TWI677705B - Shearing interference microscope using Salvator as a shear element - Google Patents
Shearing interference microscope using Salvator as a shear element Download PDFInfo
- Publication number
- TWI677705B TWI677705B TW107112041A TW107112041A TWI677705B TW I677705 B TWI677705 B TW I677705B TW 107112041 A TW107112041 A TW 107112041A TW 107112041 A TW107112041 A TW 107112041A TW I677705 B TWI677705 B TW I677705B
- Authority
- TW
- Taiwan
- Prior art keywords
- objective lens
- light source
- light
- beam splitter
- salvator
- Prior art date
Links
- 241000993925 Salvator Species 0.000 title claims abstract description 68
- 238000010008 shearing Methods 0.000 title claims abstract description 31
- 238000004458 analytical method Methods 0.000 claims abstract description 115
- 238000012360 testing method Methods 0.000 claims description 52
- 239000004973 liquid crystal related substance Substances 0.000 claims description 26
- 241000269333 Caudata Species 0.000 claims description 7
- 210000002858 crystal cell Anatomy 0.000 claims description 7
- 230000010287 polarization Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 27
- 230000003287 optical effect Effects 0.000 description 20
- 239000013078 crystal Substances 0.000 description 13
- 230000010363 phase shift Effects 0.000 description 11
- 244000166071 Shorea robusta Species 0.000 description 9
- 235000015076 Shorea robusta Nutrition 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 230000000149 penetrating effect Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000000423 heterosexual effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000386 microscopy Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000004988 Nematic liquid crystal Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical group Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001152 differential interference contrast microscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000009260 qiming Substances 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
Landscapes
- Microscoopes, Condenser (AREA)
- Polarising Elements (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
本發明提供一種使用薩爾瓦稜鏡為剪切元件的剪切干涉顯微鏡,至少包含光源、極化器、聚光鏡、物鏡、分光鏡、薩爾瓦稜鏡、分析板及感光元件;其中極化器將來自光源的光線,轉換為極化光;聚光鏡和物鏡依序收集傳遞過來的光線去照射受測物;薩爾瓦稜鏡設於物鏡和受測物間,將來自物鏡的光束橫向剪移為偏振態互相垂直的尋異光及異尋光,再將由受測物反射回來的尋異光及異尋光,合併為一束;最後物鏡將合併光束所攜帶的影像,經分光鏡及分析板後,成像在感光元件上。 The present invention provides a shear interference microscope using a Salvator as a shearing element, which at least includes a light source, a polarizer, a condenser lens, an objective lens, a beam splitter, a Salvat, an analysis plate, and a photosensitive element; wherein polarization The device converts the light from the light source into polarized light; the condenser lens and the objective lens sequentially collect the transmitted light to illuminate the measured object; Salva is located between the objective lens and the measured object and cuts the light beam from the objective lens laterally Shift to the mutually different polarized light and the different-seeking light, and then combine the different-seeking light and different-seeking light reflected from the measured object into one beam; finally, the objective lens will combine the images carried by the light beam through the beam splitter and After analyzing the plate, it is imaged on the photosensitive element.
Description
本發明係為一剪切干涉顯微鏡,特別為使用薩爾瓦稜鏡為剪切元件的剪切干涉顯微鏡。 The present invention is a shear interference microscope, in particular a shear interference microscope using a Salvagone as a shear element.
剪切干涉顯微鏡(Shearing interference microscope)係一種結合剪切干涉術及顯微術的量測儀器;當剪切距離很小時(通常是指看不出有雙重影像時的剪切距離),它們又被稱為差分干涉對比顯微鏡(Differential interference contrast microscope)。習知的剪切干涉顯微鏡可分為三類,第一類使用諾瑪斯基(Nomarski)稜鏡、第二類使用薩爾瓦(Savart)稜鏡、第三類使用循環干涉儀為剪切元件。然,為了消除物鏡所帶來的波前扭曲,上述三種顯微鏡都要增添一些額外的裝置,並因而衍生出應用上的缺失。 Shearing interference microscope (Shearing interference microscope) is a measuring instrument combining shear interference and microscopy; when the shear distance is very small (usually refers to the shear distance when there is no double image), they are It is called a differential interference contrast microscope. The conventional shearing interference microscope can be divided into three types. The first type uses Nomarski 稜鏡, the second type uses Savart 稜鏡, and the third type uses cyclic interferometers for shearing. element. However, in order to eliminate the wavefront distortion brought about by the objective lens, the above three microscopes have to add some additional devices, and thus have a defect in application.
例如,如圖1所示,第一類顯微鏡要讓剪切光在物鏡背焦面交會,且需要準直器(Collimator)來適度地將入射光線準直化,這增加調校的困難度也犧牲了視場(FOV,Field of view);如圖2所示,第二類顯微鏡以非聚焦顯微系統(Afocal microscope system)來取代傳統物鏡,以致降低了影像解析力(Resolving power);如圖3所示,第三類顯微鏡不但採用準 直器來準直入射光,更配合用一個非聚焦顯微系統來取代傳統物鏡,故同時犧牲視場及降低影像解析力。雖然還有一些其它設計被提出來,但其依然使用準直器、非聚焦顯微系統,或影像濾波法來消除物鏡所帶來的波前扭曲。故,如何將上述缺失問題加以改進,乃為本案發明人所欲解決之技術困難點之所在。 For example, as shown in Figure 1, the first type of microscope requires shear light to intersect at the back focal plane of the objective lens, and requires a collimator (Collimator) to moderately collimate the incident light, which increases the difficulty of adjustment. Field of view (FOV) is sacrificed; as shown in Figure 2, the second type of microscope uses a non-focusing microscope system (Afocal microscope system) to replace the traditional objective lens, which reduces the image resolution (Resolving power); such as As shown in Figure 3, the third type of microscope A collimator is used to collimate the incident light, and a non-focusing microscope system is used to replace the traditional objective lens, so the field of view and the resolution of the image are reduced at the same time. Although some other designs have been proposed, they still use collimators, unfocused microscopy systems, or image filtering methods to eliminate the wavefront distortion caused by objective lenses. Therefore, how to improve the above-mentioned problems is the technical difficulty that the inventor wants to solve.
本發明相關之現有技術及知識之參考資料,如下所列: The reference materials of the prior art and knowledge related to the present invention are listed below:
[1] Lang W. Nomarski differential interference contrast microscopy. Zeiss information No. 70, 16th year, 1968, 114-20. [1] Lang W. Nomarski differential interference contrast microscopy. Zeiss information No. 70, 16th year, 1968, 114-20.
[2] Lessor DL, Hartman JS, Gordon RL. Quantitative surface topography determination by Nomarski reflection microscopy. I. Theory. J Opt Soc Am 69, 1979, 357-366. [2] Lessor DL, Hartman JS, Gordon RL. Quantitative surface topography determination by Nomarski reflection microscopy. I. Theory. J Opt Soc Am 69, 1979, 357-366.
[3] Hartman JS, Gordon RL, Lessor DL. Quantitative surface topography determination by Nomarski reflection microscopy. 2: Microscope modification, calibration, and planar sample experiments. Appl Opt 19, 1980, 2998-3009. [3] Hartman JS, Gordon RL, Lessor DL. Quantitative surface topography determination by Nomarski reflection microscopy. 2: Microscope modification, calibration, and planar sample experiments. Appl Opt 19, 1980, 2998-3009.
[4] Hartman JS, Gordon RL, Lessor DL. Nomarski differential interference contrast microscopy for surface slope measurements: an examination of techniques. Appl Opt 20, 1981, 2665-9. [4] Hartman JS, Gordon RL, Lessor DL. Nomarski differential interference contrast microscopy for surface slope measurements: an examination of techniques. Appl Opt 20, 1981, 2665-9.
[5] Jabr SN. Surface-roughness measurement by digital processing of Nomarski phase-contrast images. Opt Lett 10, 1985, 526-8. [5] Jabr SN. Surface-roughness measurement by digital processing of Nomarski phase-contrast images. Opt Lett 10, 1985, 526-8.
[6] Corle TR, Kino GS. Differential interference contrast imaging on a real time confocal scanning optical microscope. Appl Opt 29, 1990, 3769-74. [6] Corle TR, Kino GS. Differential interference contrast imaging on a real time confocal scanning optical microscope. Appl Opt 29, 1990, 3769-74.
[7] Ooki H, Iwasaki Y, Iwasaki J. Differential interference contrast microscope with differential detection for optimizing image contrast. Appl Opt 35, 1996, 2230-4. [7] Ooki H, Iwasaki Y, Iwasaki J. Differential interference contrast microscope with differential detection for optimizing image contrast. Appl Opt 35, 1996, 2230-4.
[8] Gleyzes P, Boccara AC, Saint-Jalmes H. Multichannel Nomarski microscope with polarization modulation: performance and applications. Opt Lett 22, 1997, 1529-31. [8] Gleyzes P, Boccara AC, Saint-Jalmes H. Multichannel Nomarski microscope with polarization modulation: performance and applications. Opt Lett 22, 1997, 1529-31.
[9] Mansuripur M. Nomarski’s differential interference contrast microscope. Optics & Photonics News, September 1999, 34-7. [9] Mansuripur M. Nomarski ’s differential interference contrast microscope. Optics & Photonics News, September 1999, 34-7.
[10] Arnison MR, Larkin KG, Sheppard C J R, Smith N I, Cogswell CJ. Linear phase imaging using differential interference contrast microscopy. J Microsc 214, 2004, 7-12. [10] Arnison MR, Larkin KG, Sheppard C J R, Smith N I, Cogswell CJ. Linear phase imaging using differential interference contrast microscopy. J Microsc 214, 2004, 7-12.
[11] Munro PRT, Török P. Vectorial, high numerical aperture study of Nomarski’s differential interference contrast microscope. Opt Exp 13, 2005, 6833-47. [11] Munro PRT, Török P. Vectorial, high numerical aperture study of Nomarski ’s differential interference contrast microscope. Opt Exp 13, 2005, 6833-47.
[12] King SV, Libertun A, Piestun R, Cogswell CJ, Preza C. Quantitative phase microscopy through differential interference imaging. J Biomed Opt 13, 2008, 024020. [12] King SV, Libertun A, Piestun R, Cogswell CJ, Preza C. Quantitative phase microscopy through differential interference imaging. J Biomed Opt 13, 2008, 024020.
[13] Duncan DD, Fischer DG, Dayton A, Prahl SA. Quantitative Carré differential interference contrast microscopy to assess phase and amplitude. J Opt Soc Am A 28, 2011, 1297-309. [13] Duncan DD, Fischer DG, Dayton A, Prahl SA. Quantitative Carré differential interference contrast microscopy to assess phase and amplitude. J Opt Soc Am A 28, 2011, 1297-309.
[14] Serrano-Trujillo A, Nava-Vega A, Ruiz-Cortez V. Development of a polarimetric experimental setup for surface profiling based on a microscopy application. Proc of SPIE 9598, 2015, 95981H. [14] Serrano-Trujillo A, Nava-Vega A, Ruiz-Cortez V. Development of a polarimetric experimental setup for surface profiling based on a microscopy application. Proc of SPIE 9598, 2015, 95981H.
[15] Françon M. Polarization apparatus for interference microscopy and macroscopy of isotropic transparent objects. J Opt Soc Am 47, 1957, 528-535. [15] Françon M. Polarization apparatus for interference microscopy and macroscopy of isotropic transparent objects. J Opt Soc Am 47, 1957, 528-535.
[16] Trinh HX, Lin ST, Chen LC, Yeh SL, Chen CS. Differential interference contrast microscopy using Savart plates. J Opt (United Kingdom) 19, 2017, 045601. [16] Trinh HX, Lin ST, Chen LC, Yeh SL, Chen CS. Differential interference contrast microscopy using Savart plates. J Opt (United Kingdom) 19, 2017, 045601.
[17] Trinh HX, Lin S T, Chen LC, Yeh S L, Hoang H H, Shearing interference microscope for step-height measurements, J. Microsc. 266, 2017, 178-185. [17] Trinh HX, Lin S T, Chen LC, Yeh S L, Hoang H H, Shearing interference microscope for step-height measurements, J. Microsc. 266, 2017, 178-185.
[18] Chatterjee S, Kumar YP. White light differential interference contrast microscope with a Sagnac interferometer. Appl Opt 53, 2014, 296-300. [18] Chatterjee S, Kumar YP. White light differential interference contrast microscope with a Sagnac interferometer. Appl Opt 53, 2014, 296-300.
[19] Chatterjee S, Kumar YP. Un-polarized light transmission DIC microscope. J Opt (India) 45, 2016, 297-301. [19] Chatterjee S, Kumar YP. Un-polarized light transmission DIC microscope. J Opt (India) 45, 2016, 297-301.
