TWI676092B - Mppt for photovoltaic system and partial shading detecting method - Google Patents

Mppt for photovoltaic system and partial shading detecting method Download PDF

Info

Publication number
TWI676092B
TWI676092B TW107138476A TW107138476A TWI676092B TW I676092 B TWI676092 B TW I676092B TW 107138476 A TW107138476 A TW 107138476A TW 107138476 A TW107138476 A TW 107138476A TW I676092 B TWI676092 B TW I676092B
Authority
TW
Taiwan
Prior art keywords
current
maximum power
solar photovoltaic
solar
module
Prior art date
Application number
TW107138476A
Other languages
Chinese (zh)
Other versions
TW202018450A (en
Inventor
鄧人豪
Jen-Hao Teng
劉濱瀚
Bin-Han Liu
黃唯豪
Wei-Hao Huang
劉芸瑄
Yun-Hsuan Liu
林湘芸
Hsiang-Yun Lin
Original Assignee
國立中山大學
National Sun Yat-Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中山大學, National Sun Yat-Sen University filed Critical 國立中山大學
Priority to TW107138476A priority Critical patent/TWI676092B/en
Application granted granted Critical
Publication of TWI676092B publication Critical patent/TWI676092B/en
Publication of TW202018450A publication Critical patent/TW202018450A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Photovoltaic Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

一種太陽光伏系統之最大功率點追蹤及部分遮陰判斷方法,藉由實際量測之該輸出電壓及該輸出電流計算當前之該日照度及該工作光伏電池數,並以該日照度及該工作光伏電池計算該太陽光伏模組的該最大功率電流,而可透過該日照度及該最大功率電流判斷該太陽光伏模組是否被部分遮陰,以判斷是否可減縮追蹤流程與時間,並在後續的最大功率點追蹤中能正確的追蹤得全域最大功率點。A method for tracking the maximum power point of a solar photovoltaic system and judging a part of the shading, by calculating the current solar illumination and the number of working photovoltaic cells based on the actually measured output voltage and the output current, and using the solar illumination and the work The photovoltaic cell calculates the maximum power current of the solar photovoltaic module, and whether the solar photovoltaic module is partially shaded can be judged by the sunlight and the maximum power current to determine whether the tracking process and time can be reduced, and subsequent In the maximum power point tracking, the global maximum power point can be accurately tracked.

Description

太陽光伏系統之最大功率點追蹤及部分遮陰判斷方法Maximum power point tracking and partial shading judgment method of solar photovoltaic system

本發明是關於一種太陽光伏系統,特別是關於一種太陽光伏系統之最大功率點追蹤及部分遮陰判斷方法。The invention relates to a solar photovoltaic system, in particular to a method for tracking the maximum power point of a solar photovoltaic system and a method for judging partial shade.

太陽光伏系統是以多個太陽光伏模組併聯而成,且各個太陽光伏模組串聯有複數個光伏電池,該些光伏電池受到光照時產生電流而進行供電。由於該些光伏電池是串聯而成,在習知技術中,考量到部份被遮陰之光伏電池產生的電流小於未被遮陰之光伏電池產生的電流時,被遮陰之光伏電池會產生逆向偏壓而由產生功率轉為消耗功率的情況,一般會在各該光伏電池旁併接一旁路二極體,讓多餘之電流可流經被遮陰之光伏電池的旁路二極體,但這樣也讓部份遮陰之情況下的光伏電池模組的輸出電流-電壓特性曲線呈現一階梯狀,使其功率-電壓特性曲線具有多個峰值,這樣的特性容易讓最大功率追蹤僅追蹤到區域最大功率點而非全域最大功率點。A solar photovoltaic system is formed by connecting a plurality of solar photovoltaic modules in parallel, and each solar photovoltaic module is connected with a plurality of photovoltaic cells in series. These photovoltaic cells generate electric current when being illuminated to supply power. Because these photovoltaic cells are connected in series, in the conventional technology, when the current generated by a partially shaded photovoltaic cell is less than the current generated by a non-shaded photovoltaic cell, the shaded photovoltaic cell will generate In the case of reverse bias to change from generating power to consuming power, a bypass diode is usually connected in parallel with each photovoltaic cell to allow excess current to flow through the bypass diode of the shaded photovoltaic cell. However, this also allows the output current-voltage characteristic curve of the photovoltaic cell module under a partial shade to show a step shape, so that its power-voltage characteristic curve has multiple peaks. Such a characteristic makes it easy for the maximum power tracking to only track To the regional maximum power point instead of the global maximum power point.

本發明的主要目的為提供一種太陽光伏系統之部份遮陰判斷方法,根據太陽光伏系統之輸出判斷其是否處於部份遮陰的情況,以透過太陽光伏最大功率點追蹤求得部份遮陰下之太陽光伏系統的全域最大功率點,而可避免僅追蹤至區域最大功率點的問題發生。The main purpose of the present invention is to provide a method for judging partial shading of a solar photovoltaic system. According to the output of the solar photovoltaic system, it is judged whether it is in a situation of partial shading, and the partial shading is obtained by tracking the maximum photovoltaic power point The global maximum power point of the next solar photovoltaic system can avoid the problem of tracking only to the regional maximum power point.

本發明之一種太陽光伏系統之部分遮陰判斷方法包含:一量測模組量測該太陽光伏系統之一太陽光伏模組於兩個時間點下的一輸出電壓及一輸出電流;一計算模組根據該輸出電壓及該輸出電流計算該太陽光伏模組的一日照度及一工作光伏電池數;該計算模組根據該日照度及該工作光伏電池數計算一最大功率點;一控制模組控制該太陽光伏模組操作於該最大功率點並藉由該量測模組量測一最大功率點電流;以及該計算模組藉由該最大功率電流、該日照度、一標準條件下之最大功率電流及一標準條件下之日照度判斷該太陽光伏系統是否被部份遮陰。A partial shading judgment method of a solar photovoltaic system of the present invention includes: a measurement module measures an output voltage and an output current of a solar photovoltaic module of the solar photovoltaic system at two points in time; a calculation module The group calculates the daily illumination of the solar photovoltaic module and the number of working photovoltaic cells according to the output voltage and the output current; the calculation module calculates a maximum power point based on the sunshine and the number of working photovoltaic cells; a control module Controlling the solar photovoltaic module to operate at the maximum power point and measuring a maximum power point current by the measurement module; and the calculation module using the maximum power current, the sunlight, and the maximum value under a standard condition The power current and the sunlight under a standard condition determine whether the solar photovoltaic system is partially shaded.

本發明之一種太陽光伏系統之最大功率點追蹤包含:提供一太陽光伏模組,該太陽光伏模組串聯有複數個光伏電池,該太陽光伏模組之一特性曲線具有複數個區間;以及一區間預測步驟,其包含:一量測模組量測該太陽光伏模組其中之一區間於兩個時間點下的一輸出電壓及一輸出電流;一計算模組根據兩個時間點下的該輸出電壓及該輸出電流估算該太陽光伏模組之該區間的一日照度及一工作光伏電池數;該計算模組根據該日照度及該工作光伏電池數校正該區間;及該計算模組判斷校正之該區間是否具有一全域最大功率點,若否則重新進行該區間預測步驟以校正另一區間之該日照度及該工作光伏電池數,若是則進行該區間之全域最大功率點追蹤。The maximum power point tracking of a solar photovoltaic system according to the present invention includes: providing a solar photovoltaic module, the solar photovoltaic module is connected with a plurality of photovoltaic cells in series, and one characteristic curve of the solar photovoltaic module has a plurality of intervals; and an interval The prediction step includes: a measurement module measures an output voltage and an output current at one time interval of one of the solar photovoltaic modules at two time points; a calculation module is based on the output at two time points The voltage and the output current estimate the daylight intensity and the number of working photovoltaic cells in the interval of the solar photovoltaic module; the calculation module corrects the interval based on the sunlight intensity and the number of working photovoltaic cells; and the calculation module judges and corrects Whether the interval has a global maximum power point, if not, perform the interval prediction step again to correct the sunlight and the number of working photovoltaic cells in another interval, and if so, perform the global maximum power point tracking of the interval.

本發明藉由實際量測之該輸出電壓及該輸出電流計算當前之該日照度及該工作光伏電池數,並藉由該日照度及該工作光伏電池計算該太陽光伏模組的該最大功率電流,而可透過該日照度及該最大功率電流判斷該太陽光伏模組是否被部分遮陰,以在後續的最大功率點追蹤中能減少追蹤時間並正確地追蹤得全域最大功率點。The present invention calculates the current illuminance and the number of working photovoltaic cells by actually measuring the output voltage and the output current, and calculates the maximum power current of the solar photovoltaic module by using the illuminance and the working photovoltaic cells , And whether the solar photovoltaic module is partially shaded can be judged by the sunlight and the maximum power current, so as to reduce the tracking time and accurately track the maximum power point in the whole region in the subsequent maximum power point tracking.

請參閱第1圖,其為本發明之一實施例,一種太陽光伏系統100之最大功率點追蹤10的流程圖,其包含「提供太陽光伏系統11」、「判斷是否部份遮陰12」、「區間預測步驟13」、「全域最大功率點追蹤14」及「控制太陽光伏模組操作於全域最大功率點15」。Please refer to FIG. 1, which is a flowchart of a maximum power point tracking 10 of a solar photovoltaic system 100 according to an embodiment of the present invention, which includes “providing a solar photovoltaic system 11”, “determining whether to partially shade 12”, "Interval prediction step 13", "Global maximum power point tracking 14" and "Controlling solar photovoltaic module operation at global maximum power point 15".

請參閱第1及2圖,於「提供太陽光伏系統11」中提供一太陽光伏系統100,該太陽光伏系統100具有一太陽光伏模組110、一量測模組120、一計算模組130及一控制模組140,該量測模組120電性連接該太陽光伏模組110,該計算模組130電性連接該量測模組120,該控制模組140電性連接該計算模組130及該太陽光伏模組110,其中該計算模組130可為一微處理器或其他可進行運算之計算機裝置,該控制模組140可為一電源轉換器,以藉由其電子元件的主動切換使該太陽光伏模組110操作於最大功率點。Please refer to Figs. 1 and 2 for providing a solar photovoltaic system 100 in "Providing Solar Photovoltaic System 11". The solar photovoltaic system 100 has a solar photovoltaic module 110, a measurement module 120, a computing module 130 and A control module 140, the measurement module 120 is electrically connected to the solar photovoltaic module 110, the calculation module 130 is electrically connected to the measurement module 120, and the control module 140 is electrically connected to the calculation module 130 And the solar photovoltaic module 110, wherein the computing module 130 may be a microprocessor or other computer device capable of performing calculations, and the control module 140 may be a power converter to actively switch by its electronic components The solar photovoltaic module 110 is operated at a maximum power point.

請參閱第3圖,為該太陽光伏模組110及該量測模組120的一等效電路圖,其中該太陽光伏模組110具有複數個相互串聯之光伏電池111,該些光伏電池111受到光照時產生電流以供電至一負載L,且各該光伏電池111具有一旁路二極體111a,讓過多的電流可流經被遮陰之該光伏電池111的該旁路二極體111a,避免被遮陰之該光伏電池111轉為消耗功率。該量測模組120具有一電流計121及一電壓計122,其中,該電流計121與該些光伏電池111串聯,以量測該太陽光伏模組110的一輸出電流,該電壓計122則與串聯之該些光伏電池111併聯,以量測該太陽光伏模組110的一輸出電壓。Please refer to FIG. 3, which is an equivalent circuit diagram of the solar photovoltaic module 110 and the measurement module 120. The solar photovoltaic module 110 has a plurality of photovoltaic cells 111 connected in series, and the photovoltaic cells 111 are exposed to light. A current is generated to supply power to a load L, and each of the photovoltaic cells 111 has a bypass diode 111a, so that excessive current can flow through the bypass diode 111a of the photovoltaic cell 111 that is shaded to avoid being bypassed. The shaded photovoltaic cell 111 is converted to consume power. The measurement module 120 has an ammeter 121 and a voltmeter 122, wherein the ammeter 121 is connected in series with the photovoltaic cells 111 to measure an output current of the solar photovoltaic module 110, and the voltmeter 122 is The photovoltaic cells 111 are connected in series to measure an output voltage of the solar photovoltaic module 110.

請參閱第4圖,為一種部份遮陰情況下之該太陽光伏模組110的電流-電壓特性曲線,由於各該光伏電池111被遮陰的情況不同,使得各該光伏電池111所產生之電流大小並不相同,導致電流-電壓特性曲線呈一階梯狀,且根據該太陽光伏模組110串聯之該光伏電池111的數量,該特性曲線可區分為數量相同之複數個區間。請參閱第5圖,為另一種部份遮陰情況下之該太陽光伏模組110的功率-電壓特性曲線,由於各該光伏電池111被遮陰的程度不同,該功率-電壓特性曲線呈現多峰值的狀態。Please refer to FIG. 4, which is a current-voltage characteristic curve of the solar photovoltaic module 110 under a condition of partial shading. Since each of the photovoltaic cells 111 is shaded differently, the The currents are not the same, resulting in a current-voltage characteristic curve with a stepped shape, and according to the number of the photovoltaic cells 111 connected in series with the solar photovoltaic module 110, the characteristic curve can be divided into a plurality of sections with the same number. Please refer to FIG. 5, which is a power-voltage characteristic curve of the solar photovoltaic module 110 in another case of partial shading. Since each photovoltaic cell 111 is shaded differently, the power-voltage characteristic curve shows many The state of the peak.

請參閱第1及6圖,於「判斷是否部份遮陰12」中藉由該太陽光伏模組110之輸出判斷是否有部份遮陰的情況,請參閱第6圖,在本實施例中,「判斷是否部份遮陰12」包含:量測輸出電壓及輸出電流12a、計算日照度及工作光伏電池數12b、計算最大功率點12c、量測最大功率點電流12d及判斷是否被部份遮陰12e。 Please refer to Figures 1 and 6 for the judgment of whether there is partial shading by the output of the solar photovoltaic module 110 in "Judgement of Partial Shade 12". Please refer to Figure 6 in this embodiment. , "Judging whether it is partially shaded 12" includes: measuring the output voltage and output current 12a, calculating the sunlight and the number of working photovoltaic cells 12b, calculating the maximum power point 12c, measuring the maximum power point current 12d, and determining whether it is partially Shade 12e.

請參閱第2及6圖,於步驟12a中以該量測模組120量測該太陽光伏模組110於兩個時間點下的該輸出電壓及該輸出電流,且兩個時間點下的該輸出電壓及該輸出電流傳送至該計算模組130,接著於步驟12b中,該計算模組130根據該輸出電壓及該輸出電流計算該太陽光伏模組110的一日照度及一工作光伏電池數,其中,該計算模組130是將兩個時間點下的該輸出電壓及該輸出電流帶入一電流特性函數中求得該太陽光伏模組110的該日照度及該工作光伏電池數,在本實施例中,該電流特性函數為:

Figure TWI676092B_D0001
Please refer to FIGS. 2 and 6, in step 12a, the measurement module 120 measures the output voltage and the output current of the solar photovoltaic module 110 at two points in time, and the measurement at the two points in time The output voltage and the output current are transmitted to the calculation module 130, and then in step 12b, the calculation module 130 calculates the daylight intensity of the solar photovoltaic module 110 and the number of working photovoltaic cells according to the output voltage and the output current. Wherein, the calculation module 130 takes the output voltage and the output current at two points of time into a current characteristic function to obtain the solar illumination of the solar photovoltaic module 110 and the number of working photovoltaic cells. In this embodiment, the current characteristic function is:
Figure TWI676092B_D0001

Figure TWI676092B_D0002
其中,I o 為該輸出電流,S為該日照度,N為該工作光伏電池數,I sc 為一短路電流,K 0為一短路電流的溫度係數,T為一操作溫度,T r 為一參考溫度,I rr 為該參考溫度時的一逆向飽和電流,q為一電子電荷量,E G 為一能隙寬度,K為一波資曼常數,A為該光伏電池之P-N接面理想參數,V o 為該輸出電壓,V oc 為一開路電壓。將兩個時間點下的該輸出電壓及該輸出電流代入可表示為:
Figure TWI676092B_D0003
其中,S 1 ,N 1 ,V 1 ,I 1分別為第一個時間點下的該日照度、該工作光伏電池數、該輸出電壓及該輸出電流,S 2 ,N 2 ,V 2 ,I 2分別為第二個時間點下的該日照度、該工作光伏電池數、該輸出電壓及該輸出電流,若兩個時間點下的該日照度及該工作光伏 電池數未改變時,藉由求解上述之聯立方程式即可求得當前之該日照度及該工作光伏電池數。 or
Figure TWI676092B_D0002
Among them, I o is the output current, S is the sunlight, N is the number of working photovoltaic cells, I sc is a short-circuit current, K 0 is a temperature coefficient of a short-circuit current, T is an operating temperature, and T r is a Reference temperature, I rr is a reverse saturation current at the reference temperature, q is an electronic charge amount, E G is an energy gap width, K is a wave Ziman constant, and A is an ideal parameter for the PN junction of the photovoltaic cell , V o is the output voltage, and V oc is an open circuit voltage. Substituting the output voltage and the output current at two points in time can be expressed as:
Figure TWI676092B_D0003
Among them, S 1 , N 1 , V 1 , I 1 are the sunlight, the number of working photovoltaic cells, the output voltage, and the output current at the first time point, respectively, S 2 , N 2 , V 2 , I 2 is the sunlight, the number of working photovoltaic cells, the output voltage, and the output current at the second time point respectively. If the sunlight and the number of working photovoltaic cells at the two time points have not changed, Solving the above simultaneous equations can obtain the current illuminance and the number of working photovoltaic cells.

請參閱第6圖,在求得該太陽光伏模組110的該日照度及該工作光伏電池數後進行步驟12c,該計算模組130將該日照度及該工作光伏電池數代回該電流特性函數求得一估測電流函數,並藉由該估測電流函數求得一功率特性函數,以及對該功率特性函數進行微分並設其等於0計算該最大功率點,其中該功率特性函數為:

Figure TWI676092B_D0004
Referring to FIG. 6, after obtaining the solar illumination of the solar photovoltaic module 110 and the number of working photovoltaic cells, go to step 12c. The calculation module 130 substitutes the solar illumination and the number of operating photovoltaic cells back to the current characteristics. The function obtains an estimated current function, and uses the estimated current function to obtain a power characteristic function, and differentiates the power characteristic function and sets it to 0 to calculate the maximum power point, where the power characteristic function is:
Figure TWI676092B_D0004

Figure TWI676092B_D0005
or
Figure TWI676092B_D0005

請參閱第2及6圖,於步驟12d中,該控制模組140控制該太陽光伏模組110操作於該最大功率點並藉由該量測模組120之該電流計121量測一最大功率點電流。最後進行步驟12e,該計算模組130藉由該最大功率電流、該日照度、一標準條件下之最大功率電流及一標準條件下之日照度判斷該太陽光伏系統100是否被部份遮陰,在本實施例中,判斷該太陽光伏系統100是否被部份遮陰的判斷式可表示為:

Figure TWI676092B_D0006
>C 其中,S為計算而得之該日照度,G STC 為該標準條件下之該日照度,不同之該太陽光伏系統100的製造廠商有著不同設定,一般為1000W/m2I mpp 為量測而得之該最大功率電流,I mpp_STC 為該標準條件下之最大功率電流,也就是在各個製造廠商於標準條件之日照度及環境溫度下所測得的最大功率電流,C為一部份遮陰門檻值,在本實施例中,該部份遮陰門檻值為3%。而若滿足上述判斷式則代表該太陽光伏系統100被部份遮陰,若未滿足上述判斷式則代表該太陽光伏系統100未被部份遮陰。 Please refer to FIGS. 2 and 6. In step 12d, the control module 140 controls the solar photovoltaic module 110 to operate at the maximum power point and measures a maximum power by the current meter 121 of the measurement module 120. Point current. Finally, step 12e is performed. The calculation module 130 judges whether the solar photovoltaic system 100 is partially shaded by the maximum power current, the sunlight, the maximum power current under a standard condition, and the sunlight under a standard condition. In this embodiment, the judgment formula for judging whether the solar photovoltaic system 100 is partially shaded can be expressed as:
Figure TWI676092B_D0006
> C, where S is the calculated solar illumination, G STC is the solar illumination under the standard conditions, different manufacturers of the solar photovoltaic system 100 have different settings, generally 1000W / m 2 , I mpp is The measured maximum power current, I mpp_STC is the maximum power current under the standard conditions, that is, the maximum power current measured by various manufacturers under the standard conditions of sunlight and ambient temperature, C is a The shading threshold. In this embodiment, the shading threshold is 3%. If the above judgment formula is satisfied, it means that the solar photovoltaic system 100 is partially shaded. If the above judgment formula is not satisfied, it means that the solar photovoltaic system 100 is not partially shaded.

請參閱第1圖,若判斷該太陽光伏系統100未被部份遮陰時,代表著該太陽模組110的該功率-電壓特性曲線僅具有一個峰值,因此可將步驟12c計算而得之該最大功率點所處之該區間作為一全域最大功率點所處之該區間,並進行「太陽全域最大功率點追蹤14」。 Please refer to FIG. 1. If it is judged that the solar photovoltaic system 100 is not partially shaded, the power-voltage characteristic curve representing the solar module 110 has only one peak, so it can be calculated by step 12c. The interval in which the maximum power point is located is taken as the interval in which the global maximum power point is located, and "the solar global maximum power point tracking 14" is performed.

請參閱第1圖,若於步驟12判斷該太陽光伏系統100被部份遮陰時,代表著該太陽模組110的該功率-電壓特性曲線為多峰值的狀態,因此進行「區間預測步驟13」,以藉由對該全域最大功率點所處之該區間的預測、對該區間之該日照度及該工作光伏電池數的計算及校正,得到較為接近實際狀況的該功率-電壓特性曲線及全域最大功率點。 Please refer to FIG. 1. If it is judged in step 12 that the solar photovoltaic system 100 is partially shaded, it represents that the power-voltage characteristic curve of the solar module 110 is in a multi-peak state, so the “interval prediction step 13” is performed. In order to obtain the power-voltage characteristic curve closer to the actual situation and the calculation and correction of the interval where the global maximum power point is located, the sunshine of the interval and the number of working photovoltaic cells, Global maximum power point.

「區間預測步驟13」的詳細步驟如下:首先,該量測模組120量測該太陽光伏模組110其中之一區間於兩個時間點下的該輸出電壓及該輸出電流並傳送至該計算模組130,該計算模組130將兩個時間點下的該輸出電壓及該輸 出電流代入該電流特性函數:

Figure TWI676092B_D0007
Figure TWI676092B_D0008
Figure TWI676092B_D0009
Figure TWI676092B_D0010
中,以求得該太陽光伏模組110之該區間的該日照度及該工作光伏電池數,本發明不受限於特定電流特性函數,上述電流特性函數為本案較佳實施例。 The detailed steps of "Interval Prediction Step 13" are as follows: First, the measurement module 120 measures the output voltage and the output current at one time interval of one of the solar photovoltaic modules 110 at two points in time and transmits them to the calculation. Module 130, the calculation module 130 substitutes the output voltage and the output current at the two time points into the current characteristic function:
Figure TWI676092B_D0007
Figure TWI676092B_D0008
or
Figure TWI676092B_D0009
Figure TWI676092B_D0010
In order to obtain the solar illuminance and the number of working photovoltaic cells in the interval of the solar photovoltaic module 110, the present invention is not limited to a specific current characteristic function, and the above current characteristic function is a preferred embodiment of the present application.

接著,該計算模組130根據該日照度及該工作光伏電池數校正該區間並代入該功率特性函數:P(S,N,V o )=V o ×(S×(I sc +K 0×(T-T r ))-I rr ×

Figure TWI676092B_D0011
Figure TWI676092B_D0012
Figure TWI676092B_D0013
中重新計算該區間之該功率特性曲線,最後,該計算模組130根據重新計算之該功率特性曲線判斷該區間是否有該全域最大功率點,若否則重新進行該區間預測步驟以校正另一區間之該日照度及該工作光伏電池數,若是則進行「全域最大功率點追蹤14」。 Then, the calculation module 130 corrects the interval and substitutes the power characteristic function according to the sunlight and the number of working photovoltaic cells: P ( S, N, V o ) = V o × ( S × ( I sc + K 0 × ( T - T r ))- I rr ×
Figure TWI676092B_D0011
or
Figure TWI676092B_D0012
Figure TWI676092B_D0013
Recalculate the power characteristic curve of the interval, and finally, the calculation module 130 judges whether the interval has the global maximum power point according to the recalculated power characteristic curve; if not, re-perform the interval prediction step to correct another interval If it is the daylight intensity and the number of working photovoltaic cells, if it is, then perform “Global Maximum Power Point Tracking 14”.

請參閱第1及2圖,於「全域最大功率點追蹤14」中,該量測模組120量測該全域最大功率點所處之該區間於三個時間點下的該輸出電壓及該輸出電流,該計算模組120根據三個時間點的該輸出電壓及該輸出電流估算該區間的該日照度、該工作光伏電池數及該操作溫度,求得該全域最大功率所處之該區間的該日照度、該工作光伏電池數及該操作溫度後,該計算模組130藉由該日照度、該工作光伏電池數及該溫度求得該全域最大功率所處之該區間的該功率特性函數,以及對該功率特性函數進行微分以計算該全域最大功率點,該功率特性 函數為:

Figure TWI676092B_D0014
Please refer to Figures 1 and 2. In “Global Maximum Power Point Tracking 14”, the measurement module 120 measures the output voltage and the output at three time points in the interval where the global maximum power point is located. Current, the calculation module 120 estimates the sunlight, the number of working photovoltaic cells, and the operating temperature of the interval based on the output voltage and the output current at three time points, and obtains the interval in which the maximum power of the whole region is located. After the solar illumination, the number of working photovoltaic cells, and the operating temperature, the calculation module 130 obtains the power characteristic function of the interval in which the global maximum power is located by using the solar illumination, the number of operating photovoltaic cells, and the temperature. , And differentiating the power characteristic function to calculate the global maximum power point, the power characteristic function is:
Figure TWI676092B_D0014

Figure TWI676092B_D0015
or
Figure TWI676092B_D0015

請參閱第1圖,求得該全域最大功率點後進行「控制太陽光伏模組操作於全域最大功率點追蹤15」,該控制模組140控制該太陽光伏模組110操作於所求之該全域最大功率點,使得該太陽光伏模組110無論是否有被部份遮陰皆可輸出當前之最大功率。 Please refer to Fig. 1. After obtaining the global maximum power point, perform "control solar photovoltaic module operation at global maximum power point tracking 15". The control module 140 controls the solar photovoltaic module 110 to operate at the requested global domain. The maximum power point enables the solar photovoltaic module 110 to output the current maximum power regardless of whether it is partially shaded.

本發明藉由實際量測之該輸出電壓及該輸出電流計算當前之該日照度及該工作光伏電池數,並藉由該日照度及該工作光伏電池計算該太陽光伏模組110的該最大功率電流,而可透過該日照度及該最大功率電流判斷該太陽光伏模組110是否被部分遮陰,以在後續的最大功率點追蹤中能正確的追蹤得全域最大功率點。 The present invention calculates the current illuminance and the number of working photovoltaic cells by actually measuring the output voltage and the output current, and calculates the maximum power of the solar photovoltaic module 110 by using the illuminance and the working photovoltaic cells. Current, and whether the solar photovoltaic module 110 is partially shaded can be judged by the solar illumination and the maximum power current, so that the maximum power point in the whole region can be accurately tracked in the subsequent maximum power point tracking.

本發明之保護範圍當視後附之申請專利範圍所界定者為準,任何熟知此項技藝者,在不脫離本發明之精神和範圍內所作之任何變化與修改,均屬於本發明之保護範圍。 The protection scope of the present invention shall be determined by the scope of the appended patent application. Any changes and modifications made by those skilled in the art without departing from the spirit and scope of the present invention shall fall within the protection scope of the present invention. .

10‧‧‧太陽光伏系統之最大功率點追蹤 10‧‧‧ Maximum Power Point Tracking of Solar Photovoltaic System

11‧‧‧提供太陽光伏系統 11‧‧‧ provide solar photovoltaic system

12‧‧‧判斷是否部分遮陰 12‧‧‧ judge if it is partially shaded

12a‧‧‧量測輸出電壓及輸出電流 12a‧‧‧Measure output voltage and output current

12b‧‧‧計算日照度及工作光伏電池數 12b‧‧‧Calculate the sunshine and working photovoltaic cells

12c‧‧‧計算最大功率點 12c‧‧‧Calculate maximum power point

12d‧‧‧量測最大功率點電流 12d‧‧‧Measure the maximum power point current

12e‧‧‧判斷是否被部分遮陰 12e‧‧‧ judge if it is partially shaded

13‧‧‧區間預測步驟 13‧‧‧ interval prediction steps

14‧‧‧全域最大功率點追蹤 14‧‧‧Global Maximum Power Point Tracking

15‧‧‧控制太陽光伏模組操作於全域最大功率點 15‧‧‧ Controls the operation of solar photovoltaic modules at the maximum power point in the world

100‧‧‧太陽光伏系統 100‧‧‧solar photovoltaic system

110‧‧‧太陽光伏模組 110‧‧‧solar photovoltaic module

111‧‧‧光伏電池 111‧‧‧Photovoltaic cells

111a‧‧‧旁路二極體 111a‧‧‧ Bypass Diode

120‧‧‧量測模組 120‧‧‧Measuring module

121‧‧‧電流計 121‧‧‧ ammeter

122‧‧‧電壓計 122‧‧‧Voltmeter

130‧‧‧計算模組 130‧‧‧Computing Module

140‧‧‧控制模組 140‧‧‧control module

第1圖:依據本發明之一實施例,一種太陽光伏系統之最大功率點追蹤的流程圖。 第2圖:依據本發明之一實施例,一太陽光伏系統的功能方塊圖。 第3圖:依據本發明之一實施例,一太陽光伏模組的等效電路圖。 第4圖:依據本發明之一實施例,該太陽光伏模組之電流-電壓特性曲線。 第5圖:依據本發明之一實施例,該太陽光伏模組之功率-電壓特性曲線。 第6圖:依據本發明之一實施例,一種部份遮陰判斷方法的流程圖。FIG. 1 is a flowchart of tracking a maximum power point of a solar photovoltaic system according to an embodiment of the present invention. FIG. 2 is a functional block diagram of a solar photovoltaic system according to an embodiment of the present invention. FIG. 3 is an equivalent circuit diagram of a solar photovoltaic module according to an embodiment of the present invention. Figure 4: A current-voltage characteristic curve of the solar photovoltaic module according to an embodiment of the present invention. Figure 5: Power-voltage characteristic curve of the solar photovoltaic module according to an embodiment of the present invention. FIG. 6 is a flowchart of a partial shading judgment method according to an embodiment of the present invention.

Claims (10)

一種太陽光伏系統之部分遮陰判斷方法,其包含:一量測模組量測該太陽光伏系統之一太陽光伏模組於兩個時間點下的一輸出電壓及一輸出電流;一計算模組根據該輸出電壓及該輸出電流計算該太陽光伏模組的一日照度及一工作光伏電池數;該計算模組根據該日照度及該工作光伏電池數計算一最大功率點;一控制模組控制該太陽光伏模組操作於該最大功率點並藉由該量測模組量測一最大功率點電流;以及該計算模組藉由該最大功率電流、該日照度、一標準條件下之最大功率電流及一標準條件下之日照度判斷該太陽光伏系統是否被部份遮陰。A partial shading judgment method for a solar photovoltaic system includes: a measurement module measures an output voltage and an output current of a solar photovoltaic module of the solar photovoltaic system at two points in time; a calculation module Calculate the daily illumination of the solar photovoltaic module and the number of working photovoltaic cells based on the output voltage and the output current; calculate a maximum power point based on the solar illumination and the number of operating photovoltaic cells; a control module controls The solar photovoltaic module is operated at the maximum power point and a maximum power point current is measured by the measurement module; and the calculation module uses the maximum power current, the sunlight, and the maximum power under a standard condition. The current and the sunlight under a standard condition determine whether the solar photovoltaic system is partially shaded. 如申請專利範圍第1項所述之太陽光伏系統之部分遮陰判斷方法,其中該計算模組判斷該太陽光伏系統是否被部份遮陰的表示式為:>C其中,S為該日照度,G STC 為該標準條件下之日照度,I mpp 為該最大功率電流,I mpp_STC 為該標準條件下之最大功率電流,C為一部份遮陰門檻值,若滿足上述表示式則判斷該太陽光伏系統被部份遮陰,若未滿足上述表示式則判斷該太陽光伏系統未被部份遮陰。According to the partial shading judgment method of the solar photovoltaic system described in item 1 of the scope of the patent application, wherein the calculation module determines whether the solar photovoltaic system is partially shaded by the expression: > C, where S is the sunlight intensity, G STC is the sunlight intensity under the standard conditions, I mpp is the maximum power current, I mpp_STC is the maximum power current under the standard conditions, and C is a part of the shading threshold If the above expression is satisfied, it is judged that the solar photovoltaic system is partially shaded; if the above expression is not satisfied, it is judged that the solar photovoltaic system is not partially shaded. 如申請專利範圍第2項所述之太陽光伏系統之部分遮陰判斷方法,其中該部份遮陰門檻值為3%。The method for judging the partial shading of the solar photovoltaic system as described in item 2 of the scope of patent application, wherein the threshold for the partial shading is 3%. 如申請專利範圍第1項所述之太陽光伏系統之部分遮陰判斷方法,其中該計算模組是將兩個時間點下的該輸出電壓及該輸出電流帶入一電流特性函數中求得該太陽光伏模組之該區間的該日照度及該工作光伏電池數。According to the partial shading judgment method of the solar photovoltaic system described in item 1 of the scope of the patent application, wherein the calculation module calculates the output voltage and the output current at two time points into a current characteristic function to obtain the The solar intensity and the number of working photovoltaic cells in the interval of the solar photovoltaic module. 如申請專利範圍第4項所述之太陽光伏系統之部分遮陰判斷方法,其中該電流特性函數為:其中,I o 為該輸出電流,S為該日照度,N為該工作光伏電池數,I sc 為一短路電流,K 0為一短路電流的溫度係數,T為一操作溫度,T r 為一參考溫度,I rr 為該參考溫度時的一逆向飽和電流,q為一電子電荷量,E G 為一能隙寬度,K為一波資曼常數,A為該光伏電池之P-N接面理想參數,V o 為該輸出電壓,V oc 為一開路電壓。The partial shading judgment method for a solar photovoltaic system as described in item 4 of the patent application scope, wherein the current characteristic function is: or Among them, I o is the output current, S is the sunlight, N is the number of working photovoltaic cells, I sc is a short-circuit current, K 0 is a temperature coefficient of a short-circuit current, T is an operating temperature, and T r is a Reference temperature, I rr is a reverse saturation current at the reference temperature, q is an electronic charge amount, E G is an energy gap width, K is a wave Ziman constant, and A is an ideal parameter for the PN junction of the photovoltaic cell , V o is the output voltage, and V oc is an open circuit voltage. 如申請專利範圍第4或5項所述之太陽光伏系統之部分遮陰判斷方法,求得該太陽光伏模組的該日照度及該工作光伏電池數後,該計算模組將該日照度及該工作光伏電池數代回該電流特性函數求得一估測電流函數,並藉由該估測電流函數求得一功率特性函數,以及對該功率特性函數進行微分以計算該最大功率點。According to the method for judging the partial shading of the solar photovoltaic system described in item 4 or 5 of the scope of patent application, after obtaining the solar illumination of the solar photovoltaic module and the number of working photovoltaic cells, the calculation module calculates the solar illumination and The working photovoltaic cell returns the current characteristic function several times to obtain an estimated current function, obtains a power characteristic function from the estimated current function, and differentiates the power characteristic function to calculate the maximum power point. 如申請專利範圍第6項所述之太陽光伏系統之部分遮陰判斷方法,其中該功率特性函數為:其中,S為該日照度,N為該工作光伏電池數,I sc 為一短路電流,K 0為一短路電流的溫度係數,T為一操作溫度,T r 為一參考溫度,I rr 為該參考溫度時的一逆向飽和電流,q為一電子電荷量,E G 為一能隙寬度,K為一波資曼常數,A為該光伏電池之P-N接面理想參數,V o 為一輸出電壓,V oc 為一開路電壓。The partial shading judgment method for a solar photovoltaic system as described in item 6 of the patent application scope, wherein the power characteristic function is: or Among them, S is the sunlight, N is the number of working photovoltaic cells, I sc is a short-circuit current, K 0 is a temperature coefficient of a short-circuit current, T is an operating temperature, T r is a reference temperature, and I rr is the A reverse saturation current at a reference temperature, q is an electronic charge amount, E G is an energy gap width, K is a wave of Ziman constant, A is an ideal parameter for the PN junction of the photovoltaic cell, and V o is an output voltage , V oc is an open circuit voltage. 一種太陽光伏系統之最大功率點追蹤,其包含:提供一太陽光伏模組,該太陽光伏模組串聯有複數個光伏電池,該太陽光伏模組之一特性曲線具有複數個區間;以及一區間預測步驟包含:一量測模組量測該太陽光伏模組其中之一區間於兩個時間點下的一輸出電壓及一輸出電流;一計算模組根據兩個時間點下的該輸出電壓及該輸出電流估算該太陽光伏模組之該區間的一日照度及一工作光伏電池數;該計算模組根據該日照度及該工作光伏電池數校正該區間;及該計算模組判斷校正之該區間是否具有一全域最大功率點,若否則重新進行該區間預測步驟以校正另一區間之該日照度及該工作光伏電池數,若是則進行該區間之全域最大功率點追蹤。A maximum power point tracking of a solar photovoltaic system includes: providing a solar photovoltaic module, the solar photovoltaic module is connected with a plurality of photovoltaic cells in series, one characteristic curve of the solar photovoltaic module has a plurality of intervals; and an interval prediction The steps include: a measurement module measures an output voltage and an output current at one time interval of the solar photovoltaic module at two time points; a calculation module is based on the output voltage and the two time points. The output current estimates the daylight intensity and the number of working photovoltaic cells in the interval of the solar photovoltaic module; the calculation module corrects the interval based on the sunlight intensity and the number of working photovoltaic cells; and the calculation module determines the corrected interval Whether there is a global maximum power point; if not, the interval prediction step is performed again to correct the solar illumination and the number of working photovoltaic cells in another interval, and if so, the global maximum power point tracking of the interval is performed. 如申請專利範圍第8項所述之太陽光伏系統之最大功率點追蹤,其中於該區間預測步驟中,該計算模組是將兩個時間點下的該輸出電壓及該輸出電流帶入一電流特性函數中,再求得該太陽光伏模組之該區間的該日照度及該工作光伏電池數,該電流特性函數為:其中,I o 為該輸出電流,S為該日照度,N為該工作光伏電池數,I sc 為一短路電流,K 0為一短路電流的溫度係數,T為一操作溫度,T r 為一參考溫度,I rr 為該參考溫度時的一逆向飽和電流,q為一電子電荷量,E G 為一能隙寬度,K為一波資曼常數,A為該光伏電池之P-N接面理想參數,V o 為該輸出電壓,V oc 為一開路電壓。According to the maximum power point tracking of the solar photovoltaic system described in item 8 of the scope of patent application, in the step of predicting the interval, the calculation module brings the output voltage and the output current at two time points into a current In the characteristic function, the solar intensity and the number of working photovoltaic cells in the interval of the solar photovoltaic module are obtained. The current characteristic function is: or Among them, I o is the output current, S is the sunlight, N is the number of working photovoltaic cells, I sc is a short-circuit current, K 0 is a temperature coefficient of a short-circuit current, T is an operating temperature, and T r is a Reference temperature, I rr is a reverse saturation current at the reference temperature, q is an electronic charge amount, E G is an energy gap width, K is a wave Ziman constant, and A is an ideal parameter for the PN junction of the photovoltaic cell , V o is the output voltage, and V oc is an open circuit voltage. 如申請專利範圍第8項所述之太陽光伏系統之最大功率點追蹤,其中該全域最大功率點追蹤包含:該量測模組量測該全域最大功率點所處之該區間於三個時間點下的該輸出電壓及該輸出電流;該計算模組根據三個時間點下的該輸出電壓及該輸出電流估算該區間的該日照度、該工作光伏電池數及一操作溫度;求得該全域最大功率所處之該區間的該日照度、該工作光伏電池數及該溫度後,該計算模組藉由該日照度、該工作光伏電池數及該溫度求得該全域最大功率所處之該區間的一功率特性函數,以及對該功率特性函數進行微分以計算該全域最大功率點,該功率特性函數為:其中,S為該日照度,N為該工作光伏電池數,I sc 為一短路電流,K 0為一短路電流的溫度係數,T為該操作溫度,T r 為一參考溫度,I rr 為該參考溫度時的一逆向飽和電流,q為一電子電荷量,E G 為一能隙寬度,K為一波資曼常數,A為該光伏電池之P-N接面理想參數,V o 為該輸出電壓,V oc 為一開路電壓。The maximum power point tracking of a solar photovoltaic system as described in item 8 of the patent application scope, wherein the global maximum power point tracking includes: the measurement module measures the interval where the global maximum power point is located at three time points The output voltage and the output current at the same time; the calculation module estimates the insolation, the number of operating photovoltaic cells, and an operating temperature of the interval based on the output voltage and the output current at three points in time; After the sunlight, the number of working photovoltaic cells, and the temperature in the interval where the maximum power is located, the calculation module obtains the global maximum power where the maximum power is located by using the sunlight, the number of working photovoltaic cells, and the temperature. A power characteristic function of the interval, and differentiating the power characteristic function to calculate the global maximum power point, the power characteristic function is: or Among them, S is the sunlight, N is the number of working photovoltaic cells, I sc is a short-circuit current, K 0 is a temperature coefficient of a short-circuit current, T is the operating temperature, T r is a reference temperature, and I rr is the A reverse saturation current at a reference temperature, q is an electronic charge amount, E G is an energy gap width, K is a wave Ziman constant, A is an ideal parameter for the PN junction of the photovoltaic cell, and V o is the output voltage , V oc is an open circuit voltage.
TW107138476A 2018-10-31 2018-10-31 Mppt for photovoltaic system and partial shading detecting method TWI676092B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107138476A TWI676092B (en) 2018-10-31 2018-10-31 Mppt for photovoltaic system and partial shading detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107138476A TWI676092B (en) 2018-10-31 2018-10-31 Mppt for photovoltaic system and partial shading detecting method

Publications (2)

Publication Number Publication Date
TWI676092B true TWI676092B (en) 2019-11-01
TW202018450A TW202018450A (en) 2020-05-16

Family

ID=69189095

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107138476A TWI676092B (en) 2018-10-31 2018-10-31 Mppt for photovoltaic system and partial shading detecting method

Country Status (1)

Country Link
TW (1) TWI676092B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8279644B2 (en) * 2008-05-14 2012-10-02 National Semiconductor Corporation Method and system for providing maximum power point tracking in an energy generating system
TW201631433A (en) * 2015-02-26 2016-09-01 國立中山大學 Maximum power point tracking method for photovoltaic generation
CN106155170A (en) * 2016-07-15 2016-11-23 西安理工大学 A kind of solaode maximum power tracking and controlling method
CN106647921A (en) * 2017-01-19 2017-05-10 南通大学 Improved MPPT algorithm with reduced influence of partial shading on photovoltaic system
CN107168447A (en) * 2017-02-27 2017-09-15 中国科学院广州能源研究所 A kind of photovoltaic DC-to-AC converter multi-peak MPPT methods based on improvement conductance increment method
TW201827765A (en) * 2016-12-12 2018-08-01 日商豐田自動車股份有限公司 Solar power generation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8279644B2 (en) * 2008-05-14 2012-10-02 National Semiconductor Corporation Method and system for providing maximum power point tracking in an energy generating system
TW201631433A (en) * 2015-02-26 2016-09-01 國立中山大學 Maximum power point tracking method for photovoltaic generation
CN106155170A (en) * 2016-07-15 2016-11-23 西安理工大学 A kind of solaode maximum power tracking and controlling method
TW201827765A (en) * 2016-12-12 2018-08-01 日商豐田自動車股份有限公司 Solar power generation system
CN106647921A (en) * 2017-01-19 2017-05-10 南通大学 Improved MPPT algorithm with reduced influence of partial shading on photovoltaic system
CN107168447A (en) * 2017-02-27 2017-09-15 中国科学院广州能源研究所 A kind of photovoltaic DC-to-AC converter multi-peak MPPT methods based on improvement conductance increment method

Also Published As

Publication number Publication date
TW202018450A (en) 2020-05-16

Similar Documents

Publication Publication Date Title
Khan et al. Extraction of diode parameters of silicon solar cells under high illumination conditions
Reich et al. Crystalline silicon cell performance at low light intensities
TWI461882B (en) Multipoint direct-prediction method for maximum power point tracking of photovoltaic modules system and control device of photovoltaic modules array
Cotfas et al. Methods to determine the dc parameters of solar cells: A critical review
Rühle et al. Evaluating crystalline silicon solar cells at low light intensities using intensity-dependent analysis of I–V parameters
KR101065862B1 (en) Solar cell generation system tracking maximum power point according to determining partial shade of solar cell array
TWI553440B (en) Maximum power point tracking method for photovoltaic generation
TWI595744B (en) Power generation abnormality detection method and system for photovoltaic panels
JP2006093176A (en) Solar energy power generation system output estimation and evaluation method
JP2011228598A (en) Photovoltaic power generation system and photovoltaic power generation control equipment
JP5862639B2 (en) Solar cell control device
Salih et al. Performance evaluation of photovoltaic models based on a solar model tester
Schuss et al. Measurement and verification of photovoltaic (PV) simulation models
Eikelboom et al. Determination of the irradiation dependent efficiency of multicrystalline Si PV modules on basis of IV curve fitting and its influence on the annual performance
TWI676092B (en) Mppt for photovoltaic system and partial shading detecting method
JP6865950B2 (en) Photovoltaic power generation system and photovoltaic power generation control system
JP3731197B2 (en) Output measuring method and apparatus in solar power generation
TW201419009A (en) Prediction method for sun-tracking type photovoltaic system
TWI696837B (en) Mppt and cppt for photovoltaic system
Lappalainen et al. Smoothing of output power variation with increasing PV array size
Velkovski et al. Application of Incremental Conductance MPPT method for a photovoltaic generator in LabView
Hernandez et al. Practical method for estimating the power and energy delivered by photovoltaic modules operating under non‐standard conditions
Masoum et al. Voltage and current based MPPT of solar arrays under variable insolation and temperature conditions
Raina et al. A novel technique for PV panel performance prediction
Carigiet et al. Energy rating based on thermal modelling of five different PV technologies