TWI675799B - 石墨片製造方法 - Google Patents

石墨片製造方法 Download PDF

Info

Publication number
TWI675799B
TWI675799B TW107126560A TW107126560A TWI675799B TW I675799 B TWI675799 B TW I675799B TW 107126560 A TW107126560 A TW 107126560A TW 107126560 A TW107126560 A TW 107126560A TW I675799 B TWI675799 B TW I675799B
Authority
TW
Taiwan
Prior art keywords
substrate
graphite sheet
composite substrate
octadecyltrichlorosilane
manufacturing
Prior art date
Application number
TW107126560A
Other languages
English (en)
Other versions
TW202007643A (zh
Inventor
謝淑貞
Shu Chen Hsieh
Original Assignee
國立中山大學
National Sun Yat-Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中山大學, National Sun Yat-Sen University filed Critical 國立中山大學
Priority to TW107126560A priority Critical patent/TWI675799B/zh
Priority to US16/120,494 priority patent/US10787366B2/en
Application granted granted Critical
Publication of TWI675799B publication Critical patent/TWI675799B/zh
Publication of TW202007643A publication Critical patent/TW202007643A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/10Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/0149Forming nanoscale microstructures using auto-arranging or self-assembling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/165Monolayers, e.g. Langmuir-Blodgett
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating

Abstract

一種石墨片製造方法,用以製造獲得與石墨烯具有類似特性的石墨片,其包含:於一基板上形成一十八烷基三氯矽烷層,得一複合基板;於250~400℃之溫度下,對該複合基板進行退火30~90分鐘,使該十八烷基三氯矽烷層中的十八烷基三氯矽烷自行組裝形成附著於該基板上的石墨片;及將經退火之複合基板浸入水中,在40KHz之頻率、200瓦之功率下,進行超音波震盪2分鐘,使該石墨片脫離該基板。

Description

石墨片製造方法
本發明係關於一種石墨片製造方法,尤其是一種與石墨烯具有類似特性的石墨片之石墨片製造方法。
石墨烯(graphene)係呈蜂巢狀晶格(honeycomb crystal lattice)之平面薄膜,為僅具有一個碳原子厚度(約為0.34nm)之二維材料,其具有高機械強度、熱傳導及高載子轉移率等優異特性,能夠應用於多種領域。
然而,石墨烯多以習知化學氣相層積法(chemical vapor deposition,CVD)製備而成,製備過程繁瑣。有鑑於此,若是能夠以簡單的製程即能夠製造獲得與石墨烯具有類似特性的石墨片,將對石墨烯的相關應用產業上帶來極大的助益。
為解決上述問題,本發明的目的是提供一種石墨片製造方法係用以製造獲得與石墨烯具有類似特性的石墨片者。
本發明的石墨片製造方法,包含:於一基板上形成一十八烷基三氯矽烷層,得一複合基板;於250~400℃之溫度下,對該複合基板進行退火30~90分鐘,使該十八烷基三氯矽烷層中的十八烷基三氯矽烷自行組裝形成附著於該基板上的石墨片;及將經退火之複合基板浸入水中,在40KHz 之頻率、200瓦之功率下,進行超音波震盪2分鐘,使該石墨片脫離該基板。
依據上述,藉由前述的石墨片製造方法,即能夠製造獲得與石墨烯具有類似特性的石墨片(晶格間距約為0.24nm、厚度約為0.34nm),因此可以作為石墨烯的替代物,例如能夠作為表面增強拉曼散射活性基板使用,應用於分析一待測樣品中的雙酚A的濃度,為本發明之功效。
本發明的石墨片製造方法另包含:於該基板上形成該十八烷基三氯矽烷層包含:將該基板置入一十八烷基三氯矽烷溶液中,於25~35℃之溫度下靜置24小時,得一複合基板半成品;及於115℃之溫度下,對將該複合基板半成品進行退火10分鐘;如此有助於在該基板上形成厚度均一的十八烷基三氯矽烷層。
本發明的石墨片製造方法另包含:將十八烷基三氯矽烷溶於一溶劑中,以得該十八烷基三氯矽烷溶液,該溶劑為十六烷、甲苯、氯仿或二氯甲烷;如此能夠藉由該溶劑的選擇,使十八烷基三氯矽烷能夠均勻分布於該十八烷基三氯矽烷溶液中。
本發明的石墨片製造方法另包含:對該複合基板半成品進行退火前,以至少一潤洗液潤洗該複合基板半成品,以去除該複合基板半成品上的雜質及殘留物;較佳地,以該至少一潤洗液潤洗該複合基板半成品包含:依序以一第一潤洗液、一第二潤洗液及一第三潤洗液潤洗該複合基板半成品,該第一潤洗液、該第二潤洗液及該第三潤洗液分別為氯仿、異丙醇及去離子水;如此藉由該第一潤洗液、該第二潤洗液及該第三潤洗液的使用,可以去除該複合基板半成品上的雜質及殘留物,以避免該雜質及該殘留物對後續製程造成的影響。
本發明的石墨片製造方法中,該基板為一矽晶片;如此,藉由該矽晶片的平整表面,使該十八烷基三氯矽烷層中的十八烷基三氯矽烷能夠 形成矽氧鍵結(Si-O bond),因而該矽晶片可以作為支撐所形成的石墨片之良好基板。
〔第1圖〕試驗(B)中各組待測樣品的拉曼光譜曲線。
〔第2圖〕試驗(C)中各組待測樣品的拉曼光譜曲線。
〔第3圖〕試驗(D)中各組待測樣品的拉曼光譜曲線。
〔第4圖〕試驗(E)中各組待測樣品的拉曼光譜曲線。
為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下:本發明之石墨片製造方法的一實施例中,係藉由形成於一基板上的十八烷基三氯矽烷(ocatadecyltrichlorosilane,簡稱OTS)層的自組裝作用,得以於該基板上成形一石墨片,該石墨片之晶格間距約為0.24nm,且厚度約為0.34nm,與石墨烯具有類似特性。
詳而言之,工者係可以藉由塗佈、噴灑等任何習知方式於該基板上形成該十八烷基三氯矽烷層。於本實施例中,係可以將作為該基板的一矽晶片置入一十八烷基三氯矽烷溶液(濃度為1M)中,並於25~35℃之溫度下靜置24小時,得一複合基板半成品,接著再於115℃之溫度下,對該複合基板半成品進行退火(annealing)10分鐘,得一複合基板,該複合基板包含該基板及形成於該基板上的該十八烷基三氯矽烷層。又,該十八烷基三氯矽烷溶液包含十八烷基三氯矽烷及一溶劑,該溶劑可以為十六烷 (hexadecane)、甲苯(tolune)、氯仿(chloroform)或二氯甲烷(dichloromethane),使十八烷基三氯矽烷能夠均勻分布於該十八烷基三氯矽烷溶液中。
此外,為了去除附著於該複合基板半成品上的雜質及殘留物,進而防止該雜質及殘留物影響後續的製程效率,可以在對該複合基板半成品進行退火前,以至少一潤洗液潤洗該複合基板半成品。於本實施例中,係依許使用一第一潤洗液、一第二潤洗液及一第三潤洗液潤洗該複合基板半成品,該第一潤洗液、該第二潤洗液及該第三潤洗液分別為氯仿、異丙醇(isopropanol)及去離子水(deionized water)。
接著於高溫下對該複合基板進行退火,使該十八烷基三氯矽烷層中的十八烷基三氯矽烷能夠進行該自組裝作用。於本實施例中,係於250~400℃之溫度下,對該複合基板進行退火30~90分鐘,此時該十八烷基三氯矽烷層中的十八烷基三氯矽烷即能夠進行該自組裝作用,進而形成附著於該基板上的石墨片。
進一步,工者即可以自該基板上分離該石墨片。於本實施例中,係將經退火之複合基板浸泡於水中,在40KHz之頻率、200瓦之功率下,進行超音波震盪2分鐘,即可以使該石墨片脫離該基板,取得該石墨片。
為證實經該石墨片製造方法所製造獲得的石墨片確實與石墨烯具有類似特性,且可以作為表面增強拉曼散射活性基板(surface-enhanced Raman spectroscopy active substrate)使用,應用於分析待測樣品中的雙酚A的濃度,遂進行以下試驗:
(A)石墨片的特性分析
依據穿透式電子顯微鏡(transmission electron microscopy,簡稱TEM)及高解析場發射穿透式電子顯微鏡(high-resolution transmission electron microscopy,簡稱HRTEM)的分析結果可以得知,經該石墨片製造方法所製造獲得的石墨片具有0.24nm的晶格間距(lattice spacing),與石墨烯的晶格常數(lattice constant)相同。另依據原子力顯微鏡(atomic force microscopy,簡稱AFM)的表面形貌分析(surface topography)結果顯示,該石墨片的厚度約為0.34nm,與石墨烯的層間距(interlayer spacing)相當。依據上述,該石墨片確實具有與石墨烯類似的特性。
(B)石墨片作為表面增強拉曼散射活性基板的使用
本試驗係以雙酚A(bisphenol A,簡稱BPA)作為待測樣品,將雙酚A溶解於乙醇(即,95%的乙醇水溶液)中,以形成0.1M的雙酚A溶液,將2μL的雙酚A溶液滴在該石墨片(第B1組)或該矽晶片(第B2組)上,使該雙酚A溶液於室溫下乾燥後,進行拉曼光譜的分析,使用波長為532nm的雷射光,其功率為21.9mW。本試驗另以該石墨片(第B3組)及該矽晶片(第B4組)作為比較。
請參照第1圖所示,第B3組的拉曼光譜曲線僅於1341cm-1及1602cm-1處具有波峰,而第B1及B2組的拉曼光譜曲線則於1121cm-1、1188cm-1、1240cm-1、1269cm-1、1621cm-1及3072cm-1處具有波峰,然而比較第B1及B2組的拉曼光譜曲線可以得知,儘管以第B1組的石墨片或以第B2組的矽晶片均可以測得雙酚A的訊號,惟以B1組的石墨片所測得的強度明顯優於以第B2組的矽晶片所測得者,顯示該石墨片確實能夠作為表面增強拉曼散射活性基板使用。
(C)對雙酚A的靈敏度
本試驗係分別將濃度為10-1M(第C1組)、10-2M(第C2組)、10-3M(第C3組)、10-4M(第C4組)、10-5M(第C5組)及10-6M(第C6組)的雙酚A溶液作為待測樣品,續進行拉曼光譜的分析。
請參照第2圖所示,縱使針對濃度僅為10-6M的雙酚A溶液(第C6組),藉由該石墨片的使用仍能夠有效測得雙酚A的訊號,且該濃度已遠低於歐盟對雙酚A的遷移限制(specific migration limit,簡稱SML),即遷移至每公斤食物中的雙酚A不得高於0.6mg(經換算約為2.6μM)。
(D)各種塑膠用品的雙酚A之遷移量
本試驗係將兩種不同的塑膠湯匙(第D1、D2組)、嬰兒奶瓶(第D3組)、可重複使用的夾鏈袋(第D4組)及密封食品容器(第D5組)作為待測樣品,將各組待測樣品與80℃之熱水接觸1小時,再進行拉曼光譜的分析。本試驗另以濃度為10-4M的雙酚A溶液(第D6組)作為比較。
請參照第3圖所示,依據鄰近1121cm-1處的波峰(即,第3圖星號處)之波峰面積進行換算的結果,可以得知各組的待測樣品的雙酚A之遷移量約分別為1×10-5、3.2×10-6、2×10-5、1×10-6及6.3×10-7M。
(E)鹽類濃度對偵測效果的影響
本試驗係以濃度為10-3M的雙酚A溶液作為待測樣品,並於其中加入氯化鈉溶液,使各組待測樣品的氯化鈉濃度分別為0M(第E1組)、0.025M(第E2組)、0.05M(第E3組)、0.1M(第E4組)、0.25M(第E5組)、0.5M(第E6組)、1M(第E7組)及2M(第E8組),續進行拉曼光譜的分析。
請參照第4圖所示,隨著氯化鈉濃度的升高,雙酚A的訊號強度有逐漸降低的現象,然而在與人類血清樣品與人類尿液樣品相似的氯化鈉離子強度(人類血清樣品與人類尿液樣品的氯化鈉離子強度分別為0.14M及0.17M)下,仍可以清楚地測得雙酚A的訊號強度,顯示該石墨片不僅能夠適用於檢測含鹽溶液中的雙酚A,亦適用於檢測體液(如,血清或尿液)中的雙酚A。
綜上所述,藉由前述的石墨片製造方法,即能夠製造獲得與石墨烯具有類似特性的石墨片(晶格間距約為0.24nm、厚度約為0.34nm),因此可以作為石墨烯的替代物,例如能夠作為表面增強拉曼散射活性基板使用,應用於分析待測樣品中的雙酚A的濃度,為本發明之功效。
雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。

Claims (6)

  1. 一種石墨片製造方法,包含:於一基板上形成一十八烷基三氯矽烷層,得一複合基板;於250~400℃之溫度下,對該複合基板進行退火30~90分鐘,使該十八烷基三氯矽烷層中的十八烷基三氯矽烷自行組裝形成附著於該基板上的石墨片;及將經退火之複合基板浸入水中,在40KHz之頻率、200瓦之功率下,進行超音波震盪2分鐘,使該石墨片脫離該基板。
  2. 如申請專利範圍第1項所述之石墨片製造方法,其中,於該基板上形成該十八烷基三氯矽烷層包含:將該基板置入一十八烷基三氯矽烷溶液中,於25~35℃之溫度下靜置24小時,得一複合基板半成品;及於115℃之溫度下,對將該複合基板半成品進行退火10分鐘。
  3. 如申請專利範圍第2項所述之石墨片製造方法,另包含:將十八烷基三氯矽烷溶於一溶劑中,以得該十八烷基三氯矽烷溶液,該溶劑為十六烷、甲苯、氯仿或二氯甲烷。
  4. 如申請專利範圍第2項所述之石墨片製造方法,另包含:對該複合基板半成品進行退火前,以至少一潤洗液潤洗該複合基板半成品,以去除該複合基板半成品上的雜質及殘留物。
  5. 如申請專利範圍第4項所述之石墨片製造方法,其中,以該至少一潤洗液潤洗該複合基板半成品包含:依序以一第一潤洗液、一第二潤洗液及一第三潤洗液潤洗該複合基板半成品,該第一潤洗液、該第二潤洗液及該第三潤洗液分別為氯仿、異丙醇及去離子水。
  6. 如申請專利範圍第1~5項中任一項所述之石墨片製造方法,其中,該基板為一矽晶片。
TW107126560A 2018-07-31 2018-07-31 石墨片製造方法 TWI675799B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107126560A TWI675799B (zh) 2018-07-31 2018-07-31 石墨片製造方法
US16/120,494 US10787366B2 (en) 2018-07-31 2018-09-04 Method for manufacturing graphitic sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107126560A TWI675799B (zh) 2018-07-31 2018-07-31 石墨片製造方法

Publications (2)

Publication Number Publication Date
TWI675799B true TWI675799B (zh) 2019-11-01
TW202007643A TW202007643A (zh) 2020-02-16

Family

ID=69188633

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107126560A TWI675799B (zh) 2018-07-31 2018-07-31 石墨片製造方法

Country Status (2)

Country Link
US (1) US10787366B2 (zh)
TW (1) TWI675799B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201637870A (zh) * 2014-12-19 2016-11-01 康寧公司 石墨烯及用於將cvd生長石墨烯轉移至疏水性基材之無聚 合物方法
US20180162115A1 (en) * 2016-12-09 2018-06-14 Imec Vzw Method of releasing graphene from substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073048B (zh) * 2012-12-24 2015-04-22 陕西科技大学 一种液相自组装技术制备图案化的ZnO薄膜的方法
US9941380B2 (en) * 2015-11-30 2018-04-10 Taiwan Semiconductor Manufacturing Co., Ltd. Graphene transistor and related methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201637870A (zh) * 2014-12-19 2016-11-01 康寧公司 石墨烯及用於將cvd生長石墨烯轉移至疏水性基材之無聚 合物方法
US20180162115A1 (en) * 2016-12-09 2018-06-14 Imec Vzw Method of releasing graphene from substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Cheng et al., "Solvent Effects on Molecular Packing and Tribological Properties of Octadecyltrichlorosilane Films on Silicon", Langmuir, 2010, 26(11), pp 8256-8261. *

Also Published As

Publication number Publication date
US10787366B2 (en) 2020-09-29
US20200039829A1 (en) 2020-02-06
TW202007643A (zh) 2020-02-16

Similar Documents

Publication Publication Date Title
Shivayogimath et al. Do-it-yourself transfer of large-area graphene using an office laminator and water
Schranghamer et al. Review and comparison of layer transfer methods for two-dimensional materials for emerging applications
Metzger et al. Biaxial strain in graphene adhered to shallow depressions
Limbu et al. Unravelling the thickness dependence and mechanism of surface-enhanced Raman scattering on Ti3C2TX MXene nanosheets
Alemán et al. Transfer-free batch fabrication of large-area suspended graphene membranes
Tan et al. Building large-domain twisted bilayer graphene with van Hove singularity
WO2015149116A1 (en) Graphene process and product
Wen et al. Ultraclean and large-area monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition
Kim et al. Ultrasensitive and stable plasmonic surface-enhanced Raman scattering substrates covered with atomically thin monolayers: Effect of the insulating property
Ghopry et al. Au Nanoparticle/WS2 Nanodome/Graphene van der Waals heterostructure substrates for surface-enhanced Raman spectroscopy
US8419885B2 (en) Method of bonding carbon nanotubes
Wang et al. High-fidelity transfer of chemical vapor deposition grown 2D transition metal dichalcogenides via substrate decoupling and polymer/small molecule composite
Liu et al. Fabrication, characterization, and high temperature surface enhanced Raman spectroscopic performance of SiO 2 coated silver particles
Makarova et al. Self-assembled diacetylene molecular wire polymerization on an insulating hexagonal boron nitride (0001) surface
Gao et al. Recent progress in the transfer of graphene films and nanostructures
Kato et al. Fabrication and optical characterization of Si nanowires formed by catalytic chemical etching in Ag2O/HF solution
Jacobberger et al. Passivation of germanium by graphene for stable graphene/germanium heterostructure devices
Hu et al. Large‐Scale Suspended Graphene Used as a Transparent Substrate for Infrared Spectroscopy
Yang et al. Enhancing gas sensing properties of graphene by using a nanoporous substrate
TWI675799B (zh) 石墨片製造方法
Singh et al. DNA hybridization on silicon nanowires
Wang et al. A recyclable graphene/Ag/TiO 2 SERS substrate with high stability and reproducibility for detection of dye molecules
Humbert et al. Linear and nonlinear optical properties of functionalized CdSe quantum dots prepared by plasma sputtering and wet chemistry
Li et al. Protection of molecular microcrystals by encapsulation under single-layer graphene
Xiao et al. Cera alba-assisted ultraclean graphene transfer for high-performance PbI2 UV photodetectors