TWI677684B - Biosensor and method for measuring antigen concentration - Google Patents

Biosensor and method for measuring antigen concentration Download PDF

Info

Publication number
TWI677684B
TWI677684B TW107135843A TW107135843A TWI677684B TW I677684 B TWI677684 B TW I677684B TW 107135843 A TW107135843 A TW 107135843A TW 107135843 A TW107135843 A TW 107135843A TW I677684 B TWI677684 B TW I677684B
Authority
TW
Taiwan
Prior art keywords
sensing device
region
biomedical sensing
polymer layer
area
Prior art date
Application number
TW107135843A
Other languages
Chinese (zh)
Other versions
TW202014705A (en
Inventor
莊漢聲
Han Sheng Chuang
陳慶淳
Ching Chuen Chen
曾裕庭
Yu Ting Tseng
Original Assignee
國立成功大學
National Cheng Kung University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學, National Cheng Kung University filed Critical 國立成功大學
Priority to TW107135843A priority Critical patent/TWI677684B/en
Application granted granted Critical
Publication of TWI677684B publication Critical patent/TWI677684B/en
Publication of TW202014705A publication Critical patent/TW202014705A/en

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本發明提供一種生醫感測裝置及其應用。所述生醫感測裝置包含基材、第一高分子層與第二高分子層。第一高分子層中包含複合抗體,其包括第一抗體以及標記分子。第二高分子層具有反蛋白石光子晶體結構,其中分佈有金奈米粒子與第二抗體。複合抗體、抗原與第二抗體於第二高分子層中形成複合體,並可藉由生醫感測裝置之螢光強度、紅移量或目視顏色改變,獲得抗原含量。 The invention provides a biomedical sensing device and its application. The biomedical sensing device includes a substrate, a first polymer layer and a second polymer layer. The first polymer layer includes a composite antibody, which includes the first antibody and a labeling molecule. The second polymer layer has an inverse opal photonic crystal structure, in which gold nano particles and a second antibody are distributed. The complex antibody, the antigen, and the second antibody form a complex in the second polymer layer, and the antigen content can be obtained by changing the fluorescence intensity, redshift amount or visual color of the biomedical sensing device.

Description

生醫感測裝置及抗原含量的檢測方法 Biomedical sensing device and method for detecting antigen content

本發明是有關於一種生醫感測裝置及其應用,且特別是有關於一種包含光子晶體結構的生醫感測裝置,以及利用上述裝置進行之抗原濃度的檢測方法。 The invention relates to a biomedical sensing device and its application, and in particular to a biomedical sensing device containing a photonic crystal structure and a method for detecting an antigen concentration using the device.

常見的糖尿病之視網膜病變的檢測方法包括光學同調斷層掃描或眼底血管螢光鏡。此些儀器不但價格昂貴,且係以侵入性的方式進行檢測。此外,此些儀器之檢測尚有耗時、病狀早期或不明顯時不易判斷、單點取樣等缺點。 Common detection methods for diabetic retinopathy include optical coherence tomography or fundus vascular fluorescence. Not only are these instruments expensive, they also perform tests in an invasive manner. In addition, the detection of these instruments still has the disadvantages of being time-consuming, difficult to judge early or insignificant, and single-point sampling.

目前已知脂質運載蛋白-1(lipocalin 1;LCN1)可做為糖尿病之視網膜病變的生物指標。一般而言,常人淚液中的LCN1含量約為1至2mg/ml,而糖尿病之視網膜病變的患者之LCN1含量可能為正常值的好幾倍,故可利用LCN1含量的變化來檢測糖尿病之視網膜病變。然而,上述的含量變化十分微量,如何偵測上述微量變化為目前尚須克服的難題之一。 Lipocalin-1 (LCN1) is currently known as a biological indicator of diabetic retinopathy. Generally speaking, the content of LCN1 in the tears of ordinary people is about 1 to 2 mg / ml, and the LCN1 content of patients with diabetic retinopathy may be several times the normal value. Therefore, changes in LCN1 content can be used to detect diabetic retinopathy. However, the above-mentioned content changes are very small, and how to detect the above-mentioned minute changes is one of the difficult problems to be overcome at present.

反蛋白石光子晶體結構常用來改善檢測時的光學性質(例如螢光強度),且其在結構改變時會有折射率及反射率的變化,可藉由反射峰的變化偵測分析物含量。 The structure of the inverse opal photonic crystal is often used to improve the optical properties (such as fluorescence intensity) during detection, and its refractive index and reflectance change when the structure is changed. The analyte content can be detected by the change of the reflection peak.

有一種方法係分別將具有葡萄糖、pH值和鉀離子濃度檢測功能之反蛋白石光子晶體結構的水凝膠微球設於隱形眼鏡上,以分別觀察淚液中上述三個數值的改變。此方法主要係藉由水凝膠膨脹或收縮而改變粒子與粒子間的間距,造成波長範圍與顏色改變,但在低濃度分析物下,上述變化不顯著。此外,上述方法也無法檢測蛋白質。 One method is to set hydrogel microspheres with inverse opal photonic crystal structures that can detect glucose, pH, and potassium ion concentrations on contact lenses to observe changes in the above three values in tears, respectively. This method is mainly used to change the spacing between particles by the expansion or contraction of the hydrogel, causing the wavelength range and color to change, but the above changes are not significant under low concentration analytes. In addition, the above methods cannot detect proteins.

尚有一種方法係將具有不同編碼的光子晶體凝膠薄膜分別接附不同抗體,其係對應不同分析物。之後,檢測上述不同編碼的光子晶體凝膠薄膜之個別的反射峰。然後,使分析物與光子晶體凝膠薄膜反應接合後,再度檢測上述反射峰。接附有分析物的光子晶體凝膠薄膜之反射峰會產生變化。上述方法雖可用於蛋白質的檢測,但仍無法克服低濃度分析物的限制。 There is still a method for attaching photonic crystal gel films with different codes to different antibodies, which correspond to different analytes. Then, the individual reflection peaks of the photonic crystal gel films with different codes are detected. Then, after the analyte and the photonic crystal gel film are reacted and bonded, the reflection peak is detected again. The reflectance of the analyte-attached photonic crystal gel film changes. Although the above method can be used for protein detection, it still cannot overcome the limitation of low concentration analytes.

更有一種方法係類似於上述接附抗體的方法,但在與分析物反應後,此方法進一步加入上述分析物的二次抗體,以增加光子晶體折射率。然而,上述方法不僅操作繁瑣,利用二次抗體所增加的折射率仍不足以克服低濃度分析物的限制。 A further method is similar to the method of attaching antibodies described above, but after reacting with the analyte, this method further adds a secondary antibody to the analyte to increase the refractive index of the photonic crystal. However, the above method is not only cumbersome to operate, but the refractive index increased by using secondary antibodies is not enough to overcome the limitation of low concentration analytes.

鑒於上述種種缺點,目前亟需提出一種生醫感測裝置及抗原濃度的檢測方法,其可檢測低濃度抗原、具有高靈敏度、可平均取樣,以及可長時間監控抗原濃度。 In view of the above-mentioned shortcomings, there is an urgent need to propose a biomedical sensing device and an antigen concentration detection method that can detect low concentration antigens, have high sensitivity, can sample evenly, and can monitor the antigen concentration for a long time.

因此,本發明的一個態樣在於提供一種生醫感測 裝置,其可有效增加螢光強度及紅位移,從而可偵測低濃度抗原,及/或可直接以生醫感測裝置的呈色變化判斷抗原含量。 Therefore, one aspect of the present invention is to provide a biomedical sensing Device, which can effectively increase the fluorescence intensity and red shift, so that low-concentration antigens can be detected, and / or the content of the antigen can be directly determined by the color change of the biomedical sensing device.

本發明的另一個態樣在於提供一種抗原含量的檢測方法,其係使用上述生醫感測裝置來進行。 Another aspect of the present invention is to provide a method for detecting an antigen content, which is performed using the above-mentioned biomedical sensing device.

根據本發明之上述態樣,首先提出一種生醫感測裝置。在一些實施例中,生醫感測裝置包含基材、第一高分子層和第二高分子層。所述基材中包含相接的第一區和第二區,且第二區位於第一區的一側。所述第一高分子層係設置在第一區上。第一高分子層中分布有複數個複合抗體,此些複合抗體之每一者包含標記分子和相連之第一抗體。所述第二高分子層係設置在第二區上。所述第二高分子層中具有反蛋白石光子晶體結構,此反蛋白石光子晶體結構包含複數個孔洞,此些孔洞之每一者的孔壁上設有複數個金奈米粒子和複數個第二抗體,且第一抗體和第二抗體係辨識同一抗原。 According to the aspect of the present invention, a biomedical sensing device is first proposed. In some embodiments, the biomedical sensing device includes a substrate, a first polymer layer, and a second polymer layer. The substrate includes a first region and a second region adjacent to each other, and the second region is located on one side of the first region. The first polymer layer is disposed on the first region. A plurality of complex antibodies are distributed in the first polymer layer, and each of these complex antibodies includes a labeling molecule and a connected first antibody. The second polymer layer is disposed on the second region. The second polymer layer has an inverse opal photonic crystal structure, and the inverse opal photonic crystal structure includes a plurality of holes, and a plurality of gold nanoparticle and a plurality of second holes are provided on the pore wall of each of the holes. Antibodies, and the first antibody and the second antibody system recognize the same antigen.

依據本發明的一些實施例,第二區係位於第一區上方。 According to some embodiments of the invention, the second region is located above the first region.

依據本發明的一些實施例,第一區和第二區依序由外至內同心環設繞基材之中心。 According to some embodiments of the present invention, the first region and the second region are arranged concentrically around the center of the substrate from outside to inside in order.

依據本發明的一些實施例,所述第一區之底面係具有凹陷剖面,且此凹陷剖面具有第一深度。此外,所述第二區之底面具有不對稱U型凹陷剖面,此不對稱U型凹陷剖面具有第二深度,且第二深度大於上述第一深度。 According to some embodiments of the present invention, the bottom surface of the first region has a recessed section, and the recessed section has a first depth. In addition, the bottom surface of the second region has an asymmetric U-shaped recessed section, and the asymmetric U-shaped recessed section has a second depth, and the second depth is greater than the first depth.

依據本發明的一些實施例,所述反蛋白石光子晶體結構為奈米珠的面心立方堆疊之反向結構,所述奈米珠具有 100奈米至1000奈米之粒徑,且所述奈米珠的表面分佈有金奈米粒子。 According to some embodiments of the present invention, the inverse opal photonic crystal structure is a reverse structure of a face-centered cubic stack of nano beads, and the nano beads have The particle diameter is from 100 nanometers to 1000 nanometers, and gold nano particles are distributed on the surface of the nano beads.

依據本發明的一些實施例,所述標記分子包含螢光分子,且所述金奈米粒子具有5奈米至80奈米之粒徑。 According to some embodiments of the present invention, the labeling molecule includes a fluorescent molecule, and the gold nanoparticle has a particle diameter of 5 nm to 80 nm.

依據本發明的一些實施例,所述生醫感測裝置更包含設於第一高分子層上方的第三高分子層。 According to some embodiments of the present invention, the biomedical sensing device further includes a third polymer layer disposed above the first polymer layer.

依據本發明的一些實施例,所述生醫感測裝置為隱形眼鏡,基材之中心為隱形眼鏡之光學區,第一區與第二區分布於隱形眼鏡之非光學區,至少第二高分子層係從隱形眼鏡之一面暴露出來,且此面為眼球直接接觸面的相對面。 According to some embodiments of the present invention, the biomedical sensing device is a contact lens, the center of the substrate is the optical area of the contact lens, and the first area and the second area are distributed in the non-optical area of the contact lens, at least the second The molecular layer is exposed from one side of the contact lens, and this side is the opposite side of the direct contact surface of the eyeball.

根據本發明的上述態樣,提出一種抗原含量的檢測方法。首先,提供如上述的生醫感測裝置,其中此生醫感測裝置的基材中包含相通之第一區和第二區,且第二區係位於第一區之一側。令包含抗原之生物液體樣本從生醫感測裝置之第二區流入至第一區,以釋放出複數個複合抗體之至少一者,並使此些複合抗體之至少一者、所述抗原以及複數個第二抗體之至少一者反應達特定時間,以於第二區形成複合體。接下來,以特定波長之光源檢測生醫感測裝置之第二區的複合體之光學性質,其中此光學性質包含螢光強度或呈色。然後,根據此光學性質獲得所述抗原的含量。 According to the above aspect of the present invention, a method for detecting an antigen content is proposed. First, a biomedical sensing device as described above is provided, wherein the substrate of the biomedical sensing device includes a first region and a second region that are in communication, and the second region is located on one side of the first region. The biological fluid sample containing the antigen is caused to flow from the second region to the first region of the biomedical sensing device to release at least one of a plurality of complex antibodies, and at least one of the complex antibodies, the antigen, and At least one of the plurality of second antibodies reacts for a specific time to form a complex in the second region. Next, the optical property of the complex in the second region of the biomedical sensing device is detected by a light source with a specific wavelength, wherein the optical property includes fluorescence intensity or coloration. Then, the content of the antigen is obtained based on this optical property.

依據本發明的一些實施例,上述特定波長為200奈米至700奈米,且所述第二區之反蛋白石光子晶體結構增加至少2倍的所述螢光強度。 According to some embodiments of the present invention, the specific wavelength is 200 nm to 700 nm, and the inverse opal photonic crystal structure of the second region increases the fluorescence intensity by at least 2 times.

100、200、300、400、500、600‧‧‧生醫感測裝置 100, 200, 300, 400, 500, 600‧‧‧Biomedical sensing devices

110、210、310、410、510、610‧‧‧基材 110, 210, 310, 410, 510, 610‧‧‧ substrate

112、212、312、412、512、612‧‧‧第一區 112, 212, 312, 412, 512, 612‧‧‧ District 1

114、214、314、414、514、614‧‧‧第二區 114, 214, 314, 414, 514, 614‧‧‧ District 2

120、220、320、420、520、620‧‧‧第一高分子層 120, 220, 320, 420, 520, 620‧‧‧ first polymer layer

121‧‧‧複合抗體 121‧‧‧ complex antibody

123‧‧‧標記分子 123‧‧‧ labeled molecules

125‧‧‧第一抗體 125‧‧‧ primary antibody

130、230、330、430、530、630‧‧‧第二高分子層 130, 230, 330, 430, 530, 630‧‧‧ second polymer layer

130A‧‧‧反蛋白石光子晶體結構 130A‧‧‧ Opal Crystal Structure

130’‧‧‧第二高分子材料層 130’‧‧‧second polymer material layer

131‧‧‧孔洞 131‧‧‧ Hole

131S‧‧‧孔壁 131S‧‧‧hole wall

133‧‧‧金奈米粒子 133‧‧‧Gold nano particles

135‧‧‧第二抗體 135‧‧‧Second antibody

140‧‧‧第三高分子層 140‧‧‧ third polymer layer

340、440、540‧‧‧中心 340, 440, 540‧‧‧ Center

422‧‧‧凹陷剖面 422‧‧‧ Sag profile

432‧‧‧不對稱U型凹陷剖面 432‧‧‧Asymmetric U-shaped depression profile

434、436‧‧‧側壁 434, 436‧‧‧ sidewall

700‧‧‧面心立方堆疊 700‧‧‧ Face-centered Cubic Stack

702‧‧‧奈米珠 702‧‧‧ Nano beads

710‧‧‧二氧化矽蝕刻劑 710‧‧‧ Silicon dioxide etchant

720‧‧‧氨基烷基烷氧基矽烷化合物 720‧‧‧aminoalkylalkoxysilane compound

800‧‧‧方法 800‧‧‧ Method

810‧‧‧提供生醫感測裝置 810‧‧‧ provides biomedical sensing device

820‧‧‧令包含抗原之生物液體樣本從該生醫感測裝置之第二區流入至第一區,以釋放複數個複合抗體之至少一者,並於第二區形成複合體 820‧‧‧ causes a biological liquid sample containing an antigen to flow from the second area of the biomedical sensing device to the first area to release at least one of a plurality of complex antibodies and form a complex in the second area

830‧‧‧以特定波長之光源檢測生醫感測裝置之第二區的複合體之光學性質 830‧‧‧ Detecting the optical properties of the complex in the second region of the biomedical sensing device with a light source with a specific wavelength

840‧‧‧根據所述光學性質獲得抗原的含量 840‧‧‧Acquiring antigen content based on said optical properties

900‧‧‧複合體 900‧‧‧ Complex

901‧‧‧抗原 901‧‧‧antigen

D1‧‧‧第一深度 D1‧‧‧First Depth

D2‧‧‧第二深度 D2‧‧‧Second Depth

1001、1003、1005‧‧‧長條圖 1001, 1003, 1005‧‧‧‧ Bar graph

從以下結合所附圖式所做的詳細描述,可對本發明之態樣有更佳的了解。需注意的是,根據業界的標準實務,各特徵並未依比例繪示。事實上,為了使討論更為清楚,各特徵的尺寸都可任意地增加或減少。 A better understanding of the aspects of the present invention can be obtained from the following detailed description in conjunction with the accompanying drawings. It should be noted that, according to industry standard practice, features are not drawn to scale. In fact, to make the discussion clearer, the dimensions of each feature can be arbitrarily increased or decreased.

[圖1A]係本發明之一實施例所述之生醫感測裝置的剖面圖。 1A is a cross-sectional view of a biomedical sensing device according to an embodiment of the present invention.

[圖1B]係第一高分子層的示意剖面圖。 [Fig. 1B] A schematic cross-sectional view of a first polymer layer.

[圖1C]係第二高分子層的示意剖面圖。 1C is a schematic cross-sectional view of a second polymer layer.

[圖2]係本發明之另一實施例所述之生醫感測裝置的剖面圖。 [FIG. 2] A sectional view of a biomedical sensing device according to another embodiment of the present invention.

[圖3A]和[圖3B]係本發明之一些實施例所述之生醫感測裝置的剖面圖和上視圖。 [FIG. 3A] and [FIG. 3B] are a cross-sectional view and a top view of a biomedical sensing device according to some embodiments of the present invention.

[圖4]係本發明之另一些實施例所述之生醫感測裝置的剖面圖。 4 is a cross-sectional view of a biomedical sensing device according to another embodiment of the present invention.

[圖5A]和[圖5B]係本發明之又一些實施例所述之生醫感測裝置的剖面圖和上視圖。 5A and 5B are a cross-sectional view and a top view of a biomedical sensing device according to still another embodiment of the present invention.

[圖6A]和[圖6B]係根據本發明之另一些實施例所述之生醫感測裝置的剖面圖和上視圖。 [FIG. 6A] and [FIG. 6B] A cross-sectional view and a top view of a biomedical sensing device according to other embodiments of the present invention.

[圖7A]至[圖7E]係第二高分子層的形成方法。 [FIG. 7A] to [FIG. 7E] A method for forming a second polymer layer.

[圖8]係根據本發明之一實施例所述之抗原含量的檢測方法之示意流程圖。 8 is a schematic flowchart of a method for detecting an antigen content according to an embodiment of the present invention.

[圖9]係形成複合體之第二高分子層的示意剖面圖。 9 is a schematic cross-sectional view of a second polymer layer forming a composite.

[圖10]係本發明的實施例1和2之螢光強度的長條圖。 Fig. 10 is a bar graph showing the fluorescence intensity of Examples 1 and 2 of the present invention.

[圖11]係本發明之實施例3的螢光強度之長條圖。 FIG. 11 is a bar graph of the fluorescence intensity in Example 3 of the present invention.

[圖12A]和[圖12B]係本發明之實施例4的螢光強度及螢光增顯倍率的長條圖。 [FIG. 12A] and [FIG. 12B] Bar graphs of the fluorescence intensity and the fluorescence magnification magnification in Example 4 of the present invention.

本發明的目的在於提供一種生醫感測裝置,其可偵測抗原的含量。在具有反蛋白石光子晶體結構並分佈有金奈米粒子的高分子層中,使複合抗體、抗原和抗體形成三明治免疫結構,以改善生醫感測裝置的光學性質(例如螢光強度或紅移量)。此生醫感測裝置可檢測低濃度抗原的含量,或可從生醫感測裝置的呈色變化得知抗原含量之變化。此外,此生醫感測裝置係平均取樣,並適用於長期監控抗原濃度變化。再者,此生醫感測裝置為純光學式的裝置,不須驅動裝置。 An object of the present invention is to provide a biomedical sensing device capable of detecting the content of antigen. In a polymer layer with an inverse opal photonic crystal structure and gold nanoparticle distribution, the composite antibodies, antigens, and antibodies form a sandwich immune structure to improve the optical properties of the biomedical sensing device (such as fluorescence intensity or redshift) the amount). The biomedical sensing device can detect the content of antigen at a low concentration, or the change in the content of the antigen can be obtained from the color change of the biomedical sensing device. In addition, this biomedical sensing device is sampled on average and is suitable for long-term monitoring of changes in antigen concentration. Furthermore, the biomedical sensing device is a purely optical device and does not need to drive the device.

首先請先參考圖1A,其係繪示本發明之一實施例所述之生醫感測裝置的剖面圖。如圖1A所示,生醫感測裝置100包含基材110、第一高分子層120和第二高分子層130。基材110中包含相接第一區112和第二區114,且第二區114係位於第一區112的一側。第一高分子層120係設置在第一區112中,而第二高分子層130係設置在第二區114中。 First, please refer to FIG. 1A, which is a cross-sectional view of a biomedical sensing device according to an embodiment of the present invention. As shown in FIG. 1A, the biomedical sensing device 100 includes a substrate 110, a first polymer layer 120 and a second polymer layer 130. The substrate 110 includes a first region 112 and a second region 114 adjacent to each other, and the second region 114 is located on one side of the first region 112. The first polymer layer 120 is disposed in the first region 112 and the second polymer layer 130 is disposed in the second region 114.

接下來請參考圖1B,其係第一高分子層的示意剖面圖。如圖1B所示,第一高分子層120中分佈有複數個複合抗體121。每個複合抗體121包含標記分子123和相連之第一抗體125。在一些實施例中,第一高分子層120包含微孔(未繪示),以使上述複合抗體121可經由微孔流入第二高分子層130中。 上述微孔可例如具有大於5nm之平均孔徑,較佳地,上述微孔可例如大於10nm。在一些實施例中,上述標記分子123可包括但不限於螢光分子。在一例子中,此螢光分子可例如具有200nm至700nm的激發波長。在另一例子中,此螢光分子可例如具有300nm至1000nm的發散波長。在一具體例子中,可使用香豆素、螢光素、花青染料、四甲基若丹明乙酯酸銨、藻紅蛋白、藻藍蛋白、商品名為Alexa Fluor 350、405、488、532、546、555、568、594、647、680或750(英傑生命技術有限公司(Invitrogen)製),做為螢光分子,但本發明之螢光分子並不限於此。 Please refer to FIG. 1B, which is a schematic cross-sectional view of a first polymer layer. As shown in FIG. 1B, a plurality of complex antibodies 121 are distributed in the first polymer layer 120. Each composite antibody 121 includes a labeling molecule 123 and a first antibody 125 connected thereto. In some embodiments, the first polymer layer 120 includes micropores (not shown), so that the composite antibody 121 can flow into the second polymer layer 130 through the micropores. The aforementioned micropores may, for example, have an average pore diameter greater than 5 nm, and preferably, the aforementioned micropores may be, for example, greater than 10 nm. In some embodiments, the above-mentioned labeling molecule 123 may include, but is not limited to, a fluorescent molecule. In one example, the fluorescent molecule may have an excitation wavelength of 200 nm to 700 nm, for example. In another example, this fluorescent molecule may, for example, have a divergent wavelength from 300 nm to 1000 nm. In a specific example, coumarin, luciferin, cyanine dye, tetramethylrhodamine ethylammonate, phycoerythrin, phycocyanin, trade names are Alexa Fluor 350, 405, 488, 532, 546, 555, 568, 594, 647, 680, or 750 (manufactured by Invitrogen) as the fluorescent molecules, but the fluorescent molecules of the present invention are not limited thereto.

圖1C係第二高分子層的示意剖面圖。如圖1C所示,第二高分子層130中具有反蛋白石光子晶體結構130A,此反蛋白石光子晶體結構130A包含複數個孔洞131。每個孔洞131的孔壁131S上設置有複數個金奈米粒子133和複數個第二抗體135。此些第二抗體135和前述第一抗體125係辨識同一抗原。例如:第一抗體125可為特定抗原的多株抗體,而第二抗體135可為上述特定抗原的單株抗體。在一些實施例中,第二高分子層130也可包含如第一高分子層120的微孔。在一些實施例中,金奈米粒子133的粒徑可例如為5奈米至80奈米。在一例子中,金奈米粒子133的粒徑可為40奈米。倘若金奈米粒子133的粒徑過大,會影響反蛋白石光子晶體結構130A的形成,且無法有效改善生醫感測裝置100的偵測性能。 FIG. 1C is a schematic cross-sectional view of a second polymer layer. As shown in FIG. 1C, the second polymer layer 130 has an inverse opal photonic crystal structure 130A. The inverse opal photonic crystal structure 130A includes a plurality of holes 131. A plurality of gold nanoparticle 133 and a plurality of second antibodies 135 are disposed on the pore wall 131S of each pore 131. These second antibodies 135 and the aforementioned first antibodies 125 recognize the same antigen. For example, the first antibody 125 may be a multiple antibody against a specific antigen, and the second antibody 135 may be a single antibody against the specific antigen. In some embodiments, the second polymer layer 130 may also include micropores such as the first polymer layer 120. In some embodiments, the particle size of the gold nano particles 133 may be, for example, 5 nanometers to 80 nanometers. In one example, the particle size of the gold nano particles 133 may be 40 nanometers. If the particle size of the nano-particles 133 is too large, the formation of the inverse opal photonic crystal structure 130A will be affected, and the detection performance of the biomedical sensing device 100 cannot be effectively improved.

在使用生醫感測裝置100進行抗原含量的檢測時,前述第一高分子層120中的複合抗體121和第二高分子層 130中的第二抗體135,會於反蛋白石光子晶體結構130A中形成三明治免疫結構,從而增加光源折射率,並增強螢光強度和紅移量。而第二高分子層130中的金奈米粒子133的表面會發生表面電漿共振,增加光源反射率,也可進一步強化標記分子123的螢光強度。此外,當抗原含量較高時,也可藉由生醫感測裝置100的呈色變化來得知抗原含量的變化。 When the biomedical sensing device 100 is used to detect the antigen content, the composite antibody 121 and the second polymer layer in the first polymer layer 120 are used. The second antibody 135 in 130 will form a sandwich immune structure in the inverse opal photonic crystal structure 130A, thereby increasing the refractive index of the light source and enhancing the fluorescence intensity and redshift. On the other hand, the surface of the nano-particles 133 in the second polymer layer 130 has surface plasmon resonance, which increases the reflectance of the light source and further enhances the fluorescence intensity of the labeled molecules 123. In addition, when the content of the antigen is high, the change in the content of the antigen can also be known by the color change of the biomedical sensing device 100.

請再參考圖1A,在一些實施例中,生醫感測裝置100可更包含設於第一高分子層120上方的第三高分子層140。此第三高分子層140可包含複數個微孔(未繪示),且此些微孔的平均孔徑為不大於5nm。第三高分子層140可防止複合抗體121從第一高分子層120的頂表面上流失,從而可控制複合抗體121接觸液體樣品時的流向為朝向第二高分子層130。 Please refer to FIG. 1A again. In some embodiments, the biomedical sensing device 100 may further include a third polymer layer 140 disposed above the first polymer layer 120. The third polymer layer 140 may include a plurality of micropores (not shown), and the average pore diameter of the micropores is not greater than 5 nm. The third polymer layer 140 can prevent the complex antibody 121 from escaping from the top surface of the first polymer layer 120, and can control the flow direction of the complex antibody 121 toward the second polymer layer 130 when it contacts the liquid sample.

在一些實施例中,第一高分子層120和第二高分子層130的材料可包括但不限於水膠,其具有如上所述之大於5nm的微孔。在一些實施例中,所述水膠可例如為聚烷二醇、聚丙烯酸酯或包含二種以上聚烷二醇之共聚物。在一具體例子中,第一高分子層120可為聚甲基丙烯酸羥乙酯(Poly(hydroxyethyl methacrylate);pHEMA)、Pluronic F-127、聚乙二醇或聚乙二醇二丙烯酸酯。在一具體例子中,第二高分子層130可為聚乙二醇或聚乙二醇二丙烯酸酯,以提供足夠的硬度來形成反蛋白石光子晶體結構130A。所述水膠會吸水膨脹並將微孔撐大,以利三明治免疫結構的形成。在另一些實施例中,基材110和第三高分子層140的材料可例如為聚甲基丙烯酸甲酯。 In some embodiments, the material of the first polymer layer 120 and the second polymer layer 130 may include, but is not limited to, a hydrogel having micropores larger than 5 nm as described above. In some embodiments, the hydrogel may be, for example, a polyalkylene glycol, a polyacrylate, or a copolymer comprising two or more polyalkylene glycols. In a specific example, the first polymer layer 120 may be poly (hydroxyethyl methacrylate; pHEMA), Pluronic F-127, polyethylene glycol, or polyethylene glycol diacrylate. In a specific example, the second polymer layer 130 may be polyethylene glycol or polyethylene glycol diacrylate to provide sufficient hardness to form the inverse opal photonic crystal structure 130A. The hydrogel will absorb water and swell and expand the micropores to facilitate the formation of sandwich immune structures. In other embodiments, the material of the substrate 110 and the third polymer layer 140 may be, for example, polymethyl methacrylate.

接著請參考圖2,其係繪示本發明之另一實施例所述之生醫感測裝置的剖面圖。如圖2所示,生醫感測裝置200包含基材210、第一高分子層220和第二高分子層230。基材210中包含相接第一區212和第二區214,且第二區214係位於第一區212的上方。第一高分子層220係設置在第一區212中,而第二高分子層230係設置在第二區214中。 Please refer to FIG. 2, which is a cross-sectional view of a biomedical sensing device according to another embodiment of the present invention. As shown in FIG. 2, the biomedical sensing device 200 includes a substrate 210, a first polymer layer 220 and a second polymer layer 230. The substrate 210 includes a first region 212 and a second region 214 adjacent to each other, and the second region 214 is located above the first region 212. The first polymer layer 220 is disposed in the first region 212, and the second polymer layer 230 is disposed in the second region 214.

請參考圖3A和圖3B,其係分別繪示本發明之一些實施例所述之生醫感測裝置的剖面圖和上視圖。在生醫感測裝置300中,第一區312和第二區314係由外至內同心環設基材310的中心340,且第一區312和第二區314各自為一環形區。第一高分子層320和第二高分子層330分別設於環形的第一區312和第二區314上,形成二個同心環,如圖3B所示。 Please refer to FIG. 3A and FIG. 3B, which are respectively a cross-sectional view and a top view of a biomedical sensing device according to some embodiments of the present invention. In the biomedical sensing device 300, the first region 312 and the second region 314 are concentrically arranged from the outside to the center 340 of the substrate 310, and each of the first region 312 and the second region 314 is an annular region. The first polymer layer 320 and the second polymer layer 330 are respectively disposed on the ring-shaped first region 312 and the second region 314 to form two concentric rings, as shown in FIG. 3B.

圖4係繪示本發明之另一些實施例所述之生醫感測裝置的剖面圖。在生醫感測裝置400中,基材410包括第一區412和第二區414。第一區412具有凹陷剖面422,且此凹陷剖面422具有第一深度D1。所述第二區414具有不對稱U型凹陷剖面432,此不對稱U型凹陷剖面432具有第二深度D2,且第二深度D2大於上述第一深度D1。 4 is a cross-sectional view of a biomedical sensing device according to another embodiment of the present invention. In the biomedical sensing device 400, the substrate 410 includes a first region 412 and a second region 414. The first region 412 has a recessed section 422, and the recessed section 422 has a first depth D1. The second region 414 has an asymmetric U-shaped depression profile 432, and the asymmetric U-shaped depression profile 432 has a second depth D2, and the second depth D2 is greater than the first depth D1.

在一些實施例中,鄰近中心440之不對稱U型凹陷剖面432的一側壁436之斜率大於鄰近上述第一區412之不對稱U型凹陷剖面432的另一側壁434之斜率。藉由如圖4所示的設置方式,有助於第一高分子層420中的複合抗體流入第二高分子層430中,並有效改善生醫感測裝置400的光學性質。圖4之上視圖與圖3B相似,故此處不另說明。 In some embodiments, the slope of one sidewall 436 of the asymmetric U-shaped depression profile 432 adjacent to the center 440 is greater than the slope of the other sidewall 434 of the asymmetric U-shaped depression profile 432 adjacent to the first region 412. With the arrangement shown in FIG. 4, the composite antibody in the first polymer layer 420 is facilitated to flow into the second polymer layer 430, and the optical properties of the biomedical sensing device 400 are effectively improved. The top view of FIG. 4 is similar to that of FIG. 3B, so it will not be described here.

請參考圖5A和圖5B,其係分別繪示本發明之又一些實施例所述之生醫感測裝置的剖面圖和上視圖。在生醫感測裝置500中,第二區514係位於第一區512上方。從圖5B之上視圖觀之,第一高分子層520和第二高分子層530為二個同心環,其係環設基材510的中心540。然而,與圖3B不同的是,第二高分子層530係位於第一高分子層520的中間,以使第一高分子層520中的複合抗體可從四周均勻擴散至第二高分子530層中。圖5A和圖5B之設置方式可大幅增加容納複合抗體(如圖1B所示的複合抗體121)的第一高分子層520之空間。較多的複合抗體可進一步改善生醫感測裝置500的偵測性能,例如:可增加所偵測的螢光強度。 Please refer to FIG. 5A and FIG. 5B, which are respectively a cross-sectional view and a top view of the biomedical sensing device according to some embodiments of the present invention. In the biomedical sensing device 500, the second region 514 is located above the first region 512. From the top view of FIG. 5B, the first polymer layer 520 and the second polymer layer 530 are two concentric rings, and the ring is set at the center 540 of the substrate 510. However, unlike FIG. 3B, the second polymer layer 530 is located in the middle of the first polymer layer 520, so that the complex antibody in the first polymer layer 520 can be uniformly diffused from the periphery to the second polymer 530 layer. in. The arrangement of FIG. 5A and FIG. 5B can greatly increase the space of the first polymer layer 520 containing the composite antibody (such as the composite antibody 121 shown in FIG. 1B). More complex antibodies can further improve the detection performance of the biomedical sensing device 500, for example, it can increase the detected fluorescence intensity.

在一些實施例中,生醫感測裝置300、400及500可為隱形眼鏡。所述中心340、440和540為隱形眼鏡的光學區,而第一區312、412和512與第二區314、414和514係分布於隱形眼鏡之非光學區。此外,至少第二高分子層330、430和530係從隱形眼鏡的一面暴露出來,且此面為隱形眼鏡之眼球直接接觸面的相對面。 In some embodiments, the biomedical sensing devices 300, 400, and 500 may be contact lenses. The centers 340, 440, and 540 are optical regions of the contact lens, and the first regions 312, 412, and 512 and the second regions 314, 414, and 514 are distributed in the non-optical region of the contact lens. In addition, at least the second polymer layer 330, 430, and 530 are exposed from one side of the contact lens, and this side is the opposite side of the direct contact surface of the eyeball of the contact lens.

接下來請參考圖6A和圖6B,其係根據本發明之另一些實施例所述之生醫感測裝置的剖面圖和上視圖。如圖6A和圖6B所示,生醫感測裝置600包含基材610、第一高分子層620和第二高分子層630。所述基材610的第一區612和第二區614依序由外至內同心環設心,第一高分子層620和第二高分子層630分別設於第一區612和第二區614上。生醫感測裝置600的中心(例如圖5A和圖5B所述之光學區)係由第二高分子 層630所覆蓋。在一些實施例中,生醫感測裝置600可為檢測晶片。一或多個所述檢測晶片可設置於樣品盤中,以同時進行多組樣品的檢測或進行同一樣品的重複性實驗等。 6A and 6B, which are a cross-sectional view and a top view of a biomedical sensing device according to other embodiments of the present invention. As shown in FIGS. 6A and 6B, the biomedical sensing device 600 includes a substrate 610, a first polymer layer 620 and a second polymer layer 630. The first region 612 and the second region 614 of the substrate 610 are concentrically arranged in order from outside to inside. The first polymer layer 620 and the second polymer layer 630 are respectively disposed in the first region 612 and the second region. 614. The center of the biomedical sensing device 600 (such as the optical region described in FIGS. 5A and 5B) is composed of a second polymer Covered by layer 630. In some embodiments, the biomedical sensing device 600 may be a detection wafer. One or more of the detection wafers can be set in a sample tray to perform the detection of multiple groups of samples at the same time or to perform repeatable experiments on the same sample.

圖2至圖6B所述之第一高分子層220、320、420、520及620係與圖1B所示的第一高分子層120相同,第二高分子層230、330、430、530及630係與第二高分子層130相同,故此處不另贅述。 The first polymer layers 220, 320, 420, 520, and 620 described in FIGS. 2 to 6B are the same as the first polymer layer 120 shown in FIG. 1B, and the second polymer layers 230, 330, 430, 530, and 630 is the same as the second polymer layer 130, so it will not be repeated here.

以下說明本發明之生醫感測裝置的製造方法。為簡化圖式,僅以生醫感測裝置100為例,然於本技術領域具有通常知識者應可了解,圖2至圖6B所示的生醫感測裝置200、300、400、500及600也可以類似的方法製得。 A method for manufacturing the biomedical sensing device of the present invention is described below. To simplify the diagram, only the biomedical sensing device 100 is taken as an example. However, those having ordinary knowledge in the technical field should understand that the biomedical sensing devices 200, 300, 400, 500 and 500 shown in FIGS. 2 to 6B and 600 can also be made in a similar manner.

生醫感測裝置100係先利用模具製造基材110,所述基材110具有如圖1A所示的相通之第一區112和第二區114。所述模具可例如使用3D列印的方式製造。接著,先於上述第二區114,形成第二高分子層130。 The biomedical sensing device 100 first uses a mold to manufacture a substrate 110 having a first region 112 and a second region 114 communicating with each other as shown in FIG. 1A. The mold can be manufactured, for example, using 3D printing. Next, a second polymer layer 130 is formed before the second region 114.

請參考圖7A至圖7E,其係繪示第二高分子層的形成方法。如圖7A所示,首先,於第二區114的基材110上施予奈米珠混合物,使奈米珠702以流體自組裝的方式形成面心立方堆疊700之三維結構。為簡化圖式,此處僅以平面基材代表第二區114。此奈米珠混合物包含分散於溶液中的二氧化矽奈米珠702和上述金奈米粒子133。在形成面心立方堆疊700時,金奈米粒子133會吸附於二氧化矽奈米珠702的表面上。在一例子中,二氧化矽奈米珠702的粒徑為100奈米至1000奈米。例如:二氧化矽奈米珠之粒徑可為300nm。在一實施例 中,所述奈米粒混合物中的二氧化矽奈米珠與金奈米粒子的重量比為10:1至30:1。倘若金奈米粒子的含量過多時,金奈米粒子會自聚集而使其粒徑大於預定範圍。在另一些實施例中,奈米珠可由聚合物材料(例如聚苯乙烯)或金屬性材料形成,上述材料可由有機溶劑或酸/鹼溶液蝕刻。 Please refer to FIGS. 7A to 7E, which illustrate a method for forming a second polymer layer. As shown in FIG. 7A, first, a nanobead mixture is applied to the substrate 110 of the second region 114, so that the nanobeads 702 form a three-dimensional structure of a face-centered cubic stack 700 in a fluid self-assembly manner. For the sake of simplicity, the second region 114 is represented by a planar substrate only. This nano-bead mixture contains silica nano-beads 702 and the above-mentioned gold nano-particles 133 dispersed in a solution. When the face-centered cubic stack 700 is formed, the gold nano particles 133 are adsorbed on the surface of the silicon dioxide nano beads 702. In one example, the particle diameter of the silica nano-beads 702 is 100 nm to 1000 nm. For example, the particle size of nanometer silica beads can be 300nm. In an embodiment In the nano-particle mixture, the weight ratio of the silica nano-beads to the nano-particles is 10: 1 to 30: 1. If the content of the nano-particles is too large, the nano-particles will self-aggregate and make the particle size larger than a predetermined range. In other embodiments, the nano-beads may be formed of a polymer material (such as polystyrene) or a metallic material, and the material may be etched by an organic solvent or an acid / base solution.

接下來,如圖7B所示,在面心立方堆疊700上形成第二高分子材料層130’,以使第二高分子材料層130’包圍面心立方堆疊700。所述第二高分子材料層130’係將高分子材料形成於第二高分子材料層130’上後,再以紫外光照射以固化高分子材料,形成第二高分子材料層130’。在一些實施例中,高分子材料可進一步包括光起始劑。選擇性地,第二高分子材料層130’可僅藉由乾燥面心立方結構700上的高分子材料而硬化。在一例子中,上述高分子材料為聚乙二醇二丙烯酸酯。然後,如圖7C所示,對第二高分子材料層130’及面心立方堆疊700施予二氧化矽蝕刻劑(Buffered Oxide Etch;BOE)710,以移除二氧化矽奈米珠702,從而形成第二高分子層130的反蛋白石光子晶體結構130A(圖1C)。由於金奈米粒子133不會被二氧化矽蝕刻劑710所蝕刻,故在移除二氧化矽奈米珠702後,金奈米粒子133可被保留並分佈於反蛋白石光子晶體結構130A的孔洞131之孔壁131S上,如圖1C所示。 Next, as shown in FIG. 7B, a second polymer material layer 130 'is formed on the face-centered cubic stack 700, so that the second polymer material layer 130' surrounds the face-centered cubic stack 700. The second polymer material layer 130 'is formed by polymer material on the second polymer material layer 130', and then irradiated with ultraviolet light to cure the polymer material to form a second polymer material layer 130 '. In some embodiments, the polymer material may further include a photoinitiator. Alternatively, the second polymer material layer 130 'may be hardened only by drying the polymer material on the face-centered cubic structure 700. In one example, the polymer material is polyethylene glycol diacrylate. Then, as shown in FIG. 7C, a silicon dioxide etchant (Buffered Oxide Etch; BOE) 710 is applied to the second polymer material layer 130 'and the face-centered cubic stack 700 to remove the silicon dioxide nanometer beads 702. Thereby, the inverse opal photonic crystal structure 130A of the second polymer layer 130 is formed (FIG. 1C). Since the nano-particles 133 are not etched by the silicon dioxide etchant 710, the nano-particles 133 can be retained and distributed in the holes of the inverse opal photonic crystal structure 130A after removing the silicon dioxide nano-beads 702. The hole wall 131S of 131 is shown in FIG. 1C.

為簡化圖式,圖7C及圖7D僅繪示部分的反蛋白石光子晶體結構130A及其孔洞之孔壁131S。如圖7D所示,將氨基烷基烷氧基矽烷化合物720以矽氧共價鍵鍵結於孔壁131S上。之後,如圖7E所示,利用氨基烷基烷氧基矽烷化合 物720的氨基與第二抗體135的羧酸基鍵結,以藉由醯胺鍵將第二抗體135固定於孔壁131S上,以形成如圖1C所示的第二高分子層130。在一例子中,可例如藉由1-乙基-3-(3-二甲基氨基丙基)碳醯二亞胺(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide;EDC)和N-羥基丁二醯亞胺(N-hydroxysuccinimide;NHS)的反應,使氨基烷基烷氧基矽烷化合物720與第二抗體135鍵結。在一例子中,氨基烷基烷氧基矽烷化合物720為3-氨基丙基三乙氧基矽烷(3-Aminopropyltriethoxysilane;APTES)。 To simplify the drawing, FIG. 7C and FIG. 7D only show a part of the inverse opal photonic crystal structure 130A and the hole wall 131S of the hole. As shown in FIG. 7D, the aminoalkylalkoxysilane compound 720 is covalently bonded to the pore wall 131S with a silicon-oxygen bond. Thereafter, as shown in FIG. 7E, the aminoalkylalkoxysilane is compounded. The amino group of the substance 720 is bonded to the carboxylic acid group of the second antibody 135 to fix the second antibody 135 on the pore wall 131S through the amidine bond to form the second polymer layer 130 as shown in FIG. 1C. In one example, 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC) and N- The reaction of N-hydroxysuccinimide (NHS) causes the aminoalkylalkoxysilane compound 720 to bond with the second antibody 135. In one example, the aminoalkylalkoxysilane compound 720 is 3-Aminopropyltriethoxysilane (APTES).

在形成第二高分子層130後,於第一區112中填充另一高分子材料與如圖1B所示的複合抗體121之混合物,並以紫外光照射固化此另一高分子材料後,形成第一高分子層120。在一些實施例中,高分子材料包括光起始劑。選擇性地,第一高分子層120可僅藉由乾燥高分子材料而硬化。第一高分子層120的高分子材料可與第二高分子層130的高分子材料相同或不同。例如:第一高分子層120可為聚乙二醇。在一較佳的實施例中,可於第一高分子層120上形成聚甲基丙烯酸甲酯之第三高分子層140,如圖1A所示。 After the second polymer layer 130 is formed, a mixture of another polymer material and the complex antibody 121 shown in FIG. 1B is filled in the first region 112, and the other polymer material is cured by irradiation with ultraviolet light, and then formed. First polymer layer 120. In some embodiments, the polymer material includes a photoinitiator. Alternatively, the first polymer layer 120 may be hardened only by drying the polymer material. The polymer material of the first polymer layer 120 may be the same as or different from the polymer material of the second polymer layer 130. For example, the first polymer layer 120 may be polyethylene glycol. In a preferred embodiment, a third polymer layer 140 of polymethyl methacrylate can be formed on the first polymer layer 120, as shown in FIG. 1A.

在另一些實施例中,可先於第一區中形成第一高分子層後,再於第二區中形成第二高分子層。例如:生醫感測裝置200係先形成第一高分子層220於第一區212中後,才在第一高分子層220上的第二區214中形成第二高分子層230。 In other embodiments, a first polymer layer may be formed in the first region, and then a second polymer layer may be formed in the second region. For example, the biomedical sensing device 200 first forms the first polymer layer 220 in the first region 212, and then forms the second polymer layer 230 in the second region 214 on the first polymer layer 220.

本發明的另一個目的係提出一種抗原含量的檢測方法,其可使用任何上述生醫感測裝置來進行。以下配合圖8 及圖9進行說明。圖8繪示根據本發明之一實施例所述之抗原含量的檢測方法800之示意流程圖。圖9繪示形成複合體之第二高分子層的示意剖面圖。雖然圖9係繪示生醫感測裝置100之第二高分子層130,但其也可為生醫感測裝置200、300、400、500或600的第二高分子層。 Another object of the present invention is to provide a method for detecting an antigen content, which can be performed using any of the aforementioned biomedical sensing devices. Following with Figure 8 This will be described with reference to FIG. 9. FIG. 8 is a schematic flowchart of a method 800 for detecting an antigen content according to an embodiment of the present invention. FIG. 9 is a schematic cross-sectional view of a second polymer layer forming a composite. Although FIG. 9 illustrates the second polymer layer 130 of the biomedical sensing device 100, it may also be the second polymer layer of the biomedical sensing device 200, 300, 400, 500, or 600.

如圖8和圖9所示,在步驟810中,提供生醫感測裝置100,其中生醫感測裝置100之基材110中包含相通之第一區112和第二區114,且第二區114係位於第一區112之一側。接著,在步驟820中,令包含抗原901之生物液體樣本從生醫感測裝置100之第二區114流入第一區112,以釋放第一區112的複合抗體121。具體而言,吸收液體而膨脹的第一高分子層120和第二高分子層130之微孔洞會擴大,使複數個複合抗體121的至少一者可從第一區112再流入第二區114。使此些複合抗體121之至少一者、所述抗原901以及複數個第二抗體135之至少一者反應達特定時間,以於第二區形成複合體900。在一些實施例中,所述生物液體樣本可例如為淚液、尿液、血液或其他類似物。在一實施例中,所述生物液體樣本中的抗原含量至少為10μg/ml。在一實施例中,當使用如生醫感測裝置300、400或500之隱形眼鏡時,可直接配戴隱形眼鏡,以檢測流經第一區和第二區之人眼所分泌的淚液中的特定抗原含量。在一實施例中,可配戴此隱形眼鏡達8小時,以持續長時間地監測特定抗原901濃度的變化。在一例子中,所述抗原901可例如為脂質運載蛋白-1(lipocalin 1;LCN1),而所述第一抗體125(圖1B)為LCN1的單株抗體,所述第二抗體135為 LCN1的多株抗體。 As shown in FIG. 8 and FIG. 9, in step 810, a biomedical sensing device 100 is provided. The substrate 110 of the biomedical sensing device 100 includes a first region 112 and a second region 114 that are in communication with each other. The area 114 is located on one side of the first area 112. Next, in step 820, a biological liquid sample containing the antigen 901 is caused to flow from the second region 114 of the biomedical sensing device 100 into the first region 112 to release the complex antibody 121 of the first region 112. Specifically, the micropores of the first polymer layer 120 and the second polymer layer 130 which are swelled by absorbing the liquid are enlarged, so that at least one of the plurality of complex antibodies 121 can flow from the first region 112 to the second region. 114. At least one of the complex antibodies 121, the antigen 901, and at least one of the plurality of second antibodies 135 are allowed to react for a specific time to form a complex 900 in the second region. In some embodiments, the biological fluid sample may be, for example, tears, urine, blood, or other similar. In one embodiment, the antigen content in the biological liquid sample is at least 10 μg / ml. In one embodiment, when a contact lens such as a biomedical sensing device 300, 400, or 500 is used, the contact lens can be directly worn to detect the tear fluid secreted by the eyes of people passing through the first and second regions. Specific antigen content. In one embodiment, the contact lens can be worn for 8 hours to monitor the change in the concentration of a specific antigen 901 for a long period of time. In one example, the antigen 901 may be, for example, lipocalin 1 (LCN1), the first antibody 125 (FIG. 1B) is a monoclonal antibody to LCN1, and the second antibody 135 is Multiple antibodies against LCN1.

接下來,如步驟830所示,以特定波長之光源檢測生醫感測裝置之第二區的複合體之光學性質。具體而言,當前述標記分子123為螢光分子時,此處所稱之光學性質可例如為螢光強度、紅移量或呈色等。在一些實施例中,所述特定波長為200奈米至700奈米。上述光源可例如來自手機或其他發光裝置。在一例子中,可使用手機光源配合螢光濾鏡,以獲得上述特定波長。 Next, as shown in step 830, the optical property of the complex in the second region of the biomedical sensing device is detected by a light source with a specific wavelength. Specifically, when the aforementioned labeling molecule 123 is a fluorescent molecule, the optical properties referred to herein may be, for example, fluorescence intensity, redshift amount, coloration, and the like. In some embodiments, the specific wavelength is 200 nm to 700 nm. The light source may be, for example, a mobile phone or other light emitting device. In one example, a mobile phone light source can be used in combination with a fluorescent filter to obtain the above-mentioned specific wavelength.

接下來,如步驟840所示,根據所述光學性質獲得抗原的含量。在一些實施例中,可使用手機應用程式偵測生醫感測裝置的螢光強度變化,以進行分析定量並獲得抗原含量。在另一些實施例中,也可使用其他目前已知的螢光偵測裝置(例如光譜儀),來偵測生醫感測裝置的螢光強度變化,從而獲得抗原含量。在又一些實施例中,可直接藉由生醫感測裝置的呈色變化,判斷抗原含量的變化。 Next, as shown in step 840, the content of the antigen is obtained according to the optical properties. In some embodiments, a mobile phone application can be used to detect changes in the fluorescence intensity of the biomedical sensing device for analysis and quantification and to obtain the antigen content. In other embodiments, other currently-known fluorescence detection devices (such as spectrometers) can also be used to detect changes in the fluorescence intensity of the biomedical sensing device to obtain the antigen content. In still other embodiments, the change in the antigen content can be determined directly by the color change of the biomedical sensing device.

在一些實施例中,因第二高分子層中的光子晶體結構,生醫感測裝置100、200、300、400、500和600的螢光強度可提高至少2倍(相較於未有光子晶體結構者)。 In some embodiments, due to the photonic crystal structure in the second polymer layer, the fluorescence intensity of the biomedical sensing device 100, 200, 300, 400, 500, and 600 can be increased by at least 2 times (compared with no photon Crystal structure).

請參考圖10,其係本發明的實施例1和2之螢光強度的長條圖。實施例1和2係分別使用未有光子晶體結構(長條圖1001)、以200nm的二氧化矽製得之光子晶體結構(長條圖1003),以及以300nm的二氧化矽製得之光子晶體結構(長條圖1005)的生醫感測裝置,並使接附有螢光分子的LCN1多株抗體流入上述各個生醫感測裝置中進行測試,以比較光子晶體 結構對螢光強度之影響。實施例1和2使用Alexa Fluor_488做為螢光分子,其中實施例1之LCN1多株抗體濃度為100μg/ml,而實施例2之LCN1多株抗體濃度為1mg/ml。 Please refer to FIG. 10, which is a bar graph of the fluorescence intensity of Examples 1 and 2 of the present invention. Examples 1 and 2 use a photonic crystal structure without a photonic crystal structure (bar graph 1001), a photonic crystal structure made of 200 nm silicon dioxide (bar graph 1003), and a photon made of 300 nm silicon dioxide. The biomedical sensing device with a crystal structure (bar graph 1005), and the LCN1 antibodies with fluorescent molecules attached are flowed into each of the above biomedical sensing devices for testing to compare photonic crystals Effect of structure on fluorescence intensity. In Examples 1 and 2, Alexa Fluor_488 was used as the fluorescent molecule. The concentration of the LCN1 polyclonal antibody in Example 1 was 100 μg / ml, and the concentration of the LCN1 polyclonal antibody in Example 2 was 1 mg / ml.

根據圖10可知,即使使用較低濃度的螢光分子,光子晶體結構也可有效改善螢光分子的強度(例如2至3倍),特別是使用300nm的光子晶體結構。而如實施例2使用較高濃度的螢光分子時,有無光子晶體結構的螢光強度差異更是顯著。此外,根據實施例1和2的結果也可得知,若生醫感測裝置未使用光子晶體結構,即使增加螢光分子的濃度,也無法大幅改善螢光強度。 It can be seen from FIG. 10 that even if a relatively low concentration of fluorescent molecules is used, the photonic crystal structure can effectively improve the intensity of the fluorescent molecules (for example, 2 to 3 times), especially using a 300 nm photonic crystal structure. When using a higher concentration of fluorescent molecules as in Example 2, the difference in fluorescence intensity with or without a photonic crystal structure is even more significant. In addition, it is also known from the results of Examples 1 and 2 that if the biomedical sensing device does not use a photonic crystal structure, even if the concentration of fluorescent molecules is increased, the fluorescence intensity cannot be greatly improved.

然後,請參考圖11,其係繪示本發明之實施例3的螢光強度之長條圖。實施例3的長條圖1101代表本發明之生醫感測裝置(如圖2之裝置200)反應前的螢光強度、長條圖1102代表長條圖1101/的生醫感測裝置形成三明治免疫結構後的螢光強度、長條圖1103代表未有光子晶體之生醫感測裝置反應前的螢光強度,以及長條圖1104代表長條圖1103的生醫感測裝置形成三明治免疫結構後的螢光強度。上述兩種生醫感測裝置皆是使用0.1mg/ml之附接有LCN1多株抗體的螢光分子(其中多株抗體與螢光分子的濃度比為1:2),以及0.1mg/ml的LCN1單株抗體所製得。實施例3中的A、B、C三組分別使用含有濃度為0.1mg/ml、0.05mg/ml和0.01mg/ml的LCN1的液體樣品,並反應達8小時,以於生醫感測裝置中形成三明治免疫結構。如圖11所示,具有光子晶體的生醫感測裝置可有效增加螢光強度。進一步而言,A組的增幅率為33%(即長條圖 1101和長條圖1102之間的差)、B組的增幅率為16%,以及C組的增幅率為12%。 Then, please refer to FIG. 11, which is a bar graph showing the fluorescence intensity of Embodiment 3 of the present invention. The bar graph 1101 in Embodiment 3 represents the fluorescence intensity before the reaction of the biomedical sensing device (such as the device 200 in FIG. 2) of the present invention, and the bar graph 1102 represents the barometric 1101 / biomedical sensing device forming a sandwich. The fluorescence intensity after the immune structure, the bar graph 1103 represents the fluorescence intensity before the reaction of the biomedical sensing device without a photonic crystal, and the bar graph 1104 represents the biomedical sensing device of the bar graph 1103 forming a sandwich immune structure. After fluorescence intensity. Both of the above biomedical sensing devices use 0.1 mg / ml of fluorescent molecules attached with multiple antibodies of LCN1 (wherein the concentration ratio of multiple antibodies to fluorescent molecules is 1: 2), and 0.1 mg / ml LCN1 monoclonal antibody. The three groups A, B, and C in Example 3 used liquid samples containing LCN1 at concentrations of 0.1 mg / ml, 0.05 mg / ml, and 0.01 mg / ml, respectively, and reacted for 8 hours for the biomedical sensing device. Sandwich immune structure is formed. As shown in FIG. 11, a biomedical sensing device with a photonic crystal can effectively increase the fluorescence intensity. Further, the rate of increase in Group A is 33% (i.e., the bar graph The difference between 1101 and bar graph 1102), the increase rate of group B is 16%, and the increase rate of group C is 12%.

接著,請參考圖12A和圖12B,其係分別繪示本發明之實施例4的螢光強度及螢光增顯倍率的長條圖。在實施例4中,對照組係以液體樣品流入前的生醫感測裝置進行螢光強度的檢測,而實驗組係將液體樣品流入各個生醫感測裝置達3小時後之螢光強度。長條圖1201代表本發明之生醫感測裝置(如圖2之裝置200)的螢光強度,長條圖1202代表液體樣品不含LCN1之生醫感測裝置的螢光強度,而長條圖1203代表光子晶體中未接附有抗體的生醫感測裝置的螢光強度。流入長條圖1201和1203的生醫感測裝置的液體樣品含有0.1mg/ml之LCN1,且長條圖1201、1202和1203的生物感測裝置係依與實施例3相似的條件製得。如圖12A所示,本發明之生醫感測裝置的螢光強度(長條圖1201),與非特異性吸附的長條圖1202和1203有顯著性差異。此外,如圖12B所示,本發明之生醫感測裝置的螢光強度增幅較大。 Next, please refer to FIG. 12A and FIG. 12B, which are bar graphs showing the fluorescence intensity and the fluorescence magnification of Embodiment 4 of the present invention, respectively. In Example 4, the control group used the biomedical sensing device before the liquid sample flowed in to measure the fluorescence intensity, and the experimental group used the liquid sample to flow into each biomedical sensing device for 3 hours after the fluorescence intensity was measured. The bar graph 1201 represents the fluorescence intensity of the biomedical sensing device (such as the device 200 in FIG. 2) of the present invention, and the bar graph 1202 represents the fluorescence intensity of the biomedical sensing device without the LCN1 in the liquid sample, and the bar Figure 1203 represents the fluorescence intensity of a biomedical sensing device with no antibody attached to the photonic crystal. The liquid samples flowing into the biomedical sensing devices of the bar graphs 1201 and 1203 contained 0.1 mg / ml of LCN1, and the biosensor devices of the bar graphs 1201, 1202, and 1203 were prepared under conditions similar to those of Example 3. As shown in FIG. 12A, the fluorescence intensity (bar graph 1201) of the biomedical sensing device of the present invention is significantly different from the non-specific adsorption bar graphs 1202 and 1203. In addition, as shown in FIG. 12B, the fluorescence intensity of the biomedical sensing device of the present invention increases greatly.

本發明的生醫感測裝置藉由在反蛋白石光子晶體結構中形成三明治免疫結構以及金奈米粒子的表面電漿共振,增加光源的折射率和反射率,從而可改善生醫感測裝置的偵測性能(例如:增加螢光強度及/或紅移量等)。因此,本發明的生醫感測裝置可檢測低濃度抗原,也可從生醫感測裝置的呈色變化判斷抗原濃度之變化。此生醫感測裝置取樣平均,並可長期監控抗原濃度變化。 The biomedical sensing device of the present invention increases the refractive index and reflectance of the light source by forming a sandwich immune structure in the inverse opal photonic crystal structure and the surface plasmon resonance of the nanometer particles, thereby improving the biomedical sensing device. Detection performance (for example: increasing the fluorescence intensity and / or the amount of red shift, etc.). Therefore, the biomedical sensing device of the present invention can detect low-concentration antigens, and the change in antigen concentration can also be judged from the color change of the biomedical sensing device. This biomedical sensing device takes average samples and can monitor the changes in antigen concentration over time.

雖然本發明已以數個實施例揭露如上,然其並非 用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with several embodiments, it is not It is used to limit the present invention. Any person with ordinary knowledge in the technical field to which the present invention pertains can make various modifications and retouches without departing from the spirit and scope of the present invention. The ones defined in the scope of patent application shall prevail.

Claims (10)

一種生醫感測裝置,包含:一基材,其中該基材中包含相接之一第一區和一第二區,且該第二區係位於該第一區之一側;一第一高分子層,設於該第一區中,其中該第一高分子層中分布有複數個複合抗體,該些複合抗體之每一者包含一標記分子及相連之一第一抗體;以及一第二高分子層,設於第二區中,其中該第二高分子層中具有反蛋白石光子晶體結構,該反蛋白石光子晶體結構包含複數個孔洞,該些孔洞之每一者的一孔壁上設有複數個金奈米粒子和複數個第二抗體,且該第一抗體和該些第二抗體辨識同一抗原。A biomedical sensing device includes: a substrate, wherein the substrate includes a first region and a second region connected to each other, and the second region is located on one side of the first region; a first A polymer layer is provided in the first region, wherein a plurality of complex antibodies are distributed in the first polymer layer, and each of the complex antibodies includes a labeled molecule and a first antibody connected to each other; and a first Two polymer layers are provided in the second region, wherein the second polymer layer has an inverse opal photonic crystal structure, the inverse opal photonic crystal structure includes a plurality of holes, and a hole wall of each of the holes A plurality of gold nanoparticles and a plurality of second antibodies are provided, and the first antibody and the second antibodies recognize the same antigen. 如申請專利範圍第1項所述之生醫感測裝置,其中該第二區係位於該第一區上方。The biomedical sensing device according to item 1 of the patent application scope, wherein the second area is located above the first area. 如申請專利範圍第1項所述之生醫感測裝置,其中該第一區和該第二區依序由外至內同心環設該基材之一中心。According to the biomedical sensing device described in item 1 of the scope of the patent application, wherein the first region and the second region sequentially concentrically center one of the substrates from outside to inside. 如申請專利範圍第3項所述之生醫感測裝置,其中該第一區之一底面具有一凹陷剖面,且該凹陷剖面具有一第一深度;以及該第二區之一底面具有一不對稱U型凹陷剖面,該不對稱U型凹陷剖面具有一第二深度,且該第二深度大於該第一深度。The biomedical sensing device according to item 3 of the scope of the patent application, wherein one of the bottom masks of the first region has a recessed profile, and the recessed profile has a first depth; The symmetrical U-shaped depression profile has a second depth, and the second depth is greater than the first depth. 如申請專利範圍第1項所述之生醫感測裝置,其中該反蛋白石光子晶體結構為奈米珠的面心立方堆疊之一反向結構,該奈米珠具有100奈米至1000奈米之一粒徑,且該奈米珠之一表面分佈有該些金奈米粒子。The biomedical sensing device according to item 1 of the scope of the patent application, wherein the inverse opal photonic crystal structure is an inverse structure of a face-centered cubic stack of nano-beads, and the nano-beads have a thickness of 100 nm to 1000 nm A particle size, and the nano-particles are distributed on a surface of the nano-beads. 如申請專利範圍第1項所述之生醫感測裝置,其中該標記分子包含一螢光分子,且該些金奈米粒子具有5奈米至80奈米之一粒徑。The biomedical sensing device according to item 1 of the scope of the patent application, wherein the labeling molecule includes a fluorescent molecule, and the gold nano particles have a particle diameter of 5 nanometers to 80 nanometers. 如申請專利範圍第3項所述之生醫感測裝置,更包含設於該第一高分子層上方的一第三高分子層。The biomedical sensing device described in item 3 of the scope of the patent application, further includes a third polymer layer disposed above the first polymer layer. 如申請專利範圍第3項所述之生醫感測裝置,其中該生醫感測裝置為一隱形眼鏡,該基材之該中心為該隱形眼鏡之一光學區,該第一區與該第二區分布於該隱形眼鏡之一非光學區,至少該第二高分子層係從該隱形眼鏡之一面暴露出來,且該面為一眼球直接接觸面的相對面。The biomedical sensing device according to item 3 of the patent application scope, wherein the biomedical sensing device is a contact lens, the center of the substrate is an optical area of the contact lens, and the first area and the first area are The two areas are distributed in a non-optical area of the contact lens. At least the second polymer layer is exposed from one surface of the contact lens, and the surface is an opposite surface of a direct contact surface of the eyeball. 一種抗原含量的檢測方法,包含:提供如申請專利範圍第1至8項中任一項所述之生醫感測裝置,其中該生醫感測裝置之一基材中包含相通之一第一區和一第二區,且該第二區係位於該第一區之一側;令包含一抗原之一生物液體樣本從該生醫感測裝置之該第二區流入至該第一區,以釋放複數個複合抗體之至少一者,並使該些複合抗體之該至少一者、該抗原以及複數個第二抗體之至少一者反應達一時間,以於該第二區形成一複合體;以一特定波長之光源檢測該生醫感測裝置之該第二區的該複合體之一光學性質,其中該光學性質包含一螢光強度或一呈色;以及根據該光學性質獲得該抗原的含量。A method for detecting an antigen content, comprising: providing a biomedical sensing device according to any one of claims 1 to 8, wherein a substrate of the biomedical sensing device includes a first Area and a second area, and the second area is located on one side of the first area; and a biological liquid sample containing an antigen flows from the second area of the biomedical sensing device to the first area, Releasing at least one of the plurality of complex antibodies, and allowing the at least one of the complex antibodies, the antigen, and at least one of the plurality of second antibodies to react for a time, so as to form a complex in the second region ; Detecting an optical property of the complex in the second region of the biomedical sensing device with a light source of a specific wavelength, wherein the optical property includes a fluorescent intensity or a coloration; and obtaining the antigen according to the optical property Content. 如申請專利範圍第9項所述之抗原含量的檢測方法,其中該特定波長為200奈米至700奈米,且該第二區之一反蛋白石光子晶體結構增加至少2倍之該螢光強度。The method for detecting an antigen content according to item 9 in the scope of the patent application, wherein the specific wavelength is 200 nm to 700 nm, and the inverse opal photonic crystal structure of one of the second regions is increased by at least 2 times the fluorescence intensity. .
TW107135843A 2018-10-11 2018-10-11 Biosensor and method for measuring antigen concentration TWI677684B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107135843A TWI677684B (en) 2018-10-11 2018-10-11 Biosensor and method for measuring antigen concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107135843A TWI677684B (en) 2018-10-11 2018-10-11 Biosensor and method for measuring antigen concentration

Publications (2)

Publication Number Publication Date
TWI677684B true TWI677684B (en) 2019-11-21
TW202014705A TW202014705A (en) 2020-04-16

Family

ID=69189057

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107135843A TWI677684B (en) 2018-10-11 2018-10-11 Biosensor and method for measuring antigen concentration

Country Status (1)

Country Link
TW (1) TWI677684B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102576021A (en) * 2009-07-31 2012-07-11 因威瑟堡善迪诺有限公司 Device for detection of antigens and uses thereof
CN104126121A (en) * 2012-02-20 2014-10-29 纳诺恩科技有限公司 Novel method for detecting antigen, and apparatus using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102576021A (en) * 2009-07-31 2012-07-11 因威瑟堡善迪诺有限公司 Device for detection of antigens and uses thereof
CN104126121A (en) * 2012-02-20 2014-10-29 纳诺恩科技有限公司 Novel method for detecting antigen, and apparatus using same

Also Published As

Publication number Publication date
TW202014705A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
Sanders et al. An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers
US20190369092A1 (en) Method for the topographically-selective passivation of micro- and nanoscale devices
WO2016187588A1 (en) Plasmonic nanoparticles and lspr-based assays
US10309958B2 (en) Method and apparatus for bacterial monitoring
Song et al. Imprinted gold 2D nanoarray for highly sensitive and convenient PSA detection via plasmon excited quantum dots
US9995749B2 (en) Method for detecting a target analyte
US20230249441A9 (en) Plasmonic patch as a universal fluorescence enhancer
JP5182900B2 (en) Sample detection sensor and sample detection method
Sinibaldi Cancer biomarker detection with photonic crystals-based biosensors: an overview
Endo et al. Label‐free optical detection of C‐reactive protein by nanoimprint lithography‐based 2D‐photonic crystal film
WO2022047847A1 (en) Local surface plasmon resonance biochip and manufacturing method therefor, biosensing system including same, and use of biosensing system
US20200256794A1 (en) Nanoplasmonic devices and applications thereof
Hu et al. C-reaction protein detection in human saliva by nanoplasmonic color imaging
US11796473B2 (en) Detection of biomarkers using plasmonic gratings
Horrer et al. Compact plasmonic optical biosensors based on nanostructured gradient index lenses integrated into microfluidic cells
JP2013509569A (en) A method for directly measuring molecular interactions by detecting light reflected from multilayer functionalized dielectrics
TWI677684B (en) Biosensor and method for measuring antigen concentration
Goodrum et al. Advances in three dimensional metal enhanced fluorescence based biosensors using metal nanomaterial and nano‐patterned surfaces
CN111044727B (en) Biological induction device and method for detecting antigen content
US11029319B2 (en) Biosensor and application of the same
TWI536018B (en) Method of colorimetric immunodetection and the device thereof
Lathika et al. LSPR based on-chip detection of dengue NS1 antigen in whole blood
Bathini et al. Microfluidic plasmonic bio-sensing of exosomes by using a gold nano-island platform
Zhang et al. Research on biological detection based on reflected light images of a porous silicon Bragg mirror
CN114034662B (en) High-compatibility portable biological detection device based on gold nanopore array and preparation method and application thereof