其進一步包含:一耦合裝置,其經組態以維持該RF感測器標籤及該目標區域之間的熱接觸。
實施例C36.如實施例C35之RF含水感測系統,其中該耦合裝置包含一導熱黏著劑層、一黏著劑層、一彈性耦合器、及一機械耦合器的至少一者。
實施例D1.一種射頻識別(RFID)標籤,其經調適以與一遠端收發器無線地通訊,並包含:一基材;一天線,其係設置在該基材上;第一及第二積體電路(IC),其等係設置在該基材上,各IC係電氣地耦合至該天線;第一及第二加熱元件,其等係用於加熱個別的第一及第二目標區域並係電氣地耦合至個別的第一及第二IC,該等第一及第二目標區域之各者具有一熱特性,該第一目標區域之熱特性係已知,該第二目標區域之熱特性係未知,該第一目標區域係設置於該基材上並熱耦合至該第一加熱元件,該第一加熱元件及目標區域與該第二加熱元件熱隔離並經調適以與該第二目標區域熱隔離;及第一及第二感測元件,其等係熱耦合至該等個別的第一及第二加熱元件,以用於感測對應的加熱元件之一溫度,以致當該第二加熱元件熱耦合至該第二目標區域時,該RFID標籤從一收發器無線地接收一具有一輸入形式的輸入功率,該等第一及第二IC將該輸入功率變換為具有個別的第一及第二形式之個別的第一及第二功率、並將該等第一及第二功率輸送至對應的加熱元件,該等第一及第二感測元件感測該對應的加熱元件溫度之一時變,且該RFID標籤將該第二目標區域之一熱特性無線地傳輸至該收發器,該第二目標區域之該熱特性係基於對該等第一及第二加熱元件溫度之時變的比較。
實施例D2.如實施例D1之RFID標籤,其進一步包含一包含該等第一及第二IC之IC。
實施例D3.如實施例D1或D2之RFID標籤,其中該第一功率之量值對該輸入功率之量值具有一已知的比率。
實施例D4.如實施例D1至D3之任一者之RFID標籤,其中該第二功率之量值對該輸入功率之量值具有一已知的比率。
實施例D5.如實施例D1至D4之任一者之RFID標籤,其中該基材為可撓的。
實施例D6.如實施例D1至D5之任一者之RFID標籤,其中該基材為可拉伸的。
實施例D7.如實施例D1至D6之任一者之RFID標籤,其中該第一形式及該第二形式中之至少一者係不同於該輸入形式。
實施例D8.如實施例D7之RFID標籤,其中該第一形式及該第二形式中之至少一者為DC形式且該輸入形式為AC形式。
實施例D9.如實施例D1至D8之任一者之RFID標籤,其中該第一功率、該第一功率及該第二功率為AC形式,且其中該等第一及第二IC進一步經組態以將該輸入功率變換成DC形式之電路功率並將電路功率分別提供至該等第一及第二IC中之其他組件。
實施例D10.如實施例D1至D9之任一者之RFID標籤,其包含一包含該第一IC的IC,且包含該第一加熱元件與該第一感測元件的至少一者。
實施例D11.如實施例D1至D10之任一者之RFID標籤,其包含一包含該第二IC的IC,以及該第二加熱元件與該第二感測元件的至少一者。
實施例D12.如實施例D11之RFID標籤,其進一步包含一熱散布器,該熱散布器係設置在該IC之一主表面上並經調適以實質上均勻地跨該第二目標區域分配來自該第二加熱元件的熱。
