TWI676805B - Data sampling method for power parameter measuring device - Google Patents
Data sampling method for power parameter measuring device Download PDFInfo
- Publication number
- TWI676805B TWI676805B TW108114717A TW108114717A TWI676805B TW I676805 B TWI676805 B TW I676805B TW 108114717 A TW108114717 A TW 108114717A TW 108114717 A TW108114717 A TW 108114717A TW I676805 B TWI676805 B TW I676805B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- power
- power parameter
- sampling
- measurement device
- Prior art date
Links
Landscapes
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
本發明為一種用於電力參數量測裝置的資料取樣方法,該電力參數量測裝置透過一比流器量測一電力系統纜線的電力信號,首先設定時間較長的資料傳輸週期及時間較短的資料擷取週期,該電力參數量測裝置將於每間隔該資料擷取週期對該電力信號定期進行取樣,以得到複數筆取樣資料;再於每間隔該資料傳輸週期對外傳送一電力參數代表資料;藉此提高取樣頻率,能更加真實反映出電力信號,且因為電力參數代表資料是採間隔相對較長之資料傳輸週期對外發出,亦可降低裝置之電力消耗。The present invention is a data sampling method for a power parameter measurement device. The power parameter measurement device measures a power signal of a power system cable through a current ratior. First, a longer data transmission period and time are set. Short data acquisition cycle, the power parameter measurement device will periodically sample the power signal every interval of the data acquisition cycle to obtain a plurality of sampling data; and then transmit an external power parameter at each interval of the data transmission cycle Representative data; by increasing the sampling frequency, it can more accurately reflect the power signal, and because the power parameter representative data is sent to the data transmission cycle with a relatively long interval, it can also reduce the power consumption of the device.
Description
本發明關於一種電力參數量測技術,尤指一種可降低量測裝置其電力消耗的資料取樣方法。The invention relates to a power parameter measurement technology, in particular to a data sampling method capable of reducing the power consumption of a measurement device.
電力參數常用於電力品質監控、電費計算、時間電價契約容量評估、節約電能、電力設備預知保養以及電力系統安全維護等應用目的。透過量測電力系統上所獲得的電壓、電流、電力設備溫度、環境溫度、環境濕度、環境特定氣體濃度等諸多電力參數,來滿足電力系統監控的需求。Electric power parameters are often used for power quality monitoring, electricity bill calculation, time electricity price contract capacity assessment, energy saving, predictive maintenance of power equipment, and power system safety maintenance. By measuring the voltage, current, power equipment temperature, ambient temperature, ambient humidity, environmental specific gas concentration and other power parameters obtained on the power system to meet the needs of power system monitoring.
電力參數量測裝置的工作電力來源通常會採用諸如太陽能供電或比流器供電等方式,但此類能源並不穩定,為了降低電力參數量測裝置的工作能量消耗,傳統作法是控制電力參數量測裝置操作於長工作週期模式。請參看圖5所示,長工作週期模式是指電力參數量測裝置平時處於休眠狀態,即時段T表示為休眠週期T,當休眠週期T結束後,在取樣時間點a, b…執行電力參數取樣量測以獲得參數資料Xa, Xb, …。該等參數資料Xa, Xb,…會在取樣時間點a, b…即時顯示於該電力參數量測裝置或是對外傳輸至一上位機,然後該參數量測裝置會繼續進入休眠直到下一個休眠週期T結束再次進行參數量測。The working power source of the power parameter measurement device usually adopts methods such as solar power or current converter, but this type of energy is not stable. In order to reduce the working energy consumption of the power parameter measurement device, the traditional method is to control the power parameter amount. The test device operates in a long duty cycle mode. Please refer to FIG. 5, the long duty cycle mode refers to the power parameter measuring device is usually in a sleep state, and the instant segment T is represented as the sleep period T. When the sleep period T ends, the power parameters are executed at the sampling time points a, b ... Sampling and measurement to obtain parameter data Xa, Xb,…. The parameter data Xa, Xb, ... will be displayed on the power parameter measurement device or transmitted to a host computer at the sampling time points a, b ..., and then the parameter measurement device will continue to sleep until the next sleep The parameter measurement is performed again at the end of the period T.
上述長工作週期模式雖然可以達到節省電力消耗的目的,卻往往因為該休眠週期T的時間太長,導致參數資料,…不具資料代表性,無法表現該休眠週期T內實際電力參數的變化特性,影響後續以此參數資料Xa, Xb,…為依據之相關計算結果的趨勢與精確度。Although the above long duty cycle mode can achieve the purpose of saving power consumption, often because the time of the sleep cycle T is too long, the parameter data is not representative of the data and cannot represent the changing characteristics of the actual power parameters in the sleep cycle T. Affects the trend and accuracy of subsequent calculation results based on this parameter data Xa, Xb, ...
本發明的主要目的是提供一種「用於電力參數量測裝置的資料取樣方法」,以降低電力消耗及提高取樣資料之代表性。The main object of the present invention is to provide a "data sampling method for a power parameter measuring device" to reduce power consumption and increase the representativeness of the sampling data.
為達到上述目的,該電力參數量測裝置透過一比流器量測一電力系統纜線的電力信號,該資料取樣方法由該電力參數量測裝置執行且包含以下步驟:In order to achieve the above purpose, the power parameter measurement device measures a power signal of a power system cable through a current ratior. The data sampling method is performed by the power parameter measurement device and includes the following steps:
設定一資料傳輸週期,在每一資料傳輸週期內包含有複數個資料擷取週期,該資料傳輸週期的時間長度大於各資料擷取週期的時間長度;Set a data transmission cycle, each data transmission cycle includes a plurality of data acquisition cycles, the length of the data transmission cycle is greater than the length of each data acquisition cycle;
每間隔該資料擷取週期對該電力信號進行取樣,以得到複數筆取樣資料;The power signal is sampled every interval of the data acquisition cycle to obtain a plurality of sampling data;
每間隔資料傳輸週期對外傳送一電力參數代表資料,其中,該電力參數代表資料是根據該複數筆取樣資料而產生。A power parameter representative data is transmitted to the outside every data transmission cycle, wherein the power parameter representative data is generated according to the plurality of sampling data.
根據前述方法,本發明以較高頻率進行取樣而得到多筆的取樣資料並加以暫存,該多筆取樣資料能更具體反映真實的電力信號,使電力參數代表資料更加具有代表性;且因為電力參數代表資料是採間隔相對較長之資料傳輸週期對外發出,還可降低裝置在傳輸資料時之電力消耗,使裝置內部之儲存電力更能維持較久之工作時間。According to the foregoing method, the present invention performs sampling at a higher frequency to obtain multiple pieces of sampling data and temporarily store them. The multiple pieces of sampling data can more specifically reflect the real power signal and make the power parameter representative data more representative; and The power parameter represents that the data is sent out at a relatively long data transmission cycle. It can also reduce the power consumption of the device when transmitting data, so that the stored power inside the device can maintain a longer working time.
請參考圖1所示,本發明是一種用於電力參數量測裝置的資料取樣方法,首先說明該電力參數量測裝置的電路架構,包含有:一訊號切換單元20、一能量採集單元30、一能量儲存單元40、一電力參數轉換單元50以及一無線通訊單元60。該電力參數量測裝置係配合一比流器10共同應用。Please refer to FIG. 1, the present invention is a data sampling method for a power parameter measurement device. First, the circuit structure of the power parameter measurement device is described, including: a signal switching unit 20, an energy collection unit 30, An energy storage unit 40, a power parameter conversion unit 50, and a wireless communication unit 60. The power parameter measuring device is applied together with a current ratior 10.
該比流器10係掛載於一電力系統纜線100,可從該電力系統纜線100上感應得到一電力信號,該電力信號可以是一微電壓信號或一微電流信號,其中,該比流器10具有一轉換倍率,可將通過該電力系統纜線100上的一實際電壓或實際電流轉換為該電力信號。The converter 10 is mounted on a power system cable 100, and a power signal can be induced from the power system cable 100. The power signal can be a micro-voltage signal or a micro-current signal, where the ratio The current transformer 10 has a conversion ratio and can convert an actual voltage or actual current passing through the power system cable 100 into the power signal.
該訊號切換單元20連接該比流器10,用以決定該比流器10輸出之電力信號的傳輸對象,即控制該電力信號可輸出至該能量採集單元30或該電力參數單元50。The signal switching unit 20 is connected to the current ratior 10 and is used to determine the transmission target of the power signal output by the current ratior 10, that is, to control the power signal to be output to the energy collection unit 30 or the power parameter unit 50.
該能量採集單元30具有輸入端及輸出端,該輸入端係連接該訊號切換單元20,該輸出端係連接該能量儲存單元40,其中,該能量採集單元30可為一充電電路,該能量儲存單元40可為一充電電池或一電容。從該比流器10輸出之電力信號通過該訊號切換單元20傳送至該能量採集單元30時,該能量採集單元30將該電力信號進行轉換為一儲備電力而傳遞至該能量儲存單元40,由該能量儲存單元40儲存該儲備電力,以作為電力參數量測裝置的工作電源。The energy harvesting unit 30 has an input end and an output end, the input end is connected to the signal switching unit 20, and the output end is connected to the energy storage unit 40, wherein the energy harvesting unit 30 can be a charging circuit and the energy storage The unit 40 may be a rechargeable battery or a capacitor. When the power signal output from the current ratior 10 is transmitted to the energy collection unit 30 through the signal switching unit 20, the energy collection unit 30 converts the power signal into a reserve power and transfers it to the energy storage unit 40. The energy storage unit 40 stores the reserve power as a working power source of the power parameter measuring device.
該電力參數轉換單元50連接該訊號切換單元20。從該比流器10輸出之電力信號通過該訊號切換單元20傳送至該電力參數轉換單元50時,該電力參數轉換單元50可將比流器10輸出之電力信號轉換為一數位信號,再輸出至無線通訊單元60,該無線通訊單元60可依據該比流器10的轉換倍率,反算出通過該電力系統纜線100上的實際電壓或實際電流,得到所需之電力參數。在本實施例中,該電力參數轉換單元50包含一電流信號測量IC,可將比流器10輸出的類比電力信號轉換為一數位信號,再將該數位信號提供給無線通訊單元60。The power parameter conversion unit 50 is connected to the signal switching unit 20. When the power signal output from the current converter 10 is transmitted to the power parameter conversion unit 50 through the signal switching unit 20, the power parameter conversion unit 50 can convert the power signal output from the current converter 10 into a digital signal and then output it. To the wireless communication unit 60, the wireless communication unit 60 can inversely calculate the actual voltage or current passing through the power system cable 100 according to the conversion ratio of the current converter 10 to obtain the required power parameters. In this embodiment, the power parameter conversion unit 50 includes a current signal measurement IC, which can convert the analog power signal output by the converter 10 into a digital signal, and then provide the digital signal to the wireless communication unit 60.
該無線通訊單元60連接該訊號切換單元20及該電力參數轉換單元50,無線通訊單元60內部具有執行運算的一處理器(CPU),該無線通訊單元60與一外部裝置通訊,可根據預先設定的週期輸出一切換控制信號給該訊號切換單元20,令該訊號切換單元20根據該切換控制信號決定電力信號之傳送對象。除此之外,該無線通訊單元60以週期性的封包格式將電力參數對外傳送至一外部裝置,供外部裝置作為資料運算、分析、顯示或控制的依據。該無線通訊單元60可採用6GHz以下的頻段傳輸信號,例如藍芽、Z-Wave、ZígBee、Wi-Fi、LoRa、Sigfox、NB-IoT等協定。The wireless communication unit 60 is connected to the signal switching unit 20 and the power parameter conversion unit 50. The wireless communication unit 60 includes a processor (CPU) for performing calculations. The wireless communication unit 60 communicates with an external device according to a preset setting. A switching control signal is output to the signal switching unit 20 periodically, so that the signal switching unit 20 determines a power signal transmission object according to the switching control signal. In addition, the wireless communication unit 60 transmits power parameters to an external device in a periodic packet format for the external device to use as a basis for data calculation, analysis, display or control. The wireless communication unit 60 can transmit signals using a frequency band below 6 GHz, such as Bluetooth, Z-Wave, ZígBee, Wi-Fi, LoRa, Sigfox, NB-IoT and other protocols.
電力參數量測裝置依據其電路動作方式,操作於一量測模式及一儲能模式。該量測模式及儲能模式可兩者交替運作,一般而言,電力參數量測裝置多數時間是運作於儲能模式,僅需利用少數的時段運作於量測模式來偵測電力參數,因此該能量儲存單元40具有充足的電力提供所需的工作能源。The power parameter measurement device operates in a measurement mode and an energy storage mode according to its circuit operation mode. The measurement mode and the energy storage mode can operate alternately. Generally speaking, most of the power parameter measurement devices operate in the energy storage mode. Only a few time periods are required to operate in the measurement mode to detect the power parameters. The energy storage unit 40 has sufficient power to provide the required working energy.
儲能模式:當該訊號切換單元20切換連接至能量採集單元30,因此,該比流器10感應出來的電力信號可通過切換單元20傳遞至能量採集單元30。令能量採集單元30能再次收集電力並儲存於能量儲存單元40,補充電力參數量測裝置工作所需的電力。Energy storage mode: When the signal switching unit 20 is switched to be connected to the energy harvesting unit 30, the power signal induced by the current ratior 10 can be transmitted to the energy harvesting unit 30 through the switching unit 20. The energy collection unit 30 can collect power again and store it in the energy storage unit 40 to supplement the power required for the operation of the power parameter measurement device.
量測模式:當該訊號切換單元20切換連接至電力參數轉換單元50,因此,該比流器10感應出來的電力信號可通過切換單元20傳遞至電力參數轉換單元50。此時該能量採集單元30與訊號切換單元20分離,該電力參數轉換單元50可獲得不受干擾的電力信號,轉換出相對較為精確的信號供無線通訊單元60計算出實際電力參數。因為能量採集單元30未接收電力信號,故不會對能量儲存單元40進行儲能,但電力參數量測裝置仍可由能量儲存單元40儲備的電力維持供電運作。Measurement mode: When the signal switching unit 20 is connected to the power parameter conversion unit 50, the power signal induced by the current ratior 10 can be transmitted to the power parameter conversion unit 50 through the switching unit 20. At this time, the energy acquisition unit 30 is separated from the signal switching unit 20, and the power parameter conversion unit 50 can obtain an undisturbed power signal and convert a relatively accurate signal for the wireless communication unit 60 to calculate the actual power parameter. Because the energy acquisition unit 30 does not receive the power signal, the energy storage unit 40 will not store energy, but the power parameter measurement device can still maintain the power supply operation by the power stored in the energy storage unit 40.
請參考圖2及圖3所示,在量測模式下,該電力參數量測裝置係執行本發明的資料取樣方法,該資料取樣方法包含:Please refer to FIG. 2 and FIG. 3. In the measurement mode, the power parameter measurement device executes the data sampling method of the present invention. The data sampling method includes:
S201:設定一資料傳輸週期Tr,如圖3所示,在每一資料傳輸週期Tr的時間內包含有複數個資料擷取週期Ts,該資料傳輸週期Tr的時間長度大於各資料擷取週期Ts的時間長度。S201: Set a data transmission period Tr. As shown in FIG. 3, each data transmission period Tr includes a plurality of data acquisition periods Ts. The time length of the data transmission period Tr is greater than each data acquisition period Ts. Length of time.
S202:每隔該資料擷取週期Ts對電力信號進行取樣以得到複數筆取樣資料S1~Sn;舉例而言,在每一個資料擷取週期Ts屆滿的時間點t1~tn,比流器10取樣出的電力信號係透過該訊號切換單元20傳遞到電力參數轉換單元50,該複數筆取樣資料S1~Sn可以先暫存在該電力參數轉換單元50或暫存在該無線通訊單元60。S202: Sampling the power signal at every data acquisition cycle Ts to obtain a plurality of sampling data S1 ~ Sn; for example, at the time point t1 ~ tn when each data acquisition cycle Ts expires, the current sampling device 10 samples The output power signal is transmitted to the power parameter conversion unit 50 through the signal switching unit 20. The plurality of sampling data S1 ~ Sn may be temporarily stored in the power parameter conversion unit 50 or temporarily stored in the wireless communication unit 60.
S203:每隔資料傳輸週期Tr對外傳送一電力參數代表資料P;其中,該電力參數代表資料P可以是該複數筆取樣資料S1~Sn,或該電力參數代表資料P是根據該複數筆取樣資料S1~Sn運算後得到的資料,例如由電力參數轉換單元50或該無線通訊單元60對取樣資料S1~Sn計算其平均值,以作為電力參數代表資料P,或是透過其它運算方式得到電力參數代表資料P。在此步驟中,該電力參數代表資料P由該無線通訊單元60向外傳送。S203: A power parameter representative data P is transmitted to the outside every data transmission period Tr. Among them, the power parameter representative data P may be the plurality of sampling data S1 ~ Sn, or the power parameter representative data P is based on the plurality of sampling data. Data obtained after the calculation of S1 ~ Sn, for example, the power parameter conversion unit 50 or the wireless communication unit 60 calculates the average value of the sampled data S1 ~ Sn as the power parameter representative data P, or obtains the power parameter through other calculation methods Representative data P. In this step, the power parameter representative data P is transmitted outward from the wireless communication unit 60.
根據前述第一實施例的資料取樣方法,本發明可以在每個資料傳輸週期Tr中取得多筆的取樣資料S1~Sn,使電力參數代表資料P更加具有代表性,更加真實反映出電力信號;且因為電力參數代表資料P是採間隔相對較長之資料傳輸週期Tr對外發出,可降低裝置之電力消耗,使裝置維持具有較長之工作時間。According to the data sampling method of the foregoing first embodiment, the present invention can obtain multiple sampling data S1 to Sn in each data transmission cycle Tr, so that the power parameter representative data P is more representative and reflects the power signal more truly; And because the power parameter represents that the data P is sent out to the data transmission cycle Tr with a relatively long interval, the power consumption of the device can be reduced, and the device can maintain a longer working time.
再請參考圖4所示,為本發明資料取樣方法的第二實施例,進一包含以下步驟:Please refer to FIG. 4 again, which is a second embodiment of a data sampling method according to the present invention. The method further includes the following steps:
S401:在執行步驟S202之前,係預先判斷電力參數量測裝置之剩餘電力是否大於一第一預設值;即判斷該能量儲存單元40中的電力是否低於一第一預設值,例如電量是否低於10%以下,當電量大於該第一預設值,則進入一般模式,即繼續執行前述步驟S202、S203;S401: Before executing step S202, it is determined in advance whether the remaining power of the power parameter measuring device is greater than a first preset value; that is, whether the power in the energy storage unit 40 is lower than a first preset value, such as the amount of power Whether it is below 10%, when the power is greater than the first preset value, enter the general mode, that is, continue to perform the foregoing steps S202 and S203;
S402:當判斷剩餘電力低於該第一預設值,係進入一省電模式,即每間隔資料傳輸週期Tr對電力信號進行取樣並對外傳送單筆的取樣資料。換言之,當能量儲存單元40中的電力已經低於第一預設值時,為了更進一步節省電力,本發明只在各資料傳輸週期Tr屆滿時才對電力信號取樣,並將取樣得到的資料經過轉換後,利用該無線資料通訊單元60傳送至外部,在原來的資料擷取週期Ts則沒有執行取樣、轉換,以節省該能量儲存單元40中的剩餘能源。S402: When it is determined that the remaining power is lower than the first preset value, it enters a power saving mode, that is, the power signal is sampled every interval data transmission period Tr and a single sample of data is transmitted to the outside. In other words, when the power in the energy storage unit 40 is lower than the first preset value, in order to further save power, the present invention samples the power signal only when each data transmission period Tr expires, and passes the sampled data through After the conversion, the wireless data communication unit 60 is used to transmit to the outside. In the original data acquisition cycle Ts, no sampling or conversion is performed to save the remaining energy in the energy storage unit 40.
S403:判斷電力參數量測裝置之剩餘電力是否大於一第二預設值,若是,可恢復至正常的一般模式;若否,則持續執行步驟S402。S403: Determine whether the remaining power of the power parameter measuring device is greater than a second preset value, and if yes, return to the normal general mode; if not, continue to execute step S402.
根據前述第二實施例的資料取樣方法,本發明根據能量儲存單元40中的電力彈性調整對電力信號的取樣作法,當電力仍足夠時,係進行較多次的資料取樣,再於資料傳輸週期Tr對外將資料傳送出去;相反的,當電力已經不足時,便降低資料取樣的次數,使裝置能維持較長的工作時間。在省電模式中,若判斷裝置的剩餘電力又恢復至高於一第二預設值,例如電量高於20%以上,可恢復至正常的多次資料取樣,其中該第二預設值可高於該第一預設值,或是該第二預設值等於該第一預設值。According to the data sampling method of the aforementioned second embodiment, the present invention adjusts the sampling method of the power signal according to the power flexibility in the energy storage unit 40. When the power is still sufficient, data sampling is performed a plurality of times, and then the data transmission cycle is performed. Tr transmits data to the outside; on the contrary, when the power is insufficient, the number of data sampling is reduced, so that the device can maintain a longer working time. In the power-saving mode, if it is determined that the remaining power of the device is higher than a second preset value, for example, the power is higher than 20%, the normal multiple data sampling may be restored, and the second preset value may be high. At the first preset value or the second preset value is equal to the first preset value.
無論是上述第一或第二實施例中,在資料取樣以外的其它時間,電力參數量測裝置都是工作於儲能模式,利用比流器10擷取電力信號並將能源儲存在該能量儲存單元40內。Regardless of the above first or second embodiment, at other times than data sampling, the power parameter measuring device works in the energy storage mode, and uses the current transformer 10 to capture the power signal and store the energy in the energy storage. Inside the unit 40.
10‧‧‧比流器10‧‧‧ Current Converter
20‧‧‧訊號切換單元 20‧‧‧Signal Switching Unit
30‧‧‧能量採集單元 30‧‧‧ Energy Harvesting Unit
40‧‧‧能量儲存單元 40‧‧‧ Energy Storage Unit
50‧‧‧電力參數轉換單元 50‧‧‧Power parameter conversion unit
60‧‧‧無線通訊單元 60‧‧‧Wireless communication unit
100‧‧‧電力系統纜線 100‧‧‧Power System Cable
Tr‧‧‧資料傳輸週期 Tr‧‧‧Data transmission cycle
Ts‧‧‧資料擷取週期 Ts‧‧‧Data acquisition cycle
S1~Sn‧‧‧取樣資料 S1 ~ Sn‧‧‧Sampling data
P‧‧‧電力參數代表資料 P‧‧‧Representative data of power parameters
Xa,Xb‧‧‧參數資料 Xa, Xb‧‧‧parameter data
圖1:電力參數量測裝置的電路方塊圖。
圖2:本發明資料取樣方法第一實施例的流程圖:
圖3:本發明資料取樣方法的示意圖。
圖4:本發明資料取樣方法第二實施例的流程圖:
圖5:用於電力參數量測裝置的長工作週期模式示意圖。
Figure 1: Circuit block diagram of a power parameter measurement device.
FIG. 2 is a flowchart of a first embodiment of a data sampling method according to the present invention:
FIG. 3 is a schematic diagram of a data sampling method according to the present invention.
FIG. 4 is a flowchart of a second embodiment of a data sampling method according to the present invention:
Figure 5: Schematic diagram of a long duty cycle mode for a power parameter measurement device.
Claims (9)
設定一資料傳輸週期,在每一資料傳輸週期內包含有複數個資料擷取週期,該資料傳輸週期的時間長度大於各資料擷取週期的時間長度;
每間隔該資料擷取週期對該電力信號進行取樣,以得到複數筆取樣資料;
每間隔資料傳輸週期對外傳送一電力參數代表資料,其中,該電力參數代表資料是根據該複數筆取樣資料而產生。 A data sampling method for a power parameter measurement device. The power parameter measurement device measures a power signal of a power system cable through a current ratior. The data sampling method is performed by the power parameter measurement device and includes The following steps:
Set a data transmission cycle, each data transmission cycle includes a plurality of data acquisition cycles, the length of the data transmission cycle is greater than the length of each data acquisition cycle;
The power signal is sampled every interval of the data acquisition cycle to obtain a plurality of sampling data;
A power parameter representative data is transmitted to the outside every data transmission cycle, wherein the power parameter representative data is generated according to the plurality of sampling data.
設定一資料傳輸週期,在每一資料傳輸週期內包含有複數個資料擷取週期,該資料傳輸週期的時間長度大於各資料擷取週期的時間長度;
判斷電力參數量測裝置自身之剩餘電力是否高於一第一預設值,當剩餘電力高於該第一預設值,係執行一一般模式,該一般模式包含有以下步驟:
每間隔該資料擷取週期對該電力信號進行取樣,以得到複數筆取樣資料;
每間隔資料傳輸週期對外傳送一電力參數代表資料,其中,該電力參數代表資料是根據該複數筆取樣資料而產生。 A data sampling method for a power parameter measurement device. The power parameter measurement device measures a power signal of a power system cable through a current ratior. The data sampling method is performed by the power parameter measurement device and includes The following steps:
Set a data transmission cycle, each data transmission cycle includes a plurality of data acquisition cycles, the length of the data transmission cycle is greater than the length of each data acquisition cycle;
Determine whether the remaining power of the power parameter measuring device itself is higher than a first preset value. When the remaining power is higher than the first preset value, a general mode is executed. The general mode includes the following steps:
The power signal is sampled every interval of the data acquisition cycle to obtain a plurality of sampling data;
A power parameter representative data is transmitted to the outside every data transmission cycle, wherein the power parameter representative data is generated according to the plurality of sampling data.
每間隔資料傳輸週期對該電力信號進行取樣並對外傳送單筆取樣資料;
判斷電力參數量測裝置自身之剩餘電力是否高於一第二預設值,其中,若剩餘電力低於該第二預設值,則持續維持執行該省電模式;若剩餘電力高於該第二預設值,則執行該一般模式。 The data sampling method for a power parameter measuring device as described in claim 5, wherein when the remaining power is lower than the first preset value, a power saving mode is executed, and in the power saving mode:
The power signal is sampled every interval of data transmission cycle and a single sample of data is transmitted to the outside;
Determine whether the remaining power of the power parameter measurement device itself is higher than a second preset value, wherein if the remaining power is lower than the second preset value, the power saving mode is continuously maintained and executed; if the remaining power is higher than the second preset value Two preset values, the normal mode is executed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108114717A TWI676805B (en) | 2019-04-26 | 2019-04-26 | Data sampling method for power parameter measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108114717A TWI676805B (en) | 2019-04-26 | 2019-04-26 | Data sampling method for power parameter measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI676805B true TWI676805B (en) | 2019-11-11 |
TW202040142A TW202040142A (en) | 2020-11-01 |
Family
ID=69188825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108114717A TWI676805B (en) | 2019-04-26 | 2019-04-26 | Data sampling method for power parameter measuring device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI676805B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI732661B (en) * | 2020-08-24 | 2021-07-01 | 義守大學 | Intelligent monitoring device for power distribution system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW418355B (en) * | 1999-03-31 | 2001-01-11 | Shiu Ruo Ren | Multi-user intelligent power meter device |
US20040133370A1 (en) * | 2003-01-06 | 2004-07-08 | General Electric Company | Energy calculation methods in power distribution systems |
TWM555951U (en) * | 2017-10-26 | 2018-02-21 | Icp Das Co Ltd | AC power parameter measuring device |
CN207366666U (en) * | 2017-11-02 | 2018-05-15 | 泓格科技股份有限公司 | Alternating electromotive force parameter measuring apparatus |
-
2019
- 2019-04-26 TW TW108114717A patent/TWI676805B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW418355B (en) * | 1999-03-31 | 2001-01-11 | Shiu Ruo Ren | Multi-user intelligent power meter device |
US20040133370A1 (en) * | 2003-01-06 | 2004-07-08 | General Electric Company | Energy calculation methods in power distribution systems |
TWM555951U (en) * | 2017-10-26 | 2018-02-21 | Icp Das Co Ltd | AC power parameter measuring device |
CN207366666U (en) * | 2017-11-02 | 2018-05-15 | 泓格科技股份有限公司 | Alternating electromotive force parameter measuring apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI732661B (en) * | 2020-08-24 | 2021-07-01 | 義守大學 | Intelligent monitoring device for power distribution system |
Also Published As
Publication number | Publication date |
---|---|
TW202040142A (en) | 2020-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107797074B (en) | Single storage battery internal resistance measurement circuit and measurement method | |
CN102590609B (en) | The method of mobile terminal and measurement mobile terminal power consumption | |
US20160003913A1 (en) | Battery fuel gauging system | |
CN201680923U (en) | Wireless temperature sensing device | |
CN202494742U (en) | Multi function electric power quality collecting analyzer | |
CN103298087B (en) | Based on the wireless sensor network node low power consumption method of state machine | |
TWI676805B (en) | Data sampling method for power parameter measuring device | |
CN105004434A (en) | Wireless temperature acquisition device with reversal connection protection function | |
CN202372630U (en) | Wireless sensor network monitoring device for states of photovoltaic power station storage batteries | |
CN105973311A (en) | Remote forest environment detection system based on temperature and humidity sensor | |
CN102156207A (en) | Distributed intelligent electric energy recording system and detecting method thereof | |
CN215598465U (en) | Energy storage type multifunctional lithium battery detection system for oil field | |
CN110673044A (en) | Battery voltage measuring device and measuring method thereof | |
CN202031582U (en) | Zigbee-based low-power consumption wireless pressure transmitter | |
CN204694753U (en) | A kind of high-precision transmission line of electricity electric current on-Line Monitor Device | |
CN211402699U (en) | Novel intelligent electric energy meter field calibration instrument | |
CN207866187U (en) | A kind of flexible lengths real-time automatic measuring instrument | |
CN211207143U (en) | L oRa-based bridge monitoring strain sensor | |
CN207502644U (en) | Electric energy quality monitoring system based on IEC61850 | |
CN202383267U (en) | Storage battery state wireless network sensor node for DC (direct current) screen of transformer station | |
CN205538793U (en) | Critical freeze injury temperature detector of plant | |
Zhang et al. | Application Verification of Power IOT Low-power MCU in Laboratory Environment | |
CN111697693A (en) | Intelligent monocell management system | |
CN214412404U (en) | Power demand measurement device and system | |
CN204086403U (en) | A kind of conductor resistance and resistivity test device thereof |