[20] Levin GG, Vishnyakov GN, Minaev VL, Latushko MI, Pickalov VV, Belyakov VK, Sukhenko EP, Demyanenko AV. Shearing interference microscopy for tomography of living cells. Proc of SPIE-OSA 9536, 2015, 95360G. [20] Levin GG, Vishnyakov GN, Minaev VL, Latushko MI, Pickalov VV, Belyakov VK, Sukhenko EP, Demyanenko AV. Shearing interference microscopy for tomography of living cells. Proc of SPIE-OSA 9536, 2015, 95360G.
[21] Adachi M, Yasaka K. Roughness measurement using a shearing interference microscope. Appl Opt 25, 1986, 764-8. [21] Adachi M, Yasaka K. Roughness measurement using a shearing interference microscope. Appl Opt 25, 1986, 764-8.
[22] Liu X, Gao Y. Surface roughness profile measurement based on microscopic shearing interferometry, http://www.aspe.net/publications/Annual_2001/PDF/POSTERS/METRO/SURF/1128.PDF. [22] Liu X, Gao Y. Surface roughness profile measurement based on microscopic shearing interferometry, http://www.aspe.net/publications/Annual_2001/PDF/POSTERS/METRO/SURF/1128.PDF.
上述的所有文獻僅是提供了解相關技術,但仍未解決前述的問題;例如第[1]-[14]篇文獻即是上文第一類現有技術、第[15]-[17]篇文獻即是上文第二類現有技術、第[18]-[19]篇文獻即是上文第三類現有技術、而[20]-[22]篇文獻即是上文其它現有技術。 All of the above documents are only for understanding related technologies, but still do not solve the aforementioned problems; for example, articles [1]-[14] are the first type of prior art and articles [15]-[17]. That is, the second type of prior art, the [18]-[19] documents are the third type of prior art, and the [20]-[22] documents are the other prior art.
有鑑於上述現有技藝之問題,本發明提供一種使用薩爾瓦稜鏡為剪切元件的剪切干涉顯微鏡。 In view of the above-mentioned problems of the prior art, the present invention provides a shear interference microscope using a Salvagone as a shear element.
本發明提供之一種使用薩爾瓦稜鏡為剪切元件的剪切干涉顯微鏡,包含光源、極化器、聚光鏡、第一物鏡、第一薩爾瓦稜鏡、分光鏡、第一分析板以及第一感光元件;其中由光源發出的光束,會被極化器轉換為極化光,也會被聚光鏡收集,依序經過分光鏡、第一物鏡、第一薩爾瓦稜鏡後,形成照物光照射在受測物上;照物光接著被受測物反射,再依序經過第一薩爾瓦稜鏡、第一物鏡、分光鏡、第一分析板後,成像於第一感光元件上。 The present invention provides a shear interference microscope using a Salvator as a shearing element, comprising a light source, a polarizer, a condenser lens, a first objective lens, a first Salvator, a beam splitter, a first analysis plate, and The first photosensitive element; the light beam emitted by the light source will be converted into polarized light by the polarizer, and will also be collected by the condenser lens. After passing through the beam splitter, the first objective lens, and the first Salvator, it will form a photo. The object light is irradiated on the test object; the object light is then reflected by the test object, and then passes through the first Salvator, the first objective lens, the beam splitter, and the first analysis plate, and is imaged on the first photosensitive element. on.
本發明提供之另一種使用薩爾瓦稜鏡為剪切元件的剪切干涉顯微鏡,包含光源、極化器、聚光鏡、第一物鏡、第二物鏡、第一薩爾瓦稜鏡、第二薩爾瓦稜鏡、第二分析板以及第二感光元件;其中第二薩爾瓦稜鏡係和第一薩爾瓦稜鏡相同,但繞水平軸(z-軸)或垂直軸(y-軸)旋轉180°的稜鏡;又其中由光源發出的光束,會被極化器轉換為極化光,也會被聚光鏡收集,依序經過第一物鏡、第一薩爾瓦稜鏡後,形成照物光照射到受測物上;照物光接著穿過受測物,再依序經過第二薩爾瓦稜鏡、第二物鏡、第二分析板後,成像於第二感光元件上。 The present invention provides another shear interference microscope using a Salvator as a shearing element, which includes a light source, a polarizer, a condenser lens, a first objective lens, a second objective lens, a first Salvator, and a second Saar Elva 稜鏡, second analysis plate, and second photosensitive element; the second Salva 稜鏡 system is the same as the first Salva 稜鏡, but about the horizontal axis (z-axis) or the vertical axis (y-axis ) 稜鏡 rotated by 180 °; and the light beam emitted by the light source will be converted into polarized light by the polarizer, and will also be collected by the condenser lens. The object light is irradiated on the test object; the object light then passes through the test object, passes through the second Salvator, the second objective lens, and the second analysis plate in sequence, and is imaged on the second photosensitive element.
本發明提供之又一種使用薩爾瓦稜鏡為剪切元件的剪切干涉顯微鏡,包含光源、極化器、聚光鏡、第一物鏡、第二物鏡、第一薩爾瓦稜鏡、第二薩爾瓦稜鏡、分光鏡、第一分析板、第二分析板、第一感光元件以及第二感光元件;其中第二薩爾瓦稜鏡係和第一薩爾瓦稜鏡相同但繞水平軸(z-軸)或垂直軸(y-軸)旋轉180°的稜鏡;又其中之一光束路徑為光束係由光源發出,它會被極化器轉換為極化光,也會被聚光鏡收集,依序經分光鏡、第一物鏡、第一薩爾瓦稜鏡後,形成照物光照射在受測物 上;照物光接著又被受測物反射,再依序經過第一薩爾瓦稜鏡、第一物鏡、分光鏡、第一分析板後,成像於第一感光元件上;其中之另一光束路徑為光束係由該光源發出,它會被極化器轉換為極化光,也會被聚光鏡收集,依序經分光鏡、第一物鏡、第一薩爾瓦稜鏡後,形成照物光照射在受測物上;照物光接著穿過受測物,再依序經過第二薩爾瓦稜鏡、第二物鏡、第二分析板後,成像於第二感光元件上。 The present invention provides another shear interference microscope using a Salvator as a shearing element, which includes a light source, a polarizer, a condenser lens, a first objective lens, a second objective lens, a first Salvator, and a second Saar Salvager, beam splitter, first analysis plate, second analysis plate, first photosensitive element, and second photosensitive element; the second Salvagium system is the same as the first Salvagium system but is about a horizontal axis (z-axis) or vertical axis (y-axis) 旋转 rotated by 180 °; one of the beam paths is a light beam emitted by a light source, which will be converted into polarized light by a polarizer and collected by a condenser After sequentially passing through the beam splitter, the first objective lens, and the first Salvadar, the light is formed to illuminate the object under test. The object light is then reflected by the measured object, and then passes through the first Salvator, the first objective lens, the beam splitter, and the first analysis plate in order, and is imaged on the first photosensitive element; one of the other The light beam path is emitted by the light source. It will be converted into polarized light by the polarizer and collected by the condenser lens. After passing through the beam splitter, the first objective lens, and the first Salvator, it will form a photographic object. The light is irradiated on the test object; the light of the test object passes through the test object, passes through the second Salvator, the second objective lens, and the second analysis plate in sequence, and is imaged on the second photosensitive element.
本發明提供之再一種使用薩爾瓦稜鏡為剪切元件的剪切干涉顯微鏡,包含光源、極化器、聚光鏡、第一物鏡、第三薩爾瓦稜鏡、第四薩爾瓦稜鏡、分光鏡、第一分析板以及第一感光元件;其中第三、第四薩爾瓦稜鏡為個別可開啟、可關閉,且彼此對光線的剪切方向互相垂直的稜鏡;又其中光束係由光源發出,它會被極化器轉換為極化光,也會被聚光鏡收集,依序經過分光鏡、第一物鏡、第三薩爾瓦稜鏡、第四薩爾瓦稜鏡後,形成照物光照射在受測物上;照物光接著被受測物反射,再依序經過第四、第三薩爾瓦稜鏡、第一物鏡、分光鏡、第一分析板後,成像於第一感光元件上。 Another shear interference microscope provided by the present invention using a Salvagium as a shearing element includes a light source, a polarizer, a condenser lens, a first objective lens, a third Salvagium, and a fourth Salvagth. , Beam splitter, first analysis plate, and first photosensitive element; among them, the third and fourth Salva 稜鏡 are individual 开启 which can be turned on and off, and the shearing directions of the light rays are perpendicular to each other; It is emitted by a light source, it will be converted into polarized light by a polarizer, and it will also be collected by a condenser lens. After passing through the beam splitter, the first objective lens, the third Salvator, the fourth Salvator, The formed object light is irradiated on the test object; the object light is then reflected by the test object, and then passes through the fourth, third Salvadar, the first objective lens, the beam splitter, and the first analysis plate, and is imaged. On the first photosensitive element.
本發明提供之再一種使用薩爾瓦稜鏡為剪切元件的剪切干涉顯微鏡,包含光源、極化器、聚光鏡、第一物鏡、第二物鏡、第三薩爾瓦稜鏡、第四薩爾瓦稜鏡、第五薩爾瓦稜鏡、第六薩爾瓦稜鏡、第二分析板以及第二感光元件;其中第三、第四薩爾瓦稜鏡為個別可開啟、可關閉,且彼此對光線的剪切方向互相垂直的稜鏡,第五、第六薩爾瓦稜鏡是分別和第四、第三薩爾瓦稜鏡相同但繞水平軸(z-軸)或垂直軸(y-軸)旋轉180°的稜鏡;又其中光束係由光源發出,它會被極化器轉換為極化光,也 會被聚光鏡收集,依序經過第一物鏡、第三、第四薩爾瓦稜鏡後,形成照物光照射在受測物上;照物光接著穿過受測物,再依序經過第五、第六薩爾瓦稜鏡、第二物鏡、第二分析板後,成像於第二感光元件上。 Another shear interference microscope provided by the present invention using a Salvator as a shearing element includes a light source, a polarizer, a condenser lens, a first objective lens, a second objective lens, a third Salvator, and a fourth Salva 稜鏡, fifth Salwa 稜鏡, sixth salwa 稜鏡, second analysis plate and second photosensitive element; among them, the third and fourth salwa 稜鏡 are individually openable and can be closed, And the shear directions perpendicular to each other are perpendicular to each other. The fifth and sixth salva 分别 are the same as the fourth and third salva 分别 respectively, but around the horizontal (z-axis) or vertical axis. (y-axis) 稜鏡 rotated by 180 °; and where the light beam is emitted by a light source, it will be converted into polarized light by a polarizer. It will be collected by the condenser lens. After passing through the first objective lens, the third, and the fourth Salvator, it will form the object light and illuminate the object; the object light then passes through the object and then passes through the first object. 5. The sixth Salvator, the second objective lens, and the second analysis plate are imaged on the second photosensitive element.
本發明提供之再一種使用薩爾瓦稜鏡為剪切元件的剪切干涉顯微鏡,包含光源、極化器、聚光鏡、第一物鏡、第二物鏡、第三薩爾瓦稜鏡、第四薩爾瓦稜鏡、第五薩爾瓦稜鏡、第六薩爾瓦稜鏡、分光鏡、第一分析版、第二分析板、第一感光元件以及第二感光元件;其中第三、第四薩爾瓦稜鏡為個別可開啟、可關閉,且彼此對光線的剪切方向互相垂直的稜鏡,第五、第六薩爾瓦稜鏡是分別和第四、第三薩爾瓦稜鏡相同但繞水平軸(z-軸)或垂直軸(y-軸)旋轉180°的稜鏡;又其中之一光束路徑係由光源發出,它會被極化器轉換為極化光,也會被聚光鏡收集,依序經過分光鏡、第一物鏡、第三、第四薩爾瓦稜鏡後,形成照物光照射在受測物上;照物光接著被受測物反射,再依序經過第四、第三薩爾瓦稜鏡、第一物鏡、分光鏡、第一分析板後,成像於第一感光元件上;以及其中另一光束路徑係由光源發出,它會被極化器轉換為極化光,也會被聚光鏡收集,依序經過分光鏡、第一物鏡、第三、第四薩爾瓦稜鏡後,形成照物光照射在受測物上;照物光接著穿過受測物,再依序經過第五、第六薩爾瓦稜鏡、第二物鏡、第二分析板後,成像於第二感光元件上。 Another shear interference microscope provided by the present invention using a Salvator as a shearing element includes a light source, a polarizer, a condenser lens, a first objective lens, a second objective lens, a third Salvator, and a fourth Salva 稜鏡, Salva 稜鏡 5, Salva 稜鏡 6, Beamsplitters, first analysis plate, second analysis plate, first photosensitive element, and second photosensitive element; of which third, fourth Salva salamanders are individual salamanders that can be turned on and off, and the shear directions of the rays are perpendicular to each other. The fifth and sixth salva salamanders are the fourth and third salva salamanders, respectively. The same 但 that rotates 180 ° around the horizontal axis (z-axis) or vertical axis (y-axis); and one of the beam paths is emitted by a light source, which will be converted into polarized light by a polarizer and will also Collected by a condenser lens, sequentially passing through the beam splitter, the first objective lens, the third, and the fourth Salvator, the light of the object is irradiated on the test object; the light of the object is then reflected by the test object and then sequentially After passing through the fourth and third Salvador, the first objective lens, the beam splitter, and the first analysis plate, the image is formed on the first photosensitive element And the other beam path is emitted by the light source, it will be converted into polarized light by the polarizer, and it will also be collected by the condenser, and then pass through the beam splitter, the first objective lens, the third, and the fourth salva After that, the object light is formed to illuminate the test object; the object light then passes through the test object, and then passes through the fifth and sixth salvage lenses, the second objective lens, and the second analysis plate in sequence. An image is formed on the second photosensitive element.