實施例D13.如實施例D12之RFID標籤,其中該熱散布器具有一與該IC之該主表面接觸的頂部表面以及一用於熱接觸該第二目標區域之相對的底部表面,該IC之該主表面及該熱散布器之該頂部表面實質上彼此重疊。
實施例D14.如實施例D1至D13之任一者之RFID標籤,其中該第一加熱元件亦為該第一感測元件。
實施例D15.如實施例D1至D14之任一者之RFID標籤,其中該第二加熱元件亦為該第二感測元件。
實施例D16.如實施例D1至D15之任一者之RFID標籤,其中該第一IC控制該第一功率的一量值而該第二IC控制該第二功率之一量值。
實施例D17.如實施例D1至D16之任一者之RFID標籤,其中該RFID標籤從一收發器無線地接收一未知的輸入功率,且其中該等第一及第二IC將該未知的輸入功率分別變換為一已知的第一功率及一已知的第二功率。
實施例D18.如實施例D1至D17之任一者之RFID標籤,其中該第二感測元件藉由產生一信號來感測該第二加熱元件溫度之一時變,該信號與該第二加熱元件溫度具有一已知的關係。
實施例D19.如實施例D18之RFID標籤,其中該第二感測元件藉由產生一信號來感測該第二加熱元件溫度之一時變,該信號實質上與該第二加熱元件溫度成比例。
實施例D20.如實施例D18之RFID標籤,其中當該第二IC將該輸入功率變換為該第二功率時,該電子電路係經調適以在該第二功率大於一最大臨限值時減小該第二功率之一量值。
實施例D21.如實施例D18之RFID標籤,其中該第二IC係經調適以藉由改變該RFID標籤之一共振頻率來改變該第二功率的該量值。
實施例D22.如實施例D1至D21之任一者之RFID標籤,其中無線地傳輸至該收發器之該第二目標區域的該熱特性包括該目標區域之一導熱率、該目標區域之一熱擴散率、及該目標區域之一熱容量的至少一者。
實施例D23.如實施例D1至D22之任一者之RFID標籤,其中該加熱元件係設置在該基材上。
實施例D24.如實施例D1至D23之任一者之RFID標籤,其中該感測元件係設置在該基材上。
實施例D25.如實施例D1至D24之任一者之RFID標籤,其係經調適以與一以一第一射頻發射功率之遠端收發器無線地通 訊,其中該電子電路係經調適以將該RFID標籤之一共振頻率解諧離開該第一射頻,以控制由該RFID標籤從該遠端收發器所接收之該第一功率之一量值。
實施例D26.如實施例D1至D25之任一者之RFID標籤,其係經調適以與一以一第一射頻發射功率之遠端收發器無線地通訊,其中該第二IC係經調適以將該RFID標籤之一共振頻率解諧離開該第一射頻,然後將該經解諧的共振頻率調諧回到該第一射頻。
實施例D27.如實施例D1至D26之任一者之RFID標籤,其係經調適以與一以一第一射頻發射功率之遠端收發器無線地通訊,以致該第二IC經調適以在該RFID標籤之一共振頻率漂移離開該第一射頻時,將該RFID標籤之該經漂移的共振頻率調諧回到該第一射頻。
實施例D28.如實施例D1至D27之任一者之RFID標籤,其中該天線具有一螺旋形式。
實施例D29.如實施例D1至D28之任一者之RFID標籤,其中該天線包含複數個實質上同心的導電環。
實施例D30.如實施例D1至D29之任一者之RFID標籤,其中該天線具有一介於第一及第二端之間的長度,該長度小於約2公尺。
實施例D31.一種射頻識別(RFID)標籤,其經調適以與一遠端收發器無線地通訊,並包含:一基材;及第一及第二電路,其等經設置於該基材上且包含經磁耦合至彼此之個別的第一及第二天 線,該RFID標籤意欲具有一預定的共振頻率,該等第一及第二電路之各一者在缺少該等第一及第二電路之另一者的情況下係設計成具有一不同於該預定的共振頻率之共振頻率,該等共振頻率導致該RFID標籤具有該預定的共振頻率。
實施例D32.如實施例D31之RFID標籤,其中經磁耦合之第一及第二天線之一磁耦合因數的一量值係至少0.1。
實施例D33.如實施例D31之RFID標籤,其中經磁耦合之第一及第二天線之一磁耦合因數的一量值係介於0.1與0.9之間。
實施例D34.如實施例D31之RFID標籤,其中該等第一及第二天線經電氣地耦合至設置於該基材上之個別的第一及第二積體電路(IC)。
實施例D35.如實施例D31之RFID標籤,其中該等第一及第二天線經電氣地耦合至設置於該基材上之一相同的積體電路(IC)。
實施例D36.如實施例D31之RFID標籤,其中該等第一及第二天線係在一垂直於該基材的方向上相對於彼此垂直地偏置。
實施例D37.如實施例D31之RFID標籤,其中在平面圖中該等第一及第二天線彼此重疊。
實施例D38.一種經調適以與一遠端收發器無線地通訊之射頻識別(RFID)標籤,其包含:一基材,其具有由該基材之一最外部周長所圍繞之一頂部表面區域;及第一及第二電路,其等經設置於該基材上且包含經磁耦合至彼此之個別的第一及第二天線,其中在平 面圖中該等第一及第二天線在大部分的該基材之該頂部表面區域上方延伸。
實施例D39.一種射頻識別(RFID)標籤,其經調適以與一遠端收發器無線地通訊,並包含:一基材;及第一及第二天線,其等係設置於該基材上並在一垂直於該基材的方向上相對於彼此垂直地偏置,該等第一及第二天線之各者與該等第一及第二天線之另一者實質上重疊。
實施例D40.如實施例D39之RFID標籤,其中該等第一及第二天線係實質上相同的。
實施例D41.一種射頻識別(RFID)標籤,其經調適以與一遠端收發器以一標籤共振頻率無線地通訊並包含:一基材;複數個相異的電路,其等係設置於該基材上,各電路具有不同於該標籤共振頻率之一共振頻率且包含:一包含至少一導電環之天線;及一或多個電氣地耦合至該天線之積體電路(IC);其中至少一相異的電路中之至少一IC具有一與至少一其他的相異電路中之至少一IC不同的識別號,且該至少一相異的電路之天線係與該至少一其他的相異電路之天線相異。
實施例D42.如實施例D41之RFID標籤,其中該複數個相異的電路中沒有兩個相異的電路共用一相同天線。
實施例D43.如實施例D41之RFID標籤,其中該複數個相異的電路中沒有兩個相異的電路共用一相同IC。
實施例D44.如實施例D41之RFID標籤,其中各相異的電路之該共振頻率與該標籤共振頻率至少有5%的不同。
