TWI675520B - Thin-disk laser device - Google Patents

Thin-disk laser device Download PDF

Info

Publication number
TWI675520B
TWI675520B TW106103769A TW106103769A TWI675520B TW I675520 B TWI675520 B TW I675520B TW 106103769 A TW106103769 A TW 106103769A TW 106103769 A TW106103769 A TW 106103769A TW I675520 B TWI675520 B TW I675520B
Authority
TW
Taiwan
Prior art keywords
mirror
thin
light
signal light
parabolic mirror
Prior art date
Application number
TW106103769A
Other languages
Chinese (zh)
Other versions
TW201830808A (en
Inventor
金南成
金聖勳
陳大鉉
申東晙
Original Assignee
Eo科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eo科技股份有限公司 filed Critical Eo科技股份有限公司
Publication of TW201830808A publication Critical patent/TW201830808A/en
Application granted granted Critical
Publication of TWI675520B publication Critical patent/TWI675520B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094084Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light with pump light recycling, i.e. with reinjection of the unused pump light, e.g. by reflectors or circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Optical Head (AREA)
  • Lasers (AREA)

Abstract

本發明揭示一種薄碟雷射裝置,包括:第一抛物面反射鏡 及第二抛物面反射鏡,彼此面對,且同軸地配置;第一薄碟及第二薄碟,分別具備雷射介質與反射面,分別配置至第一抛物面反射鏡及第二抛物面反射鏡的頂點而與第一抛物面反射鏡及第二抛物面反射鏡一同形成激升光的多路徑;第一內部鏡及第二內部鏡,配置至第一抛物面反射鏡與第二抛物面反射鏡之間的空間而反射訊號光;以及多個鏡,配置至第一內部鏡與第二內部鏡之間的訊號光的光路徑上;且第一內部鏡、第二內部鏡及多個鏡藉由在第一薄碟與第二薄碟之間反覆反射訊號光而放大上述訊號光。 The invention discloses a thin-disk laser device, which includes: a first parabolic reflector And the second parabolic mirror, which face each other and are arranged coaxially; the first thin disc and the second thin disc are respectively provided with a laser medium and a reflecting surface, and are respectively arranged to the first parabolic mirror and the second parabolic mirror Apex and the first parabolic mirror and the second parabolic mirror form a multipath of the rising light; the first internal mirror and the second internal mirror are arranged to the space between the first parabolic mirror and the second parabolic mirror And reflecting the signal light; and a plurality of mirrors arranged on the light path of the signal light between the first internal mirror and the second internal mirror; and the first internal mirror, the second internal mirror, and the plurality of mirrors are arranged in the first The signal light is repeatedly reflected between the thin disc and the second thin disc to amplify the signal light.

Description

薄碟雷射裝置 Thin-disk laser device

本發明是有關於一種雷射裝置,更詳細而言,有關於一種利用薄碟形狀的雷射介質的薄碟雷射裝置。 The present invention relates to a laser device, and more specifically, to a thin-disk laser device using a thin-disk-shaped laser medium.

本發明是有關於一種可有效地構成進行用於如半導體、顯示器、印刷電路板(Printed Circuit Board,PCB)、智慧型手機等的微電子產業製品及零件的超微/非熱加工的高輸出皮秒或飛秒雷射/裝置的高效率雷射裝置。 The present invention relates to a high-output, high-output, ultra-micro / non-thermal processing product capable of effectively constituting microelectronic industrial products and parts such as semiconductors, displays, printed circuit boards (PCBs), and smart phones. High efficiency laser device for picosecond or femtosecond lasers / devices.

薄碟雷射具有可充分地冷卻的厚度較薄(薄碟)的雷射活性介質(放大器介質)。因此,冷卻效率非常高的薄碟雷射的概念適用至數千瓦範圍的較高的雷射功率。然而,因放大器介質的厚度較薄而藉由雷射活性介質進行的通過中的1次或較少次數的通過幾乎不吸收泵影印,因此於雷射活性介質的激升時,若不提供適當的措施,則導致雷射系統的效率較低。為了達成滿足於雷射活性介質中的雷射振盪或放大條件所需的最小能量或最小雷射功率,通常要求具有泵影印的多路徑(multiple pass)吸收構造的多路徑激升構造。 A thin-disk laser has a thin-thin (thin-disk) laser-active medium (amplifier medium) that can be sufficiently cooled. Therefore, the concept of a thin-disk laser with very high cooling efficiency is applicable to higher laser power in the range of several kilowatts. However, because the thickness of the amplifier medium is thin, one or less passes of the laser active medium pass hardly absorb the pump photocopy. Therefore, if the laser active medium is surged, it is not appropriate to provide Measures lead to low efficiency of the laser system. In order to achieve the minimum energy or minimum laser power required to satisfy the laser oscillation or amplification conditions in a laser active medium, a multi-path surge structure with a multi-pass absorption structure of pump photocopying is generally required.

先前技術1(EP1252687)為通常的薄碟雷射技術,使用兩對V字形稜鏡反射鏡、一個抛物面反射鏡、一個薄碟雷射介質,並且為了實現雷射光激升而進行數十次以上的多路徑激升,若無法超精確地對兩對稜鏡反射鏡進行光軸排列,則會於激升光重疊中產生誤差而激升效率下降,放大率變差。並且,因使用一個薄碟雷射介質而於進行1次薄碟雷射介質往復時吸收率非常低,因此需要數十次的往復吸收過程。往復次數越多,則需進行精確重疊的激升光的個數越增加而對光軸排列要求的精確度變得更高,從而對光軸排列誤差、機械加工誤差與長期可靠性相關的機械光學穩定性誤差等的負擔大幅增加。 The prior art 1 (EP1252687) is a common thin-disk laser technology, which uses two pairs of V-shaped chirped mirrors, a parabolic mirror, and a thin-disk laser medium, and performs dozens of times in order to achieve laser light surge. If the multi-axis surge of the laser is not accurately aligned with the optical axis of the two pairs of chirped mirrors, an error will occur in the overlap of the surge light, the surge efficiency will be reduced, and the magnification will be deteriorated. In addition, since one thin disk laser medium is used, the absorption rate is very low when the thin disk laser medium is reciprocated once, so it takes tens of reciprocating absorption processes. The greater the number of reciprocations, the more the number of laser beams that need to be accurately overlapped, and the higher the accuracy of the optical axis alignment requirements, so that the optical axis alignment errors, machining errors, and long-term reliability-related machinery The burden on optical stability errors and the like has increased significantly.

並且,為了克服先前技術1的問題而提出先前技術2(US2013-0039378)。先前技術2為了克服先前技術1的需要進行超精確的光軸排列的缺點而呈如下構造:藉由使用兩個抛物面反射鏡、一個薄碟雷射介質、一個調整鏡而將入射至抛物面反射鏡的平行光入射至抛物面反射鏡的焦點的優點極大化,藉此可減輕需要進行超精確的光軸排列的負擔;但因使用一個薄碟雷射介質而於一個薄碟模組中所需的通常為24次或48次以上的數十次以上的往復吸收過程相同,因此具有於單一放大器中增大放大效率時效率略低的問題。 Furthermore, in order to overcome the problems of the prior art 1, a prior art 2 (US2013-0039378) is proposed. The prior art 2 has the following structure in order to overcome the shortcomings of the prior art 1 that require ultra-accurate optical axis alignment: by using two parabolic mirrors, a thin disk laser medium, and an adjustment mirror, the parabolic mirror is incident The advantage of the parallel light incident on the focal point of the parabolic mirror is maximized, thereby reducing the burden of the need for ultra-precise optical axis alignment; however, the use of a thin disk laser medium in a thin disk module requires Usually, the reciprocating absorption process is the same for dozens or more of 24 times or 48 times or more. Therefore, there is a problem that the efficiency is slightly lower when the amplification efficiency is increased in a single amplifier.

並且,先前技術3(CN102684051A)是為了克服先前技術1的問題而提出。先前技術3呈如下構造:藉由使用兩個抛物面反射鏡、兩個薄碟雷射介質而可將入射至抛物面反射鏡的平行 光入射至抛物面反射鏡的焦點的優點極大化;但由於將兩個抛物面反射鏡同時用作激升光用多路徑鏡與訊號光用共振器,因此具有進行超精確的光軸排列的負擔加重的問題。 In addition, the prior art 3 (CN102684051A) is proposed to overcome the problems of the prior art 1. The prior art 3 has a structure in which parallel beams incident on the parabolic mirror can be incident by using two parabolic mirrors and two thin-disk laser media. The advantage of the light incident on the focal point of the parabolic mirror is maximized; however, the use of two parabolic mirrors as both a multipath mirror for a rising light and a resonator for a signal light increases the burden of super-accurate optical axis alignment The problem.

本發明用以解決上述問題,目的在於獲得雷射共振器或雷射放大器輸出,並且使光學元件的排列更容易。 The present invention aims to solve the above problems, and aims to obtain the output of a laser resonator or a laser amplifier and make the arrangement of optical elements easier.

本發明的一實施態樣的薄碟雷射裝置包括:第一抛物面反射鏡及第二抛物面反射鏡,彼此面對,且同軸地配置;第一薄碟及第二薄碟,分別包括雷射介質與位於上述雷射介質的背面的反射面,分別配置至上述第一抛物面反射鏡及上述第二抛物面反射鏡的頂點而與上述第一抛物面反射鏡及上述第二抛物面反射鏡一同形成激升光的多路徑;第一內部鏡及第二內部鏡,配置至上述第一抛物面反射鏡與上述第二抛物面反射鏡之間的空間而反射訊號光;以及多個鏡,為了連接上述第一內部鏡與上述第二內部鏡之間而配置至訊號光的光路徑上;且上述第一內部鏡、上述第二內部鏡及上述多個鏡於上述第一薄碟與上述第二薄碟之間反覆反射訊號光而放大上述訊號光。 A thin disk laser device according to an embodiment of the present invention includes: a first parabolic mirror and a second parabolic mirror, which face each other and are arranged coaxially; the first thin disk and the second thin disk each include a laser The medium and the reflective surface located on the back of the laser medium are respectively arranged at the vertices of the first parabolic mirror and the second parabolic mirror to form a sharp rise together with the first parabolic mirror and the second parabolic mirror. Multipath of light; a first internal mirror and a second internal mirror arranged to reflect the signal light to a space between the first parabolic mirror and the second parabolic mirror; and a plurality of mirrors for connecting the first interior Disposed between the mirror and the second internal mirror on the optical path of the signal light; and the first internal mirror, the second internal mirror, and the plurality of mirrors are between the first thin disk and the second thin disk The signal light is repeatedly reflected to amplify the signal light.

在一實施例中,上述第一內部鏡能夠以自上述第一內部鏡入射於上述第一薄碟的訊號光向上述第一內部鏡側反射的方式配置,上述第二內部鏡以自上述第二內部鏡入射於上述第二薄碟 的訊號光向上述第二內部鏡側反射的方式配置。 In an embodiment, the first internal mirror can be configured in such a manner that signal light incident on the first thin disc from the first internal mirror is reflected toward the first internal mirror side, and the second internal mirror is configured from the first internal mirror. Two internal mirrors are incident on the second thin disk The signal light is configured to be reflected toward the second internal mirror side.

在一實施例中,上述第一內部鏡可位於上述第一薄碟的正面的法線上或上述法線的附近,上述第二內部鏡位於上述第二薄碟的正面的法線上或上述法線的附近。 In an embodiment, the first internal mirror may be located on or near the normal to the front surface of the first thin disk, and the second internal mirror may be located on the normal to the front surface of the second thin disk or the normal. Nearby.

在一實施例中,訊號光不於上述第一抛物面反射鏡及上述第二抛物面反射鏡反射。 In one embodiment, the signal light is not reflected by the first parabolic mirror and the second parabolic mirror.

在一實施例中,上述薄碟雷射裝置更包括供給種子光的種子光源,上述第一薄碟及上述第二薄碟可將種子光放大成訊號光。 In one embodiment, the thin-disk laser device further includes a seed light source for supplying seed light, and the first thin disk and the second thin disk can amplify the seed light into signal light.

在一實施例中,自上述種子光源射出的種子光可為偏光的雷射光。 In one embodiment, the seed light emitted from the seed light source may be polarized laser light.

一實施例的薄碟雷射裝置可更包括光路徑轉換器,上述光路徑轉換器配置至上述第一薄碟與上述第二薄碟之間的訊號光的光路徑上,根據控制訊號變更訊號光的路徑而向外部輸出。 The thin disc laser device according to an embodiment may further include an optical path converter, and the optical path converter is arranged on the optical path of the signal light between the first thin disc and the second thin disc, and the signal is changed according to the control signal. The light path is output to the outside.

在一實施例中,上述光路徑轉換器可包括:電光元件,根據控制訊號而變更訊號光的偏光;以及偏光分束器,根據偏光方向而分離訊號光。 In one embodiment, the optical path converter may include: an electro-optic element that changes the polarization of the signal light according to the control signal; and a polarizing beam splitter that separates the signal light according to the polarization direction.

在一實施例中,可藉由上述第一內部鏡及上述第二內部鏡而分別將排列用光束照射至上述第一薄碟及上述第二薄碟。 In an embodiment, the first beam and the second beam can be irradiated to the first thin disk and the second thin disk by the first internal mirror and the second internal mirror, respectively.

本發明的另一實施態樣的薄碟雷射裝置可包括:第一抛物面反射鏡及第二抛物面反射鏡,彼此面對,且同軸地配置;第一薄碟及第二薄碟,分別包括雷射介質與位於上述雷射介質的背 面的反射面,配置至上述第一抛物面反射鏡及上述第二抛物面反射鏡的頂點而與上述第一抛物面反射鏡及上述第二抛物面反射鏡一同形成激升光的多路徑;第一內部鏡及第二內部鏡,配置至上述第一抛物面反射鏡與上述第二抛物面反射鏡之間的空間而反射自上述第一薄碟及上述第二薄碟振盪的第一訊號光及第二訊號光;以及第一訊號光輸出耦合器及第二訊號光輸出耦合器,分別使自上述第一內部鏡及上述第二內部鏡反射的第一訊號光及第二訊號光的一部分再反射至上述第一內部鏡及上述第二內部鏡,且使另一部分輸出。 The thin disc laser device according to another embodiment of the present invention may include: a first parabolic mirror and a second parabolic mirror, which face each other and are arranged coaxially; the first thin disc and the second thin disc, each including Laser medium and the back of the laser medium The reflecting surface of the surface is arranged to the apex of the first parabolic mirror and the second parabolic mirror, and forms a multipath of the rising light together with the first parabolic mirror and the second parabolic mirror; a first internal mirror And a second internal mirror, which are disposed in a space between the first parabolic reflector and the second parabolic reflector and reflect the first signal light and the second signal light oscillated from the first thin disk and the second thin disk ; And a first signal light output coupler and a second signal light output coupler, respectively, reflecting part of the first signal light and the second signal light reflected from the first internal mirror and the second internal mirror to the first An internal mirror and the second internal mirror, and output another part.

本發明的又一實施態樣的薄碟雷射裝置包括:第一抛物面反射鏡及第二抛物面反射鏡,彼此面對,且同軸地配置;第一薄碟及第二薄碟,分別包括雷射介質與位於上述雷射介質的背面的反射面,分別配置至上述第一抛物面反射鏡及上述第二抛物面反射鏡的頂點而與上述第一抛物面反射鏡及上述第二抛物面反射鏡一同形成激升光的多路徑;以及第一內部鏡,配置至上述第一抛物面反射鏡與上述第二抛物面反射鏡之間的空間;且上述第一內部鏡可配置至上述第一薄碟的正面,以使自上述第一內部鏡入射於上述第一薄碟的第一訊號光向上述第一內部鏡側反射。 A thin disc laser device according to another embodiment of the present invention includes: a first parabolic mirror and a second parabolic mirror, which face each other and are arranged coaxially; the first thin disc and the second thin disc each include a laser The radiation medium and the reflection surface located on the back of the laser medium are respectively arranged at the vertices of the first parabolic mirror and the second parabolic mirror, and form an excitation together with the first parabolic mirror and the second parabolic mirror. Multipath of ascending light; and a first internal mirror disposed to a space between the first parabolic mirror and the second parabolic mirror; and the first internal mirror may be disposed to a front surface of the first thin disk to The first signal light incident on the first thin disk from the first internal mirror is reflected toward the first internal mirror side.

一實施例的薄碟雷射裝置更包括配置至上述第一抛物面反射鏡與上述第二抛物面反射鏡之間的空間的第二內部鏡,上述第二內部鏡可配置至上述第二薄碟的正面,以使自上述第二內部鏡入射於上述第二薄碟的第二訊號光向上述第二內部鏡側反 射。 The thin-disk laser device of an embodiment further includes a second internal mirror disposed to a space between the first parabolic mirror and the second parabolic mirror, and the second internal mirror may be disposed to the second thin disk. The front side, so that the second signal light incident on the second thin disc from the second inner mirror is reflected toward the second inner mirror side Shoot.

一實施例的薄碟雷射裝置可更包括多個鏡,上述多個鏡將自上述第一內部鏡傳輸的第一訊號光發射至上述第二內部鏡,將自上述第二內部鏡傳輸的第二訊號光發射至上述第一內部鏡。 The thin-disk laser device of an embodiment may further include a plurality of mirrors, the plurality of mirrors transmitting the first signal light transmitted from the first internal mirror to the second internal mirror, and transmitting the light transmitted from the second internal mirror. The second signal light is emitted to the first internal mirror.

在一實施例中,第一訊號光與第二訊號光可光學分離而分別於上述第一薄碟與上述第二薄碟中單獨地放大。 In one embodiment, the first signal light and the second signal light can be optically separated and separately amplified in the first thin disc and the second thin disc, respectively.

在一實施例中,第一訊號光及第二訊號光不於上述第一抛物面反射鏡及上述第二抛物面反射鏡反射。 In one embodiment, the first signal light and the second signal light are not reflected by the first parabolic mirror and the second parabolic mirror.

一實施例的薄碟雷射裝置更包括設置至上述第一抛物面反射鏡的外側的第二訊號光全反射鏡及第二訊號光輸出耦合器,上述第一抛物面反射鏡包括第二訊號光的輸出耦合器側通路及全反射鏡側通路,自上述第二訊號光全反射鏡反射的第二訊號光藉由上述全反射鏡側通路而朝向上述第二薄碟,自上述第二薄碟反射的第二訊號光藉由上述輸出耦合器側通路而朝向上述第二訊號光輸出耦合器,第二訊號光的一部分可自上述第二訊號光輸出耦合器再反射至上述第二薄碟,第二訊號光的另一部分通過第二訊號光輸出耦合器而成為輸出光沿行進方向輸出,藉此可構成第二訊號光的共振器,第二訊號光全反射鏡與第二訊號光輸出耦合器可彼此交換而配置。 The thin-disk laser device according to an embodiment further includes a second signal light total reflection mirror and a second signal light output coupler disposed outside the first parabolic mirror, and the first parabolic mirror includes a second signal light. The output coupler side path and the total reflection mirror side path, the second signal light reflected from the second signal light total reflection mirror is directed toward the second thin disc through the total reflection mirror side path, and is reflected from the second thin disc. The second signal light is directed toward the second signal light output coupler through the output coupler side path, and a part of the second signal light can be reflected from the second signal light output coupler to the second thin disk. The other part of the second signal light passes through the second signal light output coupler and becomes the output light output in the traveling direction, thereby forming a second signal light resonator, the second signal light total reflection mirror and the second signal light output coupler. Interchangeable and configurable.

一實施例的薄碟雷射裝置可更包括多個鏡,上述多個鏡可藉由上述輸出耦合器側通路而向第二薄碟發射自上述第一薄碟藉由上述第一內部鏡傳輸的第一訊號光,將自上述第二薄碟再反 射而通過上述輸出耦合器側通路的第二訊號光再次發射至上述第一內部鏡。 The thin disc laser device of an embodiment may further include a plurality of mirrors, and the plurality of mirrors may be transmitted to the second thin disc through the output coupler side path from the first thin disc to be transmitted through the first internal mirror. Of the first signal light will be reflected from the second thin disc The second signal light transmitted through the output coupler side path is emitted to the first internal mirror again.

本發明的又一實施態樣的薄碟雷射裝置可包括:第一抛物面反射鏡;第二抛物面反射鏡,與上述第一抛物面反射鏡彼此面對且同軸地配置,包括第一訊號光的第一輸出耦合器側通路與第一全反射鏡側通路;第一薄碟及第二薄碟,分別包括雷射介質與位於上述雷射介質的背面的反射面,分別配置至上述第一抛物面反射鏡及上述第二抛物面反射鏡的頂點而與上述第一抛物面反射鏡及上述第二抛物面反射鏡一同形成激升光的多路徑;第一訊號光輸出耦合器,配置至上述第二抛物面反射鏡的外圍,反射訊號光的一部分而使其藉由上述第一輸出耦合器側通路直接朝向上述第一薄碟,且使第一訊號光的一部分輸出;以及第一訊號光全反射鏡,配置至上述第二抛物面反射鏡的外圍,將來自上述第一薄碟的訊號光再反射至上述第一薄碟。 A thin-disk laser device according to another embodiment of the present invention may include: a first parabolic reflector; and a second parabolic reflector, which are arranged facing each other and coaxially with the first parabolic reflector, including the first signal light. The first output coupler side passage and the first total reflection mirror side passage; the first thin plate and the second thin plate, respectively, include a laser medium and a reflective surface located on a back surface of the laser medium, and are respectively disposed on the first parabolic surface. And the first parabolic mirror and the second parabolic mirror form a multi-path of the rising light; the first signal light output coupler is arranged to the second parabolic reflection The periphery of the mirror reflects a part of the signal light so that it directly faces the first thin disc through the first output coupler side path and outputs a part of the first signal light; and a first signal light total reflection mirror configured To the periphery of the second parabolic reflector, the signal light from the first thin disc is reflected to the first thin disc again.

一實施例的薄碟雷射裝置更包括配置至上述第一抛物面反射鏡的外圍的第二訊號光輸出耦合器及第二訊號光全反射鏡,於上述第一抛物面反射鏡設置第二訊號光的第二輸出耦合器側通路與第二全反射鏡側通路,上述第一訊號光輸出耦合器反射第二訊號光的一部分而使其藉由上述第二輸出耦合器側訊號光通路直接朝向上述第一薄碟,且使第二訊號光輸出,上述訊號光全反射鏡藉由上述第二全反射鏡側通路而將來自上述第一薄碟的第二訊號光再反射至上述第一薄碟。 The thin-disk laser device according to an embodiment further includes a second signal light output coupler and a second signal light total reflection mirror arranged to the periphery of the first parabolic mirror, and a second signal light is disposed on the first parabolic mirror. The second output-coupler-side path and the second total-mirror-side path, the first signal optical output coupler reflects a part of the second signal light so that it directly faces the above through the second output coupler-side signal optical path. The first thin disc, and the second signal light is output, and the signal light total reflection mirror reflects the second signal light from the first thin disc to the first thin disc through the second total mirror side path; .

在一實施例中,第一訊號光及第二訊號光不於上述第一抛物面反射鏡及上述第二抛物面反射鏡反射。 In one embodiment, the first signal light and the second signal light are not reflected by the first parabolic mirror and the second parabolic mirror.

在一實施例中,上述第一薄碟及上述第二薄碟可相對於上述第一抛物面反射鏡及上述第二抛物面反射鏡的光軸傾斜。 In one embodiment, the first thin disc and the second thin disc may be inclined with respect to the optical axes of the first parabolic mirror and the second parabolic mirror.

一實施例的薄碟雷射裝置可更包括分別配置至上述第一薄碟及上述第二薄碟的背面的第一散熱器及第二散熱器。 The thin-disk laser device of an embodiment may further include a first heat sink and a second heat sink respectively disposed on the back of the first thin disk and the second thin disk.

在一實施例中,可分別於上述第一抛物面反射鏡及上述第二抛物面反射鏡的頂點設置安裝上述第一薄碟及上述第二薄碟的第一安裝孔及第二安裝孔。 In one embodiment, the first parabolic mirror and the second parabolic mirror may be respectively provided with a first mounting hole and a second mounting hole for mounting the first thin disc and the second thin disc at the apex of the parabolic mirror.

一實施例的薄碟雷射裝置可更包括出射激發上述雷射介質的第一激升光的第一激升光源,於上述第一抛物面反射鏡形成使上述第一激升光入射至上述第一抛物面反射鏡與第二抛物面反射鏡之間的空間的第一激升光入射口。 The thin-disk laser device according to an embodiment may further include a first laser light source that emits first laser light that excites the laser medium, and is formed on the first parabolic reflector so that the first laser light is incident on the first laser light. A first laser light entrance in a space between a parabolic mirror and a second parabolic mirror.

一實施例的薄碟雷射裝置可更包括出射激發上述雷射介質的第二激升光的第二激升光源。 The thin-disk laser device according to an embodiment may further include a second laser light source that emits the second laser light that excites the laser medium.

在一實施例中,可於上述第一抛物面反射鏡形成使上述第二激升光入射至上述第一抛物面反射鏡與第二抛物面反射鏡之間的空間的第二激升光入射口。 In one embodiment, the second parabolic mirror may be formed on the first parabolic mirror with the second parabolic mirror incident on the space between the first parabolic mirror and the second parabolic mirror.

上述第一激升光入射口與上述第二激升光入射口能夠以上述第一抛物面反射鏡的頂點為基準而左右對稱地形成。 The first laser-light entrance and the second laser-light entrance can be formed symmetrically on the left and right based on the vertex of the first parabolic mirror.

在一實施例中,可於上述第二抛物面反射鏡形成使上述第二激升光入射至上述第一抛物面反射鏡與第二抛物面反射鏡之 間的空間的第二激升光入射口。 In one embodiment, the second parabolic mirror may be formed so that the second excitation light enters the first parabolic mirror and the second parabolic mirror. Space for the second rising light entrance.

在一實施例中,上述第二激升光可藉由上述第二激升光入射口而入射至上述第一抛物面反射鏡與第二抛物面反射鏡之間的空間。 In one embodiment, the second rising light may be incident on a space between the first parabolic mirror and the second parabolic mirror through the second rising light incident port.

一實施例的薄碟雷射裝置可更包括第三激升光源及第四激升光源,上述第三激升光源及第四激升光源出射激發上述雷射介質的第三激升光及第四激升光。 The thin-disk laser device of an embodiment may further include a third laser source and a fourth laser source. The third laser source and the fourth laser source emit the third laser source and the third laser source that excite the laser medium. Four laser rises.

一實施例的薄碟雷射裝置可更包括:激升光束模式觀察裝置,所述激升光束模式觀察裝置拍攝形成至所述第一薄碟及所述第二薄碟的正面的第一激升光點及第二激升光點。 The thin-disk laser device according to an embodiment may further include: a rising-beam mode observation device that photographs the first laser formed on the front surfaces of the first and second thin disks. The rising point and the second exciting rising point.

上述實施例的薄碟雷射裝置於一個薄碟模組中設置兩個薄碟而與兩個抛物面反射鏡一同使用,藉此僅藉由一個薄碟模組即可輸入為先前激升功率的2倍的總激升功率,因此於相同的最大溫度動作條件下亦可獲得2倍的薄碟雷射輸出或2倍的薄碟放大器輸出。 The thin disk laser device of the above embodiment is provided with two thin disks in one thin disk module and is used together with two parabolic reflectors, so that only one thin disk module can be used to input the previously surged power. 2 times the total surge power, so you can also get 2 times the output of the thin disk laser or 2 times the output of the thin disk amplifier under the same maximum temperature operating conditions.

上述實施例的薄碟雷射裝置於一個薄碟模組中設置兩個薄碟而與兩個抛物面反射鏡一同使用,藉此即便對一個薄碟模組輸入與先前相同的總激升功率,亦可將輸入至各薄碟的激升功率減少至先前的一半,因此可將溫度動作條件減少至一半而獲得更穩定的薄碟雷射動作或薄碟放大器動作。 The thin disk laser device of the above embodiment is provided with two thin disks in one thin disk module and is used together with two parabolic reflectors, so that even if a thin disk module is inputted with the same total surge power as before, It is also possible to reduce the surge power input to each thin disk to the previous half, so the temperature operating conditions can be reduced to half to obtain a more stable thin disk laser operation or thin disk amplifier operation.

上述實施例的薄碟雷射裝置於一個薄碟模組中設置兩 個薄碟及兩個抛物面反射鏡,於兩個抛物面反射鏡之間的大致中間設置變更雷射訊號光的行進方向的兩個反射鏡,藉此於將薄碟模組組裝成雷射時,可順利地進行自我振盪(Self-Lasing)。 The thin disk laser device of the above embodiment is provided with two thin disk modules in one thin disk module. Two thin discs and two parabolic reflectors, and two reflectors that change the traveling direction of the laser signal light are arranged approximately in the middle between the two parabolic reflectors, thereby assembling the thin disc module into a laser, Self-Lasing can be performed smoothly.

上述實施例的薄碟雷射裝置於一個薄碟模組中設置兩個薄碟及兩個抛物面反射鏡,於兩個抛物面反射鏡之間的大致中間設置變更雷射訊號光的行進方向的兩個反射鏡,藉此於組裝薄碟模組時,可更容易地排列光學元件。 The thin-disk laser device of the above embodiment includes two thin-disks and two parabolic reflectors in a thin-disk module. Two, which are located approximately in the middle of the two parabolic reflectors, change the travel direction of the laser signal light. Mirrors, which make it easier to arrange optical components when assembling thin-disk modules.

上述實施例的薄碟雷射裝置於薄碟模組中設置可實時觀察激升光點的激升光模式觀察裝置,藉此可將各薄碟設置至可觀察且無機械干涉的位置而觀察數十次以上的激升光點實質上完全重疊的情形,可實質上以可實現重疊的方式進行調節,因此可實現順利且有效的往復激升吸收。 In the thin disk laser device of the above embodiment, a laser light mode observation device capable of real-time observation of the rising light point is set in the thin disk module, whereby each thin disk can be set to an observable position without mechanical interference for observation In the case where the spots of light surges are substantially completely overlapped dozens of times, the overlap can be adjusted substantially so that smooth and effective back-and-forth surge absorption can be achieved.

100、200、300、400、500、600、700、800‧‧‧薄碟雷射裝置 100, 200, 300, 400, 500, 600, 700, 800‧‧‧ thin disc laser devices

111、112‧‧‧薄碟 111, 112‧‧‧ thin

111a、112a‧‧‧法線 111a, 112a‧‧‧normal

115、116‧‧‧散熱器 115, 116‧‧‧ Radiator

121、122、321、322、421、422、521、522、621、622、721、722、821、822‧‧‧抛物面反射鏡 121, 122, 321, 322, 421, 422, 521, 522, 621, 622, 721, 722, 821, 822 ...

123、124‧‧‧安裝孔 123, 124‧‧‧ mounting holes

125、525、526、625、626、725、726、727、728、825‧‧‧激升光入射口 125, 525, 526, 625, 626, 725, 726, 727, 728, 825‧‧‧ laser light entrance

130‧‧‧種子光源 130‧‧‧ seed light source

140‧‧‧訊號光光學系統 140‧‧‧Signal Optical System

141、144‧‧‧偏光分束器 141, 144‧‧‧‧ Polarized Beamsplitters

142‧‧‧法拉第旋轉器 142‧‧‧Faraday rotator

143‧‧‧半波長板 143‧‧‧Half Wave Plate

145‧‧‧1/4波長板 145‧‧‧1 / 4 wave plate

146‧‧‧波克斯盒 146‧‧‧Pox Box

150、551、552、651、652、751、752、753、754、851、852‧‧‧激升光源 150, 551, 552, 651, 652, 751, 752, 753, 754, 851, 852‧‧‧

161、162‧‧‧激升光束模式觀察裝置 161, 162‧‧‧Surge-beam mode observation device

241、242、341、345‧‧‧輸出耦合器 241, 242, 341, 345‧‧‧ output couplers

323、324、326、327、423、424‧‧‧通路 323, 324, 326, 327, 423, 424‧‧‧ access

441、445‧‧‧訊號光輸出耦合器 441、445‧‧‧Signal optical output coupler

442‧‧‧第一訊號光全反射鏡 442‧‧‧The first signal total reflector

444‧‧‧第二訊號光內部鏡 444‧‧‧Second Signal Light Endoscope

L‧‧‧種子光 L‧‧‧ Seed Light

L1、L2‧‧‧光 L1, L2‧‧‧‧light

244、246、343、346、443、446‧‧‧訊號光 244, 246, 343, 346, 443, 446‧‧‧ signal light

M1、M2、M3、M4、M5、M6、M7、M8‧‧‧鏡 M1, M2, M3, M4, M5, M6, M7, M8‧‧‧ mirror

243、245、342、344‧‧‧全反射鏡 243, 245, 342, 344‧‧‧ Total reflection mirror

OA‧‧‧光軸 OA‧‧‧Optical axis

P、P1、P2、P3、P4‧‧‧激升光 P, P1, P2, P3, P4

S1、S2、S3、S4、S5、S6、S7、S8、S9、S11、S10、S12、S13‧‧‧位置 S1, S2, S3, S4, S5, S6, S7, S8, S9, S11, S10, S12, S13‧‧‧ position

S1_1、S1_2、S1_3、S1_4、S1_5、S1_6、S1_7、S1_8、S1_9、S1_10、S1_11、S1_12、S1_13、S2_1、S2_2、S2_3、S2_4、S2_5、S2_6、S2_7、S2_8、S2_9、S2_10、S2_11、S2_12、S2_13‧‧‧激升光點 S1_1, S1_2, S1_3, S1_4, S1_5, S1_6, S1_7, S1_8, S1_9, S1_10, S1_11, S1_12, S1_13, S2_1, S2_2, S2_3, S2_7, S2_4, S2_5, S2_6, S2_2, S2_7, S2_7, S2_13‧‧‧Spotlight

θ1、θ2‧‧‧角度 θ1, θ2‧‧‧ angle

圖1是本發明的一實施例的薄碟雷射裝置的概略構成圖。 FIG. 1 is a schematic configuration diagram of a thin disk laser device according to an embodiment of the present invention.

圖2表示圖1的薄碟雷射裝置的激升光的光線路徑。 FIG. 2 shows a ray path of the excitation light of the thin-disk laser device of FIG. 1. FIG.

圖3a及圖3b表示圖1的薄碟雷射裝置的形成至第一抛物面反射鏡及第二抛物面反射鏡的激升光點及激升光的路徑。 FIGS. 3 a and 3 b show the formation of the thin-disk laser device of FIG. 1 to the first parabolic mirror and the second parabolic mirror's rising light point and the path of the rising light.

圖4a至圖4c分別說明圖1的薄碟雷射裝置的種子光源的入射、放大及輸出。 4a to 4c illustrate the incidence, amplification, and output of the seed light source of the thin-disk laser device of FIG. 1, respectively.

圖5是本發明的另一實施例的薄碟雷射裝置的概略構成圖。 5 is a schematic configuration diagram of a thin-disk laser device according to another embodiment of the present invention.

圖6是本發明的又一實施例的薄碟雷射裝置的概略構成圖。 FIG. 6 is a schematic configuration diagram of a thin-disk laser device according to still another embodiment of the present invention.

圖7是本發明的又一實施例的薄碟雷射裝置的概略構成圖。 FIG. 7 is a schematic configuration diagram of a thin disk laser device according to still another embodiment of the present invention.

圖8是本發明的又一實施例的薄碟雷射裝置的概略構成圖。 FIG. 8 is a schematic configuration diagram of a thin-disk laser device according to still another embodiment of the present invention.

圖9a及圖9b表示圖8的薄碟雷射裝置的形成至第一抛物面反射鏡及第二抛物面反射鏡的激升光點及激升光的路徑。 9a and 9b show the formation of the thin-disk laser device of FIG. 8 to the first parabolic mirror and the second parabolic mirror's excitation light point and the path of the excitation light.

圖10是本發明的又一實施例的薄碟雷射裝置的概略構成圖。 FIG. 10 is a schematic configuration diagram of a thin-disk laser device according to still another embodiment of the present invention.

圖11是本發明的又一實施例的薄碟雷射裝置的概略構成圖。 11 is a schematic configuration diagram of a thin disk laser device according to still another embodiment of the present invention.

圖12是本發明的又一實施例的薄碟雷射裝置的概略構成圖。 FIG. 12 is a schematic configuration diagram of a thin-disk laser device according to still another embodiment of the present invention.

參照與隨附圖式一同進行後述的實施例,本發明的優點、特徵及達成上述優點與特徵的方法變明確。然而,本發明並不限定於以下所揭示的實施例,能夠以不同的各種形態實現,這些實施例僅是為了使本發明的揭示較為完整,且使於本發明所屬技術領域內具有常識者完全理解發明的範圍而提供,本發明僅由申請專利範圍定義。於整篇說明書中,相同的參照符號表示相同的構成要素,為了說明的明確性,可於圖中誇張地表示各構成要素的尺寸或厚度。 The advantages and features of the present invention and the method for achieving the above advantages and features will be made clear with reference to the embodiments described later together with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, and can be implemented in various forms. These embodiments are only for making the disclosure of the present invention more complete, and for those with common knowledge in the technical field to which the present invention belongs. It is provided by understanding the scope of the invention that the invention is defined solely by the scope of the patent application. Throughout the description, the same reference numerals denote the same constituent elements. For clarity of the description, the dimensions or thicknesses of the constituent elements may be exaggerated in the drawings.

簡略地說明本說明書中所使用的用語,具體地對本發明進行說明。 The terms used in this specification will be briefly described, and the present invention will be specifically described.

本發明中所使用的用語是考慮於本發明中的功能而儘可能選擇目前廣泛使用的普通用語,但上述用語可根據從業於本 技術領域的技術人員的意圖或判例、新技術的出現等而改變。並且,於特定的情形時,亦有申請人任意選定的用語,於此情形時,在發明的相應的說明部分詳細地記載其含義。因此,本發明中所使用的用語應基於該用語所具有的含義與本發明全篇中的內容來定義,而並非簡單地基於用語的名稱來定義。 The terms used in the present invention are generally used terms that are widely used as far as possible in consideration of the functions in the present invention, but the above terms may be used in accordance with the practice of the present invention. The intentions or jurisprudence of those skilled in the technical field, the emergence of new technologies, etc. are changed. Also, in certain cases, there is a term arbitrarily selected by the applicant. In this case, the meaning is described in detail in the corresponding description section of the invention. Therefore, the terms used in the present invention should be defined based on the meanings of the terms and the entire content of the present invention, and not simply based on the names of the terms.

於整篇說明書中,在記載為某個部分“包括”某個構成要素時,若無特別相反的記載,則是指更包括其他構成要素,而並非是指排除其他構成要素。 Throughout this specification, when it is stated that a certain part “includes” a certain constituent element, if there is no particularly contrary description, it means that it further includes other constituent elements, rather than excluding other constituent elements.

以下,參照隨附圖式,詳細地對本發明的實施例進行說明,以便在本發明所屬的技術領域內具有常識者可容易地實施。然而,本發明能夠以多種不同的形態實現,並不限定於此處所說明的實施例。另外,為了明確地說明本發明,於圖中省略與說明無關的部分。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, so that those skilled in the art to which the present invention pertains can easily implement them. However, the present invention can be implemented in many different forms, and is not limited to the embodiments described herein. In addition, in order to clearly explain the present invention, parts irrelevant to the description are omitted in the drawings.

圖1是本發明的一實施例的薄碟雷射裝置100的概略構成圖。 FIG. 1 is a schematic configuration diagram of a thin disk laser device 100 according to an embodiment of the present invention.

參照圖1,本實施例的薄碟雷射裝置100包括第一薄碟111、第二薄碟112、第一抛物面反射鏡121、第二抛物面反射鏡122、種子光源130、訊號光光學系統140及激升光源150。 Referring to FIG. 1, the thin-disk laser device 100 of this embodiment includes a first thin-disk 111, a second thin-disk 112, a first parabolic mirror 121, a second parabolic mirror 122, a seed light source 130, and a signal light optical system 140. And the sharp light source 150.

第一抛物面反射鏡121與第二抛物面反射鏡122的抛物面形狀的反射面彼此面對,並且同軸地配置。第一抛物面反射鏡121及第二抛物面反射鏡122可具有曲率相同的抛物面形狀,但並不限定於此。第一抛物面反射鏡121及第二抛物面反射鏡122以 如下方式配置:第一抛物面反射鏡121的頂點(vertex)為第二抛物面反射鏡122的焦點,第二抛物面反射鏡122的頂點為第一抛物面反射鏡121的焦點。可分別於第一抛物面反射鏡121及第二抛物面反射鏡122設置抛物面反射鏡調整裝置(未圖示),以便可實現微細的光軸排列等。例如,抛物面反射鏡調整裝置可分別獨立地調節第一抛物面反射鏡121及第二抛物面反射鏡122的水平軸方向、垂直軸方向的傾斜度。 The paraboloid-shaped reflecting surfaces of the first parabolic mirror 121 and the second parabolic mirror 122 face each other and are arranged coaxially. The first parabolic mirror 121 and the second parabolic mirror 122 may have a parabolic shape with the same curvature, but are not limited thereto. The first parabolic mirror 121 and the second parabolic mirror 122 are The configuration is as follows: the vertex of the first parabolic mirror 121 is the focal point of the second parabolic mirror 122, and the vertex of the second parabolic mirror 122 is the focal point of the first parabolic mirror 121. Parabolic mirror adjustment devices (not shown) may be provided on the first parabolic mirror 121 and the second parabolic mirror 122, respectively, so that a fine optical axis arrangement can be realized. For example, the parabolic mirror adjustment device can independently adjust the inclination of the horizontal axis direction and the vertical axis direction of the first parabolic mirror 121 and the second parabolic mirror 122, respectively.

第一抛物面反射鏡121及第二抛物面反射鏡122的反射面的端面外圍形狀可為圓形,但並不限定於此。於第一抛物面反射鏡121及第二抛物面反射鏡122的頂點分別貫通有第一安裝孔123及第二安裝孔124。並且,於第一抛物面反射鏡121的一側形成激升光入射口125,以便可自第一抛物面反射鏡121的外部入射激升光P。激升光入射口125的形狀可如圖2所示般呈長方形的開口形狀,但並不限制於此。例如,激升光入射口125的形狀可為圓形、多邊形等各種開口形狀。 The peripheral shapes of the end surfaces of the reflective surfaces of the first parabolic mirror 121 and the second parabolic mirror 122 may be circular, but are not limited thereto. A first mounting hole 123 and a second mounting hole 124 pass through the vertices of the first parabolic mirror 121 and the second parabolic mirror 122, respectively. In addition, a laser light entrance 125 is formed on one side of the first parabolic mirror 121 so that the laser light P can be incident from the outside of the first parabolic mirror 121. The shape of the laser light entrance 125 may be a rectangular opening as shown in FIG. 2, but it is not limited thereto. For example, the shape of the laser light entrance 125 may be various opening shapes such as a circle and a polygon.

第一薄碟111及第二薄碟112包括雷射介質。雷射介質例如可呈厚度為次毫米(submillimeter)而非常薄,且具有數毫米至數十毫米的直徑的碟片形狀。碟片可呈圓形、四邊形、多邊形等形狀。第一薄碟111及第二薄碟112包括面積相對較廣的正面及背面、面積相對較小的側面。如下所述,於雷射介質的正面入射激升光與訊號光。可於雷射介質的正面設置有針對激升光與訊號光兩者的抗反射層。雷射介質發揮藉由激升光激發介質中的離子 而放大訊號光的作用。為了抑制放大自發發射(ASE:Amplified Spontaneous Emission),雷射介質的正面亦可相對於背面略微傾斜地形成。於雷射介質的背面形成有針對訊號光與激升光兩者的全反射層。於第一薄碟111及第二薄碟112的背面分別配置第一散熱器115及第二散熱器116。於第一薄碟111及第二薄碟112的背面與第一散熱器115及第二散熱器116的冷卻面之間設置導熱性接著層(Thermally-Conductive Adhesive),從而可提高熱導率與接著力。作為其他例,亦可無接著層而利用壓力差或機械器件等結合第一薄碟111及第二薄碟112與第一散熱器115及第二散熱器116。第一散熱器115及第二散熱器116例如能夠以利用冷媒的流體冷卻方式去除第一薄碟111及第二薄碟112所產生的熱。冷媒例如可為水,但並不限制於此。 The first thin disc 111 and the second thin disc 112 include a laser medium. The laser medium may be, for example, a disc shape having a thickness of submillimeter and very thin, and having a diameter of several millimeters to several tens of millimeters. The disc can be in the shape of a circle, a quadrangle, or a polygon. The first thin plate 111 and the second thin plate 112 include a front surface and a back surface with a relatively wide area, and a side surface with a relatively small area. As described below, the laser and signal light are incident on the front of the laser medium. An anti-reflection layer for both the laser light and the signal light may be provided on the front side of the laser medium. The laser medium excites the ions in the medium by the rising light And amplify the role of the signal light. In order to suppress amplified spontaneous emission (ASE: Amplified Spontaneous Emission), the front side of the laser medium may also be formed slightly inclined with respect to the back side. A total reflection layer for both signal light and laser light is formed on the back surface of the laser medium. A first heat sink 115 and a second heat sink 116 are disposed on the back of the first thin plate 111 and the second thin plate 112, respectively. A thermally conductive adhesive layer (Thermally-Conductive Adhesive) is provided between the back surfaces of the first thin plate 111 and the second thin plate 112 and the cooling surfaces of the first heat sink 115 and the second heat sink 116, thereby improving the thermal conductivity and Then force. As another example, the first thin plate 111 and the second thin plate 112 and the first heat sink 115 and the second heat sink 116 may be combined by using a pressure difference or a mechanical device without an adhesive layer. The first radiator 115 and the second radiator 116 can remove heat generated by the first thin plate 111 and the second thin plate 112 in a fluid cooling method using a refrigerant, for example. The refrigerant may be, for example, water, but is not limited thereto.

第一薄碟111及第二薄碟112分別設置至第一抛物面反射鏡121及第二抛物面反射鏡122上所設置的第一安裝孔123及第二安裝孔124。第一薄碟111及第二薄碟112能夠以正面中心分別位於第一抛物面反射鏡121及第二抛物面反射鏡122的頂點的方式配置。第一薄碟111及第二薄碟112的正面以光平面(Optical Plane)為基準而傾斜。此處,光平面是指沿第一抛物面反射鏡121及第二抛物面反射鏡122的光軸OA與激升光P的入射光線放置的平面。換言之,第一薄碟111的正面的法線111a及第二薄碟112的正面的法線112a與第一抛物面反射鏡121及第二抛物面反射鏡122的光軸OA以大於零(zero)的特定的角度θ1、θ2張開。第 一薄碟111及第二薄碟112的傾斜角度θ1、θ2可相同,但並不限制於此。第一薄碟111及第二薄碟112可向相同的方向傾斜或向相反方向傾斜,但並不限制於此。如上所述的第一薄碟111及第二薄碟112的傾斜角度θ1、θ2及傾斜方向以如下所述般實現激升光的多路徑的方式設計。可分別於第一薄碟111及第二薄碟112設置薄碟調整裝置(未圖示),以便可實現微細的光軸排列等。例如,薄碟調整裝置可分別獨立地調節第一薄碟111及第二薄碟112的水平軸方向、垂直軸方向的傾斜度。 The first thin plate 111 and the second thin plate 112 are respectively disposed to the first mounting hole 123 and the second mounting hole 124 provided on the first parabolic mirror 121 and the second parabolic mirror 122. The first thin disc 111 and the second thin disc 112 can be arranged such that the front centers thereof are located at the apexes of the first parabolic mirror 121 and the second parabolic mirror 122, respectively. The front surfaces of the first thin disc 111 and the second thin disc 112 are inclined based on an optical plane. Here, the light plane refers to a plane placed along the optical axis OA of the first parabolic mirror 121 and the second parabolic mirror 122 and the incident light of the rising light P. In other words, the normal line 111a on the front surface of the first thin disk 111 and the normal line 112a on the front surface of the second thin disk 112 and the optical axis OA of the first parabolic mirror 121 and the second parabolic mirror 122 are greater than zero. The specific angles θ1 and θ2 are opened. First The inclination angles θ1 and θ2 of one thin disc 111 and the second thin disc 112 may be the same, but are not limited thereto. The first thin disc 111 and the second thin disc 112 may be inclined in the same direction or in opposite directions, but are not limited thereto. The inclination angles θ1, θ2, and inclination directions of the first thin disc 111 and the second thin disc 112 as described above are designed so as to realize the multi-path of the raised light as described below. Thin disk adjusting devices (not shown) may be respectively provided on the first thin disk 111 and the second thin disk 112 so as to achieve a fine optical axis arrangement and the like. For example, the thin disc adjusting device can independently adjust the inclination of the horizontal axis direction and the vertical axis direction of the first thin disc 111 and the second thin disc 112 respectively.

種子光源130例如可為半導體雷射二極體、或包括皮秒或飛秒鎖模光纖種子雷射或奈秒級Q開關(Q-Switched)固體雷射的雷射源,但並不限制於此。作為一例,種子光源130可射出水平偏光的種子光L。 The seed light source 130 may be, for example, a semiconductor laser diode, or a laser source including a picosecond or femtosecond mode-locked fiber seed laser or a nanosecond Q-Switched solid laser, but is not limited to this. As an example, the seed light source 130 can emit horizontally polarized seed light L.

訊號光光學系統140可包括第一偏光分束器(polarized beam splitter)141、法拉第旋轉器(Faraday rotator)142、半波長板(half-wavelength plate)143、第二偏光分束器(polarized beam splitter)144、1/4波長板(quarter-wavelength plate)145、波克斯盒(Pockels’cell)146及第一鏡至第八鏡M1、M2、M3、M4、M5、M6、M7、M8。 The signal light optical system 140 may include a first polarized beam splitter 141, a Faraday rotator 142, a half-wavelength plate 143, and a second polarized beam splitter 144, quarter-wavelength plate 145, Pockels' cell 146, and first to eighth mirrors M1, M2, M3, M4, M5, M6, M7, M8.

第一偏光分束器141使水平偏光(horizontal polarization)的光通過,反射垂直偏光(vertical polarization)的光。 The first polarizing beam splitter 141 passes horizontally polarized light and reflects vertically polarized light.

法拉第旋轉器142利用法拉第效應使入射的水平偏光的 光的偏光發生45度的相位變化而轉換成45度旋轉偏光的光,使自法拉第旋轉器142出射後返回而再入射的45度旋轉偏光的光進一步發生45度的相位變化來轉換成垂直偏光的光。 Faraday rotator 142 uses the Faraday effect to polarize incident horizontally polarized light The polarization of the light undergoes a 45-degree phase change and is converted into 45-degree rotationally polarized light. The 45-degree rotationally polarized light that is returned from the Faraday rotator 142 and returned and then re-incidentally undergoes a 45-degree phase change to convert to vertically polarized light Light.

半波長板143是使相對於快軸(fast axis)而沿慢軸行進的偏光方向的光產生半波長的差異的波長板,將45度旋轉偏光的光轉換成水平偏光的光,將水平偏光的光轉換成45度旋轉偏光的光。 The half-wavelength plate 143 is a wavelength plate that makes a half-wavelength difference in the polarization direction of the light traveling in the slow axis with respect to the fast axis. The half-wavelength plate 143 converts 45-degree rotating polarized light into horizontally polarized light and horizontally polarized light The light is converted into 45-degree rotating polarized light.

第二偏光分束器144可將水平偏光與垂直偏光分別朝向透射方向或反射方向而分離成彼此垂直的兩個旋轉偏光成分,可使水平偏光的光通過,使垂直偏光的光朝向反射方向。 The second polarizing beam splitter 144 can separate the horizontally polarized light and the vertically polarized light toward the transmission direction or the reflection direction and separate them into two rotating polarized light components perpendicular to each other. The second polarized beam splitter 144 can pass the horizontally polarized light and direct the vertically polarized light toward the reflection direction.

1/4波長板145是使相對於快軸而沿慢軸行進的偏光產生四分之一波長的差異的偏光板,可將水平偏光的光轉換成右圓偏光,將左圓偏光的光轉換成垂直偏光的光。 The quarter-wave plate 145 is a polarizing plate that produces a quarter-wavelength difference in polarized light traveling along the slow axis with respect to the fast axis. It can convert horizontally polarized light into right circularly polarized light and convert left circularly polarized light. Into vertically polarized light.

波克斯盒146是對具有波克斯效應(Pockels’effect)的結晶施加電壓而主動地執行偏光轉換的元件。例如,波克斯盒146可於未施加電壓時,使光無偏光轉換地通過,於施加有電壓的狀態下,如1/4波長板般進行動作而將左圓偏光的光轉換成水平偏光的光,將水平偏光的光轉換成左圓偏光。 The Pox box 146 is an element that actively performs polarization conversion by applying a voltage to a crystal having the Pockels' effect. For example, the Pox box 146 can pass light without polarized light conversion when no voltage is applied, and operates as a quarter-wave plate under a voltage applied condition to convert left circularly polarized light into horizontally polarized light. Converts horizontally polarized light into left circularly polarized light.

第一偏光分束器141、法拉第旋轉器142、半波長板143、第二偏光分束器144、1/4波長板145及波克斯盒146為如下的光路徑轉換器的一例,當然亦可採用其他公知的光學配置:如下所述,藉由根據施加至波克斯盒146的電壓(即,控制訊號) 產生入射的偏光的水平偏光成分與垂直偏光成分的相位差而改變偏光來使其於第一偏光分束器141及第二偏光分束器144反射或透射,藉此使訊號光脫離共振的路徑而輸出。 The first polarizing beam splitter 141, the Faraday rotator 142, the half-wavelength plate 143, the second polarizing beam splitter 144, the 1 / 4-wavelength plate 145, and the box box 146 are examples of the following optical path converters, of course. Other well-known optical configurations may be used: as described below, by the voltage (ie, the control signal) applied to the Pox box 146 The phase difference between the horizontally polarized and vertical polarized components of the incident polarized light is generated, and the polarized light is changed to be reflected or transmitted by the first polarized beam splitter 141 and the second polarized beam splitter 144, thereby separating the signal light from the path of resonance. And the output.

以種子光束入射至第一薄碟111及第二薄碟112的方式配置第一鏡至第八鏡M1、M2、M3、M4、M5、M6、M7、M8,並且,以形成種子光束於放大後共振成訊號光並輸出的光路徑的方式配置。第一鏡至第八鏡M1、M2、M3、M4、M5、M6、M7、M8中的至少兩個鏡,即第四鏡(第一內部鏡)M4與第八鏡(第二內部鏡)M8配置至第一抛物面反射鏡121及第二抛物面反射鏡122之間的空間,例如中間附近。第四鏡(第一內部鏡)M4以自第四鏡(第一內部鏡)M4入射於第一薄碟111的訊號光向第四鏡(第一內部鏡)M4側反射的方式配置。並且,第八鏡(第二內部鏡)M8以自第八鏡(第二內部鏡)M8入射於第二薄碟112的訊號光向第八鏡(第二內部鏡)M8側反射的方式配置。更具體而言,第四鏡(第一內部鏡)M4能夠以傾斜45度的方式配置至第一薄碟111的正面的法線111a上或法線111a的附近,第八鏡(第二內部鏡)M8以傾斜45度的方式配置至第二薄碟112的正面的法線112a上或法線112a的附近。本實施例以第四鏡(第一內部鏡)M4及第八鏡(第二內部鏡)M8的傾斜角度為45度的情形為例而進行說明,但並不限制於此。第一鏡至第八鏡M1、M2、M3、M4、M5、M6、M7、M8可為平面鏡。根據情形,第一鏡至第八鏡M1、M2、M3、M4、M5、M6、M7、M8中的一部分亦可為聚焦鏡(focusing mirror)。 The first to eighth mirrors M1, M2, M3, M4, M5, M6, M7, and M8 are arranged such that the seed beam is incident on the first thin disc 111 and the second thin disc 112, and the seed beam is amplified. The post-resonance is configured as a light path of signal light and output. At least two of the first to eighth mirrors M1, M2, M3, M4, M5, M6, M7, and M8, that is, the fourth mirror (first internal mirror) M4 and the eighth mirror (second internal mirror) M8 is arranged to the space between the first parabolic mirror 121 and the second parabolic mirror 122, for example, near the middle. The fourth mirror (first internal mirror) M4 is arranged such that signal light incident on the first thin disc 111 from the fourth mirror (first internal mirror) M4 is reflected toward the fourth mirror (first internal mirror) M4 side. The eighth mirror (second internal mirror) M8 is arranged so that the signal light incident on the second thin disc 112 from the eighth mirror (second internal mirror) M8 is reflected toward the eighth mirror (second internal mirror) M8 side. . More specifically, the fourth mirror (first internal mirror) M4 can be arranged at an angle of 45 degrees to the normal 111a of the front of the first thin disc 111 or near the normal 111a, and the eighth mirror (second internal Mirror) M8 is arranged at an angle of 45 degrees to the normal line 112a on the front surface of the second thin disc 112 or near the normal line 112a. This embodiment is described by taking the case where the inclination angle of the fourth mirror (first internal mirror) M4 and the eighth mirror (second internal mirror) M8 is 45 degrees as an example, but it is not limited thereto. The first to eighth mirrors M1, M2, M3, M4, M5, M6, M7, and M8 may be flat mirrors. Depending on the situation, some of the first to eighth mirrors M1, M2, M3, M4, M5, M6, M7, and M8 can also be focusing lenses. mirror).

激升光源150出射激發第一薄碟111及第二薄碟112的激升光P。激升光源150以激升光P藉由第一抛物面反射鏡121的激升光入射口125而入射至第一抛物面反射鏡121及第二抛物面反射鏡122之間的空間的方式配置。進而,激升光源150能夠以激升光P藉由激升光入射口125而與光軸OA平行地入射的方式配置,但並不限制於此。可於激升光源150設置激升光調整裝置(未圖示),以便可實現微細的光軸排列等。 The excitation light source 150 emits the excitation light P that excites the first thin disk 111 and the second thin disk 112. The rising light source 150 is arranged so that the rising light P enters a space between the first parabolic mirror 121 and the second parabolic mirror 122 through the rising light entrance 125 of the first parabolic mirror 121. Furthermore, the pumping light source 150 can be arranged such that the pumping light P is incident parallel to the optical axis OA through the pumping light entrance port 125, but is not limited thereto. A pumping light adjusting device (not shown) may be provided in the pumping light source 150 so that a fine optical axis arrangement and the like can be realized.

本實施例的薄碟雷射裝置100可更包括第一激升光束模式觀察裝置161及第二激升光束模式觀察裝置162。第一激升光束模式觀察裝置161及第二激升光束模式觀察裝置162例如可為可實時獲得圖像的拍攝裝置(即,相機),分別設置至無機械干涉及光學干涉的位置而拍攝第一薄碟111及第二薄碟112的正面。自激升光源150出射的激升光P於第一薄碟111及第二薄碟112反覆入射及反射數十次而於第一薄碟111及第二薄碟112的正面形成激升光點,第一激升光束模式觀察裝置161及第二激升光束模式觀察裝置162可藉由顯示器實時觀察包括激升光點的第一薄碟111及第二薄碟112的表面。如上所述,藉由利用第一激升光束模式觀察裝置161及第二激升光束模式觀察裝置162實時觀察激升光點,能夠以激升光點可實質上完全地重疊的方式進行調節,因此可實現順利且有效的多路徑的往復激升吸收。 The thin-disk laser device 100 of this embodiment may further include a first laser beam mode observation device 161 and a second laser beam mode observation device 162. The first rising-beam mode observation device 161 and the second rising-beam mode observation device 162 may be, for example, photographing devices (ie, cameras) that can obtain images in real time, and are respectively set to positions without mechanical interference involving optical interference to capture the first The front side of a thin plate 111 and a second thin plate 112. The ascending light P emitted from the self-excitation light source 150 is repeatedly incident and reflected dozens of times on the first and second thin discs 111 and 112 to form an ascending light spot on the front surface of the first and second thin discs 111 and 112. The first rising beam mode observation device 161 and the second rising beam mode observation device 162 can observe the surfaces of the first thin disk 111 and the second thin disk 112 including the rising light point in real time through a display. As described above, by using the first laser beam mode observation device 161 and the second laser beam mode observation device 162 to observe the laser beam points in real time, the laser beam points can be adjusted in such a manner that they substantially overlap with each other. Therefore, smooth and effective multi-path reciprocating surge absorption can be achieved.

本實施例的薄碟雷射裝置100可更包括測定輸出的訊號 光的強度的雷射輸出監控裝置。於配置至第一偏光分束器141的輸出端側的光功率計(optical power meter)或脈衝雷射的情形時,此種雷射輸出監控裝置可為光檢測器(例如photodiode)。 The thin disc laser device 100 of this embodiment may further include a signal for measuring output Laser output monitoring device for the intensity of light. In the case of an optical power meter or a pulsed laser disposed to the output side of the first polarizing beam splitter 141, such a laser output monitoring device may be a photo detector (such as a photodiode).

於本實施例的薄碟雷射裝置100中,第一薄碟111、第二薄碟112、第一抛物面反射鏡121、第二抛物面反射鏡122及訊號光光學系統140的一部分光學零件(例如,第四鏡(第一內部鏡)M4及第八鏡(第二內部鏡)M8)可構成為可獨立地設置至雷射加工裝置的一個薄碟模組。進而,種子光源130、訊號光光學系統140的剩餘光學零件及激升光源150可如一種插入式模組般安裝至薄碟模組而一同使用。 In the thin disc laser device 100 of this embodiment, the first thin disc 111, the second thin disc 112, the first parabolic mirror 121, the second parabolic mirror 122, and a part of the optical components of the signal optical system 140 (for example, The fourth mirror (first internal mirror) M8 and the eighth mirror (second internal mirror) M8) can be configured as a thin disk module that can be independently set to the laser processing device. Furthermore, the seed light source 130, the remaining optical parts of the signal light optical system 140, and the rising light source 150 can be mounted to a thin-disk module and used together as a plug-in module.

其次,參照圖2、圖3a及圖3b,對本實施例的薄碟雷射裝置100的多路徑激升動作進行說明。 Next, the multi-path surge operation of the thin-disk laser device 100 according to the present embodiment will be described with reference to FIGS. 2, 3 a, and 3 b.

圖2表示本實施例的薄碟雷射裝置100的激升光的光線路徑,圖3a及圖3b分別表示本實施例的薄碟雷射裝置100的形成至第一抛物面反射鏡121及第二抛物面反射鏡122的激升光點及激升光的光路徑。 FIG. 2 shows the ray path of the rising light of the thin-disk laser device 100 in this embodiment, and FIGS. 3a and 3b show the formation of the thin-disk laser device 100 in this embodiment to the first parabolic mirror 121 and the second The rising light point of the parabolic mirror 122 and the light path of the rising light.

自激升光源150出射的激升光P藉由第一抛物面反射鏡121的激升光入射口125而入射至第一抛物面反射鏡121及第二抛物面反射鏡122之間的空間。如圖3a及圖3b所示,藉由激升光入射口125而入射的激升光P於位於第二抛物面反射鏡122的第四象限(以觀察第二抛物面反射鏡122的反射面時為基準)的最上端的第一位置S1形成激升光點。激升光P以與光軸OA平行的 方式入射,因此於第二抛物面反射鏡122的第一位置S1反射的激升光P入射至位於第一抛物面反射鏡121的頂點的第一薄碟111。於入射至第一薄碟111後,激升光P反射而於位於較第二抛物面反射鏡122的第二象限的最下端略微靠上側的第二位置S2形成激升光點。第一薄碟111略微傾斜,因此第二位置S2不以第二抛物面反射鏡122的頂點為基準與第一位置S1對稱而於垂直方向上略微具有偏差,因此雖左右對稱,但於上下方向上略微上升,上升距離與第一薄碟111的傾斜角成正比。第二抛物面反射鏡122的頂點為第一抛物面反射鏡121的焦點,因此激升光P於入射至第二抛物面反射鏡122的第二位置S2後,在第二位置S2以與光軸OA平行的方式反射。於第二抛物面反射鏡122的第二位置S2以與光軸平行的方式反射的激升光P與光軸OA平行地入射至位於較第一抛物面反射鏡121的第一象限(以觀察第二抛物面反射鏡122的反射面時為基準)的最下端略微靠上方的第三位置S3,向第二抛物面反射鏡122的頂點的第二薄碟112反射。此時,第二抛物面反射鏡122的第二象限與第一抛物面反射鏡121的第一象限面對。自第一薄碟111的焦點出射的激升光P因於第二薄碟112反射而於位於較第一抛物面反射鏡121的第三象限的最上端略微靠下方的第四位置S4形成激升光點。第二薄碟112略微傾斜,因此第四位置S4不以第一抛物面反射鏡121的頂點為基準與第三位置S3對稱而於垂直方向上略微具有偏差。第二抛物面反射鏡122的頂點為第一抛物面反射鏡121的焦點,因此入射於第一抛物面 反射鏡121的第四位置S4的激升光P為自焦點出射的光,因此以與光軸OA平行的方式反射。反覆實現如上所述的激升光P的行進,從而如第一位置S1、第二位置S2、...、第十三位置S13般形成多路徑,激升光P反覆激發第一薄碟111、第二薄碟112中的雷射介質離子。圖3a及圖3b中的激升光P的反覆次數為示例,例如可如24次、48次等般反覆反射而實現多路徑激升。 The laser light P emitted from the laser light source 150 is incident on the space between the first parabolic mirror 121 and the second parabolic mirror 122 through the laser light entrance 125 of the first parabolic mirror 121. As shown in FIG. 3a and FIG. 3b, the laser light P incident through the laser light entrance 125 is located in the fourth quadrant of the second parabolic mirror 122 (to observe the reflection surface of the second parabolic mirror 122 as The first position S1 at the uppermost end of the reference) forms a rising light spot. The rising light P is parallel to the optical axis OA. The incident light P is reflected at the first position S1 of the second parabolic mirror 122 and is incident on the first thin disc 111 at the apex of the first parabolic mirror 121. After being incident on the first thin disc 111, the rising light P reflects and forms a rising light spot at a second position S2 located slightly above the lowermost end of the second quadrant of the second parabolic mirror 122. The first thin disc 111 is slightly inclined, so the second position S2 is not symmetrical with the first position S1 based on the apex of the second parabolic mirror 122, and has a slight deviation in the vertical direction. Therefore, although it is left-right symmetrical, it is in the vertical direction. It rises slightly, and the rising distance is proportional to the inclination angle of the first thin plate 111. The vertex of the second parabolic mirror 122 is the focal point of the first parabolic mirror 121. Therefore, after the incident light P enters the second position S2 of the second parabolic mirror 122, it is parallel to the optical axis OA at the second position S2. Way reflection. The second position S2 at the second parabolic mirror 122 is parallel to the optical axis and the incident light P is incident in parallel with the optical axis OA into the first quadrant of the first parabolic mirror 121 (to observe the second The third end S3, which is slightly above the lowermost end of the parabolic mirror 122, is reflected toward the second thin plate 112 at the vertex of the second parabolic mirror 122. At this time, the second quadrant of the second parabolic mirror 122 faces the first quadrant of the first parabolic mirror 121. The rising light P emitted from the focal point of the first thin disc 111 is caused by the reflection of the second thin disc 112 to form a sharp rise at a fourth position S4 located slightly below the uppermost end of the third quadrant of the first parabolic mirror 121. light spot. The second thin disc 112 is slightly inclined, so the fourth position S4 is not symmetrical with the third position S3 based on the apex of the first parabolic mirror 121 and has a slight deviation in the vertical direction. The vertex of the second parabolic mirror 122 is the focal point of the first parabolic mirror 121, so it is incident on the first parabolic The boosted light P at the fourth position S4 of the mirror 121 is light emitted from the focal point, and is thus reflected in parallel to the optical axis OA. The iterative realization of the ascending light P as described above is repeated to form a multi-path like the first position S1, the second position S2, ..., and the thirteenth position S13, and the ascending light P repeatedly excites the first thin disc 111. And laser medium ions in the second thin plate 112. The number of repetitions of the boosted light P in FIG. 3a and FIG. 3b is an example. For example, the repetition of reflection can be achieved 24 times, 48 times, etc. to achieve multipath surge.

其次,參照圖4a至圖4c,對本實施例的薄碟雷射裝置100的種子光(訊號光)的入射、放大及輸出進行說明。 Next, referring to FIGS. 4 a to 4 c, the incidence, amplification, and output of the seed light (signal light) of the thin-disk laser device 100 of this embodiment will be described.

圖4a說明種子光L入射至訊號光光學系統140的過程,此時波克斯盒146為未施加電壓的狀態。 FIG. 4a illustrates a process in which the seed light L is incident on the signal light optical system 140, and at this time, the state of the box box 146 is not applied with voltage.

參照圖4a,自種子光源130出射的水平偏光的種子光L於第一鏡M1反射而入射至訊號光光學系統140。水平偏光的種子光L直接通過第一偏光分束器141。通過第一偏光分束器141的水平旋轉偏光的種子光L的偏光為於法拉第旋轉器142中旋轉45度的旋轉偏光的光,經由半波長板143而再次轉換成水平偏光的種子光L。此時,法拉第旋轉器142是將基於磁光效應(magneto-optic effect)的旋轉偏光旋轉成其他旋轉偏光的裝置,旋轉尺寸與光束行進方向的法拉第介質長度d、磁場強度(magnetic flux density)B及作為介質固有特性的伐得常數(Verdet constant)成正比(此時,於法拉第旋轉器142使用永久磁鐵的情形時,使用永久磁鐵形成的磁場於絕對座標系統中具有方向性,因此於旋轉偏光旋轉時具有絕對方向性。若於法拉第旋轉器142中將於入 射位置入射的光束的偏光方向朝向順時針方向旋轉45度,則再入射至出射位置的光束的偏光方向朝向非對稱的逆時針方向旋轉45度)。經由半波長板143的水平偏光的種子光L直接以水平偏光狀態通過第二偏光分束器144,入射至1/4波長板145。水平偏光的種子光L於在1/4波長板145轉換成右圓偏光的種子光L後,入射至波克斯盒146(與法拉第旋轉器142不同,1/4波長板145無保持絕對方向性的裝置,因此於絕對座標系統中具有對稱性,因此若使入射至入射位置的光束的偏光方向朝向順時針方向旋轉45度,則再入射至出射位置的光束的偏光方向亦朝向非對稱的順時針方向旋轉45度)。波克斯盒146為未施加電壓的狀態,因此右圓偏光的種子光L不於波克斯盒146中發生偏光轉換而直接通過。通過波克斯盒146的種子光L經由第二鏡M2、第三鏡M3及第四鏡M4而垂直地入射至第一薄碟111。入射於第一薄碟111的種子光L以於藉由激升光P而激發的第一薄碟111中放大的狀態反射。右圓偏光的種子光L於第一薄碟111反射而於兩個垂直偏光成分之間產生180度的相位差,因此轉換成左圓偏光的光L1。方便起見,參照編號L1表示於第一薄碟111反射而朝向順時針方向於迴路上行進的光。左圓偏光的光L1再次按照第四鏡M4、第三鏡M3及第二鏡M2的順序返回,無偏光轉換地經由波克斯盒146,於1/4波長板145轉換成垂直偏光。垂直偏光的光L1於第二偏光分束器144反射,經由第五鏡M5、第六鏡M6、第七鏡M7及第八鏡M8而垂直地入射至第二薄碟112。入射於第二薄碟112 的光L1以於藉由激升光P而激發的第二薄碟112中放大的狀態反射。垂直偏光的光L2於第二薄碟112反射而保持偏光狀態。方便起見,參照編號L2表示於第二薄碟112反射而朝向逆時針方向於迴路上行進的光。垂直偏光的光L2再次按照第八鏡M8、第七鏡M7、第六鏡M6及第五鏡M5的順序返回,於第二偏光分束器144反射而朝向第一薄碟111側。 Referring to FIG. 4A, the horizontally polarized seed light L emitted from the seed light source 130 is reflected by the first mirror M1 and is incident on the signal light optical system 140. The horizontally polarized seed light L directly passes through the first polarized beam splitter 141. The polarized light of the horizontally-polarized seed light L passing through the first polarized beam splitter 141 is the light of the rotated polarized light rotated 45 degrees in the Faraday rotator 142, and is converted into the horizontally-polarized seed light L again through the half-wavelength plate 143. At this time, the Faraday rotator 142 is a device that rotates the rotating polarized light based on the magneto-optic effect into other rotating polarized light, and the Faraday medium length d and the magnetic flux density B of the rotation size and the traveling direction of the light beam It is directly proportional to the Verdet constant, which is a characteristic of the medium. (At this time, when the Faraday rotator 142 uses a permanent magnet, the magnetic field formed by the permanent magnet has directivity in the absolute coordinate system, so it is rotationally polarized. Absolute directivity when rotating. If used in Faraday rotator 142 The polarization direction of the light beam incident at the radiation position is rotated 45 degrees clockwise, and then the polarization direction of the light beam incident again at the emission position is rotated 45 degrees counterclockwise. The horizontally polarized seed light L that has passed through the half-wavelength plate 143 passes directly through the second polarizing beam splitter 144 in a horizontally polarized state, and is incident on the quarter-wavelength plate 145. The horizontally polarized seed light L is converted into right-circularly polarized seed light L by the 1/4 wavelength plate 145, and then incident on the Pox box 146 (unlike the Faraday rotator 142, the 1/4 wavelength plate 145 does not maintain an absolute direction This device has symmetry in the absolute coordinate system. Therefore, if the polarization direction of the light beam incident on the incident position is rotated clockwise by 45 degrees, the polarization direction of the light beam incident on the exit position is also asymmetric. Rotate 45 degrees clockwise). Since the voltage is applied to the Bokeh box 146, the right circularly polarized seed light L does not pass through the polarization conversion in the Bokeh box 146. The seed light L that has passed through the Box box 146 is incident perpendicularly to the first thin disc 111 through the second mirror M2, the third mirror M3, and the fourth mirror M4. The seed light L incident on the first thin disk 111 is reflected in an enlarged state in the first thin disk 111 excited by the excitation light P. The right circularly polarized seed light L is reflected by the first thin plate 111 and a 180-degree phase difference is generated between the two vertically polarized components, so it is converted into left circularly polarized light L1. For convenience, the reference number L1 indicates light reflected on the first thin disc 111 and traveling in a clockwise direction in the loop. The left circularly polarized light L1 is returned in the order of the fourth mirror M4, the third mirror M3, and the second mirror M2 again, and is converted into vertical polarized light by the quarter wave plate 145 through the Pox box 146 without polarization conversion. The vertically polarized light L1 is reflected by the second polarizing beam splitter 144 and enters the second thin disk 112 vertically through the fifth mirror M5, the sixth mirror M6, the seventh mirror M7, and the eighth mirror M8. Incident on the second thin plate 112 The light L1 is reflected in an enlarged state in the second thin disk 112 excited by the excitation light P. The vertically polarized light L2 is reflected by the second thin disc 112 to maintain a polarized state. For convenience, the reference number L2 indicates light reflected on the second thin plate 112 and traveling in a counterclockwise direction in the loop. The vertically polarized light L2 returns again in the order of the eighth mirror M8, the seventh mirror M7, the sixth mirror M6, and the fifth mirror M5, and is reflected by the second polarizing beam splitter 144 toward the first thin disk 111 side.

圖4b說明於第一薄碟111及第二薄碟112中構成再生放大器(Regenerative Amplifier)而放大種子光L的過程,此時波克斯盒146為施加有電壓的狀態。再生放大器為如下裝置:於脈衝光束行進時,另外構成關閉構造的共振器,藉此可使於最初的共振器中振盪而輸出的偏光的脈衝光束獲得所期望的次數的共振放大,並放大至所期望的脈衝能量為止。於利用另外的共振器放大最初的雷射所產生的雷射脈衝的方面而言,因再生放大雷射脈衝而稱為再生放大器。施加至波克斯盒的電壓使用使兩個偏光成分產生1/4波長的相位變化的程度的大小,且使用根據施加至使用於波克斯盒的結晶的電壓的大小而相位變化程度發生變化的線性電光效應(linear electro-optic effect)即波克斯效應,相位變化程度與沿光束的行進方向施加的電場的振幅(electric field amplitude)、正常光線折射率(refractive index of ordinary beam)的3次方與使用於波克斯盒的非線性結晶的固有特性即電光常數(electro-optic constant)的乘積成正比。此時,施加的電場於絕對座標系統中具有方向性,因此雖具有與法拉第旋轉器相似的偏光 旋轉特性,但差異點為若施加1/4波長的旋轉電壓,則使旋轉偏光變為圓偏光。 FIG. 4b illustrates a process in which a regenerative amplifier (Regenerative Amplifier) is formed in the first thin disk 111 and the second thin disk 112 to amplify the seed light L. At this time, the state of the voltage is applied to the box box 146. The regenerative amplifier is a device that, when the pulsed beam travels, additionally constitutes a resonator with a closed structure, so that the polarized pulsed beam that is oscillated and output in the first resonator can obtain resonance amplification of a desired number of times, and amplify it to Up to the desired pulse energy. In terms of using another resonator to amplify the laser pulse generated by the first laser, it is called a regenerative amplifier because the laser pulse is re-amplified. The voltage applied to the box box uses a magnitude of a phase change of 1/4 wavelength of the two polarized light components, and the phase change degree is changed according to the magnitude of the voltage applied to the crystal used in the box box. The linear electro-optic effect is the Polkes effect, the degree of phase change and the amplitude of the electric field (electric field amplitude) and the refractive index of ordinary beam (refractive index of ordinary beam). The power is directly proportional to the product of the electro-optic constant, which is an inherent characteristic of the non-linear crystal used in the Box box. At this time, the applied electric field is directional in the absolute coordinate system, so it has polarized light similar to the Faraday rotator. Rotational characteristics, but the difference is that when a 1/4 wavelength rotational voltage is applied, the rotationally polarized light becomes circularly polarized light.

首先,使用圖4b說明使一個脈衝光束進入至再生放大器的內部的過程。參照圖4b,如上所述,於第二薄碟112反射的垂直偏光的光L2經由第八鏡M8、第七鏡M7、第六鏡M6及第五鏡M5而於第二偏光分束器144反射,經由1/4波長板145而轉換成左圓偏光的光L2(若水平偏光入射至1/4波長板,則轉換成右圓偏光,若垂直偏光入射至1/4波長板,則轉換成左圓偏光)。經由1/4波長板145的左圓偏光的光L2入射至波克斯盒146。波克斯盒146為施加有電壓的狀態,因此左圓偏光的光L2於波克斯盒146中進一步旋轉1/4波長左右,從而偏光轉換成水平偏光而通過。通過波克斯盒146的水平偏光的光L2經由第二鏡M2、第三鏡M3及第四鏡M4而垂直地入射至第一薄碟111,以放大的狀態反射。水平偏光的光L1於第一薄碟111反射而保持偏光方向,再次按照第四鏡M4、第三鏡M3及第二鏡M2的順序返回,再次入射至波克斯盒146。水平偏光的光L1於施加有電壓的波克斯盒146中偏光轉換成左圓偏光的光L1,於1/4波長板145中轉換成垂直偏光。垂直偏光的光L1於第二偏光分束器144反射,經由第五鏡M5、第六鏡M6、第七鏡M7及第八鏡M8而垂直地入射至第二薄碟112,以放大的狀態反射。垂直偏光的光L2於第二薄碟112反射而保持偏光狀態。垂直偏光的光L2再次按照第八鏡M8、第七鏡M7、第六鏡M6及第五鏡M5的順序返回,於第二偏光分束器 144反射而朝向第一薄碟111側。如上所述,於波克斯盒146施加有電壓的情形時,入射於訊號光光學系統140的種子光L因閉環(closed loop)而光路徑關閉,從而共振、振盪(若簡要說明至此為止的偏光變化,則如下。(a)水平偏光→1/4波長板145→右圓偏光。(b)右圓偏光→鏡反射(第一薄碟111反射)→左圓偏光。(c)左圓偏光→1/4波長板145→垂直偏光。(d)垂直偏光→1/4波長板145→左圓偏光。(e)左圓偏光→波克斯盒146→水平偏光。(f)水平偏光→鏡反射(第二薄碟112反射)→水平偏光。(g)水平偏光→波克斯盒146→左圓偏光。(h)左圓偏光→1/4波長板145→垂直偏光)。 First, the process of causing a pulsed beam to enter the regenerative amplifier will be described using FIG. 4b. Referring to FIG. 4b, as described above, the vertically polarized light L2 reflected on the second thin disc 112 passes through the eighth mirror M8, the seventh mirror M7, the sixth mirror M6, and the fifth mirror M5 and passes through the second polarizing beam splitter 144. Reflected and converted into left circularly polarized light L2 through the 1/4 wavelength plate 145 (if horizontal polarized light is incident on the 1/4 wavelength plate, it is converted into right circularly polarized light, and if vertical polarized light is incident on the 1/4 wavelength plate, it is converted Into left circular polarized light). The left circularly polarized light L2 that has passed through the 1/4 wavelength plate 145 is incident on the Box box 146. The voltage of the Box box 146 is applied, so the left circularly polarized light L2 is further rotated by about 1/4 wavelength in the Box box 146, so that the polarized light is converted into horizontally polarized light and passed through. The horizontally polarized light L2 that has passed through the box 146 passes through the second mirror M2, the third mirror M3, and the fourth mirror M4 to be incident on the first thin disk 111 vertically, and is reflected in an enlarged state. The horizontally polarized light L1 is reflected by the first thin disc 111 to maintain the polarization direction, returns again in the order of the fourth mirror M4, the third mirror M3, and the second mirror M2, and enters the Pox box 146 again. The horizontally polarized light L1 is converted into left circularly polarized light L1 by a voltage applied to the Box box 146, and is converted into vertical polarized light in the 1/4 wavelength plate 145. The vertically polarized light L1 is reflected by the second polarizing beam splitter 144 and enters the second thin disk 112 vertically through the fifth mirror M5, the sixth mirror M6, the seventh mirror M7, and the eighth mirror M8, and is magnified. reflection. The vertically polarized light L2 is reflected by the second thin disc 112 to maintain a polarized state. The vertically polarized light L2 returns in the order of the eighth mirror M8, the seventh mirror M7, the sixth mirror M6, and the fifth mirror M5 again, and is transmitted to the second polarizing beam splitter. 144 reflects and faces the first thin plate 111 side. As described above, when a voltage is applied to the box 146, the seed light L incident on the signal light optical system 140 is closed by a closed loop and the light path is closed, so that resonance and oscillation are caused. The change of polarized light is as follows: (a) horizontally polarized light → 1/4 wavelength plate 145 → right circularly polarized light; (b) right circularly polarized light → mirror reflection (first thin plate 111 reflection) → left circularly polarized light; (c) left circular Polarized light → 1/4 wave plate 145 → Vertically polarized light. (D) Vertical polarized light → 1/4 wave plate 145 → Left circularly polarized light. (E) Left circularly polarized light → Pox box 146 → Horizontally polarized light. (F) Horizontally polarized light. → Mirror reflection (reflection of the second thin plate 112) → Horizontal polarized light. (G) Horizontal polarized light → Box box 146 → Left circular polarized light. (H) Left circular polarized light → 1/4 wavelength plate 145 → Vertical polarized light.

圖4c說明輸出於第一薄碟111及第二薄碟112中放大的光,即訊號光的過程。若於參照圖4b進行說明的訊號光的放大步驟中訊號光的強度滿足特定大小或經過特定時間,則於在第二薄碟112中放大而反射後返回的訊號光即將入射至波克斯盒前,阻斷對波克斯盒146施加電壓。 FIG. 4c illustrates the process of outputting the amplified light, that is, the signal light, in the first thin disc 111 and the second thin disc 112. If the intensity of the signal light in the step of enlarging the signal light described with reference to FIG. 4b satisfies a specific size or a certain time has elapsed, the signal light returned after being amplified and reflected in the second thin disc 112 is about to be incident on the box. Previously, the application of voltage to the Bokeh box 146 was blocked.

參照圖4c,如上所述,反射於第二薄碟112的垂直偏光的光L2經由第八鏡M8、第七鏡M7、第六鏡M6及第五鏡M5而於第二偏光分束器144反射,經由1/4波長板145而轉換成左圓偏光的光L2。經由1/4波長板145的左圓偏光的光L2入射至波克斯盒146。波克斯盒146為未施加電壓的狀態,因此左圓偏光的光L2不於波克斯盒146中發生偏光轉換而直接通過。通過波克斯盒146的左圓偏光的光L2經由第二鏡M2、第三鏡M3及第四鏡M4 而垂直入射至第一薄碟111,以放大的狀態反射。左圓偏光的光L2於第一薄碟111反射而轉換成右圓偏光的光L1,再次按照第四鏡M4、第三鏡M3及第二鏡M2的順序返回,經由波克斯盒146而入射至1/4波長板145。右圓偏光的光L1於1/4波長板145中轉換成水平偏光。水平偏光的光L1直接通過第二偏光分束器144而朝向半波長板143。水平偏光的光L1經由半波長板143及法拉第旋轉器142而轉換成垂直偏光的光L1,於第一偏光分束器141反射而輸出。 4c, as described above, the vertically polarized light L2 reflected on the second thin disc 112 passes through the eighth mirror M8, the seventh mirror M7, the sixth mirror M6, and the fifth mirror M5 and passes through the second polarizing beam splitter 144. The reflected light is converted into left circularly polarized light L2 through the 1/4 wavelength plate 145. The left circularly polarized light L2 that has passed through the 1/4 wavelength plate 145 is incident on the Box box 146. Since the voltage of the Box box 146 is not applied, the left-circularly polarized light L2 passes directly without being subjected to polarization conversion in the Box box 146. The left circularly polarized light L2 passing through the Box box 146 passes through the second mirror M2, the third mirror M3, and the fourth mirror M4. On the other hand, it is incident on the first thin disc 111 perpendicularly and is reflected in an enlarged state. The left circularly polarized light L2 is reflected by the first thin disc 111 and converted into the right circularly polarized light L1, and returns again in the order of the fourth mirror M4, the third mirror M3, and the second mirror M2. It enters the 1/4 wavelength plate 145. The right circularly polarized light L1 is converted into horizontally polarized light in the 1/4 wavelength plate 145. The horizontally polarized light L1 directly passes through the second polarizing beam splitter 144 and is directed toward the half-wavelength plate 143. The horizontally polarized light L1 is converted into vertically polarized light L1 through the half-wavelength plate 143 and the Faraday rotator 142, and is reflected by the first polarized beam splitter 141 and output.

如上所述般進行動作的本實施例的薄碟雷射裝置100可理解為上述再生放大器(Regenerative Amplifiers)的一例。 The thin-disk laser device 100 of this embodiment operating as described above can be understood as an example of the aforementioned Regenerative Amplifiers.

於如本實施例般使用兩個抛物面反射鏡(即,第一抛物面反射鏡121及第二抛物面反射鏡122)的情形時,即便反覆反射數十次激升光P,第一抛物面反射鏡121及第二抛物面反射鏡122的光軸排列或第一薄碟111及第二薄碟112的光軸排列亦需使形成至第一薄碟111及第二薄碟112的激升光點準確地一致。只有反覆形成的上述激升光點準確地一致,才能有效地實現功率放大,光束模式不會變差而可明確地構成所期望的單模或多模的高斯光束,薄碟雷射介質的熱分佈變均勻而可防止損傷等。因此,本實施例的薄碟雷射裝置100可藉由第四鏡M4及第八鏡M8入射排列用光束而用於排列第一薄碟111及第二薄碟112的光軸。 In the case of using two parabolic mirrors (ie, the first parabolic mirror 121 and the second parabolic mirror 122) as in this embodiment, the first parabolic mirror 121 is reflected even if it repeatedly reflects the rising light P dozens of times. And the arrangement of the optical axis of the second parabolic mirror 122 or the arrangement of the optical axes of the first thin plate 111 and the second thin plate 112 also need to accurately make the light spot formed to the first thin plate 111 and the second thin plate 112 accurate Consistent. The power amplification can be effectively achieved only if the above-mentioned raised light spots are accurately consistent. The beam mode does not deteriorate and can clearly constitute the desired single-mode or multi-mode Gaussian beam. The heat of the thin-disk laser medium The distribution becomes uniform to prevent damage and the like. Therefore, the thin-disk laser device 100 of this embodiment can be used to align the optical axes of the first thin disk 111 and the second thin disk 112 by irradiating the alignment beam with the fourth mirror M4 and the eighth mirror M8.

於本實施例的薄碟雷射裝置100中,可光學分離激升光的多路徑光學系統(第一薄碟111及第二薄碟112、與第一抛物面 反射鏡121及第二抛物面反射鏡122)、與訊號光的放大光學系統(第一薄碟111及第二薄碟112、與第一鏡至第八鏡M1、M2、M3、M4、M5、M6、M7、M8)而獨立地進行調整,因此可進一步確保光學零件的排列自由度。 In the thin-disk laser device 100 of this embodiment, a multi-path optical system (a first thin disk 111 and a second thin disk 112, and a first paraboloid) capable of optically separating the rising light Mirror 121 and second parabolic mirror 122), the optical optical system (the first thin disc 111 and the second thin disc 112), and the first to eighth mirrors M1, M2, M3, M4, M5, M6, M7, and M8) can be adjusted independently, so the freedom of arrangement of optical components can be further ensured.

本實施例以第一薄碟111及第二薄碟112放大共通的訊號光的情形為例而進行說明,但當然可光學分離地設置單獨針對利用第一薄碟111放大的第一訊號光的放大光學系統、與單獨針對利用第二薄碟112放大的第二訊號光的放大光學系統。 This embodiment is described by taking the case where the first thin disk 111 and the second thin disk 112 amplify the common signal light as an example, but of course, the optical signal can be separately provided for the first signal light amplified by the first thin disk 111. An amplifying optical system and an amplifying optical system separately for the second signal light amplified by the second thin disk 112.

圖5是本發明的另一實施例的薄碟雷射裝置200的概略構成圖。於本實施例的薄碟雷射裝置200中,與激升光相關的構成要素與參照圖1進行說明的實施例實質上相同,因此以差異點為中心而進行說明。 FIG. 5 is a schematic configuration diagram of a thin disk laser device 200 according to another embodiment of the present invention. In the thin-disk laser device 200 of this embodiment, the constituent elements related to the laser beam are substantially the same as those of the embodiment described with reference to FIG. 1, and therefore, the differences will be mainly described.

參照圖5,本實施例的薄碟雷射裝置200包括第一薄碟111及第二薄碟112、第一抛物面反射鏡121及第二抛物面反射鏡122、第一訊號光輸出耦合器241及第二訊號光輸出耦合器242。第一訊號光輸出耦合器241及第二訊號光輸出耦合器242位於形成至第一抛物面反射鏡121及第二抛物面反射鏡122之間的空間的外圍。 Referring to FIG. 5, the thin-disk laser device 200 of this embodiment includes a first thin disk 111 and a second thin disk 112, a first parabolic mirror 121 and a second parabolic mirror 122, a first signal light output coupler 241, and The second signal optical output coupler 242. The first signal light output coupler 241 and the second signal light output coupler 242 are located at the periphery of a space formed between the first parabolic mirror 121 and the second parabolic mirror 122.

第一訊號光輸出耦合器241與第一薄碟111、第一內部鏡243一同形成第一訊號光246的第一訊號光共振器。第一內部鏡243位於第一薄碟111的正面的法線或其附近,以傾斜45度的方式配置。若如上述實施例般第一薄碟111激發,第一訊號光246 於第一薄碟111自激振盪。第一訊號光246於第一薄碟111與第一訊號光輸出耦合器241之間共振。第一訊號光輸出耦合器241例如可具有95%的反射率。第一訊號光246於第一訊號光輸出耦合器241與第一薄碟111中共振而放大,第一訊號光246的一部分藉由第一訊號光輸出耦合器241而輸出。 The first signal optical output coupler 241 forms a first signal optical resonator of the first signal light 246 together with the first thin disc 111 and the first internal mirror 243. The first internal mirror 243 is located at or near the normal to the front surface of the first thin disc 111 and is arranged at an angle of 45 degrees. If the first thin disc 111 is excited as in the above embodiment, the first signal light 246 It oscillates on the first thin disc 111. The first signal light 246 resonates between the first thin disc 111 and the first signal light output coupler 241. The first signal light output coupler 241 may have a reflectance of 95%, for example. The first signal light 246 is amplified by resonance in the first signal light output coupler 241 and the first thin disc 111, and a part of the first signal light 246 is output through the first signal light output coupler 241.

第二訊號光輸出耦合器242與第二薄碟112、第二內部鏡245一同形成第二訊號光247的共振器構造。第二內部鏡245位於第二薄碟112的正面的法線或其附近,以傾斜45度的方式配置。若第二薄碟112激發,則第二訊號光247於第二薄碟112自激振盪。第二訊號光247於第二薄碟112與第二訊號光輸出耦合器242之間共振。第二訊號光輸出耦合器242例如可具有95%的反射率。第二訊號光247於第二訊號光輸出耦合器242與第二薄碟112中共振而放大,第二訊號光247的一部分藉由第二訊號光輸出耦合器242而輸出。 The second signal light output coupler 242 forms a resonator structure of the second signal light 247 together with the second thin plate 112 and the second internal mirror 245. The second internal mirror 245 is located at or near the normal to the front surface of the second thin disc 112 and is arranged at an angle of 45 degrees. If the second thin disc 112 is excited, the second signal light 247 self-oscillates on the second thin disc 112. The second signal light 247 resonates between the second thin disc 112 and the second signal light output coupler 242. The second signal light output coupler 242 may have a reflectance of 95%, for example. The second signal light 247 is amplified by resonance in the second signal light output coupler 242 and the second thin disc 112, and a part of the second signal light 247 is output through the second signal light output coupler 242.

本實施例的薄碟雷射裝置200獨立地設置第一訊號光共振構造及第二訊號光共振構造,因此可獨立地輸出控制第一訊號光246及第二訊號光247。 The thin-disk laser device 200 of this embodiment is provided with a first signal light resonance structure and a second signal light resonance structure independently, and therefore can independently output and control the first signal light 246 and the second signal light 247.

本實施例的薄碟雷射裝置200分別對第一訊號光246與第二訊號光247具有單獨的共振器構造,但並不限制於此。作為另一例,可為第一訊號光246與第二訊號光247光學連接而構成一個訊號光的共振器光學系統,上述另一例可由業者理解。例如,可設置多個鏡而使自第一薄碟111經由第一內部鏡243而傳輸的 第一訊號光346經由第二內部鏡245發射至第二薄碟112,使自第二薄碟112經由第二內部鏡245而傳輸的第二訊號光244經由第一內部鏡243發射至第一薄碟111。 The thin-disk laser device 200 of this embodiment has separate resonator structures for the first signal light 246 and the second signal light 247, but it is not limited thereto. As another example, a resonator optical system of a signal light may be formed by optically connecting the first signal light 246 and the second signal light 247. Another example described above can be understood by a practitioner. For example, a plurality of mirrors may be provided so that the transmission from the first thin disc 111 via the first internal mirror 243 The first signal light 346 is emitted to the second thin disc 112 through the second internal mirror 245, and the second signal light 244 transmitted from the second thin disc 112 through the second internal mirror 245 is emitted to the first through the first internal mirror 243 Thin dish 111.

本實施例的薄碟雷射裝置200具有共振器構造,但並不限制於此。作為另一例,亦可分別對第一訊號光246與第二訊號光247配置單獨的放大器光學系統來代替第一訊號光輸出耦合器241及第二訊號光輸出耦合器242。作為又一例,亦可為第一訊號光246與第二訊號光244光學連接而配置一個訊號光的放大器光學系統。 The thin disc laser device 200 of this embodiment has a resonator structure, but it is not limited to this. As another example, separate amplifier optical systems may be configured for the first signal light 246 and the second signal light 247 instead of the first signal light output coupler 241 and the second signal light output coupler 242, respectively. As yet another example, a signal optical amplifier optical system may be configured for optically connecting the first signal light 246 and the second signal light 244.

圖6是本發明的又一實施例的薄碟雷射裝置的概略構成圖。於本實施例的薄碟雷射裝置300中,與激升光相關的構成要素與參照圖1至圖5進行說明的實施例實質上相同,因此以差異點為中心而進行說明。 FIG. 6 is a schematic configuration diagram of a thin-disk laser device according to still another embodiment of the present invention. In the thin-disk laser device 300 of this embodiment, the constituent elements related to the laser beam are substantially the same as those of the embodiment described with reference to FIGS. 1 to 5, and therefore, the differences will be mainly described.

參照圖6,本實施例的薄碟雷射裝置300包括第一薄碟111及第二薄碟112、第一抛物面反射鏡321及第二抛物面反射鏡322、第一訊號光輸出耦合器341及第二訊號光輸出耦合器345、第一訊號光全反射鏡342及第二訊號光全反射鏡344。 Referring to FIG. 6, the thin-disk laser device 300 of this embodiment includes a first thin-disk 111 and a second thin-disk 112, a first parabolic mirror 321 and a second parabolic mirror 322, a first signal light output coupler 341, and The second signal light output coupler 345, the first signal light total reflection mirror 342, and the second signal light total reflection mirror 344.

於第二抛物面反射鏡322設置可供第一訊號光343通過的第一輸出耦合器側通路323及第一全反射鏡側通路324。第一訊號光輸出耦合器341設置至第二抛物面反射鏡322的外側,使經由第一輸出耦合器側通路323的第一訊號光343反射或透射。上述構造為對稱構造,因此第一訊號光輸出耦合器341、第一輸出耦 合器側通路323、第一訊號光輸出耦合器341亦可彼此分別對稱地變換而按照第一訊號光輸出耦合器341、第一全反射鏡側通路324、第一訊號光輸出耦合器341的順序使用。第一訊號光全反射鏡342設置至第二抛物面反射鏡322的外側,使經由第一全反射鏡側通路324的第一訊號光343反射。第一訊號光輸出耦合器341、第一薄碟111及第一訊號光全反射鏡342形成第一訊號光343的第一訊號光共振器。藉由第一訊號光輸出耦合器341而入射的第一訊號光343經由第二抛物面反射鏡322的第一輸出耦合器側通路323入射至第一薄碟111。第一訊號光343可於第一薄碟111放大並反射而經由第二抛物面反射鏡322的第一全反射鏡側通路324朝向第一訊號光全反射鏡342,再反射而再次沿相同的路徑返回後共振。第一訊號光輸出耦合器341例如可具有95%的反射率。第一訊號光343於第一訊號光共振器中共振而放大,藉由第一訊號光輸出耦合器341而輸出。 A first output-coupler-side passage 323 and a first total-mirror-side passage 324 are provided in the second parabolic mirror 322 for the first signal light 343 to pass through. The first signal light output coupler 341 is disposed outside the second parabolic mirror 322 to reflect or transmit the first signal light 343 passing through the first output coupler side path 323. The above structure is symmetrical, so the first signal optical output coupler 341 and the first output coupler The combiner-side path 323 and the first signal light output coupler 341 can also be symmetrically transformed with each other to follow the first signal light output coupler 341, the first total mirror side path 324, and the first signal light output coupler 341. Used sequentially. The first signal light total reflection mirror 342 is disposed outside the second parabolic mirror 322 to reflect the first signal light 343 passing through the first total mirror side passage 324. The first signal light output coupler 341, the first thin disc 111, and the first signal light total reflection mirror 342 form a first signal light resonator of the first signal light 343. The first signal light 343 incident through the first signal light output coupler 341 is incident on the first thin disc 111 through the first output coupler side passage 323 of the second parabolic mirror 322. The first signal light 343 can be amplified and reflected on the first thin disc 111 and passes through the first total mirror side path 324 of the second parabolic mirror 322 toward the first signal light total mirror 342, and then reflects again along the same path Resonance after returning. The first signal light output coupler 341 may have a reflectance of 95%, for example. The first signal light 343 is resonated and amplified in the first signal light resonator, and is output through the first signal light output coupler 341.

於第一抛物面反射鏡321設置可供第二訊號光346通過的第二輸出耦合器側通路327及第二全反射鏡側通路326。第二訊號光輸出耦合器345設置至第一抛物面反射鏡321的外側,使經由第二輸出耦合器側通路327的第二訊號光346反射或透射。第二訊號光全反射鏡344設置至第一抛物面反射鏡321的外側,使經由第二全反射鏡側通路326的第二訊號光346反射。第二訊號光輸出耦合器345、第二薄碟112及第二訊號光全反射鏡344構成第二訊號光346的第二訊號光共振器。藉由第二訊號光輸出耦合 器345而入射的第二訊號光346經由第一抛物面反射鏡321的第二輸出耦合器側通路327入射至第二薄碟112。第二訊號光346於第二薄碟112放大並反射而經由第一抛物面反射鏡321的第二全反射鏡側通路326朝向第二訊號光全反射鏡344,再反射而再次沿相同的路徑返回後共振。第二訊號光輸出耦合器345例如可具有95%的反射率。第二訊號光346於第二訊號光共振器中共振而放大,藉由第二訊號光輸出耦合器345而輸出。 A second output-coupler-side passage 327 and a second total-mirror-side passage 326 are provided on the first parabolic mirror 321 for the second signal light 346 to pass through. The second signal light output coupler 345 is disposed outside the first parabolic mirror 321 to reflect or transmit the second signal light 346 passing through the second output coupler side passage 327. The second signal light total reflection mirror 344 is disposed outside the first parabolic mirror 321 and reflects the second signal light 346 passing through the second total mirror side passage 326. The second signal light output coupler 345, the second thin disk 112, and the second signal light total reflection mirror 344 constitute a second signal light resonator of the second signal light 346. Optical output coupling through second signal The second signal light 346 that is incident on the reflector 345 is incident on the second thin disc 112 through the second output coupler side passage 327 of the first parabolic mirror 321. The second signal light 346 is amplified and reflected on the second thin disc 112 and passes through the second total mirror side path 326 of the first parabolic mirror 321 toward the second signal light total reflection mirror 344, reflects again and returns along the same path again. After resonance. The second signal light output coupler 345 may have a reflectance of 95%, for example. The second signal light 346 is resonated and amplified in the second signal light resonator, and is output through the second signal light output coupler 345.

本實施例的薄碟雷射裝置300獨立地設置第一訊號光共振構造及第二訊號光共振構造,因此可獨立地輸出控制第一訊號光343及第二訊號光346。 The thin-disk laser device 300 of this embodiment is provided with a first signal light resonance structure and a second signal light resonance structure independently, and therefore can independently output and control the first signal light 343 and the second signal light 346.

第一訊號光共振構造及第二訊號光共振構造與多路徑激升構造獨立地設置,因此設置至第一抛物面反射鏡321的第二輸出耦合器側通路327及第二全反射鏡側通路326、與設置至第二抛物面反射鏡122的第一輸出耦合器側通路323及第一全反射鏡側通路324的位置可於不與設置至第一抛物面反射鏡321的一側的激升光入射口125發生機械干涉的範圍內自由地設計。例如,於第一抛物面反射鏡321中,激升光入射口125可與第二輸出耦合器側通路327及第二全反射鏡側通路326設置至同一線上,或設置至脫離同一線上的位置。 The first signal light resonance structure and the second signal light resonance structure are provided independently of the multi-path surge structure, and therefore are provided to the second output coupler side passage 327 and the second total mirror side passage 326 of the first parabolic mirror 321. The positions of the first output coupler-side passage 323 and the first total-mirror-side passage 324 provided to the second parabolic mirror 122 may not be incident on the rising light provided to the side of the first parabolic mirror 321. The port 125 is designed freely within a range where mechanical interference occurs. For example, in the first parabolic mirror 321, the rising light entrance port 125 may be disposed on the same line as the second output coupler-side passage 327 and the second total-mirror-side passage 326, or may be disposed at a position apart from the same line.

本實施例的薄碟雷射裝置300分別具有第一訊號光343及第二訊號光346的共振器構造,但並不限制於此。作為另一例,可為第一訊號光343與第二訊號光346光學連接而構成一個訊號 光的共振器光學系統,上述另一例可由業者理解。例如,可設置多個鏡而使自第一薄碟111藉由第一輸出耦合器側通路323而傳輸的第一訊號光343經由第二輸出耦合器側通路327發射至第二薄碟112,使自第二薄碟112藉由第二輸出耦合器側通路327而傳輸的第二訊號光346經由第一輸出耦合器側通路323發射至第一薄碟111。 The thin disc laser device 300 of this embodiment has resonator structures of the first signal light 343 and the second signal light 346, but it is not limited thereto. As another example, a signal may be formed by optically connecting the first signal light 343 and the second signal light 346. The optical resonator optical system, another example described above can be understood by the practitioner. For example, a plurality of mirrors may be provided so that the first signal light 343 transmitted from the first thin disc 111 through the first output coupler side path 323 is transmitted to the second thin disc 112 through the second output coupler side path 327. The second signal light 346 transmitted from the second thin disc 112 through the second output coupler side path 327 is transmitted to the first thin disc 111 through the first output coupler side path 323.

本實施例的薄碟雷射裝置300具有共振器構造,但並不限制於此。作為另一例,亦可分別對第一訊號光443與第二訊號光446配置單獨的放大器光學系統來代替第一訊號光輸出耦合器341及第二訊號光輸出耦合器345。作為又一例,亦可為第一訊號光343與第二訊號光346光學連接而配置一個訊號光的放大器光學系統。 The thin-disk laser device 300 of this embodiment has a resonator structure, but it is not limited to this. As another example, separate amplifier optical systems may be configured for the first signal light 443 and the second signal light 446 instead of the first signal light output coupler 341 and the second signal light output coupler 345, respectively. As another example, an amplifier optical system of a signal light may be configured for optically connecting the first signal light 343 and the second signal light 346.

圖7是本發明的又一實施例的薄碟雷射裝置400的概略構成圖。於本實施例的薄碟雷射裝置400中,除訊號光的共振構造以外的剩餘構成要素與參照圖1至圖6進行說明的實施例實質上相同,因此以差異點為中心而進行說明。 FIG. 7 is a schematic configuration diagram of a thin disk laser device 400 according to still another embodiment of the present invention. In the thin-disc laser device 400 of this embodiment, the remaining constituent elements other than the resonance structure of the signal light are substantially the same as those of the embodiment described with reference to FIGS. 1 to 6, and therefore the differences will be mainly described.

參照圖7,本實施例的薄碟雷射裝置400包括第一薄碟111及第二薄碟112、第一抛物面反射鏡421及第二抛物面反射鏡422、第一訊號光輸出耦合器441、第一訊號光全反射鏡442、第二訊號光內部鏡444及第二訊號光輸出耦合器445。 Referring to FIG. 7, the thin-disk laser device 400 of this embodiment includes a first thin disk 111 and a second thin disk 112, a first parabolic mirror 421 and a second parabolic mirror 422, a first signal light output coupler 441, The first signal light total reflection mirror 442, the second signal light internal mirror 444, and the second signal light output coupler 445.

於第二抛物面反射鏡422設置可供第一訊號光443通過的輸出耦合器側通路423及全反射鏡側通路424。第一訊號光輸出 耦合器441、第一薄碟111及第一訊號光全反射鏡442形成第一訊號光443的共振器構造。此種第一訊號光443的共振器構造與參照圖6進行說明的第一訊號光的共振器構造實質上相同。 The second parabolic mirror 422 is provided with an output coupler-side passage 423 and a total-mirror side passage 424 through which the first signal light 443 can pass. First signal light output The coupler 441, the first thin disc 111, and the first signal light total reflection mirror 442 form a resonator structure of the first signal light 443. The resonator structure of the first signal light 443 is substantially the same as the resonator structure of the first signal light described with reference to FIG. 6.

第二訊號光內部鏡444位於第二薄碟112的正面的法線或其附近,以傾斜45度的方式配置。第二訊號光輸出耦合器445、第二薄碟112與第二訊號光內部鏡444形成第二訊號光446的共振器構造。此種第二訊號光446的共振器構造與參照圖5進行說明的第二訊號光的共振器構造實質上相同。 The second signal light internal mirror 444 is located at or near the normal of the front surface of the second thin disc 112, and is arranged at an angle of 45 degrees. The second signal light output coupler 445, the second thin disc 112, and the second signal light internal mirror 444 form a resonator structure of the second signal light 446. The resonator structure of the second signal light 446 is substantially the same as the resonator structure of the second signal light described with reference to FIG. 5.

本實施例的薄碟雷射裝置400可獨立地設置第一訊號光共振構造及第二訊號光共振構造,但並不限制於此。作為另一例,可為第一訊號光443與第二訊號光446光學連接而構成一個訊號光的共振器光學系統,上述另一例可由業者理解。例如,可設置多個鏡而使自第一薄碟111藉由輸出耦合器側通路423而傳輸的第一訊號光443經由第二訊號光內部鏡444發射至第二薄碟112,使自第二薄碟112再反射於第二訊號光內部鏡444的第二訊號光446經由輸出耦合器側通路423而發射至第一薄碟111。 The thin-disk laser device 400 of this embodiment may independently set a first signal light resonance structure and a second signal light resonance structure, but it is not limited thereto. As another example, the first signal light 443 and the second signal light 446 may be optically connected to form a resonator optical system of a signal light. The above-mentioned another example can be understood by a practitioner. For example, a plurality of mirrors may be provided so that the first signal light 443 transmitted from the first thin disc 111 through the output coupler side path 423 is transmitted to the second thin disc 112 through the second signal light internal mirror 444, so that The second signal light 446 reflected by the two thin discs 112 and reflected by the second signal light internal mirror 444 is transmitted to the first thin disc 111 through the output coupler side path 423.

本實施例的薄碟雷射裝置400具有共振器構造,但並不限制於此。作為另一例,亦可為分別對第一訊號光443與第二訊號光446配置單獨的放大器光學系統來代替第一訊號光輸出耦合器441及第二訊號光輸出耦合器445。作為又一例,亦可為第一訊號光443與第二訊號光446光學連接而配置一個訊號光的放大器光學系統。 The thin-disk laser device 400 of this embodiment has a resonator structure, but it is not limited to this. As another example, separate amplifier optical systems may be configured for the first signal light 443 and the second signal light 446 instead of the first signal light output coupler 441 and the second signal light output coupler 445. As another example, a signal optical amplifier optical system may be configured for optical connection between the first signal light 443 and the second signal light 446.

圖8是本發明的又一實施例的薄碟雷射裝置500的概略構成圖。於本實施例的薄碟雷射裝置500中,除激升光的多路徑激升構造以外的剩餘構成要素可與參照圖1至圖7進行說明的實施例實質上相同,因此以差異點為中心而進行說明。 FIG. 8 is a schematic configuration diagram of a thin disk laser device 500 according to still another embodiment of the present invention. In the thin-disc laser device 500 of this embodiment, the remaining constituent elements other than the multi-path pumping structure of the pumping light can be substantially the same as those of the embodiment described with reference to FIGS. 1 to 7. Center.

參照圖8,本實施例的薄碟雷射裝置500包括第一薄碟111及第二薄碟112、第一抛物面反射鏡521及第二抛物面反射鏡522、第一激升光源551及第二激升光源552。 Referring to FIG. 8, the thin-disk laser device 500 of this embodiment includes a first thin disk 111 and a second thin disk 112, a first parabolic mirror 521 and a second parabolic mirror 522, a first laser source 551, and a second Laser light source 552.

第一抛物面反射鏡521與第二抛物面反射鏡522的抛物面形狀的反射面彼此面對,並且同軸地配置。於第一抛物面反射鏡521,以頂點為基準而左右對稱地設置第一激升光入射口525及第二激升光入射口526。第一激升光源551及第二激升光源552以如下方式配置:出射的第一激升光P1及第二激升光P2分別藉由第一激升光入射口525及第二激升光入射口526而入射至第一抛物面反射鏡521及第二抛物面反射鏡522之間的空間。 The paraboloid-shaped reflecting surfaces of the first parabolic mirror 521 and the second parabolic mirror 522 face each other and are arranged coaxially. The first parabolic mirror 521 is provided with a first laser light entrance 525 and a second laser light entrance 526 symmetrically on the vertex as a reference. The first soaring light source 551 and the second soaring light source 552 are configured in the following manner: the emitted first soaring light P1 and the second soothing light P2 pass through the first soothing light entrance 525 and the second soothing light, respectively The entrance port 526 enters a space between the first parabolic mirror 521 and the second parabolic mirror 522.

圖9a及圖9b分別表示本實施例的薄碟雷射裝置500的形成至第一抛物面反射鏡521及第二抛物面反射鏡522的第一激升光點S1_1、S1_2、...、S1_S13及第二激升光點S2_1、S2_2、...、S2_13、與第一激升光P1及第二激升光P2的光路徑。 FIGS. 9a and 9b respectively show the formation of the thin-disk laser device 500 to the first parabolic mirrors 521 and the first parabolic mirrors 522 of the second parabolic mirror 522 at the first ascending light points S1_1, S1_2,... The light paths of the second excitation light points S2_1, S2_2, ..., S2_13, and the first excitation light P1 and the second excitation light P2.

自第一激升光源551出射的第一激升光P1藉由第一抛物面反射鏡521的第一激升光入射口525而以與光軸OA平行的方式入射至第一抛物面反射鏡521及第二抛物面反射鏡522之間的空間。第一激升光P1的多路徑激升光路徑與參照圖2、圖3a 及圖3b進行說明的實施例的激升光路徑實質上相同。相同地,自第二激升光源552發出的第二激升光P2藉由第一抛物面反射鏡521的第二激升光入射口526而以與光軸OA平行的方式入射至第一抛物面反射鏡521及第二抛物面反射鏡522之間的空間。第二激升光入射口526以第一抛物面反射鏡521的頂點為基準而左右對稱地設置,因此第二激升光P2的多路徑激升光路徑與第一激升光P1的多路徑激升光路徑以光軸OA為基準而左右對稱地形成。因此,形成至第一抛物面反射鏡521及第二抛物面反射鏡522的第一激升光點S1_1、S1_2、...、S1_S13及第二激升光點S2_1、S2_2、...、S2_13跨及第一抛物面反射鏡521及第二抛物面反射鏡522的整個區域而形成,因此可有效地活用第一抛物面反射鏡521及第二抛物面反射鏡522。 The first laser light P1 emitted from the first laser light source 551 passes through the first laser light entrance 525 of the first parabolic mirror 521 and enters the first parabolic mirror 521 and the optical axis OA in parallel. A space between the second parabolic mirrors 522. Multi-path laser light path of the first laser light P1 and refer to FIG. 2 and FIG. 3a The excitation light path of the embodiment described with reference to FIG. 3b is substantially the same. Similarly, the second rising light P2 emitted from the second rising light source 552 is incident on the first parabolic reflection through the second rising light entrance 526 of the first parabolic mirror 521 in a manner parallel to the optical axis OA. A space between the mirror 521 and the second parabolic mirror 522. The second laser light entrance port 526 is symmetrically arranged on the left and right sides with the vertex of the first parabolic mirror 521 as a reference. The light-up path is formed symmetrically with reference to the optical axis OA. Therefore, the first ascending light points S1_1, S1_2, ..., S1_S13 and the second ascending light points S2_1, S2_2, ..., S2_13 formed to the first parabolic mirror 521 and the second parabolic mirror 522 are formed across And the first parabolic mirror 521 and the second parabolic mirror 522 are formed over the entire area, so the first parabolic mirror 521 and the second parabolic mirror 522 can be effectively utilized.

圖10是本發明的又一實施例的薄碟雷射裝置600的概略構成圖。於本實施例的薄碟雷射裝置600中,除激升光的多路徑激升構造以外的剩餘構成要素可與參照圖1至圖8進行說明的實施例實質上相同,因此以差異點為中心而進行說明。 FIG. 10 is a schematic configuration diagram of a thin disk laser device 600 according to still another embodiment of the present invention. In the thin-disc laser device 600 of this embodiment, the remaining constituent elements other than the multi-path soaring structure of the ascending light may be substantially the same as those of the embodiment described with reference to FIGS. 1 to 8. Center.

參照圖10,本實施例的薄碟雷射裝置600包括第一薄碟111及第二薄碟112、第一抛物面反射鏡621及第二抛物面反射鏡622、第一激升光源651及第二激升光源652。 Referring to FIG. 10, the thin-disk laser device 600 of this embodiment includes a first thin disk 111 and a second thin disk 112, a first parabolic mirror 621 and a second parabolic mirror 622, a first laser source 651, and a second Laser light source 652.

第一抛物面反射鏡621與第二抛物面反射鏡622的抛物面形狀的反射面彼此面對,並且同軸地配置。於第一抛物面反射鏡621設置第一激升光入射口625,於第二抛物面反射鏡622設置 第二激升光入射口626。第二激升光入射口626以如下方式設置:以光軸OA的第一抛物面反射鏡621與第二抛物面反射鏡622之間的中心點為基準而對稱,並且以兩個抛物面反射鏡的中心點為基準而與第一激升光入射口625對稱。第一激升光源651及第二激升光源652以如下方式配置:所出射的第一激升光P1及第二激升光P2分別藉由第一激升光入射口625及第二激升光入射口626而入射至第一抛物面反射鏡521與第二抛物面反射鏡522之間的空間。第一激升光P1的多路徑激升光路徑與參照圖2、圖3a及圖3b進行說明的實施例的激升光路徑實質上相同。相同地,第二激升光P2的多路徑激升光路徑亦與參照圖2、圖3a及圖3b進行說明的實施例的激升光路徑實質上相同。第一激升光入射口625及第二激升光入射口626以兩個抛物面反射鏡的中心點為基準而對稱地設置,因此形成至第一抛物面反射鏡621及第二抛物面反射鏡622的第一激升光點及第二激升光點跨及第一抛物面反射鏡621及第二抛物面反射鏡622的整個區域而形成,因此可有效地活用第一抛物面反射鏡621及第二抛物面反射鏡622。 The paraboloid-shaped reflecting surfaces of the first parabolic mirror 621 and the second parabolic mirror 622 face each other and are arranged coaxially. The first parabolic mirror 621 is provided with a first rising light entrance 625, and the second parabolic mirror 622 is provided The second exciting light incident port 626. The second ascending light entrance 626 is provided in a manner that is symmetrical with respect to a center point between the first parabolic mirror 621 and the second parabolic mirror 622 on the optical axis OA, and is centered on the centers of the two parabolic mirrors The point is a reference and is symmetrical with the first laser light entrance 625. The first soaring light source 651 and the second soaring light source 652 are configured in the following manner: the emitted first soaring light P1 and the second soaring light P2 pass through the first soothing light entrance 625 and the second soothing light, respectively. The light incident port 626 enters a space between the first parabolic mirror 521 and the second parabolic mirror 522. The multi-path pumping path of the first pumping light P1 is substantially the same as the pumping path of the embodiment described with reference to FIGS. 2, 3 a, and 3 b. Similarly, the multi-path excitation light path of the second excitation light P2 is also substantially the same as the excitation light path of the embodiment described with reference to FIGS. 2, 3 a, and 3 b. The first ascending light entrance 625 and the second ascending light entrance 626 are symmetrically provided with reference to the center points of the two parabolic mirrors. Therefore, the first parabolic mirror 621 and the second parabolic mirror 622 are formed symmetrically. The first and second rising spots are formed across the entire area of the first parabolic mirror 621 and the second parabolic reflecting mirror 622, so the first parabolic reflecting mirror 621 and the second parabolic reflecting can be effectively utilized.镜 622.

圖11是本發明的又一實施例的薄碟雷射裝置700的概略構成圖。於本實施例的薄碟雷射裝置700中,除激升光的多路徑激升構造以外的剩餘構成要素可與參照圖1至圖10進行說明的實施例實質上相同,因此以差異點為中心而進行說明。 FIG. 11 is a schematic configuration diagram of a thin disk laser device 700 according to still another embodiment of the present invention. In the thin-disk laser device 700 of this embodiment, the remaining constituent elements other than the multi-path pumping structure of the pumping light may be substantially the same as those of the embodiment described with reference to FIGS. 1 to 10. Center.

參照圖11,本實施例的薄碟雷射裝置700包括第一薄碟111及第二薄碟112、第一抛物面反射鏡721及第二抛物面反射鏡 722、第一激升光源至第四激升光源751、752、753、754。 Referring to FIG. 11, the thin-disk laser device 700 of this embodiment includes a first thin-disk 111 and a second thin-disk 112, a first parabolic mirror 721, and a second parabolic mirror 722. The first to fourth rising light sources 751, 752, 753, and 754.

第一抛物面反射鏡721與第二抛物面反射鏡722的抛物面形狀的反射面彼此面對,並且同軸地配置。於第一抛物面反射鏡721中,第一激升光入射口725及第二激升光入射口726以第一抛物面反射鏡721的頂點為基準而對稱地設置,於第二抛物面反射鏡722中,第三激升光入射口727及第四激升光入射口728以第二抛物面反射鏡722的頂點為基準而對稱地設置。 The parabolic-shaped reflecting surfaces of the first parabolic mirror 721 and the second parabolic mirror 722 face each other and are arranged coaxially. In the first parabolic mirror 721, the first ascending light entrance 725 and the second ascending light entrance 726 are symmetrically disposed with reference to the vertex of the first parabolic mirror 721, and are disposed in the second parabolic mirror 722. The third soaring light entrance 727 and the fourth soaring light entrance 728 are symmetrically provided with the vertex of the second parabolic mirror 722 as a reference.

第一激升光源至第四激升光源751、752、753、754以如下方式配置:所出射的第一激升光至第四激升光P1、P2、P3、P4分別藉由第一激升光入射口至第四激升光入射口725、726、727、728而入射至第一抛物面反射鏡721及第二抛物面反射鏡722之間的空間。第一激升光至第四激升光P1、P2、P3、P4各者的多路徑激升光路徑與參照圖2、圖3a及圖3b進行說明的實施例的激升光路徑實質上相同。第一激升光入射口至第四激升光入射口725、726、727、728的形成位置或第一薄碟111及第二薄碟112的傾斜角度及傾斜方向能夠以如下方式設定:不使形成至第一抛物面反射鏡721及第二抛物面反射鏡722的第一激升光點至第四激升光點彼此重疊。本實施例的薄碟雷射裝置700跨及第一抛物面反射鏡721及第二抛物面反射鏡722的整個區域而形成第一激升光點至第四激升光點,因此可有效地活用第一抛物面反射鏡721及第二抛物面反射鏡722。 The first to fourth illuminating light sources 751, 752, 753, and 754 are configured in the following manner: the first to fourth irradiating light P1, P2, P3, and P4 emitted by the first The ascending light entrance to the fourth ascending light entrances 725, 726, 727, and 728 enter the space between the first parabolic mirror 721 and the second parabolic mirror 722. The multi-path laser path of each of the first to fourth laser beams P1, P2, P3, and P4 is substantially the same as the laser path of the embodiment described with reference to FIGS. 2, 3a, and 3b. . The formation positions of the first to fourth laser light entrances 725, 726, 727, and 728, or the inclination angles and directions of the first and second thin disks 111 and 112 can be set as follows: The first to fourth laser light spots formed to the first parabolic mirror 721 and the second parabolic mirror 722 are overlapped with each other. The thin disk laser device 700 of this embodiment spans the entire area of the first parabolic mirror 721 and the second parabolic mirror 722 to form the first to fourth laser light spots, so the first laser light spot to the fourth laser light spot can be effectively utilized. A parabolic mirror 721 and a second parabolic mirror 722.

圖12是本發明的又一實施例的薄碟雷射裝置800的概 略構成圖。於本實施例的薄碟雷射裝置800中,除激升光的多路徑激升構造以外的剩餘構成要素可與參照圖1至圖11進行說明的實施例實質上相同,因此以差異點為中心而進行說明。 FIG. 12 is a schematic view of a thin disk laser device 800 according to another embodiment of the present invention. Sketch map. In the thin-disk laser device 800 of this embodiment, the remaining constituent elements other than the multi-path pumping structure of the pumping light may be substantially the same as those of the embodiment described with reference to FIGS. 1 to 11. Center.

參照圖12,本實施例的薄碟雷射裝置800包括第一薄碟111及第二薄碟112、第一抛物面反射鏡821及第二抛物面反射鏡822、第一激升光源851及第二激升光源852。 Referring to FIG. 12, the thin-disk laser device 800 of this embodiment includes a first thin disk 111 and a second thin disk 112, a first parabolic mirror 821 and a second parabolic mirror 822, a first laser source 851, and a second Light source 852.

第一抛物面反射鏡821與第二抛物面反射鏡822的抛物面形狀的反射面彼此面對,並且同軸地配置。於第一抛物面反射鏡821設置一個激升光入射口825。並列配置第一激升光源851與第二激升光源852,以便所出射的第一激升光P1及第二激升光P2藉由同一激升光入射口825而入射至第一抛物面反射鏡821與第二抛物面反射鏡822之間的空間。第一激升光P1及第二激升光P2各者的多路徑激升光路徑與參照圖2、圖3a及圖3b進行說明的實施例的激升光路徑實質上相同。本實施例的薄碟雷射裝置800以兩個激升光入射至一個激升光入射口825的情形為例而進行說明,但亦可並列入射3個以上的激升光。並且,於如參照圖8至圖11進行說明的實施例般具有多個激升光入射口的情形時,亦可使多個激升光束入射至各激升光入射口。 The paraboloid-shaped reflecting surfaces of the first parabolic mirror 821 and the second parabolic mirror 822 face each other and are arranged coaxially. A first light entrance port 825 is provided on the first parabolic mirror 821. A first soaring light source 851 and a second soaring light source 852 are arranged in parallel so that the first and second soaring lights P1 and P2 emitted are incident on the first parabolic reflector through the same soothing light entrance port 825. The space between 821 and the second parabolic mirror 822. The multi-path laser light path of each of the first laser light P1 and the second laser light P2 is substantially the same as the laser light path of the embodiment described with reference to FIGS. 2, 3 a, and 3 b. The thin-disk laser device 800 of this embodiment is described by taking the case where two laser beams are incident on one laser beam entrance port 825 as an example, but three or more laser beams may be incident in parallel. In addition, when there are multiple laser light entrances as in the embodiment described with reference to FIGS. 8 to 11, multiple laser light entrances may be made incident on each laser light entrance.

為了有助於理解,參照圖中所示的實施例對本發明所述的薄碟雷射裝置進行了說明,但上述實施例僅為示例,於本技術領域內具有常識者應理解可根據上述實施例實現各種變形及等同的其他實施例。因此,本發明的真正的技術保護範圍應由隨附的 申請專利範圍界定。 In order to facilitate understanding, the thin-disk laser device according to the present invention has been described with reference to the embodiments shown in the drawings, but the above-mentioned embodiments are merely examples, and those having ordinary knowledge in the technical field should understand that the above-mentioned implementation Examples realize various modifications and equivalent other embodiments. Therefore, the true technical protection scope of the present invention should be covered by the accompanying Definition of patent application scope.

Claims (19)

一種薄碟雷射裝置,包括:第一抛物面反射鏡及第二抛物面反射鏡,彼此面對,且同軸地配置;第一薄碟及第二薄碟,分別包括雷射介質與位於所述雷射介質的背面的反射面,分別配置至所述第一抛物面反射鏡及所述第二抛物面反射鏡的頂點而與所述第一抛物面反射鏡及所述第二抛物面反射鏡一同形成激升光的多路徑;第一內部鏡及第二內部鏡,配置至所述第一抛物面反射鏡與所述第二抛物面反射鏡之間的空間而反射訊號光;以及多個鏡,配置至所述第一內部鏡與所述第二內部鏡之間的所述訊號光的光路徑上,且所述激升光藉由所述第一抛物面反射鏡及所述第二抛物面反射鏡多次入射於所述第一薄碟與所述第二薄碟,以激發所述第一薄碟與所述第二薄碟,其中所述第一內部鏡、所述第二內部鏡及所述多個鏡藉由在所述激升光激發的所述第一薄碟與所述第二薄碟之間反覆反射所述訊號光而放大所述訊號光,其中所述訊號光不於所述第一抛物面反射鏡及所述第二抛物面反射鏡反射。 A thin disk laser device includes: a first parabolic mirror and a second parabolic mirror, which face each other and are arranged coaxially; a first thin disk and a second thin disk, respectively, including a laser medium and the laser; The reflecting surfaces on the back surface of the transmission medium are respectively arranged to the vertices of the first parabolic mirror and the second parabolic mirror, and together with the first parabolic mirror and the second parabolic mirror, form an ascending light. A multi-path; a first internal mirror and a second internal mirror configured to reflect a signal light to a space between the first parabolic mirror and the second parabolic mirror; and a plurality of mirrors configured to the first On the light path of the signal light between an internal mirror and the second internal mirror, and the rising light is incident on the mirror multiple times by the first parabolic mirror and the second parabolic mirror. The first thin disc and the second thin disc to excite the first thin disc and the second thin disc, wherein the first inner mirror, the second inner mirror, and the plurality of mirrors are borrowed The first thin plate excited by the rising light and Said signal light repeatedly reflected between the thin plate and the second optical amplifying the signal, wherein the signal light is not to the first parabolic mirror and said second parabolic mirror reflector. 如申請專利範圍第1項所述的薄碟雷射裝置,其中所述第一內部鏡以自所述第一內部鏡入射於所述第一薄碟的所述訊號 光向所述第一內部鏡側反射的方式配置,所述第二內部鏡以自所述第二內部鏡入射於所述第二薄碟的所述訊號光向所述第二內部鏡側反射的方式配置。 The thin-disk laser device according to item 1 of the scope of patent application, wherein the first internal mirror is configured to input the signal from the first internal mirror to the first thin disk. The light is configured to reflect toward the first internal mirror side, and the second internal mirror reflects the signal light incident on the second thin disk from the second internal mirror toward the second internal mirror side. Way to configure. 如申請專利範圍第1項所述的薄碟雷射裝置,其中所述第一內部鏡位於所述第一薄碟的正面的法線上或所述法線的附近,所述第二內部鏡位於所述第二薄碟的正面的法線上或所述法線的附近。 The thin-disk laser device according to item 1 of the patent application scope, wherein the first internal mirror is located on or near the normal to the front surface of the first thin disk, and the second internal mirror is located The normal line of the front surface of the second thin disc or the vicinity of the normal line. 如申請專利範圍第1項所述的薄碟雷射裝置,其更包括供給種子光的種子光源,所述第一薄碟及所述第二薄碟將種子光放大成所述訊號光。 The thin-disk laser device according to item 1 of the patent application scope further includes a seed light source for supplying seed light, and the first thin disk and the second thin disk amplify the seed light into the signal light. 如申請專利範圍第4項所述的薄碟雷射裝置,其中自所述種子光源射出的種子光為偏光的雷射光。 The thin-disk laser device according to item 4 of the patent application scope, wherein the seed light emitted from the seed light source is polarized laser light. 如申請專利範圍第1項所述的薄碟雷射裝置,其更包括光路徑轉換器,所述光路徑轉換器配置至所述第一薄碟與所述第二薄碟之間的所述訊號光的光路徑上,根據控制訊號變更所述訊號光的路徑而向外部輸出。 The thin-disk laser device according to item 1 of the scope of patent application, further comprising an optical path converter configured to the first thin disk and the second thin disk. On the optical path of the signal light, the path of the signal light is changed according to the control signal and output to the outside. 如申請專利範圍第1項所述的薄碟雷射裝置,其中所述第一薄碟及所述第二薄碟相對於所述第一抛物面反射鏡及所述第二抛物面反射鏡的光軸傾斜。 The thin-disk laser device according to item 1 of the patent application scope, wherein the first thin disk and the second thin disk are relative to the optical axis of the first parabolic mirror and the second parabolic mirror tilt. 如申請專利範圍第1項所述的薄碟雷射裝置,其更包括出射激發所述雷射介質的第一激升光的第一激升光源,於所述第一抛物面反射鏡形成使所述第一激升光入射至所述 第一抛物面反射鏡與所述第二抛物面反射鏡之間的空間的第一激升光入射口。 The thin-disk laser device according to item 1 of the scope of the patent application, further comprising a first laser light source that emits a first laser light that excites the laser medium, and is formed on the first parabolic mirror. Said first rising light is incident on said A first laser light entrance in a space between the first parabolic mirror and the second parabolic mirror. 如申請專利範圍第8項所述的薄碟雷射裝置,其更包括出射激發所述雷射介質的第二激升光的第二激升光源。 The thin-disk laser device according to item 8 of the scope of patent application, further comprising a second laser source that emits a second laser light that excites the laser medium. 如申請專利範圍第9項所述的薄碟雷射裝置,其中於所述第一抛物面反射鏡或所述第二抛物面反射鏡形成使所述第二激升光入射至所述第一抛物面反射鏡與第二抛物面反射鏡之間的空間的第二激升光入射口。 The thin-disk laser device according to item 9 of the scope of patent application, wherein the first parabolic mirror or the second parabolic mirror is formed so that the second excitation light is incident on the first parabolic reflection. A second rising light entrance in the space between the mirror and the second parabolic reflector. 如申請專利範圍第9項所述的薄碟雷射裝置,其中所述第二激升光藉由所述第一激升光入射口而入射至所述第一抛物面反射鏡與所述第二抛物面反射鏡之間的空間。 The thin-disk laser device according to item 9 of the scope of patent application, wherein the second laser light is incident on the first parabolic mirror and the second laser light through the first laser light entrance port. Space between parabolic mirrors. 如申請專利範圍第1項所述的薄碟雷射裝置,其更包括激升光束模式觀察裝置,所述激升光束模式觀察裝置拍攝形成至所述第一薄碟及所述第二薄碟的正面的第一激升光點及第二激升光點。 The thin-disk laser device according to item 1 of the scope of patent application, further comprising a soaring-beam mode observation device that is photographed and formed on the first and second thin-disc plates. The first and second rising points of light on the front side of the lens. 一種薄碟雷射裝置,包括:第一抛物面反射鏡及第二抛物面反射鏡,彼此面對,且同軸地配置;第一薄碟及第二薄碟,分別包括雷射介質與位於所述雷射介質的背面的反射面,分別配置至所述第一抛物面反射鏡及所述第二抛物面反射鏡的頂點而與所述第一抛物面反射鏡及所述第二抛物面反射鏡一同形成激升光的多路徑; 第一內部鏡及第二內部鏡,配置至所述第一抛物面反射鏡與所述第二抛物面反射鏡之間的空間而反射自所述第一薄碟及所述第二薄碟振盪的第一訊號光及第二訊號光;以及第一訊號光輸出耦合器及第二訊號光輸出耦合器,分別將自所述第一內部鏡及所述第二內部鏡反射的所述第一訊號光及所述第二訊號光的一部分再反射至所述第一內部鏡及所述第二內部鏡,且使另一部分輸出。 A thin disk laser device includes: a first parabolic mirror and a second parabolic mirror, which face each other and are arranged coaxially; a first thin disk and a second thin disk, respectively, including a laser medium and the laser; The reflecting surfaces on the back surface of the transmission medium are respectively arranged to the vertices of the first parabolic mirror and the second parabolic mirror, and together with the first parabolic mirror and the second parabolic mirror, form an ascending light. Multipath The first internal mirror and the second internal mirror are disposed in a space between the first parabolic mirror and the second parabolic mirror to reflect the first oscillating first and second oscillating mirrors. A signal light and a second signal light; and a first signal light output coupler and a second signal light output coupler respectively reflecting the first signal light from the first internal mirror and the second internal mirror And a part of the second signal light is reflected to the first internal mirror and the second internal mirror, and another part is output. 一種薄碟雷射裝置,包括:第一抛物面反射鏡及第二抛物面反射鏡,彼此面對,且同軸地配置;第一薄碟及第二薄碟,分別包括雷射介質與位於所述雷射介質的背面的反射面,配置至所述第一抛物面反射鏡及所述第二抛物面反射鏡的頂點而與所述第一抛物面反射鏡及所述第二抛物面反射鏡一同形成激升光的多路徑;以及第一內部鏡,配置至所述第一抛物面反射鏡與所述第二抛物面反射鏡之間的空間,以反射第一訊號光,且所述激升光藉由所述第一抛物面反射鏡及所述第二抛物面反射鏡多次入射於所述第一薄碟與所述第二薄碟,以激發所述第一薄碟與所述第二薄碟,所述第一內部鏡配置至所述第一薄碟的正面,以使自所述第一內部鏡入射於所述第一薄碟的所述第一訊號光向所述第一內部鏡側反射, 其中所述第一訊號光被所述激升光激發的所述第一薄碟放大,其中所述第一訊號光不於所述第一抛物面反射鏡及所述第二抛物面反射鏡反射。 A thin disk laser device includes: a first parabolic mirror and a second parabolic mirror, which face each other and are arranged coaxially; a first thin disk and a second thin disk, respectively, including a laser medium and the laser; The reflecting surface on the back of the transmission medium is arranged to the apex of the first parabolic mirror and the second parabolic mirror, and forms the ascending light together with the first parabolic mirror and the second parabolic mirror. Multipath; and a first internal mirror configured to a space between the first parabolic mirror and the second parabolic mirror to reflect a first signal light, and the rising light passes through the first The parabolic reflector and the second parabolic reflector are incident on the first thin disc and the second thin disc multiple times to excite the first thin disc and the second thin disc, and the first interior A mirror is disposed on the front surface of the first thin disc, so that the first signal light incident on the first thin disc from the first internal mirror is reflected toward the first internal mirror side, The first signal light is amplified by the first thin disc excited by the rising light, and the first signal light is not reflected by the first parabolic mirror and the second parabolic mirror. 如申請專利範圍第14項所述的薄碟雷射裝置,其更包括配置至所述第一抛物面反射鏡與所述第二抛物面反射鏡之間的空間的第二內部鏡,所述第二內部鏡配置至所述第二薄碟的正面,以使自所述第二內部鏡入射於所述第二薄碟的第二訊號光向所述第二內部鏡側反射。 The thin-disk laser device according to item 14 of the patent application scope, further comprising a second internal mirror disposed to a space between the first parabolic mirror and the second parabolic mirror, and the second The internal mirror is disposed on the front surface of the second thin disk, so that the second signal light incident on the second thin disk from the second internal mirror is reflected toward the second internal mirror side. 如申請專利範圍第15項所述的薄碟雷射裝置,其中光學分離所述第一訊號光與所述第二訊號光而分別於所述第一薄碟與所述第二薄碟中單獨地放大。 The thin disc laser device according to item 15 of the scope of patent application, wherein the first signal light and the second signal light are optically separated and separated in the first thin disc and the second thin disc, respectively. To zoom in. 如申請專利範圍第14項所述的薄碟雷射裝置,其更包括設置至所述第一抛物面反射鏡的外側的第二訊號光全反射鏡與第二訊號光輸出耦合器,所述第一抛物面反射鏡包括所述第二訊號光的輸出耦合器側通路與全反射鏡側通路,自所述第二訊號光全反射鏡反射的所述第二訊號光藉由所述全反射鏡側通路而朝向所述第二薄碟,自所述第二薄碟反射的所述第二訊號光藉由所述輸出耦合器側通路而朝向所述第二訊號光輸出耦合器,所述第二訊號光的一部分自所述第二訊號光輸出耦 合器再反射至所述第二薄碟,所述第二訊號光的另一部分通過所述第二訊號光輸出耦合器而以輸出光形式輸出,所述第二訊號光輸出耦合器、所述第二薄碟及所述第二訊號光全反射鏡對所述第二訊號光形成共振器。 The thin-disk laser device according to item 14 of the scope of patent application, further comprising a second signal light total reflection mirror and a second signal light output coupler provided to the outside of the first parabolic mirror. A parabolic mirror includes an output coupler side path and a total reflection side path of the second signal light, and the second signal light reflected from the second signal light total reflection mirror passes through the total reflection mirror side. Path toward the second thin disc, the second signal light reflected from the second thin disc is directed toward the second signal optical output coupler through the output coupler side path, and the second A part of the signal light is coupled from the second signal light output The combiner reflects again to the second thin disc, and the other part of the second signal light is output in the form of output light through the second signal light output coupler, the second signal light output coupler, the A second thin disc and the second signal light total reflection mirror form a resonator to the second signal light. 一種薄碟雷射裝置,其包括:第一抛物面反射鏡;第二抛物面反射鏡,與所述第一抛物面反射鏡彼此面對且同軸地配置,包括第一訊號光的第一輸出耦合器側通路與第一全反射鏡側通路;第一薄碟及第二薄碟,分別包括雷射介質與位於所述雷射介質的背面的反射面,分別配置至所述第一抛物面反射鏡及所述第二抛物面反射鏡的頂點而與所述第一抛物面反射鏡及所述第二抛物面反射鏡一同形成激升光的多路徑;第一訊號光輸出耦合器,配置至所述第二抛物面反射鏡的外圍,反射所述第一訊號光的一部分而使其藉由所述第一輸出耦合器側通路直接朝向所述第一薄碟,且使所述第一訊號光的一部分輸出;以及第一訊號光全反射鏡,配置至所述第二抛物面反射鏡的外圍,使來自所述第一薄碟的所述第一訊號光再反射至所述第一薄碟。 A thin-disk laser device includes: a first parabolic reflector; a second parabolic reflector, and the first parabolic reflector are arranged facing each other and coaxially, and include a first output coupler side of a first signal light The channel and the first total-mirror side channel; the first thin plate and the second thin plate, respectively, include a laser medium and a reflecting surface on the back of the laser medium, and are respectively arranged to the first parabolic mirror and the reflecting plate. The apex of the second parabolic mirror and the first parabolic mirror and the second parabolic mirror form a multi-path of the rising light; a first signal light output coupler is arranged to the second parabolic reflection The periphery of the mirror reflects a part of the first signal light so that it directly faces the first thin disc through the first output coupler side path, and outputs a part of the first signal light; and A signal light total reflection mirror is arranged to the periphery of the second parabolic mirror, so that the first signal light from the first thin disc is reflected to the first thin disc again. 如申請專利範圍第18項所述的薄碟雷射裝置,其更包括配置至所述第一抛物面反射鏡的外圍的第二訊號光輸出耦合器 及第二訊號光全反射鏡,於所述第一抛物面反射鏡設置第二訊號光的第二輸出耦合器側通路與第二全反射鏡側通路,所述第一訊號光輸出耦合器反射所述第二訊號光的一部分而使其藉由所述第二輸出耦合器側訊號光通路直接朝向所述第一薄碟,且使所述第二訊號光輸出,所述訊號光全反射鏡藉由所述第二全反射鏡側通路而將來自所述第一薄碟的所述第二訊號光再反射至所述第一薄碟。 The thin-disk laser device according to item 18 of the patent application scope, further comprising a second signal light output coupler arranged to the periphery of the first parabolic mirror. And a second signal light total reflection mirror, a second output coupler side path and a second total reflection mirror side path of the second signal light are provided in the first parabolic mirror, and the first signal light output coupler reflects A part of the second signal light is directed to the first thin disc through the second output coupler side signal light path, and the second signal light is output, and the signal light total reflection mirror is borrowed. Reflecting the second signal light from the first thin disc to the first thin disc through the second total reflection mirror side path.
TW106103769A 2017-02-03 2017-02-06 Thin-disk laser device TWI675520B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020170015342A KR101929329B1 (en) 2017-02-03 2017-02-03 Thin-disk laser device
??10-2017-0015342 2017-02-03
KR10-2017-0015342 2017-02-03

Publications (2)

Publication Number Publication Date
TW201830808A TW201830808A (en) 2018-08-16
TWI675520B true TWI675520B (en) 2019-10-21

Family

ID=63039868

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106103769A TWI675520B (en) 2017-02-03 2017-02-06 Thin-disk laser device

Country Status (4)

Country Link
KR (1) KR101929329B1 (en)
CN (1) CN110402522B (en)
TW (1) TWI675520B (en)
WO (1) WO2018143495A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11255608B2 (en) 2018-08-06 2022-02-22 Qorvo Us, Inc. Heat exchanger assemblies for electronic devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110122483A1 (en) * 2009-11-24 2011-05-26 Lundquist Paul B Axial walk off multi-pass amplifiers
KR20150087933A (en) * 2014-01-23 2015-07-31 한국전자통신연구원 High power ultrashort laser device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2840461B1 (en) * 2002-05-28 2004-08-20 Thales Sa HIGH POWER LASER AMPLIFICATION SYSTEM
DE502004002586D1 (en) * 2004-12-23 2007-02-15 Trumpf Laser Gmbh & Co Kg Laser amplifier and laser resonator with several laser-active media
US7773641B2 (en) * 2007-12-20 2010-08-10 Mitsubishi Heavy Industries, Ltd. Optically pumped disk-type solid state laser oscillator and optically pumped disk-type solid state laser system
US8035892B2 (en) * 2009-04-01 2011-10-11 The Boeing Company Reliable startup of high power thin-disk laser resonators
EP2328243A1 (en) * 2009-11-26 2011-06-01 High Q Technologies GmbH Mirror assembly for guiding a laser beam in a laser system and laser guidance method for a laser beam
US9490604B2 (en) * 2010-10-23 2016-11-08 Jan Vetrovec Solid-state laser with multi-pass beam delivery optics
DE102011004204A1 (en) * 2011-02-16 2012-08-16 Trumpf Laser Gmbh + Co. Kg Pumping light arrangement for a disk laser
US8908737B2 (en) * 2011-04-04 2014-12-09 Coherent, Inc. Transition-metal-doped thin-disk laser
CN102684051B (en) * 2012-04-25 2014-04-09 华中科技大学 Disc laser amplifier
EP2873123B1 (en) * 2012-07-13 2016-08-31 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Amplifier device and method for amplifying laser pulses
CN103996965B (en) * 2014-05-21 2016-08-17 华中科技大学 A kind of laser many journeys amplifier concatenated based on double video discs
CN106099634B (en) * 2016-08-01 2018-11-30 华中科技大学 A kind of disc solid laser amplifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110122483A1 (en) * 2009-11-24 2011-05-26 Lundquist Paul B Axial walk off multi-pass amplifiers
KR20150087933A (en) * 2014-01-23 2015-07-31 한국전자통신연구원 High power ultrashort laser device

Also Published As

Publication number Publication date
CN110402522B (en) 2021-06-18
KR20180090461A (en) 2018-08-13
TW201830808A (en) 2018-08-16
WO2018143495A1 (en) 2018-08-09
CN110402522A (en) 2019-11-01
KR101929329B1 (en) 2018-12-18

Similar Documents

Publication Publication Date Title
US8340143B2 (en) Passively mode-locked picosecond laser device
US20100253769A1 (en) Optical System and Assembly Method
JP2010003755A (en) Wavelength conversion laser apparatus
CN111613969B (en) Semiconductor laser beam combining device
TWI675520B (en) Thin-disk laser device
CN114336254A (en) High-brightness main oscillation power amplification picosecond laser system
WO2010028185A2 (en) Optical system and assembly method
CN111404000B (en) Direct liquid cooling array type thin unstable resonant cavity capable of inhibiting high-order distortion in cavity
US20190341745A1 (en) Laser device
JP4734642B2 (en) Cylindrical Symmetric Polarized Laser Resonator
US20060182162A1 (en) Solid laser exciting module and laser oscillator
CN107465104A (en) A kind of electric-optically Q-switched pyramid resonator
JP6297988B2 (en) Optical isolator module and optical semiconductor module
KR101983071B1 (en) Thin-disk laser device
CN113904208B (en) High-purity Laguerre Gaussian beam generation system and generation method thereof
KR102025759B1 (en) Thin-disk laser device
WO2015074244A1 (en) Radial polarization thin-disk laser
US20230071683A1 (en) Laser resonator assembly
KR20140129162A (en) Laser architectures
JP2019207989A (en) Laser device
WO2007107684A1 (en) Beam transformer
JP3519596B2 (en) Reciprocating amplifier
CN205666430U (en) Q's pyramid resonant cavity is transferred to lightning
KR101085356B1 (en) Optical amplifier using prism structure and optical amplification system using thereof
JP5007799B2 (en) 3D disk laser