前述使用薩爾瓦稜鏡為剪切元件的剪切干涉顯微鏡,其中更進一步包含至少一個相位調制模組,設於極化器之光線輸出側、分光鏡與第一分析板之間、第二物鏡與第二分析板之間、或分光鏡與第一分析板之間暨第二物鏡與第二分析板之間;其中該相位調制模組係為一液晶 盒。 The aforementioned shear interference microscope using a Salvator as a shearing element further includes at least one phase modulation module disposed on the light output side of the polarizer, between the beam splitter and the first analysis plate, and second Between the objective lens and the second analysis plate, or between the beam splitter and the first analysis plate and between the second objective lens and the second analysis plate; wherein the phase modulation module is a liquid crystal box.
前述使用薩爾瓦稜鏡為剪切元件的剪切干涉顯微鏡,其中更進一步包含至少一個相位調制模組,設於極化器之光線輸出側、分光鏡與第一分析板之間、第二物鏡與第二分析板之間、或分光鏡與第一分析板之間暨第二物鏡與第二分析板之間;其中該相位調制模組係為一馬克-臻德(Mach-Zehnder)干涉儀,由一第一偏極橫向分光稜鏡、一第二偏極橫向分光稜鏡、及一旋轉平台所構成。 The aforementioned shear interference microscope using a Salvator as a shearing element further includes at least one phase modulation module disposed on the light output side of the polarizer, between the beam splitter and the first analysis plate, and second Between the objective lens and the second analysis plate, or between the beam splitter and the first analysis plate and between the second objective lens and the second analysis plate; wherein the phase modulation module is a Mach-Zehnder interference The instrument is composed of a first polarized transverse beam splitter, a second polarized transverse beam splitter, and a rotating platform.
前述使用薩爾瓦稜鏡為剪切元件的剪切干涉顯微鏡,其中更進一步包含至少一個相位調制模組,設於分光鏡與第一分析板之間、第二物鏡與第二分析板之間、或分光鏡與第一分析板之間暨第二物鏡與第二分析板之間;其中該相位調制模組係由一個二分之一波板及一個四分之一波板所構成;或由一個第一四分之一波板、一個二分之一波板、及一個第二四分之一波板所構成。 The aforementioned shear interference microscope using a Salvator as a shear element further includes at least one phase modulation module disposed between the beam splitter and the first analysis plate, and between the second objective lens and the second analysis plate. Or between the beam splitter and the first analysis plate and between the second objective lens and the second analysis plate; wherein the phase modulation module is composed of a half wave plate and a quarter wave plate; or It consists of a first quarter wave plate, a half wave plate, and a second quarter wave plate.
前述使用薩爾瓦稜鏡為剪切元件的剪切干涉顯微鏡,其中更進一步包含至少一個圓極化器,設於分光鏡與第一分析板之間、第二物鏡與第二分析板之間、或分光鏡與第一分析板之間暨第二物鏡與第二分析板之間;其中該圓極化器係由一個二分之一波板及一個四分之一波板所構成;或由一個四分之一波板所構成。 The aforementioned shear interference microscope using a Salvator as a shear element further includes at least one circular polarizer disposed between the beam splitter and the first analysis plate, and between the second objective lens and the second analysis plate. Or between the beam splitter and the first analysis plate and between the second objective lens and the second analysis plate; wherein the circular polarizer is composed of a half wave plate and a quarter wave plate; or Consists of a quarter wave plate.
上列詳細說明係針對本發明之可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 The above detailed description is a specific description of the feasible embodiment of the present invention, but this embodiment is not intended to limit the patent scope of the present invention. Any equivalent implementation or change that does not depart from the technical spirit of the present invention should be included in this case. Within the scope of patents.
綜上所述,本案不但在空間型態上確屬創新,並能較習 用技藝增進上述多項功效,應已充分符合新穎性及進步性之法定發明專利要件,爰依法提出申請,懇請 貴局核准本件發明專利申請案,以勵發明,至感德便。 To sum up, this case is not only innovative in terms of space type, but also can be compared with practice. To use technology to enhance the above-mentioned multiple effects, you should have fully complied with the novel and progressive statutory invention patent requirements, apply in accordance with the law, and kindly ask your office to approve this invention patent application in order to encourage inventions and to feel good.
100‧‧‧光源 100‧‧‧ light source
200‧‧‧極化器 200‧‧‧ polarizer
300‧‧‧聚光鏡 300‧‧‧ condenser
410‧‧‧第一物鏡 410‧‧‧The first objective lens
420‧‧‧第二物鏡 420‧‧‧Second objective lens
510‧‧‧第一薩爾瓦稜鏡 510‧‧‧First Salva 稜鏡
520‧‧‧第二薩爾瓦稜鏡 520‧‧‧Second Salvador
530‧‧‧第三薩爾瓦稜鏡 530‧‧‧Third Salwar
540‧‧‧第四薩爾瓦稜鏡 540‧‧‧Fourth Salvatore
550‧‧‧第五薩爾瓦稜鏡 550‧‧‧Fifth Salvador
560‧‧‧第六薩爾瓦稜鏡 560‧‧‧Sixth Salvatore
600‧‧‧受測物 600‧‧‧ Test object
700‧‧‧分光鏡 700‧‧‧ Beamsplitter
810‧‧‧第一分析板 810‧‧‧The first analysis board
820‧‧‧第二分析板 820‧‧‧Second analysis board
910‧‧‧第一感光元件 910‧‧‧first photosensitive element
920‧‧‧第二感光元件 920‧‧‧Second photosensitive element
1001‧‧‧相位調制模組 1001‧‧‧phase modulation module
1002‧‧‧相位調制模組 1002‧‧‧phase modulation module
1003‧‧‧相位調制模組 1003‧‧‧phase modulation module
1004‧‧‧相位調制模組 1004‧‧‧phase modulation module
1005‧‧‧圓極化器 1005‧‧‧circular polarizer
1006‧‧‧圓極化器 1006‧‧‧circular polarizer
10021‧‧‧第一偏極橫向分光稜鏡 10021‧‧‧The first polarized horizontal beam splitter 稜鏡
10022‧‧‧第二偏極橫向分光稜鏡 10022‧‧‧Second polarized horizontal beam splitting 稜鏡
10023‧‧‧旋轉平台 10023‧‧‧Rotating platform
10031‧‧‧二分之一波板 10031‧‧‧half-wave plate
10032‧‧‧四分之一波板 10032‧‧‧ quarter wave plate
10041‧‧‧第一四分之一波板 10041‧‧‧The first quarter wave plate
10042‧‧‧二分之一波板 10042‧‧‧half-wave plate
10043‧‧‧第二四分之一波板 10043‧‧‧The second quarter wave plate
10051‧‧‧二分之一波板 10051‧‧‧half wave plate
10052‧‧‧四分之一波板 10052‧‧‧ quarter wave plate
圖1係為現有技術中使用諾瑪斯基稜鏡的剪切干涉顯微鏡。 FIG. 1 is a shear interference microscope using a Nomarski 稜鏡 in the prior art.
圖2係為現有技術中使用薩爾瓦稜鏡的剪切干涉顯微鏡。 FIG. 2 is a shear interference microscope using a Salvator in the prior art.
圖3係為現有技術中使用循環干涉儀為剪切元件的剪切干涉顯微鏡。 FIG. 3 is a shear interference microscope using a cyclic interferometer as a shear element in the prior art.
圖4係為本發明之第一實施例之示意圖。 FIG. 4 is a schematic diagram of the first embodiment of the present invention.
圖5係為圖4中第一薩爾瓦稜鏡的右側視圖。 FIG. 5 is a right side view of the first Salvador in FIG. 4.
圖6係為圖4中第一物鏡、第一薩爾瓦稜鏡、及受測物的放大圖。 FIG. 6 is an enlarged view of the first objective lens, the first Salvator, and the test object in FIG. 4.
圖7用數學程式軟體(MATLAB)分析fc(△w)的結果示意圖。 FIG. 7 is a diagram showing the results of analyzing f c (Δw) by using a mathematical program software (MATLAB).
圖8係為本發明之第二實施例之示意圖。 FIG. 8 is a schematic diagram of a second embodiment of the present invention.
圖9係為本發明之第三實施例之示意圖。 FIG. 9 is a schematic diagram of a third embodiment of the present invention.
圖10係為本發明之第四實施例之示意圖。 FIG. 10 is a schematic diagram of a fourth embodiment of the present invention.
圖11係為本發明之第五實施例之示意圖。 FIG. 11 is a schematic diagram of a fifth embodiment of the present invention.
圖12係為本發明之第六實施例之示意圖。 FIG. 12 is a schematic diagram of a sixth embodiment of the present invention.
圖13係為本發明之第七實施例之示意圖。 FIG. 13 is a schematic diagram of a seventh embodiment of the present invention.
圖14係用本發明之第七實施例量測VLSI階高標準塊(VLSI step-height standard)所得之剪切干涉影像及相位剪切干涉影像。 FIG. 14 shows a shear interference image and a phase shear interference image obtained by measuring a VLSI step-height standard using a seventh embodiment of the present invention.
圖15係用本發明之第七實施例量測鍍鎳石英基板所得之剪切干涉 影像及相位剪切干涉影像。 FIG. 15 shows the shear interference obtained by measuring the nickel-plated quartz substrate using the seventh embodiment of the present invention. Image and phase shear interference image.
圖16係為本發明之第八實施例之示意圖。 FIG. 16 is a schematic diagram of an eighth embodiment of the present invention.
圖17係為本發明之第九實施例之示意圖。 FIG. 17 is a schematic diagram of a ninth embodiment of the present invention.
圖18係為本發明之第十實施例之示意圖。 FIG. 18 is a schematic diagram of a tenth embodiment of the present invention.
圖19係為本發明之第十一實施例之示意圖。 FIG. 19 is a schematic diagram of an eleventh embodiment of the present invention.
圖20係為本發明之第十二實施例之示意圖。 FIG. 20 is a schematic diagram of a twelfth embodiment of the present invention.
圖21係為本發明之第十三實施例之示意圖。 FIG. 21 is a schematic diagram of a thirteenth embodiment of the present invention.
圖22係為本發明之第十四實施例之示意圖。 Fig. 22 is a schematic diagram of a fourteenth embodiment of the present invention.
圖23係為本發明之第十五實施例之示意圖。 FIG. 23 is a schematic diagram of a fifteenth embodiment of the present invention.
圖24係為本發明之第十六實施例之示意圖。 FIG. 24 is a schematic diagram of a sixteenth embodiment of the present invention.
圖25係為本發明之第十七實施例之示意圖。 FIG. 25 is a schematic diagram of a seventeenth embodiment of the present invention.
圖26係為本發明之第十八實施例之示意圖。 FIG. 26 is a schematic diagram of the eighteenth embodiment of the present invention.
圖27係為本發明之第十九實施例之示意圖。 Fig. 27 is a schematic diagram of a nineteenth embodiment of the present invention.
圖28係為本發明之第二十實施例之示意圖。 FIG. 28 is a schematic diagram of a twentieth embodiment of the present invention.
圖29係為本發明之第二十一實施例之示意圖。 FIG. 29 is a schematic diagram of a twenty-first embodiment of the present invention.
圖30係為本發明之第二十二實施例之示意圖。 FIG. 30 is a schematic diagram of a twenty-second embodiment of the present invention.
圖31係為圖30中第三、第四薩爾瓦稜鏡的開啟與關閉說明圖。 FIG. 31 is an explanatory diagram of opening and closing of the third and fourth Salvador in FIG. 30.