實施例D45.如實施例D41之RFID標籤,其中至少兩個相異的電路具有相同的共振頻率。
實施例D46.如實施例D41之RFID標籤,其經調適以將來自該複數個電路中之個別的第一及第二電路之不同的第一及第二資訊無線地傳達至一相同的收發器。
實施例D47.一種射頻識別(RFID)標籤,其經調適以與一遠端收發器以一標籤共振頻率無線地通訊並包含:設置於基材上之複數個天線,該複數個天線中之各天線經磁耦合至該複數個天線中之至少一其他天線;及設置於該基材上之複數個積體電路,該複數個IC中之各積體電路(IC)經電氣地耦合至該複數個天線中之一天線且經調適以將一不同的識別號傳達至一遠端收發器,該複數個IC中之至少一IC經電氣地耦合至該複數個天線中之僅一個天線。
實施例D48.如實施例D47之RFID標籤,其中該複數個IC中之各IC經電氣地耦合至該複數個天線中之一不同的天線。
實施例D49.一種射頻識別(RFID)標籤,其經調適以與一遠端收發器無線地通訊,並包含:一基材;第一及第二電子電路,其等經設置於該基材上且包含個別的第一及第二天線,該等第一及第二天線經電氣地耦合至個別的第一及第二積體電路(IC);第一及第二信號輸送元件,其等經設置於該基材上以輸送個別的第一及第二信號至個別的第一及第二目標;及第一及第二信號接收元件,其等經設置 於該基材上以感測來自該等第一及第二目標之回應於該等經輸送之第一及第二信號而產生之個別的第一及第二響應信號,該RFID標籤經調適以將基於該等所感測之第一及第二響應信號之資訊無線地傳達至一遠端收發器。
實施例D50.如實施例D49之RFID標籤,其中該等第一及第二天線經磁耦合至彼此。
實施例D51.如實施例D49之RFID標籤,其經調適以從一遠端收發器無線地接收功率以賦能(energize)該等第一及第二信號輸送元件。
實施例D52.如實施例D49之RFID標籤,其中該等第一及第二信號輸送元件包含個別的第一及第二光源以發射光並將光輸送至該等個別的第一及第二目標。
實施例D53.如實施例D52之RFID標籤,其中該等第一及第二信號接收元件包含個別的第一及第二光學偵測器。
實施例D54.如實施例D49之RFID標籤,其中該等第一及第二信號輸送元件包含個別的第一及第二加熱元件以產生熱並將熱輸送至該等個別的第一及第二目標。
實施例D55.如實施例D49之RFID標籤,其中該等第一及第二信號輸送元件包含個別的第一及第二電源以產生個別的第一及第二電信號並將其等輸送至該等個別的第一及第二目標。
實施例D56.如實施例D55之RFID標籤,其中該等第一及第二信號接收元件包含個別的第一及第二電偵測器以感測來自該 等第一及第二目標之回應於該等經輸送之第一及第二電信號而產生之個別的第一及第二響應電信號。
本發明不應被認為是限於本文所描述的特定實例及實施例,因為詳細描述這些實施例是為了利於解說本發明的各種態樣。而是,應理解本發明涵蓋本發明的所有態樣,包括屬於如隨附申請專利範圍與其均等物所界定的本發明之精神及範疇內的各種修改、均等程序、和替代裝置。

Claims (15)

  1. 一種射頻識別(RFID)標籤,其經調適以與一遠端收發器無線地通訊,該RFID標籤包含:一基材;一天線,其係設置在該基材上;第一及第二積體電路(IC),其等係設置在該基材上,各IC係電氣地耦合至該天線;第一及第二加熱元件,其等係用於加熱個別的第一及第二目標區域並係電氣地耦合至個別的第一及第二IC,該等第一及第二目標區域之各者具有一熱特性,該第一目標區域之熱特性係已知,該第二目標區域之熱特性係未知,該第一目標區域係設置於該基材上並熱耦合至該第一加熱元件,該第一加熱元件及該目標區域與該第二加熱元件熱隔離並經調適以與該第二目標區域熱隔離;及第一及第二感測元件,其等係熱耦合至該等個別的第一及第二加熱元件,以用於感測對應的加熱元件之一溫度,以致當該第二加熱元件熱耦合至該第二目標區域時,該RFID標籤從一收發器無線地接收一具有一輸入形式的輸入功率,該等第一及第二IC將該輸入功率變換(transform)為具有個別的第一及第二形式之個別的第一及第二功率、並將該等第一及第二功率輸送至對應的加熱元件,該等第一及第二感測元件感測該對應的加熱元件溫度之一時變,且該RFID標籤將該第二目標區域之一熱特性無線地傳輸至該收發器,該第二目標區域之該熱特性係基於對該等第一及第二加熱元件溫度之時變的比較。
  2. 如請求項1之RFID標籤,其中該第一功率之量值對該輸入功率之量值具有一已知的比率。
  3. 如請求項2之RFID標籤,其中該第二功率之量值對該輸入功率之量值具有一已知的比率。
  4. 如請求項1之RFID標籤,其中該第一形式及該第二形式中之至少一者係不同於該輸入形式。
  5. 如請求項4之RFID標籤,其中該第一形式及該第二形式中之至少一者為DC形式且該輸入形式為AC形式。
  6. 如請求項1之RFID標籤,其中該第一功率、該第一功率及該第二功率為AC形式,且其中該等第一及第二IC進一步經組態以將該輸入功率變換成DC形式之電路功率並將電路功率分別提供至該等第一及第二IC中之其他組件。
  7. 如請求項1之RFID標籤,其包含一包含該第一IC的IC,且包含該第一加熱元件與該第一感測元件的至少一者。
  8. 如請求項7之RFID標籤,其進一步包含一熱散布器,該熱散布器係設置在該IC之一主表面上並經調適以實質上均勻地跨該第二目標區域分配來自該第二加熱元件的熱。
  9. 如請求項8之RFID標籤,其中該熱散布器具有一與該IC之該主表面接觸的頂部表面以及一用於熱接觸該第二目標區域之相對的底部表面,該IC之該主表面及該熱散布器之該頂部表面實質上彼此重疊。
  10. 如請求項1之RFID標籤,其中該RFID標籤從一收發器無線地接收一未知的輸入功率,且其中該等第一及第二IC將該未知的輸入功率分別變換為一已知的第一功率及一已知的第二功率。
  11. 一種射頻識別(RFID)標籤,其經調適以與一遠端收發器無線地通訊,該RFID標籤包含:一基材;及第一及第二電路,其等經設置於該基材上且包含經磁耦合至彼此之個別的第一及第二天線,該RFID標籤意欲具有一預定的共振頻率,該等第一及第二電路之各一者在缺少該等第一及第二電路之另一者的情況下係設計成具有一不同於該預定的共振頻率之共振頻率,該等共振頻率導致該RFID標籤具有該預定的共振頻率。
  12. 如請求項11之RFID標籤,其中該等經磁耦合之第一及第二天線之一磁耦合因數的一量值係至少0.1。
  13. 如請求項11之RFID標籤,其中該等第一及第二天線係在一垂直於該基材的方向上相對於彼此垂直地偏置。
  14. 如請求項11之RFID標籤,其中在平面圖中該等第一及第二天線彼此重疊。
  15. 一種射頻識別(RFID)標籤,其經調適以與一遠端收發器無線地通訊,該RFID標籤包含:一基材,其具有由該基材之一最外部周長所圍繞之一頂部表面區域;及第一及第二電路,其等經設置於該基材上且包含經磁耦合至彼此之個別的第一及第二天線,其中在平面圖中該等第一及第二天線在大部分的該基材之該頂部表面區域上方延伸。
TW104136741A 2014-11-07 2015-11-06 具有多個天線、積體電路、及/或感測元件的標籤總成 TWI677824B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462077004P 2014-11-07 2014-11-07
US62/077,004 2014-11-07

Publications (2)

Publication Number Publication Date
TW201631913A TW201631913A (zh) 2016-09-01
TWI677824B true TWI677824B (zh) 2019-11-21

Family

ID=54608939

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104136741A TWI677824B (zh) 2014-11-07 2015-11-06 具有多個天線、積體電路、及/或感測元件的標籤總成

Country Status (6)

Country Link
US (1) US9922281B2 (zh)
EP (1) EP3215986B1 (zh)
KR (1) KR101799743B1 (zh)
CN (1) CN107077632B (zh)
TW (1) TWI677824B (zh)
WO (1) WO2016073327A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI759098B (zh) * 2021-02-05 2022-03-21 宏通數碼科技股份有限公司 雙天線發光感應卡

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107077632B (zh) 2014-11-07 2018-12-14 3M创新有限公司 具有多个天线、ic和/或感测元件的标签组件
WO2016073408A1 (en) 2014-11-07 2016-05-12 3M Innovative Properties Company Wireless sensing system using sensing device with excitation element
WO2016073344A1 (en) 2014-11-07 2016-05-12 3M Innovative Properties Company Wireless sensing devices and method for detecting hydration
US20160131328A1 (en) 2014-11-07 2016-05-12 Lighthouse Technologies Limited Indoor smd led equipped for outdoor usage
EP3215985B1 (en) 2014-11-07 2019-07-03 3M Innovative Properties Company Wireless sensor for thermal property with thermal source
AU2015381870B2 (en) * 2015-02-03 2018-11-01 Halliburton Energy Services, Inc. Improved radio frequency identification tag
EP3281155A4 (en) * 2015-04-10 2019-02-20 Thin Film Electronics ASA SENSOR-BASED NFC / RF MECHANISM WITH MULTIPLE VALID STATES FOR THE DETECTION OF AN OPEN OR COMPROMED CONTAINER
US10027179B1 (en) * 2015-04-30 2018-07-17 University Of South Florida Continuous wireless powering of moving biological sensors
EP3252731A1 (fr) * 2016-06-01 2017-12-06 Swisstip SA Système de detection d'une zone de balisage rf
US10740577B2 (en) * 2016-07-12 2020-08-11 Palo Alto Research Center Incorporated Passive sensor tag system
WO2018026945A1 (en) * 2016-08-03 2018-02-08 Yuri Smirnov Passive sensors and related structures for implantable biomedical devices
US10373045B2 (en) 2016-12-01 2019-08-06 Avery Dennison Retail Information Services, Llc Coupling of RFID straps to antennae using a combination of magnetic and electric fields
EP3388979B1 (en) * 2017-04-14 2020-07-22 Nxp B.V. Rfid integrated circuit
WO2018235018A1 (en) 2017-06-23 2018-12-27 3M Innovative Properties Company WIRELESS AUTHENTICATION SYSTEMS
JP6948182B2 (ja) * 2017-08-04 2021-10-13 株式会社アドバンテスト 磁気センサ試験装置
TWI647963B (zh) * 2017-08-23 2019-01-11 群光電子股份有限公司 無線通訊裝置及其天線控制方法
CN107944530A (zh) * 2017-11-16 2018-04-20 国网安徽省电力公司电力科学研究院 一种电子标签灵敏度测试的校准方法
US10540528B1 (en) 2017-12-11 2020-01-21 Trexler Technologies, Inc. Methods of making and using an identification tag system for use with an electromagnetic energy cable
ES2727150A1 (es) * 2018-04-13 2019-10-14 Yocto Tech S L Tag electrónico semiactivo autoalimentado con capacidad de procesamiento autónomo y su procedimiento de comunicación
US11109121B2 (en) * 2018-05-10 2021-08-31 Physio-Control, Inc. Systems and methods of secure communication of data from medical devices
DE102018213730A1 (de) * 2018-08-15 2020-02-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Passiv arbeitender Transponder mit sensitiver Funktionalität
US11681886B2 (en) * 2018-09-06 2023-06-20 John P. Peeters Genomic and environmental blockchain sensors
WO2020106005A1 (ko) * 2018-11-20 2020-05-28 주식회사 후본 매트릭스 레이어를 이용하여 태그와 통신을 수행하는 통신 장치
US11475265B2 (en) * 2018-12-19 2022-10-18 Research & Business Foundation Sungkyunkwan University NFC QR code label for preventing forgery and falsification and method for producing NFC QR code label
WO2020206372A1 (en) * 2019-04-03 2020-10-08 Pb Inc. Temperature sensor patch wirelessly connected to a smart device
JP7194292B2 (ja) * 2019-04-17 2022-12-21 アップル インコーポレイテッド 無線位置特定可能タグ
CN110164663B (zh) * 2019-05-21 2020-09-29 中国矿业大学 生命探测装置天线用本质安全型pcb电感
CN114424207A (zh) * 2019-09-19 2022-04-29 胡斯华纳有限公司 无线识别标签和对应的读取器
US11490495B2 (en) * 2020-04-08 2022-11-01 Nthdegree Technologies Worldwide, Inc. NFC-powered LED sticker with integral capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055721A1 (de) * 2002-12-13 2004-07-01 Giesecke & Devrient Gmbh Transponder zur berührungslosen übertragung von daten
US20090091501A1 (en) * 2007-10-03 2009-04-09 Sony Corporation Antenna substrate for non-contact communication apparatus and non-contact communication apparatus
US20140209692A1 (en) * 2011-10-05 2014-07-31 Fujitsu Limited Rfid tag and fuse

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5050604A (en) 1989-10-16 1991-09-24 Israel Reshef Apparatus and method for monitoring the health condition of a subject
DE4002801C1 (zh) 1990-01-31 1991-04-11 Texas Instruments Deutschland Gmbh, 8050 Freising, De
US6087930A (en) 1994-02-22 2000-07-11 Computer Methods Corporation Active integrated circuit transponder and sensor apparatus for transmitting vehicle tire parameter data
GB2308947A (en) 1996-01-04 1997-07-09 I D Systems Ltd Identification tag with environmental sensing facility
US6437692B1 (en) 1998-06-22 2002-08-20 Statsignal Systems, Inc. System and method for monitoring and controlling remote devices
US6617963B1 (en) * 1999-02-26 2003-09-09 Sri International Event-recording devices with identification codes
DE10220171A1 (de) 2002-05-06 2003-11-27 K-Jump Health Co Elektronisches Patch Thermometer
US6847912B2 (en) * 2002-05-07 2005-01-25 Marconi Intellectual Property (Us) Inc. RFID temperature device and method
CA2387106A1 (en) 2002-05-21 2003-11-21 Information Mediary Corporation Method for measuring temperature using a remote, passive, calibrated rf/rfid tag including a method for calibration
US7256695B2 (en) 2002-09-23 2007-08-14 Microstrain, Inc. Remotely powered and remotely interrogated wireless digital sensor telemetry system
FR2849764B1 (fr) 2003-01-14 2012-12-14 Oreal Dispositif et procede visant notamment a evaluer l'hydratation de la peau ou des muqueuses
US7148803B2 (en) 2003-10-24 2006-12-12 Symbol Technologies, Inc. Radio frequency identification (RFID) based sensor networks
US7463142B2 (en) 2003-12-30 2008-12-09 Kimberly-Clark Worldwide, Inc. RFID system and method for tracking environmental data
KR100814545B1 (ko) 2004-01-27 2008-03-17 알티베라, 엘엘씨 진단 라디오 주파수 식별 센서 및 그 애플리케이션
JP2006085411A (ja) * 2004-09-16 2006-03-30 Hitachi Ltd トランスポンダ及びそのトランスポンダを用いたセンサ測定システム
WO2006081693A1 (de) 2005-02-02 2006-08-10 Plantcare Ag Vorrichtung zur messung thermischer eigenschaften in einem medium und verfahren zur bestimmung von feuchtigkeit im medium
US7383072B2 (en) 2005-05-09 2008-06-03 P. J. Edmonson Ltd Sweat sensor system and method of characterizing the compositional analysis of sweat fluid
KR20080017460A (ko) 2005-06-08 2008-02-26 파워캐스트 코포레이션 Rf 에너지 하베스팅을 이용하여 디바이스에 전력을공급하는 장치 및 방법
US7629184B2 (en) * 2007-03-20 2009-12-08 Tokyo Electron Limited RFID temperature sensing wafer, system and method
US8406865B2 (en) 2008-09-30 2013-03-26 Covidien Lp Bioimpedance system and sensor and technique for using the same
JP5358332B2 (ja) 2009-07-23 2013-12-04 テルモ株式会社 体温測定システム及びデータ読み取り装置ならびにその駆動制御方法
TWI408372B (zh) 2009-08-14 2013-09-11 Univ Chung Hua 應用無線射頻識別標籤技術之熱氣泡式加速儀及其製備方法
RU2403561C1 (ru) 2009-10-21 2010-11-10 Шлюмберже Текнолоджи Б.В. Способ определения тепловых свойств твердых тел и устройство для его реализации
US8930147B2 (en) 2010-02-05 2015-01-06 Prima-Temp, Inc. Multi-sensor patch and system
JP5697233B2 (ja) 2010-09-16 2015-04-08 東日本旅客鉄道株式会社 環境情報計測装置、環境情報計測システム、及び環境情報計測方法
AU2011357590B2 (en) 2011-01-28 2015-09-24 Bluechiip Pty Ltd Temperature sensing and heating device
CN102170295A (zh) 2011-04-21 2011-08-31 惠州Tcl移动通信有限公司 Nfc功能与fm-tm发送功能共用天线的移动终端
US9151741B2 (en) 2011-11-02 2015-10-06 Avery Dennison Corporation RFID-based devices and methods for initializing a sensor
US20160042213A1 (en) 2012-02-15 2016-02-11 Gema Touch, Inc. RFID User Input Device with One or More Integrated Circuits for Use with an RFID System
EP2645091B1 (en) 2012-03-30 2018-10-17 ams international AG Integrated circuit comprising a gas sensor
JP5798974B2 (ja) * 2012-04-13 2015-10-21 株式会社ユニバーサルエンターテインメント 識別情報アクセス装置
US9220416B2 (en) 2012-06-22 2015-12-29 Microsoft Technology Licensing, Llc Heat flux balanced thermometer for measuring human core temperature
TW201433214A (zh) 2013-02-01 2014-08-16 Primax Electronics Ltd 無線發熱裝置以及無線發熱系統
WO2016018585A1 (en) 2014-07-31 2016-02-04 3M Innovative Properties Company Rfid tag on stretchable substrate
CN106575369B (zh) 2014-07-31 2019-09-13 3M创新有限公司 柔性基底上的rfid标签
EP3215985B1 (en) 2014-11-07 2019-07-03 3M Innovative Properties Company Wireless sensor for thermal property with thermal source
WO2016073408A1 (en) 2014-11-07 2016-05-12 3M Innovative Properties Company Wireless sensing system using sensing device with excitation element
WO2016073344A1 (en) 2014-11-07 2016-05-12 3M Innovative Properties Company Wireless sensing devices and method for detecting hydration
CN107077632B (zh) 2014-11-07 2018-12-14 3M创新有限公司 具有多个天线、ic和/或感测元件的标签组件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055721A1 (de) * 2002-12-13 2004-07-01 Giesecke & Devrient Gmbh Transponder zur berührungslosen übertragung von daten
US20090091501A1 (en) * 2007-10-03 2009-04-09 Sony Corporation Antenna substrate for non-contact communication apparatus and non-contact communication apparatus
US20140209692A1 (en) * 2011-10-05 2014-07-31 Fujitsu Limited Rfid tag and fuse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI759098B (zh) * 2021-02-05 2022-03-21 宏通數碼科技股份有限公司 雙天線發光感應卡

Also Published As

Publication number Publication date
EP3215986B1 (en) 2019-07-03
WO2016073327A3 (en) 2016-06-09
TW201631913A (zh) 2016-09-01
CN107077632A (zh) 2017-08-18
US9922281B2 (en) 2018-03-20
WO2016073327A2 (en) 2016-05-12
EP3215986A2 (en) 2017-09-13
KR101799743B1 (ko) 2017-11-20
CN107077632B (zh) 2018-12-14
US20170249542A1 (en) 2017-08-31
KR20170069290A (ko) 2017-06-20

Similar Documents

Publication Publication Date Title
TWI677824B (zh) 具有多個天線、積體電路、及/或感測元件的標籤總成
US10346734B2 (en) Wireless sensor for thermal property with thermal source
TWI681186B (zh) 含水無線感測裝置及系統
US11346723B2 (en) Wireless sensing system using sensing device with excitation element
US10152667B2 (en) Tag assembly with multiple antennas, ICs, and/or sensing elements

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees