TWI676175B - Pre-match system and pre-match method - Google Patents
Pre-match system and pre-match method Download PDFInfo
- Publication number
- TWI676175B TWI676175B TW107128749A TW107128749A TWI676175B TW I676175 B TWI676175 B TW I676175B TW 107128749 A TW107128749 A TW 107128749A TW 107128749 A TW107128749 A TW 107128749A TW I676175 B TWI676175 B TW I676175B
- Authority
- TW
- Taiwan
- Prior art keywords
- address
- comparison
- redundant
- level
- register
- Prior art date
Links
Landscapes
- For Increasing The Reliability Of Semiconductor Memories (AREA)
Abstract
一種預比對方法包括:接收一初始位址;根據該初始位址而逐漸增加一目前位址;對該目前位址增加一偏差值,以取得一比對位址;比較該比對位址與至少一缺陷位址,以產生一命中參數;產生相關於該比對位址的一冗餘位址;以及依據該命中參數設定一Y方向位址為該目前位址或該冗餘位址,該Y方向位址相關於對該記憶體陣列之存取。 A pre-comparison method includes: receiving an initial address; gradually increasing a current address according to the initial address; adding a deviation value to the current address to obtain a comparison address; comparing the comparison address And at least one defective address to generate a hit parameter; generate a redundant address related to the comparison address; and set a Y-direction address as the current address or the redundant address according to the hit parameter The Y-direction address is related to access to the memory array.
Description
本案是有關於一種預比對系統及預比對方法。特別是有關於一種應用於NAND快閃記憶體的預比對系統及預比對方法。 This case is about a pre-comparison system and pre-comparison method. In particular, it relates to a pre-comparison system and pre-comparison method applied to NAND flash memory.
近年來,由於巨量資料與非揮發性資料的普及,使得NAND快閃記憶體被廣泛地應用。此外,巨量資料使得NAND快閃記憶體需適用於記憶卡、通用序列匯流排(Universal Serial Bus,USB)閃存驅動器及行動裝置中的儲存裝置。為了擴大優勢,製造快閃儲存單元時,藉由複雜的設備生產過程使其製作得盡可能縮小,若沒有冗餘機制及錯誤校正碼(Error Correction Code,ECC)則會使得晶片產量難以維持。 In recent years, due to the popularity of huge amounts of data and non-volatile data, NAND flash memory has been widely used. In addition, the huge amount of data makes NAND flash memory suitable for memory cards, universal serial bus (USB) flash drives, and storage devices in mobile devices. In order to expand the advantages, when manufacturing flash memory cells, they are made as small as possible through complex equipment production processes. Without redundant mechanisms and Error Correction Codes (ECCs), it will be difficult to maintain wafer yield.
隨著科技及技術的進步,處理器被要求能運行更複雜的計算,此代表處理器需要記憶體容量且資料吞吐量可能會急遽增加。為了與此趨勢接軌,雙倍資料速率(Double Data Rate,DDR)的輸入/輸出介面為一熱門的選擇,用以達到高資料傳輸速度。然而對於位址替換方法,是幾乎不可能在一短暫存取資料時間內存取資料,此短暫存取資料時間包含內部資料傳輸時間及行修復時間(column repair time)。 With the advancement of technology and technology, processors are required to be able to run more complex calculations, which means that processors need memory capacity and data throughput may increase dramatically. To keep up with this trend, the Double Data Rate (DDR) input / output interface is a popular choice to achieve high data transmission speeds. However, for the address replacement method, it is almost impossible to access the data within a short access time. The short access time includes the internal data transmission time and the column repair time.
基於前述原因,如何減少NAND記憶體的傳輸時間,已成為業界急待解決的問題之一。 Based on the foregoing reasons, how to reduce the transmission time of NAND memory has become one of the urgent problems to be solved in the industry.
本發明一實施例提出一種預比對系統,包括:一記憶體陣列;一輸入輸出電路,用以接收一初始位址;一位址計數器,耦合至該輸入輸出電路,用以根據該初始位址而逐漸增加一目前位址;一加法器,耦合至該位址計數器,用以對該目前位址增加一偏差值,以取得一比對位址;一映射表,用以儲存至少一缺陷位址;一映射電路,耦合至該映射表與該加法器,用以比較該比對位址與該映射表所儲存的該至少一缺陷位址,以產生一命中參數,並產生相關於該比對位址的一冗餘位址;一第一暫存器,耦合至該映射電路,用以儲存該命中參數;一第二暫存器,耦合至該映射電路,用以儲存該冗餘位址;以及一多工器,耦合至該第一與該第二暫存器,用以依據存於該第一暫存器內的該命中參數設定一Y方向位址為該目前位址或該冗餘位址,該Y方向位址相關於對該記憶體陣列之存取。 An embodiment of the present invention provides a pre-comparison system, which includes: a memory array; an input-output circuit for receiving an initial address; a bit counter coupled to the input-output circuit for using the initial bit The address is gradually increased by a current address; an adder is coupled to the address counter to add an offset value to the current address to obtain a comparative address; a mapping table is used to store at least one defect An address; a mapping circuit coupled to the mapping table and the adder, for comparing the comparison address with the at least one defect address stored in the mapping table to generate a hit parameter and generating a correlation parameter A redundant address of the comparison address; a first register coupled to the mapping circuit to store the hit parameter; a second register coupled to the mapping circuit to store the redundancy An address; and a multiplexer coupled to the first and second registers to set a Y-direction address to the current address or the current address according to the hit parameter stored in the first register The redundant address, the Y-direction address is related to The array of memory access.
本發明另一實施例提出一種預比對方法,包括:接收一初始位址;根據該初始位址而逐漸增加一目前位址;對該目前位址增加一偏差值,以取得一比對位址;比較該比對位址與至少一缺陷位址,以產生一命中參數;產生相關於該比對位址的一冗餘位址;以及依據該命中參數設定一Y方向位址為該目前位址或該冗餘位址,該Y方向位址相關於對一記憶體陣列之存取。 Another embodiment of the present invention provides a pre-comparison method, which includes: receiving an initial address; gradually increasing a current address according to the initial address; adding a deviation value to the current address to obtain a comparison position Compare the comparison address with at least one defective address to generate a hit parameter; generate a redundant address related to the comparison address; and set a Y-direction address as the current according to the hit parameter Address or the redundant address, the Y-direction address is related to access to a memory array.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to have a better understanding of the above and other aspects of the present invention, the following specific examples are described in detail below in conjunction with the accompanying drawings:
100‧‧‧NAND快閃記憶體的冗餘結構 Redundant structure of 100‧‧‧NAND flash memory
RA‧‧‧冗餘陣列 RA‧‧‧Redundant Array
NA‧‧‧正常陣列 NA‧‧‧Normal array
NB‧‧‧正常區塊 NB‧‧‧Normal block
NS‧‧‧備用區塊 NS‧‧‧spare block
C1、C1’‧‧‧行 Line C1, C1’‧‧‧‧
RS‧‧‧冗餘區塊 RS‧‧‧Redundant block
RB‧‧‧冗餘區塊 RB‧‧‧Redundant block
210~260‧‧‧步驟 210 ~ 260‧‧‧step
300‧‧‧預比對系統 300‧‧‧ pre-comparison system
PGB‧‧‧頁緩衝區 PGB‧‧‧Page Buffer
RPR‧‧‧冗餘緩衝區 RPR‧‧‧Redundant buffer
NCH‧‧‧正常快取記憶體 NCH‧‧‧Normal cache memory
RCH‧‧‧冗餘快取記憶體 RCH‧‧‧Redundant cache memory
XC‧‧‧X方向控制訊號 XC‧‧‧X direction control signal
29‧‧‧列控制電路 29‧‧‧column control circuit
23‧‧‧修復分析電路 23‧‧‧ Repair analysis circuit
FY‧‧‧對應結果 FY‧‧‧ corresponding result
15‧‧‧映射電路 15‧‧‧ mapping circuit
16‧‧‧映射表 16‧‧‧ mapping table
17‧‧‧第一暫存器 17‧‧‧The first register
HT、HT’‧‧‧命中參數 HT, HT’‧‧‧ hit parameters
RY、RY’‧‧‧冗餘位址 RY, RY’‧‧‧ redundant address
19‧‧‧第二暫存器 19‧‧‧Second register
PM‧‧‧預比對選擇訊號 PM‧‧‧ Pre-comparison selection signal
11、21‧‧‧多工器 11, 21‧‧‧ Multiplexer
25‧‧‧位址計數器 25‧‧‧Address Counter
YI‧‧‧初始位址 YI‧‧‧ initial address
CA‧‧‧目前位址 CA‧‧‧ Current address
MA‧‧‧比對位址 MA‧‧‧ Compare Address
XA‧‧‧X方向位址 XA‧‧‧X direction address
SX‧‧‧位址訊號 SX‧‧‧ address signal
SY‧‧‧位址訊號 SY‧‧‧ address signal
YA‧‧‧Y方向位址 YA‧‧‧Y direction address
YC‧‧‧Y方向控制訊號 YC‧‧‧Y direction control signal
IND、OTD‧‧‧資料訊號 IND, OTD‧‧‧ Data Signal
27‧‧‧行控制電路 27‧‧‧line control circuit
10‧‧‧輸入輸出電路 10‧‧‧I / O circuit
401-415‧‧‧步驟 401-415‧‧‧step
wt‧‧‧等待時間 wt‧‧‧waiting time
t1~t4‧‧‧時間間隔 t1 ~ t4‧‧‧Time interval
TL‧‧‧時間軸 TL‧‧‧Timeline
CDFF、CIO‧‧‧時脈周期 CDFF, CIO‧‧‧clock cycle
DTIO‧‧‧資料輸出/輸入 DTIO‧‧‧Data output / input
MEL‧‧‧記憶體負載信號 MEL‧‧‧Memory Load Signal
F1~F8‧‧‧電晶體 F1 ~ F8‧‧‧Transistors
65a~65d‧‧‧映射電路 65a ~ 65d‧‧‧Map circuit
66a~66d‧‧‧映射表 66a ~ 66d‧‧‧ Mapping Table
67a~67d‧‧‧命中旗標暫存器 67a ~ 67d‧‧‧hit flag register
69a~69d‧‧‧冗餘位址暫存器 69a ~ 69d‧‧‧ redundant address register
600‧‧‧預比對系統 600‧‧‧ pre-comparison system
74‧‧‧行控制電路 74‧‧‧line control circuit
51、61、71、81‧‧‧功能多工器 51, 61, 71, 81‧‧‧ Function Multiplexer
70‧‧‧位址多工器 70‧‧‧Address Multiplexer
75‧‧‧位址計數器 75‧‧‧ address counter
53、63、73、83‧‧‧加法器 53, 63, 73, 83‧‧‧ Adders
MA0-MA3‧‧‧比對位址 MA0-MA3‧‧‧Comparison address
i1‧‧‧時間間隔 i1‧‧‧ time interval
CLC‧‧‧時脈周期 CLC‧‧‧Clock cycle
第1圖為根據本案一實施例繪示的NAND快閃記憶體的冗餘結構的示意圖。 FIG. 1 is a schematic diagram of a redundant structure of a NAND flash memory according to an embodiment of the present invention.
第2圖為根據本案一實施例繪示的預比對方法的示意圖。 FIG. 2 is a schematic diagram of a pre-comparison method according to an embodiment of the present invention.
第3圖為根據本案一實施例繪示的預比對系統的示意圖。 FIG. 3 is a schematic diagram of a pre-comparison system according to an embodiment of the present invention.
第4A~4B圖為根據本案一實施例繪示的Y方向修復分析方法的流程圖。 4A to 4B are flowcharts of a method for repairing the Y direction according to an embodiment of the present invention.
第5圖為可被應用於第3圖之預比對系統的操作時序的示意圖。 FIG. 5 is a schematic diagram of the operation timing of the pre-comparison system applicable to FIG. 3.
第6圖為根據本案一實施例繪示的預比對系統的示意圖。 FIG. 6 is a schematic diagram of a pre-comparison system according to an embodiment of the present invention.
第7圖為第6圖的預比對系統之操作時序的示意圖。 FIG. 7 is a schematic diagram of the operation timing of the pre-comparison system of FIG. 6.
本說明書的技術用語係參照本技術領域之習慣用語,如本說明書對部分用語有加以說明或定義,該部分用語之解釋係以本說明書之說明或定義為準。本揭露之各個實施例分別具有一或多個技術特徵。在可能實施的前提下,本技術領域具有通常知識者可選擇性地實施任一實施例中部分或全部的技術特徵,或者選擇性地將這些實施例中部分或全部的技術特徵加以組合。 The technical terms in this specification refer to the customary terms in the technical field. If some terms are described or defined in this specification, the interpretation of these terms is subject to the description or definition in this specification. Each embodiment of the present disclosure has one or more technical features. Under the premise of possible implementation, those with ordinary knowledge in the technical field may selectively implement part or all of the technical features in any embodiment, or selectively combine part or all of the technical features in these embodiments.
請參閱第1圖,第1圖為根據本案一實施例繪示的 NAND快閃記憶體的冗餘結構100的示意圖。NAND快閃記憶體的冗餘結構100包含一正常陣列(normal array)NA及一冗餘陣列(redundancy array)RA。正常陣列NA可用以儲存正常資料,且冗餘陣列RA可用以儲存冗餘資料。正常陣列NA包含一或多個正常區塊NB及一或多個備用區塊NS,且冗餘陣列RA包含一或多個冗餘區塊RB及一或多個備用冗餘區塊RS。於一實施例中,冗餘功能由正常區塊NB、備用區塊NS、冗餘區塊RB及備用冗餘區塊RS所構成。冗餘功能包括X方向冗餘及Y方向冗餘。X方向冗餘是由備用區塊NS及備用冗餘區塊RS所構成,且備用區塊NS及備用冗餘區塊RS可用以分別替換正常區塊NB及冗餘區塊RB中的壞損區塊。此外,冗餘陣列RA用以作為Y方向冗餘,冗餘陣列RA包含一些備用行(column),此些備用行可用以替換位於正常陣列NA中的壞損行(bad column)。 Please refer to FIG. 1. FIG. 1 is a drawing according to an embodiment of the present case. Schematic diagram of a redundant structure 100 of a NAND flash memory. The redundant structure 100 of the NAND flash memory includes a normal array NA and a redundancy array RA. The normal array NA can be used to store normal data, and the redundant array RA can be used to store redundant data. The normal array NA includes one or more normal blocks NB and one or more spare blocks NS, and the redundant array RA includes one or more redundant blocks RB and one or more spare redundant blocks RS. In one embodiment, the redundancy function is composed of a normal block NB, a spare block NS, a redundant block RB, and a spare redundant block RS. Redundancy functions include X-direction redundancy and Y-direction redundancy. The X-direction redundancy is composed of the spare block NS and the spare redundant block RS, and the spare block NS and the spare redundant block RS can be used to replace the damage in the normal block NB and the redundant block RB, respectively Block. In addition, the redundant array RA is used as the Y-direction redundancy. The redundant array RA includes some spare columns that can be used to replace bad columns in the normal array NA.
舉例而言,行C1是冗餘陣列RA的Y方向備用行,且當行C1’包含缺陷(亦即行C1’為壞損)時,行C1可以用以替代行C1’。 For example, the row C1 is a spare row in the Y direction of the redundant array RA, and when the row C1 'contains defects (that is, the row C1' is damaged), the row C1 can be used instead of the row C1 '.
需要注意的是,本發明實施例之預比對系統及預比對方法並不限制於NAND快閃記憶體的冗餘結構100。本發明實施例之預比對系統及預比對方法可應用至其他電路,改進資料存取時間,以與介面(例如,DDR介面)的傳輸速度接軌。預比對系統及預比對方法於下述作進一步的說明。為使敘述便於理解,下述實施例係以NAND快閃記憶體的冗餘結構100為例作為說明。 It should be noted that the pre-comparison system and the pre-comparison method in the embodiments of the present invention are not limited to the redundant structure 100 of the NAND flash memory. The pre-comparison system and the pre-comparison method of the embodiments of the present invention can be applied to other circuits to improve the data access time so as to be in line with the transmission speed of an interface (such as a DDR interface). The pre-comparison system and the pre-comparison method are further described below. In order to make the description easier to understand, the following embodiments take the redundant structure 100 of the NAND flash memory as an example for illustration.
請參閱第2~3圖,第2圖為根據本案一實施例繪示的 預比對方法的示意圖。第3圖為根據本案一實施例繪示的預比對系統300的示意圖。於一實施例中,預比對系統300包含一記憶體陣列20、一輸入輸出電路10、一位址計數器25、一加法器13、一映射電路(mapping circuit)15、一映射表16、一第一暫存器17、一第二暫存器19及一多工器21。於一實施例中,記憶體陣列20包括正常陣列NA、冗餘陣列RA、頁緩衝器PGB、正常快取NCH、冗餘緩衝器RPR與冗餘快取RCH。於一實施例中,第一暫存器17及第二暫存器19可以分別由D型正反器(D flip-flop,DFF)以實現之。於一實施例中,映射表16可為能儲存資料的任何電路元件。例如,映射表16可由內容可尋址儲存電路(content addressable memory(CAM)circuit)以實現之。其中,映射電路15可存取映射表16。 Please refer to Figs. 2 to 3, and Fig. 2 is a drawing according to an embodiment of the present case. Schematic of the pre-comparison method. FIG. 3 is a schematic diagram of a pre-comparison system 300 according to an embodiment of the present invention. In one embodiment, the pre-comparison system 300 includes a memory array 20, an input-output circuit 10, a bit address counter 25, an adder 13, a mapping circuit 15, a mapping table 16, and The first register 17, a second register 19, and a multiplexer 21. In one embodiment, the memory array 20 includes a normal array NA, a redundant array RA, a page buffer PGB, a normal cache NCH, a redundant buffer RPR, and a redundant cache RCH. In an embodiment, the first register 17 and the second register 19 may be implemented by D flip-flop (DFF), respectively. In one embodiment, the mapping table 16 may be any circuit element capable of storing data. For example, the mapping table 16 may be implemented by a content addressable memory (CAM) circuit. The mapping circuit 15 can access the mapping table 16.
需注意的是,本發明實施例並不限於採用D型正反器以實現第一暫存器17及第二暫存器19。本發明其他實施例可採用其他型態具有相同功能的暫存器。例如,暫存器17或19可以是一門栓(latch)、一電容、一記憶體單元或任何其他可儲存資料的電路元件。為使方便敘述,本案實施例以D型正反器作為第一暫存器17及第二暫存器19為例作說明。 It should be noted that the embodiment of the present invention is not limited to adopting a D-type flip-flop to realize the first register 17 and the second register 19. Other embodiments of the present invention may use other types of registers with the same function. For example, the register 17 or 19 may be a latch, a capacitor, a memory unit, or any other circuit element that can store data. In order to facilitate the description, the embodiment of the present invention uses the D-type flip-flop as the first register 17 and the second register 19 as an example for description.
於步驟210中,輸入輸出電路10接收初始位址。於一實施例中,輸入輸出電路10接收一請求指令並依據此請求指令以計算待存取的初始位址YI。舉例而言,當請求指令需要存取位於正常陣列NA中的“addr[5]”至“addr[9]”的資料時,輸入輸出電路10取得初始位址YI為“addr[5]”。在底下,第一至第四位址代表在請求指令 的存取順序。例如,對於存取“addr[5]”至“addr[40]”的請求指令,第一位址為“addr[5]”,第二位址為“addr[6]”,第三位址為“addr[7]”等依此類推。 In step 210, the input-output circuit 10 receives an initial address. In an embodiment, the input-output circuit 10 receives a request instruction and calculates an initial address YI to be accessed according to the request instruction. For example, when the request instruction needs to access the data of “addr [5]” to “addr [9]” in the normal array NA, the input-output circuit 10 obtains the initial address YI as “addr [5]”. Underneath, the first to fourth addresses represent the request instruction Access order. For example, for a request instruction to access "addr [5]" to "addr [40]", the first address is "addr [5]", the second address is "addr [6]", and the third address "Addr [7]" and so on.
在步驟220中,位址計數器25根據初始位址YI來逐漸增加目前位址CA。在一實施例中,位址計數器25將目前位址CA的初始值設為初始位址YI,且每個周期將目前位址CA加1。例如,在第一周期時,目前位址CA等於第一位址,在第二周期時,目前位址CA等於第二位址,在第三周期時,目前位址CA等於第三位址,依此類推。位址計數器25將目前位址CA送至加法器13與多工器21。 In step 220, the address counter 25 gradually increases the current address CA according to the initial address YI. In one embodiment, the address counter 25 sets the initial value of the current address CA to the initial address YI, and increases the current address CA by 1 every cycle. For example, in the first cycle, the current address CA is equal to the first address, in the second cycle, the current address CA is equal to the second address, and in the third cycle, the current address CA is equal to the third address. So on and so forth. The address counter 25 sends the current address CA to the adder 13 and the multiplexer 21.
在步驟230中,加法器13將偏差值OV加至目前位址CA,以產生比對位址MA。在一實施例中,偏差值OV為1。亦即,在依序記憶體存取操作中,比對位址MA可代表要存取的下一位址。例如,加法器13可加1至目前位址CA(目前位址CA等於第一位址“addr[5]”)以產生比對位址MA(等於第二位址“addr[6]”)。本發明並不受限於此。偏差值OV可設為不同的整數值,將於其他實施例中說明之。 In step 230, the adder 13 adds the offset value OV to the current address CA to generate a comparison address MA. In one embodiment, the deviation value OV is one. That is, in a sequential memory access operation, the comparison address MA may represent the next address to be accessed. For example, the adder 13 may add 1 to the current address CA (the current address CA is equal to the first address "addr [5]") to generate a comparison address MA (equal to the second address "addr [6]") . The invention is not limited to this. The deviation value OV can be set to a different integer value, which will be described in other embodiments.
於一實施例中,預比對系統300更包含一功能多工器11以提供偏差值OV。在第3圖中,功能多工器11接收兩個整數1與0以當成輸入,且接收預比對選擇訊號PM為選擇信號。在本案一實施例中,當致能預比對功能時,預比對選擇訊號PM設置為邏輯高準位,反之將預比對選擇訊號PM設置為邏輯低準位。 In one embodiment, the pre-comparison system 300 further includes a functional multiplexer 11 to provide a deviation value OV. In FIG. 3, the functional multiplexer 11 receives two integers 1 and 0 as inputs, and receives the pre-comparison selection signal PM as a selection signal. In an embodiment of the present case, when the pre-comparison function is enabled, the pre-comparison selection signal PM is set to a logic high level, otherwise the pre-comparison selection signal PM is set to a logic low level.
於步驟240,映射電路15將比對位址MA與映射表16 中之至少一缺陷位址作比對,以產生一命中參數HT。 At step 240, the mapping circuit 15 compares the address MA with the mapping table 16 At least one of the defect addresses is compared to generate a hit parameter HT.
在步驟250中,映射電路15產生相關於比對位址MA的冗餘位址RY。 In step 250, the mapping circuit 15 generates a redundant address RY related to the comparison address MA.
於一實施例中,預比對系統300更包含一修復分析電路23用以確認記憶體陣列20中的一缺陷狀態,藉此產生映射表16。因此,映射表16紀錄至少一缺陷位址。缺陷位址代表記憶體陣列20中的缺陷記憶體單元的位址。 In one embodiment, the pre-comparison system 300 further includes a repair analysis circuit 23 for confirming a defect state in the memory array 20 to generate a mapping table 16. Therefore, the mapping table 16 records at least one defect address. The defective address represents the address of a defective memory cell in the memory array 20.
請參照第4A~4B圖,第4A~4B圖為根據本案一實施例繪示的Y方向修復分析方法的流程圖。於一實施例中,Y方向修復分析方法可找到並修復記憶體陣列20中的缺陷行(defect column)。需要注意的是,本發明並不僅限於採用Y方向修復分析方法。Y方向修復分析方法在此用以提供一例子,以找到並修復NAND快閃記憶體的缺陷。 Please refer to FIGS. 4A to 4B. FIGS. 4A to 4B are flowcharts of the Y-direction repair analysis method according to an embodiment of the present invention. In one embodiment, the Y-direction repair analysis method can find and repair the defect columns in the memory array 20. It should be noted that the present invention is not limited to using the Y-direction repair analysis method. The Y-direction repair analysis method is used here to provide an example to find and repair defects in NAND flash memory.
於步驟401中,映射電路15執行全域缺陷掃描(global defect screen)以找到缺陷行。例如,行(例如,第1圖中的行C1及C1’)涉及了,例如,位於陣列中(例如,第3圖中的正常陣列NA及冗餘陣列RA)的多個記憶體單元,設置於頁緩衝系統(例如,第3圖中的頁緩衝PGB及冗餘緩衝區RPR)中的幾組感應電路,及位於一快取系統(例如,第3圖中快取記憶體NCH及冗餘快取記憶體RCH)中的快取記憶體。多個行構成一個記憶體巨集(memory macro)。感應電路可用以辨識記憶體單元中的資料。由感應電路所讀出的資料可送至快取記憶體。快取記憶體可暫存所讀出的資料,直到輸入輸出電路10讀出資料。全 域缺陷掃描可藉由掃描每一行中的快閃記憶體單元、感測電路及快取電路,以確認缺陷狀態。 In step 401, the mapping circuit 15 performs a global defect screen to find defective rows. For example, a row (for example, rows C1 and C1 'in FIG. 1) relates to, for example, a plurality of memory cells located in an array (for example, a normal array NA and a redundant array RA in FIG. 3), setting Several sets of sensing circuits in a page buffer system (for example, page buffer PGB and redundant buffer RPR in Figure 3), and a cache system (for example, cache memory NCH and redundancy in Figure 3) Cache memory (RCH). Multiple rows form a memory macro. The sensing circuit can be used to identify data in the memory unit. The data read by the sensing circuit can be sent to the cache memory. The cache memory can temporarily store the read data until the input / output circuit 10 reads the data. all Domain defect scanning can confirm the defect status by scanning the flash memory cells, sensing circuits and cache circuits in each row.
於步驟402中,修復分析電路23確認當前檢測區域(area)是否包含缺陷。若當前檢測區域包含缺陷,則進入步驟403,否則,進入步驟405。於步驟403中,映射電路15確認Y方向冗餘是否溢值(overflow)。若映射電路15確認Y方向冗餘溢值,代表已經沒有Y方向的剩餘冗餘可修復全域缺陷(例如,Y方向冗餘空間已用完),因此,如果步驟403為是,則進入步驟415。若映射電路15確認Y方向冗餘沒有溢值,則進入步驟404。 In step 402, the repair analysis circuit 23 confirms whether the current detection area contains a defect. If the current detection area contains a defect, proceed to step 403; otherwise, proceed to step 405. In step 403, the mapping circuit 15 confirms whether the redundancy in the Y direction overflows. If the mapping circuit 15 confirms the Y-direction redundancy overflow value, it means that there is no remaining redundancy in the Y-direction to repair the global defect (for example, the Y-direction redundant space has been used up). Therefore, if step 403 is YES, proceed to step 415 . If the mapping circuit 15 confirms that there is no overflow value in the Y-direction redundancy, it proceeds to step 404.
於步驟415中,由於此NAND快閃記憶體包含太多缺陷,因此修復分析電路23丟棄此NAND快閃記憶體。相反地,若Y方向冗餘沒有溢值,則修復分析電路23於步驟404中藉由Y方向的冗餘以修復全域缺陷。於步驟405中,修復分析電路23判斷是否當前檢測圖案(pattern)為最後一個電路圖案,若修復分析電路23判斷當前檢測圖案為最後一個電路圖案,則進入步驟407,否則,進入步驟406。於步驟406中,修復分析電路23檢測下一個電路圖案。 In step 415, since the NAND flash memory contains too many defects, the repair analysis circuit 23 discards the NAND flash memory. Conversely, if there is no overflow in the Y-direction redundancy, the repair analysis circuit 23 uses the Y-direction redundancy to repair the global defect in step 404. In step 405, the repair analysis circuit 23 determines whether the current detection pattern is the last circuit pattern. If the repair analysis circuit 23 determines that the current detection pattern is the last circuit pattern, the process proceeds to step 407; otherwise, the process proceeds to step 406. In step 406, the repair analysis circuit 23 detects the next circuit pattern.
於步驟407中,修復分析電路23執行本地缺陷掃描(local defect screen)。此代表修復分析電路23找出當前檢測區塊的缺陷。於步驟408中,若檢測到當前檢測區塊存在任何缺陷,則進入步驟409,否則,進入步驟411。於步驟409中,修復分析電路23確認Y方向冗餘是否溢值(overflow)。若於步驟409中,映射電路15確認Y方向冗餘溢值,代表已經沒有Y方向的冗餘可用於修復本地缺陷(例 如,Y方向冗餘空間已用完),因此,進入步驟415。若於步驟409中,修復分析電路23確認Y方向冗餘沒有溢值,則進入步驟410。於步驟410中,修復分析電路23利由Y方向的剩餘冗餘以修復本地缺陷。於步驟411中,修復分析電路23判斷是否當前檢測圖案為最後一個電路圖案,若修復分析電路23判斷當前檢測圖案為最後一個電路圖案,則進入步驟412,否則,進入步驟413。於步驟413中,修復分析電路23檢測下一個電路圖案。於步驟412中,映射電路15判斷是否當前檢測區塊為最後一個區塊。若映射電路15判斷當前檢測區塊不為最後一個區塊,則進入步驟414以判斷下一個區塊,若否,則結束Y方向修復分析方法。 In step 407, the repair and analysis circuit 23 performs a local defect screen. This represents the repair analysis circuit 23 to find the defect of the current detection block. In step 408, if any defect is detected in the current detection block, the process proceeds to step 409; otherwise, the process proceeds to step 411. In step 409, the repair analysis circuit 23 confirms whether the redundancy in the Y direction overflows. If in step 409, the mapping circuit 15 confirms the redundancy in the Y direction, it means that no redundancy in the Y direction can be used to repair the local defect (for example, For example, the redundant space in the Y direction has been used up), and therefore, step 415 is performed. If in step 409, the repair and analysis circuit 23 confirms that there is no overflow in the Y-direction redundancy, it proceeds to step 410. In step 410, the repair and analysis circuit 23 uses the remaining redundancy in the Y direction to repair local defects. In step 411, the repair analysis circuit 23 determines whether the current detection pattern is the last circuit pattern. If the repair analysis circuit 23 determines that the current detection pattern is the last circuit pattern, the process proceeds to step 412, otherwise, the process proceeds to step 413. In step 413, the repair analysis circuit 23 detects the next circuit pattern. In step 412, the mapping circuit 15 determines whether the current detection block is the last block. If the mapping circuit 15 determines that the current detection block is not the last block, it proceeds to step 414 to determine the next block, and if not, ends the Y-direction repair analysis method.
在本案實施例的Y方向修復分析方法中,全域缺陷與本地缺陷皆可被掃描出來。當找到缺陷時,修復分析電路23會先確認是否Y方向冗餘足夠修復缺陷。若Y方向冗餘足夠修復缺陷,則將缺陷所在於的行位址寫入映射表16,且映射至冗餘位址RY,以進行修復功能,將冗餘位址RY取代具有缺陷的行位置。此外,本案其他實施例亦可應用已知的演算法以修復NAND快閃記憶體。 In the Y-direction repair analysis method of the embodiment of this case, both global defects and local defects can be scanned out. When a defect is found, the repair analysis circuit 23 first confirms whether the redundancy in the Y direction is sufficient to repair the defect. If the redundancy in the Y direction is sufficient to repair the defect, the row address where the defect lies is written into the mapping table 16 and is mapped to the redundant address RY to perform the repair function, and the redundant address RY replaces the defective row position . In addition, other embodiments of this case can also use known algorithms to repair NAND flash memory.
修復分析電路23傳送對應結果FY至映射表16。映射電路15將比對位址MA比較於映射表16中的至少一缺陷位址,以產生命中參數HT(hit parameter)。若至少一缺陷位址與比對位址MA相同,則命中參數HT被設為邏輯高準位,否則,命中參數HT被設為邏輯低準位。另外,映射電路15找到相關於比對位址MA的冗餘位址RY。 The repair analysis circuit 23 transmits the corresponding result FY to the mapping table 16. The mapping circuit 15 compares the comparison address MA with at least one defective address in the mapping table 16 to generate a hit parameter HT (hit parameter). If at least one defect address is the same as the comparison address MA, the hit parameter HT is set to a logic high level; otherwise, the hit parameter HT is set to a logic low level. In addition, the mapping circuit 15 finds the redundant address RY related to the comparison address MA.
映射電路15傳送命中參數HT至第一暫存器17,並傳送冗餘位址RY至第二暫存器19。第一暫存器17暫存命中參數HT。於一實施例中,第二暫存器19暫存對應於比對位址MA的冗餘位址RY(例如表示為冗餘陣列RA中的“addressr[0]”),當比對位址MA在映射表16中被紀錄為一錯誤位置時,即,比對位址MA被標記為映射表16中的一缺陷位址,冗餘位址RY被用以取代比對位址MA。在一實施例中,第一暫存器17與第二暫存器19可為D型正反器。由第一暫存器17所輸出的暫存命中參數HT’乃是命中參數HT的延遲,而由第二暫存器19所輸出的冗餘位址RY’乃是冗餘位址RY的延遲。 The mapping circuit 15 transmits the hit parameter HT to the first register 17, and transmits the redundant address RY to the second register 19. The first register 17 temporarily stores the hit parameter HT. In an embodiment, the second register 19 temporarily stores the redundant address RY corresponding to the comparison address MA (for example, it is represented as "addressr [0]" in the redundant array RA). When the comparison address is When MA is recorded as an error position in the mapping table 16, that is, the comparison address MA is marked as a defective address in the mapping table 16, and the redundant address RY is used instead of the comparison address MA. In one embodiment, the first register 17 and the second register 19 may be D-type flip-flops. The temporary hit parameter HT ′ output by the first register 17 is the delay of the hit parameter HT, and the redundant address RY ′ output by the second register 19 is the delay of the redundant address RY. .
於步驟260中,多工器21依據命中參數HT’而設定Y方向位址YA為冗餘位址RY’或目前位址CA,且傳送輸出位址(Y方向位址YA)至行控制電路27。當命中參數HT’為邏輯高準位時,設定Y方向位址YA為冗餘位址RY’,且當命中參數HT’為邏輯低準位時,設定Y方向位址YA為目前位址CA。 In step 260, the multiplexer 21 sets the Y-direction address YA as the redundant address RY 'or the current address CA according to the hit parameter HT', and transmits the output address (Y-direction address YA) to the line control circuit. 27. When the hit parameter HT 'is a logic high level, the Y direction address YA is set as the redundant address RY', and when the hit parameter HT 'is a logic low level, the Y direction address YA is set as the current address CA .
於一實施例中,當命中參數HT’(作為判斷訊號)被設置為邏輯低位準時,多工器21傳送目前位址CA至行控制電路27,且行控制電路27藉由Y方向控制訊號YC觸發正常陣列NA中的正常行以輸出對應於Y方向位址YA的資料。另一方面,當命中參數HT’為邏輯高位準時,多工器21傳送冗餘位址RY’至行控制電路27以輸出第3圖中的冗餘陣列RA的修復資料。信號SX與SY是位址訊號,當進行修復分析時,信號SX與SY可用於存取記憶體(亦即,在正常 操作時,信號SX與SY不會用於存取記憶體)。在本案一實施例中,Y方向修復單位可以是一個字組(word)或一個位元組(byte)或甚至是一個位元(bit)。 In an embodiment, when the hit parameter HT '(as a judgment signal) is set to a logic low level, the multiplexer 21 transmits the current address CA to the line control circuit 27, and the line control circuit 27 is triggered by the Y direction control signal YC The normal lines in the normal array NA output data corresponding to the Y-direction address YA. On the other hand, when the hit parameter HT 'is at a logic high level, the multiplexer 21 transmits the redundant address RY' to the row control circuit 27 to output the repair data of the redundant array RA in the third figure. The signals SX and SY are address signals. When performing repair analysis, the signals SX and SY can be used to access memory (that is, (During operation, the signals SX and SY are not used to access the memory.) In an embodiment of the present case, the Y-direction repair unit may be a word, a byte, or even a bit.
於一些實施例中,列控制電路29亦可用於藉由X方向控制訊號XC以觸發記憶體陣列輸出對應輸出位址之X方向的正確資料。預比對系統及預比對方法亦可藉由於X方向,將列缺陷資料(defect row data)以X方向的冗餘列資料(redundancy row data)替代的方法以實現之。 In some embodiments, the row control circuit 29 can also be used to trigger the memory array to output the correct data in the X direction corresponding to the output address by controlling the signal XC in the X direction. The pre-comparison system and the pre-comparison method can also be implemented by replacing the row defect data with redundant row data in the X direction due to the X direction.
於一實施例中,當設定Y方向位址YA為冗餘位址RY’時,對應至Y方向位址YA的資料(如,正確資料)寫進冗餘緩衝區RPR,且資料由冗餘快取記憶體RCH輸出。一旦冗餘位址被存取,冗餘快取記憶體RCH可從輸入輸出電路10的資料訊號IND取得資料,並由資料訊號OTD將輸出資料送至輸入輸出電路10。 In an embodiment, when the Y-direction address YA is set as the redundant address RY ', the data (eg, correct data) corresponding to the Y-direction address YA is written into the redundant buffer RPR, and the data is made redundant. Cache memory RCH output. Once the redundant address is accessed, the redundant cache memory RCH can obtain data from the data signal IND of the input-output circuit 10 and send the output data to the input-output circuit 10 by the data signal OTD.
於一實施例中,當設定Y方向位址YA為目前位址CA(用於存取正常陣列NA的位址)時,對應於Y方向位址YA的資料(如,正確資料)被寫入頁緩衝區(page buffer)PGB,且資料由正常快取記憶體NCH輸出。當正常快取記憶體NCH被存取時,正常快取記憶體NCH可藉由資料訊號IND從輸入輸出電路10接收資料,並藉由資料訊號OTD以輸出資料至輸入輸出電路10。 In an embodiment, when the Y-direction address YA is set to the current address CA (the address used to access the normal array NA), data (eg, correct data) corresponding to the Y-direction address YA is written The page buffer (page buffer) is PGB, and the data is output from the normal cache memory NCH. When the normal cache memory NCH is accessed, the normal cache memory NCH can receive data from the input-output circuit 10 through the data signal IND, and output data to the input-output circuit 10 through the data signal OTD.
請參閱第3、5圖,第5圖為可被應用於第3圖之預比對系統300的操作時序的示意圖。於一實施例中,時間軸TL上依序包含等待時間、時間間隔t1、時間間隔t2、時間間隔t3、時間間隔t4 等。每個時間間隔t1-t4的周期與輸入輸出電路10的時脈周期CIO相同,且與D型正反器的周期CDFF相同。D型正反器的周期CDFF用以控制第一暫存器17及第二暫存器19之接收及傳送資料的時序。因此,第一暫存器17及第二暫存器19可以同步操作。於一實施例中,預比對系統300可採用DDR介面以於一個周期內輸出兩個位元組(例如高位元組與低位元組),如資料輸出/輸入DTIO所示。 Please refer to FIGS. 3 and 5. FIG. 5 is a schematic diagram of the operation timing of the pre-comparison system 300 that can be applied to FIG. 3. In an embodiment, the time axis TL sequentially includes a waiting time, a time interval t1, a time interval t2, a time interval t3, and a time interval t4. Wait. The period of each time interval t1-t4 is the same as the clock period CIO of the input-output circuit 10, and the same as the period CDFF of the D-type flip-flop. The period CDFF of the D-type flip-flop is used to control the timing of receiving and transmitting data from the first register 17 and the second register 19. Therefore, the first register 17 and the second register 19 can operate synchronously. In one embodiment, the pre-comparison system 300 may use a DDR interface to output two bytes (such as a high byte and a low byte) in one cycle, as shown by the data output / input DTIO.
第5圖表示假設比對位址MA需要被修復的預比對方法之操作時序圖。於一實施例中,位址計數器25傳送目前位址CA至加法器13。因為在等待時間wt中預比對選擇訊號PM仍為邏輯低準位,加法器13直接繞過(bypass)目前位址CA以成為Y方向位址YA。由於假設第一位址沒有記錄在映射表16中,所以命中參數HT為邏輯低準位,因為映射電路15判定比對位址MA未相同於記錄於映射表16中的任何缺陷位址。因此,在時間間隔t1中,命中參數HT’為邏輯低準位(由於前一時間間隔wt中,命中參數HT為邏輯低準位),且Y方向位址YA將與目前位址CA相同。另一方面,預比對選擇訊號PM在時間間隔t1的開始時轉變為邏輯高準位。因此,加法器13將1加到目前位址CA以產生比對位址MA,並將比對位址MA送至映射電路15。然後,於第一時間間隔t1,映射電路15將比對位址MA與映射表16中之至少一缺陷位址作比對。於此假設中,比對位址MA符合映射表16中之至少一缺陷位址,使得儲存於第一暫存器17中的命中參數HT改變為邏輯高準位,且冗餘位址RY暫存於第二暫存器19中。於下一個時脈周期,命中參數HT’及冗餘位址RY’在第二時 間間隔t2的開始的同時被傳送到多工器21。然後,於第二時間間隔t2中,存於冗餘位址RY’中之資料被輸出(此可由第二時間間隔t2中Y方向位址YA以表示之)。 FIG. 5 shows the operation timing diagram of the pre-comparison method assuming that the comparison address MA needs to be repaired. In one embodiment, the address counter 25 transmits the current address CA to the adder 13. Because the pre-comparison selection signal PM is still at a logic low level during the waiting time wt, the adder 13 directly bypasses the current address CA to become the Y-direction address YA. Since it is assumed that the first address is not recorded in the mapping table 16, the hit parameter HT is a logic low level, because the mapping circuit 15 determines that the comparison address MA is not the same as any defective address recorded in the mapping table 16. Therefore, in the time interval t1, the hit parameter HT 'is a logic low level (because the hit parameter HT is a logic low level in the previous time interval wt), and the Y-direction address YA will be the same as the current address CA. On the other hand, the pre-comparison selection signal PM transitions to a logic high level at the beginning of the time interval t1. Therefore, the adder 13 adds 1 to the current address CA to generate the comparison address MA, and sends the comparison address MA to the mapping circuit 15. Then, at a first time interval t1, the mapping circuit 15 compares the comparison address MA with at least one defective address in the mapping table 16. In this assumption, the comparison address MA conforms to at least one defective address in the mapping table 16, so that the hit parameter HT stored in the first register 17 is changed to a logic high level, and the redundant address RY is temporarily It is stored in the second register 19. In the next clock cycle, the hit parameter HT ’and the redundant address RY’ are at the second time. The interval t2 is transmitted to the multiplexer 21 at the same time. Then, in the second time interval t2, the data stored in the redundant address RY 'is output (this can be represented by the Y-direction address YA in the second time interval t2).
藉此,當目前位址CA(原始位址)指向錯誤行時,Y方向位址YA切換至對應冗餘位址RY’;否則,Y方向位址YA相當於目前位址CA。因為在此例中,如所假設般,第三位址與第四位址未記錄於映射表16內,在第三時間間隔t3與第四時間間隔t4中,預比對系統300可將設定Y方向位址YA設為目前位址CA。 Thus, when the current address CA (original address) points to the wrong row, the Y-direction address YA is switched to the corresponding redundant address RY '; otherwise, the Y-direction address YA is equivalent to the current address CA. Because in this example, as assumed, the third address and the fourth address are not recorded in the mapping table 16. In the third time interval t3 and the fourth time interval t4, the pre-comparison system 300 can set the The Y-direction address YA is set to the current address CA.
請參照第6圖,第6圖為根據本案一實施例繪示的預比對系統600的示意圖。於一實施例中,若預比對時間長於輸出週期時間,第6圖中的預比對系統600(包括功能多工器51、61、71、81、位址計數器75、位址多工器70、行控制電路74及加法器53、63、73、83)可取代第3圖中的預比對系統300(包括功能多工器11、位址計數器25、多工器21、行控制電路27及加法器13)。功能多工器51、61、71與81可提供不同偏差值至加法器53、63、73與83。例如,根據預比對選擇信號PM,功能多工器51將偏差值設為0或4,功能多工器61將偏差值設為1或5,功能多工器71將偏差值設為2或6,功能多工器81將偏差值設為3或7。 Please refer to FIG. 6, which is a schematic diagram of a pre-comparison system 600 according to an embodiment of the present invention. In one embodiment, if the pre-comparison time is longer than the output cycle time, the pre-comparison system 600 in FIG. 6 (including the functional multiplexer 51, 61, 71, 81, address counter 75, and address multiplexer) 70. The line control circuit 74 and the adders 53, 63, 73, and 83 can replace the pre-comparison system 300 in FIG. 3 (including the functional multiplexer 11, the address counter 25, the multiplexer 21, and the line control circuit. 27 and adder 13). The functional multiplexers 51, 61, 71 and 81 can provide different deviation values to the adders 53, 63, 73 and 83. For example, according to the pre-comparison selection signal PM, the functional multiplexer 51 sets the deviation value to 0 or 4, the functional multiplexer 61 sets the deviation value to 1 or 5, and the functional multiplexer 71 sets the deviation value to 2 or 6. The function multiplexer 81 sets the deviation value to 3 or 7.
第6圖與第3圖的不同之處在於,第6圖的預比對系統600將映射表16分割為四個部份映射表66a~66d。映射表16的數量在需要時可以被調整。預比對系統600包含四個映射電路65a~65d,用以存取各自對應的映射表66a~66d。以第6圖為例,將第3圖之映 射表16分為四個部份映射表66a~66d。另一方面,根據相應的缺陷位址,將缺陷位址排序並儲存在不同的子映射表66a~66d中。於此情況下,缺陷位址是4的倍數(亦可被表示為4n,其中n為整數),儲存於映射表65a中;缺陷位址是4n+1,乃是儲存於映射表65b中;缺陷位址是4n+2,乃是儲存於映射表65c中;以及缺陷位址是4n+3,乃是儲存於映射表65d中。 6 is different from FIG. 3 in that the pre-comparison system 600 of FIG. 6 divides the mapping table 16 into four partial mapping tables 66a to 66d. The number of mapping tables 16 can be adjusted as needed. The pre-comparison system 600 includes four mapping circuits 65a-65d for accessing the corresponding mapping tables 66a-66d. Taking Figure 6 as an example, the mapping of Figure 3 The shooting table 16 is divided into four partial mapping tables 66a to 66d. On the other hand, the defect addresses are sorted and stored in different sub-mapping tables 66a to 66d according to the corresponding defect addresses. In this case, the defect address is a multiple of 4 (also can be expressed as 4n, where n is an integer) and stored in the mapping table 65a; the defect address is 4n + 1, but is stored in the mapping table 65b; The defect address is 4n + 2, which is stored in the mapping table 65c; and the defect address is 4n + 3, which is stored in the mapping table 65d.
於一實施例中,每一個映射電路65a~65d對應至兩種暫存器,即命中旗標暫存器67a~67d及冗餘位址暫存器69a~69d。例如,映射電路65a耦接至命中旗標暫存器67a及冗餘位址暫存器69a。命中旗標暫存器67a~67d的功能及操作方式與第3圖所示的第一暫存器17相同,冗餘位址暫存器69a~69d的功能及操作方式與第3圖所示的第二暫存器19相同。此外,暫存器67a~67d之間為串聯,且暫存器69a~69d之間為串聯。例如,暫存器69b的資料輸出端(亦即D型正反器的Q埠)耦接至暫存器69a的資料輸入端(亦即D型正反器的D埠),其餘可依此類推。於記憶體負載(memory load)信號MEL為邏輯高準位時,命中旗標暫存器67a~67d及冗餘位址暫存器69a~69d藉由電晶體F1~F8連接至對應的映射電路65a~65d。電晶體F1~F8分別耦合於暫存器69a~69d與映射電路65a~65d之間。電晶體F1~F8由記憶體負載信號MEL所控制。 In one embodiment, each of the mapping circuits 65a to 65d corresponds to two types of registers, namely, hit flag registers 67a to 67d and redundant address registers 69a to 69d. For example, the mapping circuit 65a is coupled to the hit flag register 67a and the redundant address register 69a. The functions and operation methods of the hit flag registers 67a to 67d are the same as those of the first register 17 shown in FIG. 3, and the functions and operation methods of the redundant address registers 69a to 69d are the same as those shown in FIG. The second register 19 is the same. In addition, the registers 67a to 67d are connected in series, and the registers 69a to 69d are connected in series. For example, the data output end of the register 69b (that is, the Q port of the D-type flip-flop) is coupled to the data input end of the register 69a (that is, the D port of the D-type flip-flop), and the rest can follow this analogy. When the memory load signal MEL is at a logic high level, the hit flag registers 67a ~ 67d and the redundant address registers 69a ~ 69d are connected to the corresponding mapping circuits through the transistors F1 ~ F8. 65a ~ 65d. The transistors F1 to F8 are respectively coupled between the registers 69a to 69d and the mapping circuits 65a to 65d. The transistors F1 ~ F8 are controlled by the memory load signal MEL.
請參照第7圖,第7圖為第6圖的預比對系統之操作時序的示意圖,其中,假設第二位址需要被修復。於一實施例中,第6圖的預比對系統600使用DDR架構。然,本發明並不限於使用DDR 架構,舉例而言,本發明其他實施例亦可採用單一資料傳送率(single data rate,SDR)。 Please refer to FIG. 7, which is a schematic diagram of the operation timing of the pre-comparison system of FIG. 6. It is assumed that the second address needs to be repaired. In one embodiment, the pre-comparison system 600 of FIG. 6 uses a DDR architecture. However, the invention is not limited to the use of DDR Architecture, for example, other embodiments of the present invention may also adopt a single data rate (SDR).
於等待時間wt中,預比對選擇訊號PM設為邏輯低準位。依此,比對位址MA0~MA3代表前4個位址,而目前位址CA是初始位址(其為第一位址)。映射電路65a~65d同時將比對位址MA0~MA3比較於映射表66a~66d內的缺陷位址。以映射電路65a~65d的平行處理,比對時間可延伸至CLC周期的4倍。 In the waiting time wt, the pre-comparison selection signal PM is set to a logic low level. Accordingly, the comparison addresses MA0 ~ MA3 represent the first 4 addresses, and the current address CA is the initial address (which is the first address). The mapping circuits 65a to 65d compare the comparison addresses MA0 to MA3 with the defect addresses in the mapping tables 66a to 66d. With parallel processing of the mapping circuits 65a to 65d, the comparison time can be extended to 4 times of the CLC cycle.
在等待時間wt的最後周期內,記憶體負載信號MEL有半個周期為高準位,以將冗餘位址與命中旗標傳送至冗餘位址暫存器69a~69d與命中旗標暫存器67a~67d。因為假設只有第二位址有缺陷,所以,當記憶體負載信號MEL為高準位時,只有命中旗標暫存器67b為邏輯高,而其他的命中旗標暫存器67a、67c與67d為邏輯低。此外,相關於第二位址的冗餘位址是同時暫存於冗餘位址暫存器69b。 In the last period of the waiting time wt, the memory load signal MEL has a half period as the high level, so as to transmit the redundant address and the hit flag to the redundant address registers 69a to 69d and the hit flag temporarily. Registers 67a ~ 67d. Because it is assumed that only the second address is defective, when the memory load signal MEL is at a high level, only the hit flag register 67b is logic high, and the other hit flag registers 67a, 67c, and 67d Is logic low. In addition, the redundant address related to the second address is temporarily stored in the redundant address register 69b.
當位於映射電路65a~65d中之前四個冗餘位址及命中旗標分別被傳送至冗餘位址暫存器69a~69d及命中旗標暫存器67a~67d之後,當記憶體負載信號MEL被拉高,預比對選擇訊號PM於第五個時脈周期CLC被拉高。第一時間間隔i1內包含第五個時脈周期CLC至第八個時脈周期CLC。於一實施例中,每一個時間間隔(例如,時間間隔i1)包含四個時脈周期CLC。於時間間隔i1中,當預比對選擇訊號PM為高準位時,將4、5、6與7相加至目前位址CA(在第五時脈周期內,目前位址CA仍為初始位址(第一位址))以產生比對 位址MA0-MA3。依此,映射電路65a~65d得到下4個位址(亦即第五至第八位址),以進行預比對功能。 After the four redundant addresses and hit flags located in the mapping circuits 65a to 65d are transmitted to the redundant address registers 69a to 69d and the hit flag registers 67a to 67d, respectively, when the memory load signal MEL is pulled high, and the pre-comparison selection signal PM is pulled high during the fifth clock cycle CLC. The first time interval i1 includes a fifth clock cycle CLC to an eighth clock cycle CLC. In one embodiment, each time interval (for example, time interval i1) includes four clock cycles CLC. In the time interval i1, when the pre-comparison selection signal PM is at a high level, add 4, 5, 6, and 7 to the current address CA (in the fifth clock cycle, the current address CA is still initial Address (first address)) to generate a match Addresses MA0-MA3. According to this, the mapping circuits 65a to 65d obtain the next 4 addresses (that is, the fifth to eighth addresses) for the pre-comparison function.
於一實施例中,於第五個時脈周期CLC開始的每個時脈周期CLC,進行以下事件:將儲存於冗餘位址暫存器69b中的資料移至冗餘位址暫存器69a(例如,儲存於冗餘位址暫存器69b中的資料覆寫原本冗餘位址暫存器69a中所儲存的資料),儲存於冗餘位址暫存器69c中的資料移至冗餘位址暫存器69b,儲存於冗餘位址暫存器69d中的資料移至冗餘位址暫存器69c。 In one embodiment, at each clock cycle CLC starting from the fifth clock cycle CLC, the following event is performed: the data stored in the redundant address register 69b is moved to the redundant address register 69a (for example, the data stored in the redundant address register 69b overwrites the data stored in the redundant address register 69a), and the data stored in the redundant address register 69c is moved to The redundant address register 69b, the data stored in the redundant address register 69d is moved to the redundant address register 69c.
因為不需要修復第一位址,在第五周期內從命中旗標暫存器67a所接收的命中旗標HT為邏輯低。因為,位址多工器70將目前位址CA傳送至行控制電路74以輸出關於第一位址的資料。於第六個時脈周期CLC中,因為第二位址包含缺陷,在第五周期CLC內,已由命中旗標暫存器67b傳送至命中旗標暫存器67a的第二位址的命中旗標則由命中旗標暫存器67a送出並當成命中參數HT(亦即,命中參數HT被命中旗標暫存器67b內的命中旗標所覆寫),以及,已由冗餘位址暫存器69b傳送至冗餘位址暫存器69a的第二位址的相關冗餘位址則由冗餘位址暫存器69a送出並當成冗餘位址RY(亦即,冗餘位址RY被冗餘位址暫存器69b內的冗餘位址所覆寫)。存於命中旗標暫存器67b~67d內的命中旗標分別移至右邊的命中旗標暫存器67a~67c,而且,存於冗餘位址暫存器69b~69d內的冗餘位址分別移至右邊的冗餘位址暫存器69a~69c。因為在此例中,第三位址與第四位址未記錄於映射表66c與66d內,在第三時間間隔t3與第四時間間隔t4內, 預比對系統600則輸出目前位址CA。 Because there is no need to repair the first address, the hit flag HT received from the hit flag register 67a in the fifth cycle is logic low. Because, the address multiplexer 70 transmits the current address CA to the row control circuit 74 to output data about the first address. In the sixth clock cycle CLC, because the second address contains a defect, in the fifth cycle CLC, the hit from the hit flag register 67b to the hit of the second address of the hit flag register 67a The flag is sent by the hit flag register 67a and is used as the hit parameter HT (that is, the hit parameter HT is overwritten by the hit flag in the hit flag register 67b), and it has been replaced by a redundant address The related redundant address transmitted from the register 69b to the redundant address register 69a is sent by the redundant address register 69a and regarded as the redundant address RY (that is, the redundant bit The address RY is overwritten by the redundant address in the redundant address register 69b). The hit flags stored in the hit flag registers 67b to 67d are moved to the right hit flag registers 67a to 67c, respectively, and the redundant bits in the redundant address registers 69b to 69d are stored. The addresses are moved to the redundant address registers 69a ~ 69c on the right. Because in this example, the third address and the fourth address are not recorded in the mapping tables 66c and 66d, and within the third time interval t3 and the fourth time interval t4, The pre-comparison system 600 outputs the current address CA.
需注意的是,本案並不局限於採用四個映射表。本案其他可能實施例可使用任意數量的映射表。因此,預比對系統可藉由多個部份比對表66a~66d以同時檢查是否有缺陷位址,藉此減少計算時間。此外,由於每個部份比對表66a~66d相較於原比對表具有較小的的資料量,映射電路65a~65d可較快速地完成比對程序。 It should be noted that this case is not limited to the use of four mapping tables. Other possible embodiments of this case may use any number of mapping tables. Therefore, the pre-comparison system can compare tables 66a to 66d to check whether there are defective addresses at the same time, thereby reducing the calculation time. In addition, since each of the partial comparison tables 66a to 66d has a smaller amount of data than the original comparison table, the mapping circuits 65a to 65d can complete the comparison procedure more quickly.
基於上述說明及多個實施例的細部說明,預比對系統及預比對方法可以找到是否下一個讀取位址需要被修復。在序列存取情況下,可以輕易地預比對出下一個讀取位址,因為後續位址是線性增加。此外,下一個讀取位址傳送到映射表(其包含所有缺陷位址),以判斷是否下一個讀取位址具有缺陷。若下一個讀取位址與映射表中所記載的缺陷位址之一者相符,則映射電路預先取得對應下一個讀取位址的行或列冗餘位址,並於下一個周期,直接輸出相關的冗餘行或列位址之資料。藉此,NAND快閃記憶體之資料存取的時間可以縮短,並有效支援DDR或SDR介面的傳輸速度。 Based on the above description and detailed description of multiple embodiments, the pre-comparison system and pre-comparison method can find out whether the next read address needs to be repaired. In the case of sequential access, the next read address can be easily pre-aligned because subsequent addresses increase linearly. In addition, the next read address is transferred to a mapping table (which contains all defective addresses) to determine whether the next read address is defective. If the next read address matches one of the defective addresses recorded in the mapping table, the mapping circuit obtains the row or column redundant address corresponding to the next read address in advance, and in the next cycle, directly Output the data of related redundant row or column addresses. As a result, the data access time of the NAND flash memory can be shortened, and the transmission speed of the DDR or SDR interface can be effectively supported.
綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, although the present invention has been disclosed as above with the embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention pertains can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the scope of the attached patent application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107128749A TWI676175B (en) | 2018-08-17 | 2018-08-17 | Pre-match system and pre-match method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107128749A TWI676175B (en) | 2018-08-17 | 2018-08-17 | Pre-match system and pre-match method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI676175B true TWI676175B (en) | 2019-11-01 |
TW202009937A TW202009937A (en) | 2020-03-01 |
Family
ID=69188790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107128749A TWI676175B (en) | 2018-08-17 | 2018-08-17 | Pre-match system and pre-match method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI676175B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7633800B2 (en) * | 2007-08-08 | 2009-12-15 | Atmel Corporation | Redundancy scheme in memory |
EP1717814B1 (en) * | 2004-02-20 | 2012-09-19 | Spansion LLc | Semiconductor storage device and semiconductor storage device control method |
-
2018
- 2018-08-17 TW TW107128749A patent/TWI676175B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1717814B1 (en) * | 2004-02-20 | 2012-09-19 | Spansion LLc | Semiconductor storage device and semiconductor storage device control method |
US7633800B2 (en) * | 2007-08-08 | 2009-12-15 | Atmel Corporation | Redundancy scheme in memory |
Also Published As
Publication number | Publication date |
---|---|
TW202009937A (en) | 2020-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9971647B2 (en) | Apparatus and method for programming ECC-enabled NAND flash memory | |
US8880780B2 (en) | Apparatus and method for using a page buffer of a memory device as a temporary cache | |
JP4166979B2 (en) | Nonvolatile semiconductor memory device, data input / output control method thereof, and memory application system | |
JP4840859B2 (en) | Semiconductor device and startup method | |
US10977121B2 (en) | Fast page continuous read | |
JP2006190425A (en) | Semiconductor memory device | |
US11069423B2 (en) | Buffer circuit with adaptive repair capability | |
JPS6324428A (en) | Cache memory | |
TWI810652B (en) | Method executable on a memory device, memory device, and non-transitory computer-readable medium | |
US8176388B1 (en) | System and method for soft error scrubbing | |
JP6220972B2 (en) | Integrated circuit and programmable device | |
US10043588B2 (en) | Memory device | |
TWI676175B (en) | Pre-match system and pre-match method | |
US11934700B2 (en) | Fused command handling | |
US10180888B2 (en) | Memory sparing on memory modules | |
CN110851374B (en) | Pre-comparison system and pre-comparison method | |
US10599583B2 (en) | Pre-match system and pre-match method | |
JP2015001774A (en) | Semiconductor integrated circuit and processing method thereof | |
US9508453B2 (en) | Semiconductor memory device and test method of the same | |
JP2004005304A (en) | System lsi control device | |
JPH1063569A (en) | Main memory data writing device |