圖32係為圖30中第一物鏡、第三、第四薩爾瓦稜鏡、及受測物的放大圖。 FIG. 32 is an enlarged view of the first objective lens, the third and fourth Salvador, and the test object in FIG. 30.
圖33係為向列型液晶盒受電壓驅動時,其等效光軸變化說明圖。 FIG. 33 is an explanatory diagram of changes in the equivalent optical axis of a nematic liquid crystal cell when it is driven by a voltage.
圖34係為液晶薩爾瓦稜鏡開啟、關閉時的光軸方向說明圖。 FIG. 34 is an explanatory view of an optical axis direction when the liquid crystal Salva light is turned on and off.
圖35係為本發明之第二十三實施例之示意圖。 FIG. 35 is a schematic diagram of the twenty-third embodiment of the present invention.
圖36係為本發明之第二十四實施例之示意圖。 FIG. 36 is a schematic diagram of a twenty-fourth embodiment of the present invention.
為利 貴審查委員了解本發明之技術特徵、內容與優點及其所能達到之功效,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本發明於實際實施上的權利範圍,合先敘明。 In order for the reviewing committee members to understand the technical features, contents and advantages of the present invention and the effects that can be achieved, the present invention is described in detail with the accompanying drawings in the form of embodiments, and the drawings used therein are The main purpose is only for the purpose of illustration and supplementary description. It may not be the actual proportion and precise configuration after the implementation of the invention. Therefore, the attached drawings should not be interpreted and limited to the scope of rights of the present invention in actual implementation. He Xianming.
本發明係一種使用薩爾瓦稜鏡為剪切元件的剪切干涉顯微鏡,本發明至少可以依下列各實施例達成,並由其中光束的行經路線,可以稱為反射式剪切干涉顯微鏡(第一實施例~第七實施例及第二十二實施例)、穿透式剪切干涉顯微鏡(第八實施例~第十四實施例及第二十三實施例)、反射穿透兩用式剪切干涉顯微鏡(第十五實施例~第二十一實施例及第二十四實施例)。 The present invention is a shear interference microscope using a Salvator as a shearing element. The present invention can be achieved according to at least the following embodiments, and the path of the light beam can be called a reflective shear interference microscope (No. One embodiment to the seventh embodiment and the twenty-second embodiment), a transmission type shear interference microscope (the eighth embodiment to the fourteenth embodiment and the twenty-third embodiment), a reflection and transmission dual-use type Shearing interference microscope (15th to 21st and 24th embodiments).
第一實施例 First embodiment
請參閱圖4,第一實施例包含光源100、極化器200、聚光鏡300、第一物鏡410、第一薩爾瓦稜鏡510、受測物600、分光鏡700、第一分析板810以及第一感光元件910;其中光束係由光源100發出,它被極化器200轉換為極化光,也被聚光鏡300收集,依序經過分光鏡700、第一物鏡410、第一薩爾瓦稜鏡510後,形成照物光照射到受測物600;照物光接著被受測物600反射,依序經過第一薩爾瓦稜鏡510、第一物鏡410、分光鏡700、第一分析板810後,成像於第一感光元件910上。 Referring to FIG. 4, the first embodiment includes a light source 100, a polarizer 200, a condenser lens 300, a first objective lens 410, a first Salvator 510, a test object 600, a beam splitter 700, a first analysis plate 810, and The first light-sensitive element 910; where the light beam is emitted by the light source 100, it is converted into polarized light by the polarizer 200, and it is also collected by the condenser 300, and passes through the beam splitter 700, the first objective lens 410, and the first salvaged light. After the lens 510, the object light is formed to illuminate the test object 600; the object light is then reflected by the test object 600, and sequentially passes through the first Salvator 510, the first objective lens 410, the beam splitter 700, and the first analysis After the plate 810 is formed on the first photosensitive element 910.
請參閱圖5,當第一實施例的光源100所發出的光束經第一薩爾瓦稜鏡510後,會被橫向剪切為尋異光和異尋光兩個光束;這也說明,當這兩被橫向剪切的光束反向再次經第一薩爾瓦稜鏡510後,會被重新合併為一束。再請參閱圖6,它以光線L表示入射光束,Loe表示尋異光,Leo表示異尋光,Lc表示合併光束,t表示第一薩爾瓦稜鏡510的一片晶體厚度,φ表示入射光束的入射角,△x表示尋異光和異尋光的剪切距離,Λ表示合併光束中尋異光和異尋光分量的光程差,△w表示被尋異光和異尋光所照射到的兩點的相對高度差。由參考文獻(Wu L,Zhang C,Yuan Y,Zhao B.Exact calculation of lateral displacement and optical path difference of Savart polariscopes.Acta Optica Sinica 25,2005,885-90)可知,
現令圖4中的極化器200和第一分析板810的穿透軸都是沿x軸方向,依前述公式(2),當Lc抵達第一感光元件910時,會產生一
干涉信號,其強度正比於
進一步解析公式(5)後,可將之整理為I=I av [1+f c (△w)]; (6)其中
以數學程式軟體(MATLAB)編寫程式,分析fc(△w),其中t=100μm,no=1.5438,ne=1.5529、且a=1/2(前三者表示△x很小,最後一個是假設物鏡為消球差的齊明物鏡);分析結果如圖7所顯示,fc(△w)為一個餘弦函數,且當na變大時,振幅變小且週期變大。例如,當na=0.15時,振幅為0.99且週期為λ/2,然當na=0.4時,振幅為0.97且週期為1.03×λ/2。 In mathematical software program (the MATLAB) as programming, analysis f c (△ w), where t = 100μm, n o = 1.5438 , n e = 1.5529, and a = 1/2 (represented by the first three small △ x, and finally One is a hypothetical Qiming objective lens); the analysis results are shown in Figure 7, f c (△ w) is a cosine function, and when na becomes larger, the amplitude becomes smaller and the period becomes larger. For example, when na = 0.15, the amplitude is 0.99 and the period is λ / 2, but when na = 0.4, the amplitude is 0.97 and the period is 1.03 × λ / 2.
因此,公式(5)可以簡化為
透過上述解說,可將前往第一感光元件910的尋異光和異尋光視為,相位差為的同軸傳遞光束;而這也說明,只要在第一實施例的干涉顯微鏡中植入相位調制模組,則公式(8)可重寫成I=I av [1+γ cos(+δ)]; (10)其中δ為相位調制模組對尋異光和異尋光分量的相位調制,又被稱為相位偏移角或相移角。換言之,此時的反射式剪切干涉顯微鏡可透過相移術(Phase-shifting technique)或白光相位掃描法(White-light phase-scanning technique)來粹取出相位剪切干涉影像(即)。 Through the above explanation, the differently-seeking light and the different-seeking light traveling to the first photosensitive element 910 can be regarded as having a phase difference of The coaxial transmission of the beam; and this also shows that as long as the phase modulation module is implanted in the interference microscope of the first embodiment, the formula (8) can be rewritten as I = I av [1+ γ cos ( + δ )]; (10) where δ is the phase modulation of the phase-modulation module on the different-seeking light and the different-seeking light component, which is also called a phase shift angle or a phase shift angle. In other words, the reflection-shear interference microscope at this time can take out phase-shear interference images (Phase-shifting technique) or White-light phase-scanning technique (i.e. ).
第二實施例 Second embodiment
請參閱圖8,第二實施例與第一實施例之差異在於,進一步於分光鏡700與第一分析板810之間,設置一相位調制模組1001;相位調制模組1001係為一液晶盒,透過驅動電壓的輸入,即可調制尋異光和異尋光之相位差。此相位調制模組1001亦可置於極化器200之後面(出光側)。 Please refer to FIG. 8. The difference between the second embodiment and the first embodiment is that a phase modulation module 1001 is further provided between the beam splitter 700 and the first analysis plate 810; the phase modulation module 1001 is a liquid crystal cell Through the input of the driving voltage, the phase difference between the different-seeking light and the different-seeking light can be modulated. The phase modulation module 1001 can also be placed on the rear surface (light exit side) of the polarizer 200.
第三實施例 Third embodiment
請參閱圖9,第三實施例與第一實施例之差異在於,進一步於分光鏡700與第一分析板810之間,設置一相位調制模組1002;該相位調制模組1002係為一馬克-臻德(Mach-Zehnder)干涉儀,由兩顆相同的第一偏極橫向分光稜鏡10021及第二偏極橫向分光稜鏡10022及一個旋轉平台10023所構成,當第一偏極橫向分光稜鏡10021或第二偏極橫向分光稜鏡10022被旋轉平台10023旋轉γ角時,尋異光和異尋光的相位差被 調制了,其中d為偏極橫向分光稜鏡的分光距離。此相位調制模 組1002亦可置於極化器200之後面(出光側)。 Please refer to FIG. 9. The difference between the third embodiment and the first embodiment is that a phase modulation module 1002 is further provided between the beam splitter 700 and the first analysis plate 810; the phase modulation module 1002 is a mark -Mach-Zehnder interferometer, which consists of two identical first polarizing beamsplitters 10021 and second polarizing beamsplitters 10022 and a rotating platform 10023.稜鏡 10021 or the second polarized lateral beam splitter 稜鏡 10022 is rotated by the rotating platform 10023 by a gamma angle, the phase difference between the different-seeking light and the different-seeking light is modulated , Where d is the spectral distance of the polarized lateral beam splitter. The phase modulation module 1002 can also be placed on the rear surface (light exit side) of the polarizer 200.
第四實施例 Fourth embodiment
請參閱圖10,第四實施例與第一實施例之差異在於,進一步於分光鏡700與第一分析板810之間,設置一相位調制模組1003;該相位調制模組1003係一個二分之一波板10031和一個四分之一波板10032所構成,其中二分之一波板10031的快軸(fast axis)和x軸夾α-45°角而四分之一波板10032夾0°角,且此結構將經過的尋異光和異尋光的相位差調制了δ=4α;換言之,旋轉二分之一波板10031即可任意地調制尋異光和異尋光的相位差,且每旋轉α角,調制相位4α。為了簡化後續說明,以下簡寫本相位調制模組為HQPM,其中H用來代表二分之一波板、Q代表四分之一波板、而PM代表相位調制器。 Please refer to FIG. 10. The difference between the fourth embodiment and the first embodiment is that a phase modulation module 1003 is further provided between the beam splitter 700 and the first analysis plate 810; the phase modulation module 1003 is a two-part One wave plate 10031 and one quarter wave plate 10032. The fast axis and x axis of the half wave plate 10031 are clamped at an angle of α-45 ° and the quarter wave plate 10032 is clamped. 0 ° angle, and this structure modulates the phase difference between the passed and different-seeking light by δ = 4 α ; in other words, rotating the half-wave plate 10031 can arbitrarily modulate the Phase difference, and every rotation of α angle, modulation phase 4α. In order to simplify the following description, the following phase modulation module is referred to as HQPM, where H is used to represent a half wave plate, Q is a quarter wave plate, and PM is a phase modulator.
第五實施例 Fifth Embodiment
請參閱圖11,第五實施例與第一實施例之差異在於,進一步於分光鏡700與第一分析板810之間,設置一相位調制模組1004;該相位調制模組1004係由一個第一四分之一波板10041、一個二分之一波板 10042、和一個第二四分之一波板10043所構成,其中二分之一波板10042的快軸和x軸夾α-45°角,而第一四分之一波板10041及第二四分之一波板10043夾0°角,且此結構將經過的尋異光和異尋光的相位差調制了δ=4α,換言之,旋轉二分之一波板10042即可任意地調制尋異光和異尋光的相位差,且每旋轉α角,調制相位4α。以下簡寫本相位調制模組為QHQPM。 Please refer to FIG. 11. The difference between the fifth embodiment and the first embodiment is that a phase modulation module 1004 is further provided between the beam splitter 700 and the first analysis plate 810. The phase modulation module 1004 is A quarter wave plate 10041, a half wave plate 10042, and a second quarter wave plate 10043. The fast axis and the x-axis of the half wave plate 10042 are α-45. °, and the first quarter-wave plate 10041 and the second quarter-wave plate 10043 are at an angle of 0 °, and this structure modulates the phase difference between the passed and different seeking light δ = 4 α In other words, rotating the half-wave plate 10042 can arbitrarily modulate the phase difference between the different-seeking light and the different-seeking light, and each rotation of the angle α, the modulation phase is 4α. The phase modulation module is abbreviated as QHQPM.
第六實施例 Sixth embodiment
請參閱圖12,第六實施例與第一實施例之差異在於,進一步於分光鏡700與第一分析板810之間,設置一圓極化器1005;該圓極化器1005由一個二分之一波板10051和一個四分之一波板10052所構成,且圓極化器1005和第一分析板810構成一個相位調制模組;其中二分之一波板10051的快軸和x軸夾-30°角而四分之一波板10052夾30°角,且當第一分析板810被轉到穿透軸和x軸夾α角時,尋異光和異尋光的相位差被調制了δ=2α。換言之,旋轉第一分析板810即可任意地調制尋異光和異尋光的相位差,且每旋轉α角,調制相位2α。以下簡寫本圓極化器和分析板所構成的相位調制模組為HQAPM,其中A用來代表分析板。 Please refer to FIG. 12. The difference between the sixth embodiment and the first embodiment is that a circular polarizer 1005 is further provided between the beam splitter 700 and the first analysis plate 810. The circular polarizer 1005 is divided by a half. A wave plate 10051 and a quarter wave plate 10052, and a circular polarizer 1005 and a first analysis plate 810 constitute a phase modulation module; the fast axis and x-axis clamp of the half wave plate 10051 -30 ° angle and quarter wave plate 10052 at a 30 ° angle, and when the first analysis plate 810 is turned to the angle between the penetration axis and the x-axis, the phase difference between the seeking light and the seeking light is modulated Δ = 2α . In other words, by rotating the first analysis plate 810, the phase difference between the different-seeking light and the different-seeking light can be arbitrarily modulated, and the phase is modulated by 2α every time the α angle is rotated. The following briefly describes the phase modulation module composed of the circular polarizer and the analysis board as HQAPM, where A is used to represent the analysis board.
第七實施例 Seventh embodiment
請參閱圖13,第七實施例與第一實施例之差異在於,進一步於分光鏡700與第一分析板810之間,設置一圓極化器1006;該圓極化器1006係為一個四分之一波板,且與第一分析板810構成一個相位調制模組;其中圓極化器1006的快軸和x軸夾0°角,且當第一分析板810被轉到穿透軸和x軸夾α角時,尋異光和異尋光的相位差被調制了δ=2α。 換言之,旋轉第一分析板810即可任意地調制尋異光和異尋光的相位差,且每旋轉α角,調制相位2α。以下簡寫本圓極化器和分析板所構成的相位調制模組為QAPM。 Please refer to FIG. 13. The difference between the seventh embodiment and the first embodiment is that a circular polarizer 1006 is further provided between the beam splitter 700 and the first analysis plate 810. The circular polarizer 1006 is a quarter A wave plate and a phase modulation module with the first analysis plate 810; wherein the fast axis and the x axis of the circular polarizer 1006 are at an angle of 0 °, and when the first analysis plate 810 is turned to the penetrating axis and When the x-axis is at an angle α, the phase difference between the seeking light and the seeking light is modulated by δ = 2 α . In other words, by rotating the first analysis plate 810, the phase difference between the different-seeking light and the different-seeking light can be arbitrarily modulated, and the phase is modulated by 2α every time the α angle is rotated. The phase modulation module composed of this circular polarizer and analysis board is abbreviated as QAPM.
為了驗證本發明所提反射式剪切干涉顯微鏡的正確可用性,進一步實際組裝了一套實驗架設,其包含圖13的顯微鏡及一影像處理系統。顯微鏡中,光源100由鹵素燈和紅光濾光片所構成(即此光源輸出紅光);第一薩爾瓦稜鏡510是用石英(在λ=0.6μm時,no=1.5438且ne=1.5529)製成且t=100μm,它讓輸出光有△x=0.83μm的剪移距離;第一物鏡410的放大倍率是20倍且na=0.4;而四分之一波板(圓極化器1006)是一片寬頻波板,產自Measurement Group,Inc.,USA。影像處理系統中包含一電腦及三程式,分別為影像抓取、計算、及顯示程式;其中影像抓取程式去抓不同相移角的剪切干涉影像,並將之存放在電腦記憶體中;計算程式利用五步相移技術和儲存的剪切干涉影像,計算出相位剪切干涉影像;而顯示程式將剪切干涉影像及相位剪切干涉影像展示在電腦螢幕上。 In order to verify the correct usability of the reflective shearing interference microscope provided by the present invention, a set of experimental rigs were further assembled, which included the microscope of FIG. 13 and an image processing system. Microscope, light source 100 is constituted by a halogen lamp and a red filter (i.e., this red light source output); Salvatierra Prism 510 is a first silica (at λ = 0.6μm, n o = 1.5438 and n e = 1.5529) and t = 100μm, it makes the output light have a shear distance of △ x = 0.83μm; the magnification of the first objective lens 410 is 20 times and na = 0.4; and the quarter wave plate (round Polarizer 1006) is a wideband wave plate manufactured by Measurement Group, Inc., USA. The image processing system includes a computer and three programs, which are image capture, calculation, and display programs; the image capture program captures shear interference images with different phase shift angles and stores them in computer memory; The calculation program uses a five-step phase shift technique and the stored shear interference image to calculate the phase shear interference image; and the display program displays the shear interference image and the phase shear interference image on a computer screen.
此實驗架設首先檢測一片88nm高的VLSI階高標準塊(VLSI step-height standard)的剪切干涉影像及相位剪切干涉影像。如圖14(a)~14(e)所示,分別為相移角δ=-π、-π/2、0、π/2、及π所對應的剪切干涉影像;如圖14(f)顯示,為計算程式利用圖14(a)~14(e)及五步相移技術計算所得的相位剪切干涉影像。其中圖14(a)~14(e)之影像各有1280×960個像素(Pixel),每像素代表0.176μm。 This experimental setup first detects the shear interference image and phase shear interference image of a 88-nm-high VLSI step-height standard block. As shown in Figures 14 (a) to 14 (e), the shear interference images corresponding to the phase shift angles δ = -π, -π / 2, 0, π / 2, and π, respectively; as shown in Figure 14 (f ) Shows the phase-shear interference image calculated by the calculation program using Figures 14 (a) ~ 14 (e) and the five-step phase shift technique. Among them, the images in Figures 14 (a) to 14 (e) each have 1280 × 960 pixels (Pixel), and each pixel represents 0.176 μm.
另,此實驗架設也被拿來檢測一片鍍鎳石英基板的剪切干涉影像及相位剪切干涉影像。如圖15(a)~15(e)所示,分別為相移角δ=-π、 -π/2、0、π/2、π所對應的剪切干涉影像;如圖15(f)顯示,乃用圖15(a)~15(e)暨五步相移技術計算所粹取出來的相位剪切干涉影像。其中圖15(a)~15(e)之影像各有1280×960個像素(Pixel),每像素代表0.176μm。由圖14及圖15看出,上述實驗架設有效地強化了影像對比度。 In addition, this experimental setup was also used to detect the shear interference image and phase shear interference image of a nickel-plated quartz substrate. As shown in Figures 15 (a) ~ 15 (e), the phase shift angles δ = -π, The shear interference images corresponding to -π / 2, 0, π / 2, and π; as shown in Figure 15 (f), they are calculated using Figure 15 (a) ~ 15 (e) and the five-step phase shift calculation The resulting phase-shear interference image. The images in Figures 15 (a) to 15 (e) each have 1280 × 960 pixels (Pixel), each pixel represents 0.176 μm. As can be seen from FIG. 14 and FIG. 15, the above experimental setup effectively enhanced image contrast.
第八實施例 Eighth embodiment
請參閱圖16,第八實施例包含光源100、極化器200、聚光鏡300、第一物鏡410、第二物鏡420、第一薩爾瓦稜鏡510、第二薩爾瓦稜鏡520、受測物600、第二分析板820、及第二感光元件920;其中第二薩爾瓦稜鏡520係和第一薩爾瓦稜鏡510相同但繞水平軸(z-軸)或垂直軸(y-軸)旋轉180°的稜鏡。光束係由光源100發出,它會被極化器200轉換為極化光,也會被聚光鏡300收集,依序經過第一物鏡410、第一薩爾瓦稜鏡510後,被橫向剪移為尋異光及異尋光並去照射到受測物600;當尋異光及異尋光穿透受測物600後,第二薩爾瓦稜鏡520將其重新合併為一束,合併光束緊接著穿過第二物鏡420、第二分析板820,然後於第二感光元件920上成像。上述繞水平軸旋轉180°的意義可進一步用圖16之(a)來說明,此時第二薩爾瓦稜鏡520的ab面和第一薩爾瓦稜鏡510的ab面都是面向光源100的方向,但上下相反;而繞垂直軸旋轉180°的意義可用圖16之(b)來說明,此時第二薩爾瓦稜鏡520的ab面和第一薩爾瓦稜鏡510的ab面上下相同,但前者面向第二感光元件920、後者面向光源100的方向。 Referring to FIG. 16, the eighth embodiment includes a light source 100, a polarizer 200, a condenser 300, a first objective lens 410, a second objective lens 420, a first Salva 稜鏡 510, a second Salva 稜鏡 520, The measurement object 600, the second analysis plate 820, and the second photosensitive element 920; the second Salva 稜鏡 520 series is the same as the first Salva 稜鏡 510 but is about a horizontal axis (z-axis) or a vertical axis ( y-axis) 稜鏡 rotated by 180 °. The light beam is emitted by the light source 100, it will be converted into polarized light by the polarizer 200, and it will also be collected by the condenser 300. After passing through the first objective lens 410 and the first Salva 稜鏡 510 in sequence, it is laterally sheared to Differentiating light and differently searching light and irradiating the test object 600; when the differently searching light and differently searching light penetrate the measuring object 600, the second Salvager 520 recombines them into a beam, and combines the beams Immediately pass through the second objective lens 420 and the second analysis plate 820, and then form an image on the second photosensitive element 920. The meaning of the above-mentioned rotation of 180 ° around the horizontal axis can be further explained by using FIG. 16 (a). At this time, the ab surface of the second Salva 萨 520 and the ab surface of the first Salva 稜鏡 510 are facing the light source. The direction of 100, but the upside down is opposite; and the meaning of rotating 180 ° around the vertical axis can be illustrated in Figure 16 (b). At this time, the ab surface of the second Salva 稜鏡 520 and the first salva 稜鏡 510 Ab is the same on the top and bottom, but the former faces the second photosensitive element 920 and the latter faces the light source 100.
第八實施例透過和反射式剪切干涉顯微鏡完全一致的分析過程,可確認第二感光元件920上的影像亦為一剪切干涉影像,其光 強與相位亦可分別用公式(8)和(9)表示,惟需用△[(n-1)h]及[(n-1)h]/ x來分別取代2△W及2. W/ x,其中n和h分別表示受測物600的折射率和厚度。 In the eighth embodiment, through the analysis process that is completely consistent with the reflection shear interference microscope, it can be confirmed that the image on the second photosensitive element 920 is also a shear interference image, and its light intensity and phase can also be expressed by formula (8) and (9) indicates that △ [(n-1) h] and [( n -1) h ] / x to replace 2 △ W and 2 respectively. W / x , where n and h represent the refractive index and thickness of the test object 600, respectively.
因此也可以將前往第二感光元件920的尋異光和異尋光視為,相位差為的同軸傳遞光束;而這又說明,只要在圖16的穿透式剪切干涉顯微鏡中植入相位調制模組,就可用相移術或白光相位掃描法來粹取出。 Therefore, the differently-seeking light and the different-seeking light traveling to the second photosensitive element 920 can also be regarded as having a phase difference of The coaxial transmission of the beam; and this shows that as long as the phase modulation module is implanted in the penetrating shear interference microscope of FIG. 16, it can be removed by phase shifting or white light phase scanning. .
第九實施例 Ninth embodiment
請參閱圖17,第九實施例與第八實施例之差異在於,進一步於第二物鏡420與第二分析板820間,設置一相位調制模組1001;該相位調制模組1001係為一液晶盒,一樣是透過驅動電壓的輸入,即可調制尋異光和異尋光之相位差。此相位調制模組1001亦可置於極化器200之後面(出光側)。 Please refer to FIG. 17. The difference between the ninth embodiment and the eighth embodiment is that a phase modulation module 1001 is further disposed between the second objective lens 420 and the second analysis plate 820. The phase modulation module 1001 is a liquid crystal. The box is also able to modulate the phase difference between the different-seeking light and the different-seeking light through the input of the driving voltage. The phase modulation module 1001 can also be placed on the rear surface (light exit side) of the polarizer 200.
第十實施例 Tenth embodiment
請參閱圖18,第十實施例與第八實施例之差異在於,進一步於第二物鏡420與第二分析板820間,設置一相位調制模組1002;該相位調制模組1002係為一馬克-臻德干涉儀,其構造和操作相同於上述反射式剪切干涉顯微鏡的馬克-臻德干涉儀。此相位調制模組1002亦可置於極化器200之後面(出光側)。 Please refer to FIG. 18. The difference between the tenth embodiment and the eighth embodiment is that a phase modulation module 1002 is further provided between the second objective lens 420 and the second analysis plate 820; the phase modulation module 1002 is a mark -Zhende interferometer, its construction and operation are the same as the Mark-Zhende interferometer of the above-mentioned reflection shear interference microscope. The phase modulation module 1002 can also be placed on the rear surface (light exit side) of the polarizer 200.
第十一實施例 Eleventh embodiment
請參閱圖19,第十一實施例與第八實施例之差異在於,進一步於第二物鏡420與第二分析板820間,設置一相位調制模組1003;該相位調制模組1003係一個HQPM,其構造和操作相同於上述反射式剪 切干涉顯微鏡的HQPM。 Please refer to FIG. 19. The difference between the eleventh embodiment and the eighth embodiment is that a phase modulation module 1003 is further provided between the second objective lens 420 and the second analysis plate 820; the phase modulation module 1003 is an HQPM , Its construction and operation are the same as the above-mentioned reflective scissors Cut the HQPM of the interference microscope.
第十二實施例 Twelfth embodiment
請參閱圖20,第十二實施例與第八實施例之差異在於,進一步於第二物鏡420與第二分析板820間,設置一相位調制模組1004;該相位調制模組1004係一個QHQPM,其構造和操作相同於上述反射式剪切干涉顯微鏡的QHQPM。 Please refer to FIG. 20. The difference between the twelfth embodiment and the eighth embodiment is that a phase modulation module 1004 is further disposed between the second objective lens 420 and the second analysis plate 820; the phase modulation module 1004 is a QHQPM The structure and operation are the same as the QHQPM of the above-mentioned reflection shear interference microscope.
第十三實施例 Thirteenth embodiment
請參閱圖21,第十三實施例與第八實施例之差異在於,進一步於第二物鏡420與第二分析板820間,設置一圓極化器1005;該圓極化器1005和第二分析板820構成一個HQAPM,且此HQAPM的構造和操作相同於上述反射式剪切干涉顯微鏡的HQAPM。 Referring to FIG. 21, the difference between the thirteenth embodiment and the eighth embodiment is that a circular polarizer 1005 is further disposed between the second objective lens 420 and the second analysis plate 820; the circular polarizer 1005 and the second analysis The plate 820 constitutes an HQAPM, and the structure and operation of this HQAPM are the same as those of the above-mentioned reflection shear interference microscope.
第十四實施例 Fourteenth embodiment
請參閱圖22,第十四實施例與第八實施例之差異在於,進一步於第二物鏡420與第二分析板820間,設置一圓極化器1006;該圓極化器1006和第二分析板820構成一個QAPM,且此QAPM的構造和操作相同於上述反射式剪切干涉顯微鏡的QAPM。 Referring to FIG. 22, the difference between the fourteenth embodiment and the eighth embodiment is that a circular polarizer 1006 is further disposed between the second objective lens 420 and the second analysis plate 820; the circular polarizer 1006 and the second analysis The plate 820 constitutes a QAPM, and the structure and operation of this QAPM are the same as those of the QAPM of the reflection shear interference microscope described above.
結合上述反射式剪切干涉顯微鏡及穿透式剪切干涉顯微鏡,本發明也提出如下的反射穿透兩用式剪切干涉顯微鏡。 In combination with the above-mentioned reflection-type shear interference microscope and transmission-type shear interference microscope, the present invention also proposes the following reflection-transmission dual-use shear interference microscope.
第十五實施例 Fifteenth embodiment
如圖23所示,它包含光源100、極化器200、聚光鏡300、分光鏡700、第一物鏡410、第二物鏡420、第一薩爾瓦稜鏡510、第二薩爾瓦稜鏡520、受測物600、第一分析板810、第二分析板820、第一 感光元件910、及第二感光元件920;其中第二薩爾瓦稜鏡520係和第一薩爾瓦稜鏡510相同但繞水平軸(z-軸)或垂直軸(y-軸)旋轉180°的稜鏡。當受測物600為反射體時,光束係由光源100發出,到達受測物600後,反向走第1路徑到第一感光元件910上成像,故此時顯微鏡是反射式剪切干涉顯微鏡;當受測物600為透明介質時,光束係由光源100發出,到達受測物600後,走第2路徑到第二感光元件820上成像,故此時顯微鏡是穿透式剪切干涉顯微鏡。 As shown in FIG. 23, it includes a light source 100, a polarizer 200, a condenser 300, a beam splitter 700, a first objective lens 410, a second objective lens 420, a first Salva 稜鏡 510, and a second Salva 稜鏡 520. , Test object 600, first analysis board 810, second analysis board 820, first Photosensitive element 910, and second photosensitive element 920; the second Salva 稜鏡 520 is the same as the first Salva 稜鏡 510 but rotates 180 about the horizontal (z-axis) or vertical (y-axis) axis ° 稜鏡. When the test object 600 is a reflector, the light beam is emitted by the light source 100. After reaching the test object 600, the first path is reversed to be imaged on the first photosensitive element 910, so the microscope is a reflection shear interference microscope at this time; When the test object 600 is a transparent medium, the light beam is emitted by the light source 100. After reaching the test object 600, it takes a second path to form an image on the second photosensitive element 820. Therefore, the microscope is a penetrating shear interference microscope at this time.
如同前述反射式與穿透式剪切干涉顯微鏡,在圖23的反射穿透兩用式剪切干涉顯微鏡中也植入相位調制模組,就可用相移術或白光相位掃描法來粹取出剪切干涉影像中的相位。 As with the aforementioned reflection and transmission shear interference microscopes, a phase modulation module is also implanted in the reflection and transmission dual-purpose shear interference microscope of FIG. 23, and the phase shearing or white light phase scanning method can be used to remove the shear Cut the phase in the interference image.
第十六實施例 Sixteenth embodiment
請參閱圖24,第十六實施例與第十五實施例之差異在於,進一步於極化器200後面(出光側),設置一相位調制模組1001;該相位調制模組1001係為一液晶盒,一樣是透過驅動電壓的輸入,即可調制尋異光和異尋光之相位差。該相位調制模組1001亦可改成兩個,分別置於分光鏡700與第一分析板810間及第二物鏡420與第二分析板820間。 Please refer to FIG. 24. The difference between the sixteenth embodiment and the fifteenth embodiment is that a phase modulation module 1001 is further disposed behind the polarizer 200 (the light exit side); the phase modulation module 1001 is a liquid crystal The box is also able to modulate the phase difference between the different-seeking light and the different-seeking light through the input of the driving voltage. The phase modulation module 1001 can also be changed into two, which are respectively placed between the beam splitter 700 and the first analysis plate 810 and between the second objective lens 420 and the second analysis plate 820.
第十七實施例 Seventeenth embodiment
請參閱圖25,第十七實施例與第十五實施例之差異在於,進一步於極化器200後(出光側),設置一相位調制模組1002;該相位調制模組1002係為一馬克-臻德干涉儀,其構造和操作相同於上述反射式剪切干涉顯微鏡的馬克-臻德干涉儀。該相位調制模組1002亦可改成兩個,分別置於分光鏡700與第一分析板810間及第二物鏡420與第二分析板 820間。 Please refer to FIG. 25. The difference between the seventeenth embodiment and the fifteenth embodiment is that a phase modulation module 1002 is provided behind the polarizer 200 (light-emitting side); the phase modulation module 1002 is a mark -Zhende interferometer, its construction and operation are the same as the Mark-Zhende interferometer of the above-mentioned reflection shear interference microscope. The phase modulation module 1002 can also be changed into two, which are respectively placed between the beam splitter 700 and the first analysis plate 810 and the second objective lens 420 and the second analysis plate 820 rooms.
第十八實施例 Eighteenth embodiment
請參閱圖26,第十八實施例與第十五實施例之差異在於,進一步於分光鏡700與第一分析板810間及第二物鏡420與第二分析板820間,各設置一相位調制模組1003;如圖26之(b)及(c)所示,各該相位調制模組1003係一個HQPM,其構造和操作相同於上述反射式剪切干涉顯微鏡的HQPM。 Please refer to FIG. 26. The difference between the eighteenth embodiment and the fifteenth embodiment is that a phase modulation is further provided between the beam splitter 700 and the first analysis plate 810 and between the second objective lens 420 and the second analysis plate 820. Module 1003; as shown in (b) and (c) of FIG. 26, each of the phase modulation modules 1003 is an HQPM, and its structure and operation are the same as those of the above-mentioned reflection shear interference microscope.
第十九實施例 Nineteenth embodiment
請參閱圖27,第十九實施例與第十五實施例之差異在於,進一步於分光鏡700與第一分析板810間及第二物鏡420與第二分析板820間,各設置一相位調制模組1004;如圖27之(b)及(c)所示,各該相位調制模組1004係一個QHQPM,其構造和操作相同於上述反射式剪切干涉顯微鏡的QHQPM。 Please refer to FIG. 27. The difference between the nineteenth embodiment and the fifteenth embodiment is that a phase modulation is further provided between the beam splitter 700 and the first analysis plate 810 and between the second objective lens 420 and the second analysis plate 820. Module 1004; as shown in (b) and (c) of FIG. 27, each of the phase modulation modules 1004 is a QHQPM, and its structure and operation are the same as those of the above-mentioned reflection shear interference microscope QHQPM.
第二十實施例 Twentieth embodiment
請參閱圖28,第二十實施例與第十五實施例之差異在於,進一步於分光鏡700與第一分析板810間及第二物鏡420與第二分析板820間,各設置一圓極化器1005;如圖28之(b)及(c)所示,各該圓極化器1005和其對應的分析板構成一個HQAPM,其構造和操作相同於上述反射式剪切干涉顯微鏡的HQAPM。 Please refer to FIG. 28. The difference between the twentieth embodiment and the fifteenth embodiment is that a circular polarization is provided between the beam splitter 700 and the first analysis plate 810 and between the second objective lens 420 and the second analysis plate 820. As shown in (b) and (c) of FIG. 28, each of the circular polarizers 1005 and its corresponding analysis plate constitute an HQAPM, and its structure and operation are the same as those of the above-mentioned reflection shear interference microscope.
第二十一實施例 Twenty-first embodiment
請參閱圖29,第二十一實施例與第十五實施例之差異在於,進一步於分光鏡700與第一分析板810間及第二物鏡420與第二分析 板820間,各設置一圓極化器1006;如圖29之(b)及(c)所示,各該圓極化器1006和其對應的分析板構成一個QAPM,其構造和操作相同於上述反射式剪切干涉顯微鏡的QAPM。 Please refer to FIG. 29. The difference between the twenty-first embodiment and the fifteenth embodiment lies in that between the beam splitter 700 and the first analysis plate 810 and the second objective lens 420 and the second analysis Between the plates 820, a circular polarizer 1006 is provided. As shown in (b) and (c) of FIG. 29, each circular polarizer 1006 and its corresponding analysis board constitute a QAPM, and its structure and operation are the same as above. QAPM for reflective shear interference microscopy.
在實際應用上,除了要取得x方向的剪切干涉與相位剪切干涉影像外,常常也需要取得y方向的剪切干涉與相位剪切干涉影像。傳統或上述剪切干涉顯微鏡可透過旋轉剪切元件來達到目的,然這影響量測效率,降低檢測流量。為了克服這一問題,本發明提供以下更進一步發明。 In practical applications, in addition to obtaining shear interference and phase shear interference images in the x direction, it is often necessary to obtain shear interference and phase shear interference images in the y direction. Traditional or the above-mentioned shear interference microscope can achieve the purpose by rotating the shear element, but this affects the measurement efficiency and reduces the detection flow. To overcome this problem, the present invention provides the following further inventions.
第二十二實施例 Twenty-second embodiment
請參閱圖30,為本發明之反射式剪切干涉顯微鏡示意圖,主要包含光源100、極化器200、聚光鏡300、第一物鏡410、第三薩爾瓦稜鏡530、第四薩爾瓦稜鏡540、受測物600、分光鏡700、第一分析板810、以及第一感光元件910;其中光束係由光源100發出,它被極化器200轉換為極化光,也被聚光鏡300收集,依序經過分光鏡700、第一物鏡410、第三薩爾瓦稜鏡530及第四薩爾瓦稜鏡540後,形成照物光照射到照射到受測物600;照物光接著被受測物600反射,依序經過第四薩爾瓦稜鏡540及第三薩爾瓦稜鏡530、第一物鏡410、分光鏡700、第一分析板810後,成像於第一感光元件910上。 Please refer to FIG. 30, which is a schematic view of a reflective shear interference microscope according to the present invention, which mainly includes a light source 100, a polarizer 200, a condenser lens 300, a first objective lens 410, a third Salvager 530, and a fourth Salvager. Mirror 540, test object 600, beam splitter 700, first analysis plate 810, and first photosensitive element 910; the light beam is emitted by light source 100, which is converted into polarized light by polarizer 200, and is also collected by condenser 300 After passing through the beam splitter 700, the first objective lens 410, the third Salva 稜鏡 530, and the fourth Salva 稜鏡 540 in this order, the object light is irradiated onto the test object 600; the object light is then The object under test 600 reflects and passes through the fourth Salva 稜鏡 540 and the third Salva 稜鏡 530, the first objective lens 410, the beam splitter 700, and the first analysis plate 810, and is imaged on the first photosensitive element 910. on.
第三薩爾瓦稜鏡530及第四薩爾瓦稜鏡540是兩個剪切方向互相垂直,且可開啟、可關閉的液晶稜鏡。如圖31之(a)所示,當第三薩爾瓦稜鏡530被關閉、而第四薩爾瓦稜鏡540被開啟時,第三薩爾瓦稜鏡530的兩光軸(Optic axis,OA)和晶面法線成90°夾角,而後者成45°夾 角。反之,如圖31之(b)所示,當第三薩爾瓦稜鏡530被開啟,而第四薩爾瓦稜鏡540被關閉時,第三薩爾瓦稜鏡530的兩光軸和晶面法線成45°夾角,而後者成90°夾角。因此,可預期當第三薩爾瓦稜鏡530及第四薩爾瓦稜鏡處540處在圖31之(a)狀態時,顯微鏡取得x方向剪切干涉影像;反之,處在圖31之(b)狀態時,取得y方向剪切干涉影像。以下進一步分析此兩狀態下,本結構的預期的可靠性。 The third Salva 稜鏡 530 and the fourth Salva 稜鏡 540 are liquid crystals whose two shear directions are perpendicular to each other and can be turned on and off. As shown in (a) of FIG. 31, when the third Salwa 稜鏡 530 is closed and the fourth Salva 稜鏡 540 is turned on, the two optical axes (Optic axis) of the third Salva 稜鏡 530 , OA) and the crystal plane normal form an angle of 90 °, while the latter forms a 45 ° angle angle. Conversely, as shown in (b) of FIG. 31, when the third Salwa 稜鏡 530 is turned on and the fourth Salva 稜鏡 540 is turned off, the two optical axes of the third Salwa 稜鏡 530 and The crystal plane normal forms an included angle of 45 °, while the latter forms an included angle of 90 °. Therefore, it can be expected that when the third Salwa 稜鏡 530 and the fourth Salwa 稜鏡 540 are in the state of (a) in FIG. 31, the microscope obtains the shear interference image in the x direction; otherwise, it is located at In state (b), a shear interference image in the y direction is acquired. The following further analyzes the expected reliability of this structure in these two states.
首先,令第三薩爾瓦稜鏡530及第四薩爾瓦稜鏡540處在圖31之(a)狀態,即第三薩爾瓦稜鏡530關閉、而第四薩爾瓦稜鏡540開啟。依參考文獻(Wu L,Zhang C,Yuan Y,Zhao B.Exact calculation of lateral displacement and optical path difference of Savart polariscopes.Acta Optica Sinica 25,2005,885-90)可知,任一來自第一物鏡410的極化光線經過第三薩爾瓦稜鏡530時,其尋異光和異尋光分量會保持同軸且沿入射光方向輸出,接著經過第四薩爾瓦稜鏡540時,會被沿x方向錯移但依然沿入射光方向輸出;又當這兩分量被反射而再次經過第四薩爾瓦稜鏡540及第三薩爾瓦稜鏡530時,會被重新合併。 First, let the third Salvay 稜鏡 530 and the fourth Salvay 稜鏡 540 be in the state shown in FIG. 31 (a), that is, the third Salvay 稜鏡 530 is closed, and the fourth Salvay 稜鏡 540 On. According to references (Wu L, Zhang C, Yuan Y, Zhao B. Exact calculation of lateral displacement and optical path difference of Savart polariscopes. Acta Optica Sinica 25, 2005, 885-90), any of the When the polarized light passes through the third Salvador 稜鏡 530, its differentiating light and heterosexual light components will remain coaxial and output in the direction of the incident light, and then pass through the fourth Salvador 稜鏡 540, and will be along the x direction. Misaligned but still output in the direction of incident light; when these two components are reflected and pass through the fourth Salva 稜鏡 540 and the third Salva 稜鏡 530 again, they will be recombined.
這使得光線自第一物鏡410到受測物往返一趟,會有如圖32之(a)的演變。依前述可知,△x有公式(1)的關係;又依參考文獻(Wu L,Zhang C,Yuan Y,Zhao B.Exact calculation of lateral displacement and optical path difference of Savart polariscopes.Acta Optica Sinica 25,2005,885-90)及參考文獻(Hecht E.Interference.Chap.9 in Optics,4th ed.San Francisco:Addison Wesley;2002,p.385-442.),可得Λ=2(△w cos φ+K 1 sin 2θ sin2 φ+K 2 sin 2θ sin2 φ); (11)
其中等號右邊的第一、二、及三項分別代表受測物輪廓、第三薩爾瓦稜鏡530、及第四薩爾瓦稜鏡540所造成的光程差,又其中
接著令第三薩爾瓦稜鏡530及第四薩爾瓦稜鏡540處在圖31之(b)的狀態,即第三薩爾瓦稜鏡530開啟、而第四薩爾瓦稜鏡540關閉。依參考文獻(Wu L,Zhang C,Yuan Y,Zhao B.Exact calculation of lateral displacement and optical path difference of Savart polariscopes.Acta Optica Sinica 25,2005,885-90)可知道,任一來自第一物鏡410的極化光線經過第三薩爾瓦稜鏡530時,其尋異光和異尋光分量會被沿y方向錯移,接著經過第四薩爾瓦稜鏡540時,其錯移量不變且沿入射光方向輸出;又當這兩分量被反射而再次經過第四薩爾瓦稜鏡540及第三薩爾瓦稜鏡530時,會被重新合併。 Then, the third Salva 稜鏡 530 and the fourth Salva 稜鏡 540 are in the state of FIG. 31 (b), that is, the third Salva 稜鏡 530 is turned on, and the fourth Salva 稜鏡 540 is turned on. shut down. According to the references (Wu L, Zhang C, Yuan Y, Zhao B. Exact calculation of lateral displacement and optical path difference of Savart polariscopes. Acta Optica Sinica 25, 2005, 885-90), it can be known that any one comes from the first objective lens 410 When the polarized light passes through the third Salva 稜鏡 530, its differentiating light and hetero-seeking light components will be shifted in the y direction, and when it passes the fourth Salva 稜鏡 540, its shift amount will not change. And output along the direction of incident light; when the two components are reflected and pass through the fourth Salva 稜鏡 540 and the third Salva 稜鏡 530 again, they will be recombined.
這使得光線自第一物鏡410到受測物往返一趟,會有如圖32之(b)的演變。依前述可知,△y有公式(1)的關係,且Lc中的Loe和Leo兩分量有光程差Λ,其大小一樣可用公式(11)表示;又依相同於公式(4)-(9)的推導及數值計算則得到,第一感光元件910所收到合併光為一剪切干
涉影像,其光強為
上述結果可得,當第三薩爾瓦稜鏡530及第四薩爾瓦稜鏡540處在圖31之(a)的狀態時,圖30的架構是一台x方向剪切的剪切干涉顯微鏡;反之,當第三薩爾瓦稜鏡530及第四薩爾瓦稜鏡540被調到圖31之(b)的狀態時,圖30的架構就是一台y方向剪切的剪切干涉顯微鏡。 The above results show that when the third Salvay 稜鏡 530 and the fourth Salvay 稜鏡 540 are in the state of FIG. 31 (a), the structure of FIG. 30 is a shear interference sheared in the x direction. Microscope; conversely, when the third Salvay 稜鏡 530 and the fourth Salvay 稜鏡 540 are adjusted to the state of (b) of Fig. 31, the structure of Fig. 30 is a shear interference sheared in the y direction microscope.
至於液晶薩爾瓦稜鏡;乃是用兩片相同的液晶盒來構成。現在先說明其中一片,如圖33所示,其內部可以使用向列型液晶(Nematic liquid crystal)及反平行配向膜;當在圖33之(a)時,驅動電路處開路狀態,因此所有液晶分子皆處於水平排列狀態,也因此等同一片光軸和晶面法線成90度夾角的單軸雙折射晶體;當在圖33之(b)時,驅動電壓為V,有一部分的液晶分子開始仰起,因此等同一片光軸和晶面法線夾β角的雙折射晶體;當在圖33之(c)時,驅動電壓大於(>)飽和電壓V sat ,所有液晶分子都直立起來,因此等同一片光軸和晶面法線平行的雙折射晶體。此說明,隨著驅動電壓的上升,液晶盒的等效光軸和晶面法線的夾角,由90°變到0°;因此必然有一電壓,如圖33之(d)圖所示,讓液晶盒的等效光軸和晶面法線夾45°角。為了方便後續說明,分別定義等效光軸在90°及45°時所對應的驅動電壓為開路及V45。 As for the liquid crystal Salvatore, it is composed of two identical liquid crystal cells. Now explain one of them. As shown in Fig. 33, Nematic liquid crystal and anti-parallel alignment film can be used inside. When Fig. 33 (a), the driving circuit is in an open circuit state, so all liquid crystals The molecules are all horizontally aligned, so they are equivalent to a single-axis birefringent crystal with an angle of 90 degrees between the optical axis and the crystal plane normal; when the driving voltage is V in Fig. 33 (b), some of the liquid crystal molecules start Lift up, so it is equivalent to a birefringent crystal with an angle of β between the optical axis and the normal of the crystal plane. When (c) in Fig. 33, the driving voltage is greater than (>) the saturation voltage V sat , and all the liquid crystal molecules are upright, so It is equivalent to a birefringent crystal whose optical axis is parallel to the crystal plane normal. This shows that as the driving voltage rises, the angle between the equivalent optical axis of the liquid crystal cell and the normal of the crystal plane changes from 90 ° to 0 °; therefore, there must be a voltage, as shown in Figure 33 (d). The equivalent optical axis of the liquid crystal cell and the crystal plane normal are at a 45 ° angle. For the convenience of subsequent description, the driving voltages corresponding to the equivalent optical axis at 90 ° and 45 ° are respectively defined as open circuit and V 45 .
因此,當兩完全相同的上述液晶盒,繞基板法線彼此旋 轉90°角後,貼合在一起,就構成了一液晶薩爾瓦稜鏡。此時,如圖34之(a)所示,當驅動電壓為V45,其兩光軸和晶面法線成45°夾角,稜鏡開啟;反之,如圖34之(b)所示,當驅動電壓為開路,其兩光軸和晶面法線成90°夾角,稜鏡關閉。 Therefore, when two identical liquid crystal cells are rotated at an angle of 90 ° from each other around the substrate normal, they are bonded together to form a liquid crystal Salvator. At this time, as shown in FIG. 34 (a), when the driving voltage is V 45 , the two optical axes and the crystal plane normal form an angle of 45 ° with 稜鏡 turned on; otherwise, as shown in FIG. 34 (b), When the driving voltage is open, the two optical axes and the crystal plane normal form an angle of 90 °, and 稜鏡 is closed.
上述使用液晶薩爾瓦稜鏡的反射式剪切干涉顯微鏡亦可引入相位調制模組,來調制尋異光和異尋光分量的相位差,並進而透過相移術或白光相位掃描法來粹取出相位剪切干涉影像(即或)。相位調制模組的構造可為液晶、馬克-臻德干涉儀、HQPM、QHQPM、HQAPM、或QAPM,其個別的構造、位置、及操作和前述反射式剪切干涉顯微鏡一致,在此不再贅述。 The above-mentioned reflection-shear interference microscope using liquid crystal Salvator can also introduce a phase modulation module to modulate the phase difference between the different-seeking light and the different-seeking light components, and then use phase shift or white light phase scanning Take out the phase-shear interference image (i.e. or ). The structure of the phase modulation module can be liquid crystal, Mark-Zehnder interferometer, HQPM, QHQPM, HQAPM, or QAPM. The individual structure, position, and operation are the same as those of the aforementioned reflective shear interference microscope, and will not be repeated here .
第二十三實施例 Twenty-third embodiment
請參閱圖35,第二十三實施例乃用液晶薩爾瓦稜鏡來構成的穿透式剪切干涉顯微鏡,它與第八實施例(請參閱圖16)之差異在於,第一物鏡410和受測物600間是第三薩爾瓦稜鏡530和第四薩爾瓦稜鏡540,受測物600和第二物鏡420間是第五薩爾瓦稜鏡550和第六薩爾瓦稜鏡560;其中,第三薩爾瓦稜鏡530及第四薩爾瓦稜鏡540是兩個剪切方向互相垂直,且可開啟、可關閉的液晶稜鏡;第五薩爾瓦稜鏡550是和第四薩爾瓦稜鏡540相同但繞水平軸(z-軸)或垂直軸(y-軸)旋轉180°的稜鏡,及第六薩爾瓦稜鏡560是和第三薩爾瓦稜鏡530相同但繞水平軸(z-軸)或垂直軸(y-軸)旋轉180°的稜鏡。因此當第三、第六薩爾瓦稜鏡關閉、而第四、第五薩爾瓦稜鏡開啟時,圖35的架構是一台x方向剪切的穿透式剪切干涉顯微鏡;反之,當第三、第六薩爾瓦稜鏡開啟、而第四、第五薩 爾瓦稜鏡開關閉時,圖35的架構就是一台y方向剪切的穿透式剪切干涉顯微鏡。 Please refer to FIG. 35. The twenty-third embodiment is a transmissive shear interference microscope composed of a liquid crystal Salvator. The difference from the eighth embodiment (see FIG. 16) is that the first objective lens 410 Between the test object 600 and the third Salva 稜鏡 530 and the fourth Salva 稜鏡 540, between the test object 600 and the second objective 420 are the fifth Salva 稜鏡 550 and the sixth Salva稜鏡 560; Among them, the third Salva 稜鏡 530 and the fourth Salva 稜鏡 540 are two liquid crystals whose cutting directions are perpendicular to each other and can be opened and closed; the fifth Salva 稜鏡550 is the same as the fourth Salva 稜鏡 540 but rotated 180 ° around the horizontal (z-axis) or vertical (y-axis), and the sixth Salva 萨 560 is the third The Elba 稜鏡 530 is the same 稜鏡 but rotated 180 ° about the horizontal (z-axis) or vertical (y-axis) axis. Therefore, when the third and sixth Salvatories are closed and the fourth and fifth Salvatories are turned on, the structure of FIG. 35 is a penetrating shear interference microscope cut in the x direction; otherwise, When the third and sixth Salwa When Elba opened and closed, the structure of Figure 35 is a penetrating shear interference microscope with y-direction shearing.
使用液晶薩爾瓦稜鏡的穿透式剪切干涉顯微鏡亦可引入相位調制模組,來調制尋異光和異尋光分量的相位差,並進而透過相移術或白光相位掃描法來粹取出相位剪切干涉影像(即或)。相位調制模組的構造可為液晶、馬克-臻德干涉儀、HQPM、QHQPM、HQAPM、或QAPM,其個別的構造、位置、及操作和前述穿透式剪切干涉顯微鏡一致。 A phase-modulation module can also be introduced in a transmissive shear interference microscope using a liquid crystal Salvagto to modulate the phase difference between the different-seeking light and the different-seeking light components, and further through phase shift or white light phase scanning Take out the phase-shear interference image (i.e. or ). The structure of the phase modulation module can be a liquid crystal, a Mark-Zehnder interferometer, HQPM, QHQPM, HQAPM, or QAPM. The individual structure, position, and operation of the phase modulation module are the same as the aforementioned penetrating shear interference microscope.
第二十四實施例 Twenty-fourth embodiment
請參閱圖36,第二十四實施例乃用液晶薩爾瓦稜鏡來構成的反射穿透兩用式剪切干涉顯微鏡,它與第十五實施例(請參閱圖23)之差異在於,第一物鏡410和受測物600間是第三薩爾瓦稜鏡530和第四薩爾瓦稜鏡540、受測物600和第二物鏡420間是第五薩爾瓦稜鏡550和第六薩爾瓦稜鏡560;其中,第三薩爾瓦稜鏡530及第四薩爾瓦稜鏡540是兩個剪切方向互相垂直,且可開啟、可關閉的液晶稜鏡;第五薩爾瓦稜鏡550是和第四薩爾瓦稜鏡540相同但繞水平軸(z-軸)或垂直軸(y-軸)旋轉180°的稜鏡,及第六薩爾瓦稜鏡560是和第三薩爾瓦稜鏡530相同但繞水平軸(z-軸)或垂直軸(y-軸)旋轉180°的稜鏡。因此當第三、第六薩爾瓦稜鏡關閉、而第四、第五薩爾瓦稜鏡開啟時,圖36的架構是一台x方向剪切的反射穿透兩用式剪切干涉顯微鏡;反之,當第三、第六薩爾瓦稜鏡開啟、而第四、第五薩爾瓦稜鏡關閉時,圖36的架構就是一台y方向剪切的反射穿透兩用式剪切干涉顯微鏡。 Please refer to FIG. 36. The twenty-fourth embodiment is a reflection-transmission dual-use shear interference microscope composed of a liquid crystal Salvator. The difference from the fifteenth embodiment (see FIG. 23) is that Between the first objective lens 410 and the test object 600 is the third Salva 稜鏡 530 and the fourth Salva 稜鏡 540, between the test object 600 and the second objective lens 420 is the fifth Salva 稜鏡 550 and the first Six Salva 稜鏡 560; Among them, the third Salva 稜鏡 530 and the fourth Salva 稜鏡 540 are two liquid crystals whose cutting directions are perpendicular to each other and can be turned on and off; The Salva 稜鏡 550 is the same as the fourth Salva 稜鏡 540 but rotated by 180 ° about the horizontal (z-axis) or vertical (y-axis), and the sixth Salva 稜鏡 560 is A 稜鏡 which is the same as the third Salva 稜鏡 530 but rotates 180 ° around the horizontal (z-axis) or vertical (y-axis) axis. Therefore, when the third and sixth Salvatories are turned off and the fourth and fifth Salvatories are turned on, the architecture of FIG. 36 is a reflection-penetration dual-purpose shear interference microscope cut in the x direction. Conversely, when the third and sixth Salvatories are turned on and the fourth and fifth Salvatories are turned off, the architecture of FIG. 36 is a reflection penetrating dual-purpose shearing sheared in the y direction. Interference microscope.
使用液晶薩爾瓦稜鏡的反射穿透兩用式剪切干涉顯微 鏡亦可引入相位調制模組,來調制尋異光和異尋光分量的相位差,並進而透過相移術或白光相位掃描法來粹取出相位剪切干涉影像(即或)。相位調制模組的構造可為液晶、馬克-臻德干涉儀、HQPM、QHQPM、HQAPM、或QAPM,其個別的構造、位置、及操作和前述反射穿透兩用式剪切干涉顯微鏡一致。 The reflection-transmission dual-use shear interference microscope using liquid crystal Salvator can also introduce a phase modulation module to modulate the phase difference between the different-seeking light and the different-seeking light components, and then pass through phase shift or white light phase scanning Falaisi takes out phase-shear interference images (i.e. or ). The structure of the phase modulation module can be a liquid crystal, a Mark-Zehnder interferometer, an HQPM, a QHQPM, an HQAPM, or a QAPM. The individual structure, position, and operation of the phase modulation module are the same as those of the aforementioned reflection-penetration shear interference microscope.
綜上所述,本發明相較於現有技術,具有之特點在於:1.)本發明之顯微鏡具有不犧牲視場、不降低影像解析力的優點,因除了不影響視場與解析力的薩爾瓦稜鏡外,它和一般偏極顯微鏡有一樣的架構;2.)本發明可引入相位調制模組,來粹取出相位剪切干涉影像;3)本發明更可在不需機械動作下,選擇x或y方向的剪切量測。另外,在本發明中所提及的受測物係用來表示本發明構件之間的位置關係或其功能作用,但本發明所主張保護的標的,並非包括受測物。 To sum up, compared with the prior art, the present invention has the following characteristics: 1.) The microscope of the present invention has the advantages of not sacrificing the field of view and reducing the resolution of the image. Other than Elva, it has the same structure as a general polar polar microscope; 2.) The present invention can introduce a phase modulation module to extract phase shear interference images; 3) The present invention can be used without mechanical action , Select the shear measurement in the x or y direction. In addition, the test object mentioned in the present invention is used to indicate the positional relationship or the function of the components of the present invention, but the subject matter claimed in the present invention does not include the test object.
因此,本發明不僅於技術思想上確屬創新,並具備習用之傳統方法所不及之上述多項功效,已充分符合新穎性及進步性之法定發明專利要件,爰依法提出申請,懇請 貴局核准本件發明專利申請案,以勵發明,至感德便。 Therefore, the present invention is not only innovative in terms of technical ideas, but also has many of the above-mentioned effects that are not in the conventional methods. It has fully met the requirements for novel and progressive statutory invention patents. It has submitted an application in accordance with the law and urges your office to approve this document. Application for invention patents, to encourage inventions, to the sense of virtue.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107112041A TWI677705B (en) | 2018-04-09 | 2018-04-09 | Shearing interference microscope using Salvator as a shear element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107112041A TWI677705B (en) | 2018-04-09 | 2018-04-09 | Shearing interference microscope using Salvator as a shear element |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201944118A TW201944118A (en) | 2019-11-16 |
TWI677705B true TWI677705B (en) | 2019-11-21 |
Family
ID=69184712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107112041A TWI677705B (en) | 2018-04-09 | 2018-04-09 | Shearing interference microscope using Salvator as a shear element |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI677705B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI802878B (en) * | 2021-05-07 | 2023-05-21 | 國立臺北科技大學 | Differential Interference Contrast Microscopy Using Liquid Crystal Salvatore |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070247635A1 (en) * | 2006-04-11 | 2007-10-25 | Leica Microsystems Cms Gmbh | Polarization interference microscope |
EP2081070A2 (en) * | 2008-01-18 | 2009-07-22 | Gwangju Institute of Science and Technology | Polariscopic phase microscope |
US20130107268A1 (en) * | 2010-05-18 | 2013-05-02 | Lltech Management | Method and device for high resolution full field interference microscopy |
-
2018
- 2018-04-09 TW TW107112041A patent/TWI677705B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070247635A1 (en) * | 2006-04-11 | 2007-10-25 | Leica Microsystems Cms Gmbh | Polarization interference microscope |
EP2081070A2 (en) * | 2008-01-18 | 2009-07-22 | Gwangju Institute of Science and Technology | Polariscopic phase microscope |
US20130107268A1 (en) * | 2010-05-18 | 2013-05-02 | Lltech Management | Method and device for high resolution full field interference microscopy |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI802878B (en) * | 2021-05-07 | 2023-05-21 | 國立臺北科技大學 | Differential Interference Contrast Microscopy Using Liquid Crystal Salvatore |
Also Published As
Publication number | Publication date |
---|---|
TW201944118A (en) | 2019-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shribak | Quantitative orientation-independent differential interference contrast microscope with fast switching shear direction and bias modulation | |
US10831010B2 (en) | Optical measurement method and device | |
US8570650B2 (en) | Method and system for fast three-dimensional structured-illumination-microscopy imaging | |
US8908180B2 (en) | Device and method for polarimetric measurement with microscopic resolution, polarimetry accessory for a microscope, ellipsomicroscope and ellipsometric contrast microscope | |
Shaked et al. | Biomedical optical phase microscopy and nanoscopy | |
US9739993B2 (en) | Optical measurement method and device | |
Shribak | Complete polarization state generator with one variable retarder and its application for fast and sensitive measuring of two-dimensional birefringence distribution | |
Shribak et al. | Mapping optical path length and image enhancement using quantitative orientation-independent differential interference contrast microscopy | |
Wang et al. | Photonic spin-Hall differential microscopy | |
JP2004093280A (en) | Measuring device | |
US20160259158A1 (en) | Polarization-independent differential interference contrast optical arrangement | |
Chen et al. | Calibration of polarization effect of a high-numerical-aperture objective lens with Mueller matrix polarimetry | |
Ju et al. | Method for Mueller matrix acquisition based on a division-of-aperture simultaneous polarimetric imaging technique | |
TWI677705B (en) | Shearing interference microscope using Salvator as a shear element | |
JPH0915504A (en) | Differential interference microscope | |
Wang et al. | Brewster differential microscopy | |
JP2001356276A (en) | Polarizing microscope | |
JP4072190B2 (en) | Differential interference microscope | |
LIN et al. | Phase‐shifting differential interference contrast microscope with Savart shear prism and rotatable analyser | |
Chen et al. | A colinear backscattering Mueller matrix microscope for reflection Muller matrix imaging | |
Chatterjee | Design considerations and fabrication techniques of Nomarski reflection microscope | |
TWI802878B (en) | Differential Interference Contrast Microscopy Using Liquid Crystal Salvatore | |
Fang et al. | Lensless inline holographic Mueller matrix imaging | |
Dovhaliuk | Polarization digital holographic microscopy using low-cost liquid crystal polarization rotators | |
Spilman | Stress-engineered optical elements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |