TWI676397B - Artificial intelligence traffic estimation system using mobile network signaling data and method thereof - Google Patents
Artificial intelligence traffic estimation system using mobile network signaling data and method thereof Download PDFInfo
- Publication number
- TWI676397B TWI676397B TW107136758A TW107136758A TWI676397B TW I676397 B TWI676397 B TW I676397B TW 107136758 A TW107136758 A TW 107136758A TW 107136758 A TW107136758 A TW 107136758A TW I676397 B TWI676397 B TW I676397B
- Authority
- TW
- Taiwan
- Prior art keywords
- artificial intelligence
- signaling data
- mobile network
- flow estimation
- network signaling
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/052—Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/20—Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Analytical Chemistry (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Chemical & Material Sciences (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Traffic Control Systems (AREA)
Abstract
一種運用行動網路信令資料之人工智慧車流推估系統及其方法,該系統包括一行動網路信令資料擷取模組、一非監督式學習模組、一特徵萃取模組與一監督式學習模組。行動網路信令資料擷取模組擷取在指定道路之預定範圍內複數行動裝置與一網路之間的行動網路信令資料;非監督式學習模組依據行動裝置之速度將行動網路信令資料分成不同族群;特徵萃取模組從不同族群中萃取出特定族群,以計算出每個單位時間之行動網路信令資料的數量作為萃取後之特徵;監督式學習模組將萃取後之特徵建立人工智慧車流推估模型,以推估出通過指定道路之複數車輛之車流資訊。 An artificial intelligence vehicle flow estimation system and method using mobile network signaling data, the system includes a mobile network signaling data acquisition module, an unsupervised learning module, a feature extraction module, and a supervisor Learning module. The mobile network signaling data extraction module captures mobile network signaling data between a plurality of mobile devices and a network within a predetermined range of a specified road; the unsupervised learning module converts the mobile network according to the speed of the mobile device The channel signaling data is divided into different ethnic groups; the feature extraction module extracts specific ethnic groups from different ethnic groups, and calculates the amount of mobile network signaling data per unit time as the extracted characteristics; the supervised learning module extracts The latter feature establishes an artificial intelligence traffic flow estimation model to estimate the traffic flow information of a plurality of vehicles passing a designated road.
Description
本發明係關於一種車流推估技術,特別是指一種運用行動網路信令資料之人工智慧車流推估系統及其方法。 The invention relates to a traffic flow estimation technology, and particularly to an artificial intelligence traffic flow estimation system and method using mobile network signaling data.
近年來,對於道路交通資訊之偵測,相較於傳統固定式車輛偵測器(Vehicle Detector;VD)、採用電子道路收費(Electronic Toll Collection;ETC)系統為基礎之車輛探偵(ETC-Based Vehicle Probe;EVP)、及全球定位系統的探偵車(GPS-Based Vehicle Probe;GVP)等,以行動裝置基地台為基礎之車輛探偵(Cellular-Based Vehicle Probe;CVP)技術具有涵蓋率廣、成本低、可以不必使用車輛上之通訊裝置等特色,已成為熱門研究議題之一。 In recent years, compared with traditional fixed vehicle detectors (VD) and road toll detection (ETC) based on the detection of road traffic information, ETC-Based Vehicle Probe (EVP) and GPS-Based Vehicle Probe (GVP), etc. Cellular-Based Vehicle Probe (CVP) technology based on mobile device base stations has a wide coverage and low cost It is not necessary to use the communication device on the vehicle. It has become one of the hot research topics.
過去的研究中,CVP信令資料主要是使用在車速或旅行時間之估算,原因在於藉由部分CVP信令資料之時間差、位置差與路段長度,即可計算路段之平均車速及旅行時間。但是,若以路段上CVP信令資料之統計數量作為車 流量往往會產生不可忽略之誤差,原因在於一台車輛通常不只有一位乘客,即每台車輛所產生之CVP信令資料的數量並不一致。是以,在密集的道路中,CVP信令資料之總數遠遠高於車輛之總數,且在一般道路上車流型態為汽機車混和之車流,CVP信令資料之分布樣態會隨著不同道路之汽機車混和比例或道路周邊之型態而有顯著的不同,以致估算車流量十分不易。 In the past research, CVP signaling data was mainly used to estimate vehicle speed or travel time. The reason is that the average speed and travel time of a road segment can be calculated from the time difference, location difference, and length of a section of CVP signaling data. However, if the number of CVP signaling data on the road is used as the vehicle The traffic often produces non-negligible errors, because a vehicle usually has more than one passenger, that is, the amount of CVP signaling data generated by each vehicle is not the same. Therefore, on dense roads, the total number of CVP signaling data is much higher than the total number of vehicles, and on general roads, the traffic flow pattern is a mixed flow of steam and motorcycles. The distribution pattern of CVP signaling data will vary with There is a significant difference in the proportion of roads and motorcycles or the shape of roads and roads, which makes it difficult to estimate the traffic volume.
因此,如何解決上述現有技術之缺點,實已成為本領域技術人員之一大課題。 Therefore, how to solve the above-mentioned shortcomings of the prior art has become a major issue for those skilled in the art.
本發明提供一種運用行動網路信令資料之人工智慧車流推估系統及其方法,能利用行動網路信令資料推估出通過指定道路之複數車輛之車流資訊。 The invention provides an artificial intelligence traffic flow estimation system and method using mobile network signaling data, which can use mobile network signaling data to estimate traffic flow information of a plurality of vehicles passing a designated road.
本發明中運用行動網路信令資料之人工智慧車流推估系統包括:一行動網路信令資料擷取模組,係擷取在一指定道路之預定範圍內,通過指定道路之複數行動裝置與至少一網路之間的複數行動網路信令資料;一非監督式學習模組,係具有人工智慧之一非監督式學習演算法,以利用非監督式學習演算法依據該些行動裝置之速度,將行動網路信令資料擷取模組所擷取之該些行動網路信令資料分成複數個不同族群;一特徵萃取模組,係從非監督式學習演算法所分成之不同族群中萃取出至少一特定族群,以計算出至少一特定族群中每個單位時間之行動網路信令資料的數量作為萃取後之特徵;以及一監督式學習模組,係具有 人工智慧之一監督式學習演算法,以利用監督式學習演算法,將由特徵萃取模組萃取後之特徵建立一人工智慧車流推估模型,進而透過人工智慧車流推估模型推估出或產生通過指定道路之複數車輛之車流資訊。 The artificial intelligence vehicle flow estimation system using mobile network signaling data in the present invention includes: a mobile network signaling data acquisition module for capturing a plurality of mobile devices on a specified road through a specified road A plurality of mobile network signaling data between at least one network; an unsupervised learning module, which is an unsupervised learning algorithm with artificial intelligence to use the unsupervised learning algorithms to rely on the mobile devices Speed, the mobile network signaling data extraction module is divided into a plurality of different ethnic groups; a feature extraction module, from the unsupervised learning algorithm divided into different At least one specific group is extracted from the ethnic group, and the number of mobile network signaling data per unit time in the at least one specific group is calculated as the extracted characteristics; and a supervised learning module having One of the artificial intelligence supervised learning algorithms, using the supervised learning algorithm to build an artificial intelligence traffic flow estimation model from the features extracted by the feature extraction module, and then use the artificial intelligence traffic flow estimation model to estimate or generate a pass Traffic information for multiple vehicles on a given road.
本發明中運用行動網路信令資料之人工智慧車流推估方法包括:擷取在一指定道路之預定範圍內通過指定道路之複數行動裝置與至少一網路之間的複數行動網路信令資料;利用具有人工智慧之一非監督式學習演算法依據該些行動裝置之速度,將該些行動網路信令資料分成複數個不同族群;從非監督式學習演算法所分成之該些不同族群中萃取出至少一特定族群,以計算出至少一特定族群中每個單位時間之行動網路信令資料的數量作為萃取後之特徵;以及利用具有人工智慧之一監督式學習演算法,將由特徵萃取模組萃取後之特徵建立一人工智慧車流推估模型,以透過人工智慧車流推估模型推估出或產生通過指定道路之複數車輛之車流資訊。 The artificial intelligence traffic flow estimation method using mobile network signaling data in the present invention includes: capturing a plurality of mobile network signaling between a plurality of mobile devices passing through a designated road and at least one network within a predetermined range of a designated road Data; using an unsupervised learning algorithm with artificial intelligence to divide the mobile network signaling data into a number of different ethnic groups based on the speed of the mobile devices; the differences from the unsupervised learning algorithm At least one specific group is extracted from the ethnic group, and the number of mobile network signaling data per unit time in the at least one specific group is calculated as the extracted characteristics; and a supervised learning algorithm with artificial intelligence is used, The feature extracted by the feature extraction module establishes an artificial intelligence traffic flow estimation model to estimate or generate traffic flow information of a plurality of vehicles passing a designated road through the artificial intelligence traffic flow estimation model.
為讓本發明上述特徵與優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明。在以下描述內容中將部分闡述本發明之額外特徵及優點,且此等特徵及優點將部分自所述描述內容顯而易見,或可藉由對本發明之實踐習得。本發明之特徵及優點借助於在申請專利範圍中特別指出的元件及組合來認識到並達到。應理解,前文一般描述與以下詳細描述兩者均僅為例示性及解釋性的,且不欲約束本發明所主張之範圍。 In order to make the above features and advantages of the present invention more comprehensible, embodiments are described below in detail with reference to the accompanying drawings. Additional features and advantages of the present invention will be partially explained in the following description, and these features and advantages will be partially obvious from the description, or may be learned through practice of the present invention. The features and advantages of the invention are realized and achieved by means of elements and combinations specifically pointed out in the scope of the patent application. It should be understood that both the foregoing general description and the following detailed description are merely exemplary and explanatory and are not intended to limit the scope of the invention as claimed.
1‧‧‧人工智慧車流推估系統 1‧‧‧Artificial intelligence traffic flow estimation system
10‧‧‧行動網路信令資料擷取模組 10‧‧‧Mobile Network Signaling Data Retrieval Module
20‧‧‧非監督式學習模組 20‧‧‧Unsupervised Learning Module
21‧‧‧非監督式學習演算法 21‧‧‧Unsupervised Learning Algorithm
30‧‧‧特徵萃取模組 30‧‧‧Feature Extraction Module
40‧‧‧監督式學習模組 40‧‧‧Supervised Learning Module
41‧‧‧監督式學習演算法 41‧‧‧Supervised Learning Algorithm
50‧‧‧人工智慧車流推估模型 50‧‧‧ Artificial Intelligence Traffic Flow Estimation Model
51‧‧‧輸入層 51‧‧‧input layer
52‧‧‧LSTM(長短期記憶)層 52‧‧‧LSTM (Long Short-Term Memory) Layer
53‧‧‧隱藏層 53‧‧‧Hidden layer
54‧‧‧輸出層 54‧‧‧Output layer
60‧‧‧車流資訊 60‧‧‧Traffic Information
A‧‧‧行動裝置 A‧‧‧mobile device
B‧‧‧網路 B‧‧‧Internet
c、c1至cn‧‧‧行動網路信令資料 c, c1 to cn‧‧‧ mobile network signaling data
D1、D2‧‧‧曲線 D1, D2‧‧‧ curves
S11至S14、S21至S25、S31至S34‧‧‧步驟 S11 to S14, S21 to S25, S31 to S34 ‧‧‧ steps
第1圖為本發明中運用行動網路信令資料之人工智慧車流推估系統的架構示意圖;第2圖為本發明中運用行動網路信令資料之人工智慧車流推估方法之流程示意圖;第3A圖為本發明中運用行動網路信令資料之人工智慧車流推估方法於訓練模式時之流程示意圖;第3B圖為本發明中人工智慧車流推估模型(如LSTM架構之類神經網路模型)之示意圖;第4圖為本發明中運用行動網路信令資料之人工智慧車流推估方法於應用模式時之流程示意圖;以及第5圖為本發明運用行動網路信令資料之人工智慧車流推估系統及方法相較於現有技術運用EVP(採用電子道路收費系統為基礎之車輛探偵)之系統及方法在推估或偵測車流量上的比較曲線圖。 FIG. 1 is a schematic diagram of an artificial intelligence vehicle flow estimation system using mobile network signaling data in the present invention; FIG. 2 is a schematic flowchart of an artificial intelligence vehicle flow estimation method using mobile network signaling data in the present invention; FIG. 3A is a schematic flow chart of an artificial intelligence traffic flow estimation method using mobile network signaling data in the training mode of the present invention; FIG. 3B is an artificial intelligence traffic flow estimation model (such as a neural network such as an LSTM architecture) in the present invention Road model); Figure 4 is a flow diagram of the artificial intelligence vehicle flow estimation method using mobile network signaling data in the application mode of the present invention; and Figure 5 is a flowchart of mobile network signaling data using the present invention Compared with the prior art systems and methods using EVP (Electric Road Pricing System-based Vehicle Detection), the artificial intelligence vehicle flow estimation system and method is a comparison curve diagram for estimating or detecting vehicle flow.
以下藉由特定的具體實施形態說明本發明之實施方式,熟悉此技術之人士可由本說明書所揭示之內容輕易地了解本發明之其他優點與功效,亦可藉由其他不同的具體實施形態加以施行或應用。 The following describes the embodiments of the present invention with specific specific implementation forms. Those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this description, and can also be implemented by other different specific implementation forms. Or apply.
本發明揭露一種運用行動網路信令資料之人工智慧車流推估系統及其方法,利用非監督式學習演算法萃取行動網路信令資料之特徵,再利用監督式學習演算法訓練人工智慧車流推估模型,在獲得利用行動網路信令資料所訓練 之人工智慧車流推估模型後,即可利用所訓練之人工智慧車流推估模型來推估指定道路之車流資訊(如車流量)。 The present invention discloses an artificial intelligence traffic flow estimation system and method using mobile network signaling data, which uses unsupervised learning algorithms to extract characteristics of mobile network signaling data, and then uses supervised learning algorithms to train artificial intelligence traffic flows. Estimation models trained in obtaining mobile network signaling data After the artificial intelligence traffic flow estimation model, the trained artificial intelligence traffic flow estimation model can be used to estimate the traffic flow information (such as traffic flow) on the designated road.
本發明提供一種運用複數行動裝置與網路之間的複數行動網路信令資料(如CVP信令資料)結合人工智慧設計出車流推估系統及方法,核心技術係先透過非監督式演算法將該些行動網路信令資料分成不同族群,並利用監督式演算法進行訓練以產生訓練後之人工智慧車流推估模型,再透過人工智慧車流推估模型推估出複數車輛之車流資訊(如車流量)。因此,相較於以往直接利用行動網路信令資料之統計數量作為車流量之作法,本發明可以改善車流資訊之準確度、以及電信業者因行動網路佔有率不足而產生車流資訊不準確之問題。 The invention provides a system and method for designing a traffic flow estimation system using a plurality of mobile network signaling data (such as CVP signaling data) and artificial intelligence in combination between a plurality of mobile devices and a network. The core technology is an unsupervised algorithm first. The mobile network signaling data is divided into different ethnic groups, and training is performed using a supervised algorithm to generate a trained artificial intelligence traffic flow estimation model, and then the artificial intelligence traffic flow estimation model is used to estimate the traffic flow information of multiple vehicles ( Such as traffic). Therefore, compared with the previous method of directly using the statistics of mobile network signaling data as the traffic flow, the present invention can improve the accuracy of traffic flow information and the inaccuracy of traffic flow information generated by telecommunications operators due to insufficient mobile network occupancy. problem.
第1圖為本發明中運用行動網路信令資料c之人工智慧車流推估系統1的架構示意圖。如圖所示,人工智慧車流推估系統1包括一行動網路信令資料擷取模組10、一非監督式學習(Unsupervised Learning)模組20、一特徵萃取模組30、一監督式學習(Supervised Learning)模組40與一人工智慧車流推估模型50。 FIG. 1 is a schematic diagram of an artificial intelligence traffic flow estimation system 1 using mobile network signaling data c in the present invention. As shown in the figure, the artificial intelligence vehicle flow estimation system 1 includes a mobile network signaling data extraction module 10, an unsupervised learning module 20, a feature extraction module 30, and a supervised learning (Supervised Learning) module 40 and an artificial intelligence traffic flow estimation model 50.
行動網路信令資料擷取模組10可擷取在一指定道路之預定範圍內,通過指定道路之複數行動裝置A與至少一網路B之間的複數行動網路信令資料e。例如,該些行動網路信令資料c包括該些行動裝置A之位置、時間與速度等資料。行動裝置A可為具有SIM(用户身份模組;Subscriber Identity Module)卡之智慧手機、智慧手錶、 平板電腦等,而行動網路信令資料c可為CVP(以行動裝置基地台為基礎之車輛探偵)信令資料。 The mobile network signaling data acquisition module 10 can capture a plurality of mobile network signaling data e between a plurality of mobile devices A and at least one network B passing through the designated road within a predetermined range of the designated road. For example, the mobile network signaling data c includes data such as the location, time, and speed of the mobile devices A. The mobile device A may be a smart phone, a smart watch, a SIM (Subscriber Identity Module) card, Tablet, etc., and the mobile network signaling data c may be CVP (vehicle detection based on mobile device base station) signaling data.
非監督式學習模組20可具有人工智慧之一非監督式學習演算法21,以利用非監督式學習演算法21依據該些行動裝置A之速度,將行動網路信令資料擷取模組10所擷取之該些行動網路信令資料c分成複數個不同族群。 The unsupervised learning module 20 may have one of the unsupervised learning algorithms 21 of artificial intelligence to use the unsupervised learning algorithms 21 to extract mobile network signaling data according to the speed of the mobile devices A The captured mobile network signaling data c is divided into a plurality of different ethnic groups.
特徵萃取模組30可從非監督式學習演算法21所分成之不同族群中萃取出至少一(如三個)特定族群,以計算出至少一(如三個)特定族群中每個單位時間之行動網路信令資料c的數量作為萃取後之特徵。例如,每個時間單位可為每一分鐘、每五分鐘、每十分鐘或每十五分鐘等。 The feature extraction module 30 may extract at least one (such as three) specific ethnic groups from the different ethnic groups divided by the unsupervised learning algorithm 21 to calculate the unit time of each of the at least one (such as three) specific ethnic groups. The quantity of the mobile network signaling data c is taken as the extracted feature. For example, each time unit may be every minute, every five minutes, every ten minutes, or every fifteen minutes, and so on.
監督式學習模組40可具有人工智慧之一監督式學習演算法41,以利用監督式學習演算法41,將由特徵萃取模組30萃取後之特徵建立一人工智慧車流推估模型50。例如,監督式學習演算法41可為線性回歸(Linear Regression)演算法、支持向量機(Support Vector Machine;SVM)演算法、決策樹(Decision Tree)演算法、隨機森林(Rcndom Forecast)演算法、類神經網路等,且類神經網路可為倒傳遞神經網路(Back-Propagation Neural Network;BPNN)、遞歸神經網路(Recurrent Neural Network;RNN)、深度神經網路(Deep Neural Network;DNN)、卷積神經網路(Convolutional Neural Network;CNN)、長短期記憶(Long Short-Term Memory;LSTM)模型等。 The supervised learning module 40 may have one of the supervised learning algorithms 41 of artificial intelligence to use the supervised learning algorithm 41 to establish an artificial intelligence traffic flow estimation model 50 based on the features extracted by the feature extraction module 30. For example, the supervised learning algorithm 41 may be a Linear Regression algorithm, a Support Vector Machine (SVM) algorithm, a Decision Tree algorithm, a Rcndom Forecast algorithm, Neural-like network, etc., and the neural-like network can be Back-Propagation Neural Network (BPNN), Recurrent Neural Network (RNN), Deep Neural Network (DNN) ), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) models, etc.
同時,監督式學習模組40可將特徵萃取模組30萃取 後之特徵與複數車輛(圖未示)之車流量作為標籤組成一訓練集,以利用監督式學習演算法41對訓練集進行反覆訓練,從而減少該些車輛與複數人員互相混合之誤差。前述該些車輛之車流量可由外部之路側設備(如監視器)之影像辨識軟體、路側設備(如雷達)之車輛偵測器(VD)、電子標籤(e-Tag)設備之EVP(採用電子道路收費系統為基礎之車輛探偵)、或人員之路口調查等,提供初步之來源資料。 At the same time, the supervised learning module 40 can extract the feature extraction module 30 The latter feature and the traffic volume of the plural vehicles (not shown) are used as tags to form a training set, so that the training set is repeatedly trained using the supervised learning algorithm 41, thereby reducing the error of mixing these vehicles with plural persons. The traffic flow of the aforementioned vehicles can be determined by the image recognition software of external roadside equipment (such as monitors), the vehicle detector (VD) of roadside equipment (such as radar), and the EVP of electronic tag (e-Tag) equipment (using electronic Road toll system-based vehicle detection), or personnel intersection surveys, etc., provide preliminary source information.
人工智慧車流推估模型50可由監督式學習模組40所產生,且特徵萃取模組30可輸入所萃取後之特徵至人工智慧車流推估模型50中,以透過人工智慧車流推估模型50推估出或產生通過指定道路之複數車輛之車流資訊60。 The artificial intelligence traffic flow estimation model 50 may be generated by the supervised learning module 40, and the feature extraction module 30 may input the extracted features into the artificial intelligence traffic flow estimation model 50 to be estimated by the artificial intelligence traffic flow estimation model 50. Estimating or generating traffic flow information for a plurality of vehicles passing a designated road 60.
第2圖為本發明中運用行動網路信令資料c之人工智慧車流推估方法之流程示意圖,並請一併參閱上述第1圖。同時,本發明中運用行動網路信令資料c之人工智慧車流推估方法之主要技術內容如下,其餘技術內容如同上述第1圖之詳細說明,於此不再重覆敘述。 FIG. 2 is a schematic flowchart of an artificial intelligence vehicle flow estimation method using mobile network signaling data c in the present invention, and please refer to FIG. 1 above. At the same time, the main technical contents of the artificial intelligence vehicle flow estimation method using the mobile network signaling data c in the present invention are as follows, and the remaining technical contents are the same as the detailed description of FIG. 1 described above, and are not repeated here.
在第2圖之步驟S11中,由一行動網路信令資料擷取模組10擷取在一指定道路之預定範圍內,通過指定道路之複數行動裝置A與至少一網路B之間的複數行動網路信令資料c。 In step S11 of FIG. 2, a mobile network signaling data acquisition module 10 retrieves the information between a plurality of mobile devices A and at least one network B that pass through a specified road within a predetermined range of a specified road. Plural mobile network signaling data c.
在第2圖之步驟S12中,利用一非監督式學習模組20中具有人工智慧之一非監督式學習演算法21,依據該些行動裝置A之速度,將行動網路信令資料擷取模組10所擷取之該些行動網路信令資料c分成複數個不同族群。 In step S12 of FIG. 2, an unsupervised learning algorithm 21 with artificial intelligence in an unsupervised learning module 20 is used to retrieve mobile network signaling data according to the speed of the mobile devices A. The mobile network signaling data c captured by the module 10 is divided into a plurality of different ethnic groups.
在第2圖之步驟S13中,由一特徵萃取模組30從非監督式學習演算法21所分成之不同族群中萃取出至少一特定族群,並由特徵萃取模組30計算出至少一特定族群中每個單位時間之行動網路信令資料c的數量作為萃取後之特徵。 In step S13 of FIG. 2, a feature extraction module 30 extracts at least one specific ethnic group from different ethnic groups divided by the unsupervised learning algorithm 21, and the feature extraction module 30 calculates at least one specific ethnic group. The number of mobile network signaling data c per unit time in the data is taken as the extracted feature.
在第2圖之步驟S14中,利用一監督式學習模組40中具有人工智慧之一監督式學習演算法41,將由特徵萃取模組30萃取後之特徵建立一人工智慧車流推估模型50,以透過人工智慧車流推估模型50推估出或產生通過指定道路之複數車輛之車流資訊。 In step S14 of FIG. 2, a supervised learning algorithm 41 having artificial intelligence in a supervised learning module 40 is used to establish an artificial intelligence traffic flow estimation model 50 based on the features extracted by the feature extraction module 30. The artificial traffic flow estimation model 50 is used to estimate or generate traffic flow information of a plurality of vehicles passing a designated road.
第3A圖為本發明中運用行動網路信令資料c之人工智慧車流推估方法於「訓練模式」時之流程示意圖,第3B圖為本發明中人工智慧車流推估模型(如LSTM架構之類神經網路模型)之示意圖,亦可適用於第1圖之人工智慧車流推估系統1,茲說明如下。 FIG. 3A is a schematic flow chart of the artificial intelligence vehicle flow estimation method using the mobile network signaling data c in the “training mode” in the present invention, and FIG. 3B is an artificial intelligence vehicle flow estimation model (such as the LSTM architecture in the present invention). The neural network-like model is also applicable to the artificial intelligence traffic flow estimation system 1 in FIG. 1, which is described below.
在第1圖與第3A圖之步驟S21中,由行動網路信令資料擷取模組10擷取在一指定道路之預定範圍內,通過指定道路之複數行動裝置A與至少一網路B之間的複數歷史之行動網路信令資料c。例如,歷史之行動網路信令資料c包括行動裝置A之歷史的位置、時間與速度等資料,且歷史之行動網路信令資料c係指其早於即時之行動網路信令資料c。 In step S21 of FIG. 1 and FIG. 3A, the mobile network signaling data acquisition module 10 retrieves a predetermined range of a specified road, and a plurality of mobile devices A and at least one network B passing the specified road. Between the plural historical mobile network signaling data c. For example, the historical mobile network signaling data c includes historical location, time, and speed data of mobile device A, and the historical mobile network signaling data c refers to its earlier mobile network signaling data c .
舉例而言,由行動網路信令資料擷取模組10擷取於基隆市基金三路至基金二路,2017年12月4日至2017年12 月22日之複數行動網路信令資料c。例如,該些行動網路信令資料c包括該些行動裝置A之位置、時間與車速等資料。 For example, the mobile network signaling data extraction module 10 was used to capture funds from Fund 3 Road to Fund 2 Road in Keelung City from December 4, 2017 to December 2017. Multiple mobile network signalling information on May 22c. For example, the mobile network signaling data c includes data such as the location, time, and vehicle speed of the mobile devices A.
在第1圖與第3A圖之步驟S22中,利用非監督式學習模組20之非監督式學習演算法21,依據該些行動裝置A之速度,將該些歷史之行動網路信令資料c產生不同族群之數量。例如,非監督式學習演算法21可為K-means分群演算法、階層式分群演算法、DBSCAN(density-based spatial clustering of applications with noise;具有雜訊之基於密度的空間分群)演算法等。 In step S22 of FIG. 1 and FIG. 3A, the unsupervised learning algorithm 21 of the unsupervised learning module 20 is used to signal the historical mobile network signaling data according to the speed of the mobile devices A c Generate the number of different ethnic groups. For example, the unsupervised learning algorithm 21 may be a K-means clustering algorithm, a hierarchical clustering algorithm, a DBSCAN (density-based spatial clustering of applications with noise; density-based spatial clustering) algorithm, and the like.
舉例而言,利用非監督式學習演算法21將複數行動網路信令資料c產生不同族群之數量,例如該些行動網路信令資料c分別為複數行動網路信令資料c1、c2、c3、c4、c5、...、cn,且該些行動網路信令資料c1、c2、c3、c4、c5、...、cn分別對應之車速為10、20、30、40、50、...、N公里/小時(km/hr)。假設將該些行動網路信令資料c1、c2、c3、c4、c5、...、cn先分為二個族群,則非監督式學習演算法21可隨機取二個族群之中心點,例如,二個族群之中心點為行動網路信令資料c2(車速為20公里/小時)及行動網路信令資料c5(車速為50公里/小時)。 For example, the unsupervised learning algorithm 21 is used to generate the number of different groups of the plural mobile network signaling data c. For example, the mobile network signaling data c are plural mobile network signaling data c1, c2, respectively. c3, c4, c5, ..., cn, and the mobile network signaling data c1, c2, c3, c4, c5, ..., cn respectively correspond to vehicle speeds of 10, 20, 30, 40, 50 , ..., N kilometers per hour (km / hr). Assuming that the mobile network signaling data c1, c2, c3, c4, c5, ..., cn are first divided into two ethnic groups, the unsupervised learning algorithm 21 may randomly take the center points of the two ethnic groups, For example, the center points of the two ethnic groups are mobile network signaling data c2 (vehicle speed is 20 km / h) and mobile network signaling data c5 (vehicle speed is 50 km / h).
同時,非監督式學習演算法21可計算其餘行動網路信令資料與二個族群之中心點(如行動網路信令資料c2及c5)之距離(如歐幾里得距離),且將其餘行動網路信令資料各自歸類在最近距離之族群。例如:行動網路信令資料c1 及c3分別至行動網路信令資料c2之距離皆為(每小時)10公里,行動網路信令資料c1及c3分別至行動網路信令資料c5之距離為(每小時)20及40公里,故行動網路信令資料c1、c2及c3可分為同一族群,而行動網路信令資料c4及c5可分為為另一族群。 At the same time, the unsupervised learning algorithm 21 can calculate the distance (such as Euclidean distance) between the remaining mobile network signaling data and the center points of the two groups (such as mobile network signaling data c2 and c5), and The remaining mobile network signaling data are classified into the nearest group. For example: mobile network signaling data c1 The distances from c3 and c3 to the mobile network signaling data c2 are 10 kilometers per hour, and the distances from the mobile network signaling data c1 and c3 to the mobile network signaling data c5 are 20 and 40, respectively. Kilometers, the mobile network signaling data c1, c2, and c3 can be divided into the same group, and the mobile network signaling data c4 and c5 can be divided into another group.
接著,非監督式學習演算法21可重新計算新族群之中心點,並依據上述方式以新族群之中心點將全部的行動網路信令資料c1、c2、c3、c4、c5、...、cn重新分成不同族群,如此反覆執行,直到族群不再變動為止,例如最後將全部的行動網路信令資料c1、c2、c3、c4、c5、...、cn分為五個族群。 Then, the unsupervised learning algorithm 21 may recalculate the center point of the new ethnic group, and according to the above method, use the center point of the new ethnic group to transmit all the mobile network signaling data c1, c2, c3, c4, c5, ..., The cn is re-divided into different ethnic groups, and iteratively executed until the ethnic groups no longer change. For example, all the mobile network signaling data c1, c2, c3, c4, c5, ..., cn are divided into five ethnic groups.
在第1圖與第3A圖之步驟S23中,由特徵萃取模組30從上述不同族群中萃取出至少一特定族群作為特徵之一(包括多數族群之數量或配對族群之數量等),以計算出至少一特定族群中每個單位時間之行動網路信令資料c的數量與時間步(time step),俾產生萃取後之特徵。例如,特徵萃取模組30所萃取之特徵包括至少一特定族群中每個單位時間之行動網路信令資料c的數量與時間步、不同族群中多數族群之數量或配對族群之數量等。 In step S23 of FIG. 1 and FIG. 3A, the feature extraction module 30 extracts at least one specific ethnic group from the different ethnic groups as one of the characteristics (including the number of majority ethnic groups or the number of paired ethnic groups, etc.) to calculate The number and time step of the mobile network signaling data c per unit time in at least one specific group are generated, and the extracted features are generated. For example, the features extracted by the feature extraction module 30 include the number and time step of the mobile network signaling data c per unit time in at least one specific ethnic group, the number of majority ethnic groups in different ethnic groups, or the number of paired ethnic groups.
舉例而言,由特徵萃取模組30從上述五個族群中萃取出中間三個族群之數量作為特徵之一,以計算出中間三個族群中每個單位時間之行動網路信令資料c的數量與時間步,俾產生萃取後之特徵。例如,將該些行動網路信令資料c以每五分鐘計數,1日分為288個時間點以分別對應 288個時間步之行動網路信令資料c的數量,每個時間步包括族群之總數量、中間三個族群之各別數量。 For example, the feature extraction module 30 extracts the number of the middle three ethnic groups from the above five ethnic groups as one of the characteristics, so as to calculate the mobile network signaling data c for each unit time in the middle three ethnic groups. Quantities and time steps produce the characteristics after extraction. For example, the mobile network signaling data c is counted every five minutes, and the day is divided into 288 time points to correspond to The number of mobile network signaling data c at 288 time steps. Each time step includes the total number of ethnic groups and the respective numbers of the three middle ethnic groups.
在第1圖與第3A圖之步驟S24中,由外部之路側設備(如監視器)之影像辨識軟體、路側設備(如雷達)之車輛偵測器(VD)、e-Tag(電子標籤)設備之EVP(採用電子道路收費系統為基礎之車輛探偵)、或人員之路口調查等,取得歷史之時間上指定道路之預定範圍內的偵測資料作為標籤。接著,由監督式學習模組40將特徵萃取模組30萃取後之特徵與複數車輛之車流量作為標籤組成一訓練集,以利用監督式學習演算法41對訓練集進行反覆訓練,從而減少該些車輛與複數人員互相混合之誤差。 In step S24 of FIG. 1 and FIG. 3A, the image recognition software of the external roadside equipment (such as a monitor), the vehicle detector (VD) of the roadside equipment (such as a radar), and the e-Tag (electronic tag) The equipment's EVP (electronic vehicle toll detection based on electronic road toll system), or the intersection survey of personnel, etc., obtains the detection data within a predetermined range of a specified road in the historical time as a label. Then, the supervised learning module 40 uses the features extracted by the feature extraction module 30 and the traffic volume of a plurality of vehicles as labels to form a training set, and uses the supervised learning algorithm 41 to repeatedly train the training set, thereby reducing the These vehicles are intermingled with multiple people.
舉例而言,由e-Tag(電子標籤)設備之EVP擷取於基隆市基金三路至基金二路,2017年12月4日至2017年12月22日,每五分鐘之EVP資料作為標籤,並由監督式學習模組40將上述萃取後之特徵與標籤組成一訓練集。 For example, the EVP of the e-Tag (electronic tag) device is captured from Fund 3 Road to Fund 2 Road in Keelung City. From December 4, 2017 to December 22, 2017, the EVP data every five minutes is used as the tag. The supervised learning module 40 composes the extracted features and labels into a training set.
在第1圖與第3A圖之步驟S25中,由監督式學習模組40建立一人工智慧車流推估模型50,並利用監督式學習演算法41以訓練集對人工智慧車流推估模型50進行訓練與校調至合理之誤差範圍,進而產生已訓練之人工智慧車流推估模型50。 In step S25 of FIG. 1 and FIG. 3A, a supervised learning module 40 is used to establish an artificial intelligence traffic flow estimation model 50, and a supervised learning algorithm 41 is used to perform a training set on the artificial intelligence traffic flow estimation model 50. The training and calibration are adjusted to a reasonable error range, and a trained artificial intelligence traffic flow estimation model 50 is generated.
舉例而言,可利用監督式學習演算法41建立一人工智慧車流推估模型50,例如人工智慧車流推估模型50可為第3B圖所示LSTM(長短期記憶)架構之類神經網路模型。同時,由特徵萃取模組30輸入特徵(如族群之總數量、中 間三個族群之各別數量)於工智慧車流推估模型50中,並依次輸入目前時間點(t)至歷史前5個時間點(t-5)之特徵資料,再利用監督式學習演算法41使用上述訓練集對人工智慧車流推估模型50進行訓練與校調,以產生訓練與校調後之人工智慧車流推估模型50。 For example, a supervised learning algorithm 41 can be used to build an artificial intelligence traffic flow estimation model 50. For example, the artificial intelligence traffic flow estimation model 50 can be a neural network model such as the LSTM (Long Short-Term Memory) architecture shown in Figure 3B. . At the same time, features (such as the total number of ethnic groups, (The respective numbers of the three ethnic groups) in the intelligent traffic flow estimation model 50, and input the characteristic data from the current time point (t) to the previous five time points (t-5) in order, and then use the supervised learning algorithm Method 41 uses the above training set to train and adjust the artificial intelligence traffic flow estimation model 50 to generate the artificial intelligence traffic flow estimation model 50 after training and adjustment.
上述第3B圖之人工智慧車流推估模型50(如LSTM架構之類神經網路模型)可包括一輸入層51、一LSTM(長短期記憶)層52、一隱藏層53與一輸出層54,其中,t表示時間步,t-5表示往前數5個時間步,x1至x4表示不同的特徵,j1至jn表示隱藏神經元,y(t)表示車流量。 The artificial intelligence vehicle flow estimation model 50 (such as a neural network model such as the LSTM architecture) in FIG. 3B described above may include an input layer 51, an LSTM (long-term short-term memory) layer 52, a hidden layer 53 and an output layer 54, Among them, t represents a time step, t-5 represents the next 5 time steps, x1 to x4 represent different features, j1 to jn represent hidden neurons, and y (t) represents the traffic flow.
第4圖為本發明中運用行動網路信令資料c之人工智慧車流推估方法於「應用模式」時之流程示意圖,亦可適用於第1圖之人工智慧車流推估系統1,茲說明如下。 FIG. 4 is a flow chart of the artificial intelligence traffic flow estimation method using the mobile network signaling data c in the “application mode” in the present invention, and is also applicable to the artificial intelligence traffic flow estimation system 1 of FIG. as follows.
在第1圖與第4圖之步驟S31中,由行動網路信令資料擷取模組10擷取在一指定道路之預定範圍內,通過指定道路之複數行動裝置A與至少一網路B之間的複數即時之行動網路信令資料c。例如,即時之行動網路信令資料c包括行動裝置A之即時的位置、時間與速度等資料。 In step S31 of FIG. 1 and FIG. 4, the mobile network signaling data acquisition module 10 retrieves a predetermined range of a specified road, and a plurality of mobile devices A and at least one network B passing the specified road. Plural real-time mobile network signaling data between c. For example, the real-time mobile network signaling data c includes the real-time location, time, and speed of mobile device A.
舉例而言,由行動網路信令資料擷取模組10擷取於基隆市基金三路至基金二路,2017年12月23日8:00至24:00之複數行動網路信令資料c。例如,該些行動網路信令資料c包括該些行動裝置A之位置、時間與車速等資料。 For example, the mobile network signaling data extraction module 10 captures a plurality of mobile network signaling data from GF 3 to GF 2 in Keelung City on December 23, 2017 from 8:00 to 24:00 c. For example, the mobile network signaling data c includes data such as the location, time, and vehicle speed of the mobile devices A.
在第1圖與第4圖之步驟S32中,利用非監督式學習模組20之非監督式學習演算法21,依據該些行動裝置A 之速度,將該些即時之行動網路信令資料c產生不同族群之數量。例如,非監督式學習演算法21可為K-means分群演算法、階層式分群演算法、DBSCAN(具有雜訊之基於密度的空間分群)分群演算法等。 In step S32 of FIG. 1 and FIG. 4, the unsupervised learning algorithm 21 of the unsupervised learning module 20 is used, and according to the mobile devices A Speed, the real-time mobile network signaling data c is generated to the number of different ethnic groups. For example, the unsupervised learning algorithm 21 may be a K-means clustering algorithm, a hierarchical clustering algorithm, a DBSCAN (density-based spatial clustering with noise) clustering algorithm, and the like.
舉例而言,利用非監督式學習模組20之非監督式學習演算法21(如K-means演算法)將該些即時之行動網路信令資料c分為五個族群。 For example, the unsupervised learning algorithm 21 (such as the K-means algorithm) of the unsupervised learning module 20 is used to divide the real-time mobile network signaling data c into five groups.
在第1圖與第4圖之步驟S33中,由特徵萃取模組30從上述不同族群中萃取出至少一特定族群作為特徵之一,以計算出至少一特定族群中每個單位時間之行動網路信令資料c的數量與時間步,俾產生萃取後之特徵。例如,特徵萃取模組30所萃取之特徵包括至少一特定族群中每個單位時間之行動網路信令資料c的數量與時間步、不同族群中多數族群之數量或配對族群之數量等。 In step S33 of FIG. 1 and FIG. 4, the feature extraction module 30 extracts at least one specific ethnic group from the different ethnic groups as one of the features to calculate an action network per unit time in the at least one specific ethnic group. The number and time step of the channel signalling data c generate the extracted characteristics. For example, the features extracted by the feature extraction module 30 include the number and time step of the mobile network signaling data c per unit time in at least one specific ethnic group, the number of majority ethnic groups in different ethnic groups, or the number of paired ethnic groups.
舉例而言,由特徵萃取模組30從上述五個族群中萃取出中間三個族群之數量作為特徵之一,以計算出中間三個族群中每個單位時間之行動網路信令資料c的數量與時間步,俾產生萃取後之特徵。例如,將行動網路信令資料c以每五分鐘計數,1日可分為288個時間點以分別對應288個時間步之行動網路信令資料c的數量,每個時間步包括族群之總數量、中間三個族群之各別數量。 For example, the feature extraction module 30 extracts the number of the middle three ethnic groups from the above five ethnic groups as one of the characteristics, so as to calculate the mobile network signaling data c for each unit time in the middle three ethnic groups. Quantities and time steps produce the characteristics after extraction. For example, the mobile network signaling data c is counted every five minutes, and the day can be divided into 288 time points to correspond to the number of mobile network signaling data c at 288 time steps. Each time step includes the Total number, each of the three ethnic groups in the middle.
在第1圖與第4圖之步驟S34中,由特徵萃取模組30將萃取後之特徵輸入至已訓練之人工智慧車流推估模型50,以透過人工智慧車流推估模型50推估出或產生通過指 定道路之該些車輛之車流資訊60。 In step S34 of FIG. 1 and FIG. 4, the feature extraction module 30 inputs the extracted features to the trained artificial intelligence vehicle flow estimation model 50 to estimate or Generated by The traffic flow information of the vehicles on the road 60.
第5圖為本發明「運用行動網路信令資料之人工智慧車流推估系統及方法」相較於現有技術「運用EVP(採用電子道路收費系統為基礎之車輛探偵)之系統及方法」在推估或偵測車流量上的一數據比較曲線圖,其中,本發明為曲線D1,現有技術為曲線D2。 Fig. 5 is the "artificial intelligence vehicle flow estimation system and method using mobile network signaling data" of the present invention compared with the prior art "system and method using EVP (vehicle detection based on electronic road pricing system)" A data comparison curve diagram for estimating or detecting vehicle flow, wherein the present invention is a curve D1, and the prior art is a curve D2.
在現有技術運用EVP偵測車流量之系統及方法中,因需建置用以偵測e-Tag(電子標籤)之路側設備,且車輛亦需安裝e-Tag,從而產生較高的設備或硬體之建置成本。反之,在本發明運用行動網路信令資料之人工智慧車流推估系統及方法中,可無須建置用以偵測e-Tag(電子標籤)之路側設備,且車輛亦無須安裝e-Tag,從而節省或降低相關設備或硬體之建置成本。因此,本發明運用行動網路信令資料之人工智慧車流推估系統及方法不但可以取代現有技術運用EVP偵測車流量之系統及方法,且可以節省或降低相關設備或硬體之建置成本。 In the prior art systems and methods for detecting vehicle flow using EVP, roadside equipment for detecting e-Tags (electronic tags) needs to be built, and vehicles also need to be equipped with e-Tags, resulting in higher equipment or Hardware construction costs. On the contrary, in the artificial intelligence vehicle flow estimation system and method using mobile network signaling data of the present invention, it is not necessary to build a roadside device for detecting e-Tag (electronic tag), and the vehicle does not need to be installed with e-Tag So as to save or reduce the installation cost of related equipment or hardware. Therefore, the artificial intelligence vehicle flow estimation system and method using mobile network signaling data of the present invention can not only replace the existing systems and methods using EVP to detect vehicle flow, but also can save or reduce the installation cost of related equipment or hardware .
綜上,本發明中運用行動網路信令資料之人工智慧車流推估系統及其方法可具有下列特色、優點或技術功效: In summary, the artificial intelligence vehicle flow estimation system and method using mobile network signaling data in the present invention may have the following features, advantages, or technical effects:
一、本發明僅需使用一般用戶之行動裝置,並利用行動網路信令資料即可推估道路車流量,可不必使用車輛上之通訊裝置,且車輛上無須安裝e-Tag(電子標籤),亦無須額外建置用以偵測e-Tag(電子標籤)之路側設備(如監視器或雷達),從而大幅減少相關設備或硬體之建置成本與時程。 1. The present invention only needs to use the mobile device of a general user and use the mobile network signaling data to estimate the traffic volume on the road. It is not necessary to use the communication device on the vehicle, and the vehicle does not need to install an e-Tag (electronic tag). There is also no need to build additional roadside equipment (such as a monitor or radar) to detect e-Tags (electronic tags), thereby greatly reducing the cost and time of the installation of related equipment or hardware.
二、相較於以往直接利用行動網路信令資料之統計數量作為車流量之作法,本發明運用人工智慧之技術,可以改善車流資訊之準確度、以及電信業者因行動網路之佔有率不足而產生車流資訊不準確之問題。 2. Compared with the previous method of directly using the statistics of mobile network signaling data as the traffic flow, the present invention uses artificial intelligence technology to improve the accuracy of traffic flow information and the lack of occupancy rate of telecommunications operators due to the mobile network. The problem is that the traffic information is not accurate.
上述實施形態僅例示性說明本發明之原理、特點及其功效,並非用以限制本發明之可實施範疇,任何熟習此項技藝之人士均可在不違背本發明之精神及範疇下,對上述實施形態進行修飾與改變。任何運用本發明所揭示內容而完成之等效改變及修飾,均仍應為申請專利範圍所涵蓋。因此,本發明之權利保護範圍,應如申請專利範圍所列。 The above-mentioned embodiments merely exemplify the principles, features, and effects of the present invention, and are not intended to limit the implementable scope of the present invention. Anyone who is familiar with this technology can perform the above operations without departing from the spirit and scope of the present invention. Modifications and changes to the implementation form. Any equivalent changes and modifications made by using the disclosure of the present invention should still be covered by the scope of patent application. Therefore, the scope of protection of the rights of the present invention should be as listed in the scope of patent application.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107136758A TWI676397B (en) | 2018-10-18 | 2018-10-18 | Artificial intelligence traffic estimation system using mobile network signaling data and method thereof |
CN201811300387.7A CN111161529B (en) | 2018-10-18 | 2018-11-02 | Artificial intelligent traffic flow estimation system and method using mobile network signaling data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107136758A TWI676397B (en) | 2018-10-18 | 2018-10-18 | Artificial intelligence traffic estimation system using mobile network signaling data and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI676397B true TWI676397B (en) | 2019-11-01 |
TW202017403A TW202017403A (en) | 2020-05-01 |
Family
ID=69188679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107136758A TWI676397B (en) | 2018-10-18 | 2018-10-18 | Artificial intelligence traffic estimation system using mobile network signaling data and method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111161529B (en) |
TW (1) | TWI676397B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI748514B (en) * | 2020-06-12 | 2021-12-01 | 中華電信股份有限公司 | Method and system for estimating traffic |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102521984A (en) * | 2011-12-31 | 2012-06-27 | 北京世纪高通科技有限公司 | Method and device for acquiring real-time traffic information of road |
TW201514448A (en) * | 2013-10-14 | 2015-04-16 | Chunghwa Telecom Co Ltd | Method of estimating traffic information using mobile user signaling and system thereof |
CN105160866A (en) * | 2015-08-07 | 2015-12-16 | 浙江高速信息工程技术有限公司 | Traffic flow prediction method based on deep learning nerve network structure |
CN105869398A (en) * | 2016-05-10 | 2016-08-17 | 浙江工业大学 | Road traffic open degree judging method based on K-means cluster |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2816919B2 (en) * | 1992-11-05 | 1998-10-27 | 松下電器産業株式会社 | Spatial average speed and traffic volume estimation method, point traffic signal control method, traffic volume estimation / traffic signal controller control device |
JP2001307287A (en) * | 2000-04-19 | 2001-11-02 | Fuji Xerox Co Ltd | Traffic volume measurement system and traffic signal control system |
CN102496280B (en) * | 2011-12-13 | 2014-04-23 | 北京航空航天大学 | Method for obtaining road condition information in real time |
CN105513348B (en) * | 2015-11-27 | 2018-04-24 | 西南交通大学 | OD matrix acquisition methods based on mobile phone signaling Trip chain |
CN108322891B (en) * | 2018-01-11 | 2020-08-28 | 江苏欣网视讯软件技术有限公司 | Traffic area congestion identification method based on user mobile phone signaling |
-
2018
- 2018-10-18 TW TW107136758A patent/TWI676397B/en active
- 2018-11-02 CN CN201811300387.7A patent/CN111161529B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102521984A (en) * | 2011-12-31 | 2012-06-27 | 北京世纪高通科技有限公司 | Method and device for acquiring real-time traffic information of road |
TW201514448A (en) * | 2013-10-14 | 2015-04-16 | Chunghwa Telecom Co Ltd | Method of estimating traffic information using mobile user signaling and system thereof |
CN105160866A (en) * | 2015-08-07 | 2015-12-16 | 浙江高速信息工程技术有限公司 | Traffic flow prediction method based on deep learning nerve network structure |
CN105869398A (en) * | 2016-05-10 | 2016-08-17 | 浙江工业大学 | Road traffic open degree judging method based on K-means cluster |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI748514B (en) * | 2020-06-12 | 2021-12-01 | 中華電信股份有限公司 | Method and system for estimating traffic |
Also Published As
Publication number | Publication date |
---|---|
CN111161529A (en) | 2020-05-15 |
CN111161529B (en) | 2021-06-08 |
TW202017403A (en) | 2020-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | A short-term traffic prediction model in the vehicular cyber–physical systems | |
Fang et al. | FTPG: A fine-grained traffic prediction method with graph attention network using big trace data | |
CN101719315B (en) | Method for acquiring dynamic traffic information based on middleware | |
CN105493109B (en) | Inferred using the air quality of multiple data sources | |
CN104778834B (en) | Urban road traffic jam judging method based on vehicle GPS data | |
CN111462484A (en) | Congestion state determination method, device, equipment and computer readable storage medium | |
CN109754594A (en) | A kind of road condition information acquisition method and its equipment, storage medium, terminal | |
Huang et al. | A method for bus OD matrix estimation using multisource data | |
CN109785629A (en) | A kind of short-term traffic flow forecast method | |
Luo et al. | Fine-grained service-level passenger flow prediction for bus transit systems based on multitask deep learning | |
Zhang et al. | A Distributed Threshold Algorithm for Vehicle Classification Based on Binary Proximity Sensors and Intelligent Neuron Classifier. | |
CN105320997A (en) | Public transit passenger flow trajectory real-time tracking method based on big data | |
Xing et al. | Traffic volume estimation in multimodal urban networks using cell phone location data | |
CN108416376A (en) | It is a kind of that system and method is managed in way logistics people's vehicle tracing and monitoring based on SVM | |
WO2023004595A1 (en) | Parking data recovery method and apparatus, and computer device and storage medium | |
Habtie et al. | Artificial neural network based real-time urban road traffic state estimation framework | |
Stenneth et al. | Monitoring and mining GPS traces in transit space | |
TWI676397B (en) | Artificial intelligence traffic estimation system using mobile network signaling data and method thereof | |
Minnikhanov et al. | Detection of traffic anomalies for a safety system of smart city | |
Chen et al. | A travel mode identification framework based on cellular signaling data | |
Luo et al. | Spatiotemporal hashing multigraph convolutional network for service-level passenger flow forecasting in bus transit systems | |
Sassella et al. | On queue length estimation in urban traffic intersections via inductive loops | |
CN105489010B (en) | A kind of through street journey time reliability monitoring analysis system and method | |
He et al. | Crowd-sensing enhanced parking patrol using sharing bikes’ trajectories | |
Zhang et al. | An approach for real-time urban traffic state estimation by fusing multisource traffic data |