TWI674668B - Cross talk reduction for high dynamic range image sensors - Google Patents

Cross talk reduction for high dynamic range image sensors Download PDF

Info

Publication number
TWI674668B
TWI674668B TW107104599A TW107104599A TWI674668B TW I674668 B TWI674668 B TW I674668B TW 107104599 A TW107104599 A TW 107104599A TW 107104599 A TW107104599 A TW 107104599A TW I674668 B TWI674668 B TW I674668B
Authority
TW
Taiwan
Prior art keywords
dti
combined
pixel array
semiconductor material
adjacent
Prior art date
Application number
TW107104599A
Other languages
Chinese (zh)
Other versions
TW201935672A (en
Inventor
渡邊一史
熊志偉
戴森 H 戴
林德賽 葛蘭特
Original Assignee
美商豪威科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商豪威科技股份有限公司 filed Critical 美商豪威科技股份有限公司
Priority to TW107104599A priority Critical patent/TWI674668B/en
Publication of TW201935672A publication Critical patent/TW201935672A/en
Application granted granted Critical
Publication of TWI674668B publication Critical patent/TWI674668B/en

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

一多色彩HDR影像感測器至少包含具有一第一彩色濾光器之一第一組合色彩像素及具有不同於該第一彩色濾光器之一第二彩色濾光器之一毗鄰第二組合色彩像素,其中每一組合色彩像素包含具有至少兩個毗鄰光電二極體之至少兩個子像素。在每一組合色彩像素內,存在用以將具有相同彩色濾光器之兩個毗鄰子像素之兩個毗鄰光電二極體隔離之一介電質深溝渠隔離(d-DTI)結構以便防止電串擾發生。在具有不同彩色濾光器之兩個毗鄰組合色彩像素之間,存在用以將具有不同彩色濾光器之兩個毗鄰子像素之兩個毗鄰光電二極體隔離之一混合深溝渠隔離(h-DTI)結構以便防止光學串擾及電串擾兩者發生。每一組合色彩像素在所有側上由該混合深溝渠隔離(h-DTI)結構封圍。A multi-color HDR image sensor includes at least a first combined color pixel having a first color filter and an adjacent second combination having a second color filter different from the first color filter. Color pixels, where each combined color pixel includes at least two sub-pixels having at least two adjacent photodiodes. Within each combined color pixel, a dielectric deep trench isolation (d-DTI) structure exists to isolate two adjacent photodiodes of two adjacent sub-pixels with the same color filter in order to prevent electrical Crosstalk occurs. Between two adjacent combined color pixels with different color filters, there is a hybrid deep trench isolation (h -DTI) structure in order to prevent both optical crosstalk and electrical crosstalk from occurring. Each combined color pixel is enclosed by the hybrid deep trench isolation (h-DTI) structure on all sides.

Description

用於高動態範圍影像感測器之減少串擾Crosstalk reduction for high dynamic range image sensors

本發明一般而言係關於半導體影像感測器,且特定而言(但非排他性地)係關於高動態範圍影像感測器中之像素隔離結構。The present invention relates generally to semiconductor image sensors, and specifically (but not exclusively) to pixel isolation structures in high dynamic range image sensors.

影像感測器已變得普遍存在。其廣泛用於數位靜態相機、蜂巢式電話、安全攝影機以及醫療、汽車及其他應用中。典型之影像感測器如下操作。來自一外部場景之影像光入射於影像感測器上。影像感測器包含複數個光敏元件,使得每一光敏元件吸收一部分入射影像光。影像感測器中所包含之每一光敏元件(諸如光電二極體)在吸收影像光之後旋即產生影像電荷。所產生之影像電荷之量與影像光之強度成比例。所產生之影像電荷可用於產生表示外部場景之一影像。 由於對較高解析度、較低電力消耗、增大動態範圍等之不斷增加之需求,影像感測器之裝置架構已持續快速地發展。此等需求亦已促進了影像感測器在此等裝置中之進一步小型化及整合。對於高動態範圍影像感測器,通常使用組合像素來感測個別電磁輻射波長以便適應一寬範圍之照明情況。舉例而言,在一組合紅色像素中,一個子像素可用於感測明亮之紅色光條件,而另一子像素可用於感測低紅色光條件。影像感測器之小型化可導致相鄰光敏元件之間的一經減小距離。當光敏元件之間的距離減小時,光敏元件之間的光學串擾及電串擾發生之可能性及量值可增加。Image sensors have become ubiquitous. It is widely used in digital still cameras, cellular phones, security cameras, and medical, automotive, and other applications. A typical image sensor operates as follows. Image light from an external scene is incident on the image sensor. The image sensor includes a plurality of photosensitive elements, so that each photosensitive element absorbs a portion of incident image light. Each photosensitive element (such as a photodiode) contained in the image sensor generates image charges immediately after absorbing image light. The amount of image charge generated is proportional to the intensity of the image light. The generated image charge can be used to generate an image representing an external scene. Due to the increasing demand for higher resolution, lower power consumption, increased dynamic range, etc., the device architecture of image sensors has continued to develop rapidly. These requirements have also promoted further miniaturization and integration of image sensors in these devices. For high dynamic range image sensors, combined pixels are usually used to sense individual electromagnetic radiation wavelengths in order to adapt to a wide range of lighting conditions. For example, in a combined red pixel, one sub-pixel may be used to sense bright red light conditions, and another sub-pixel may be used to sense low red light conditions. Miniaturization of image sensors can lead to a reduced distance between adjacent photosensitive elements. When the distance between the photosensitive elements is reduced, the possibility and magnitude of the occurrence of optical crosstalk and electrical crosstalk between the photosensitive elements may increase.

本文中闡述具有混合深溝渠隔離結構及介電質深溝渠隔離結構兩者之一影像感測器之一設備及方法之實例。在以下說明中,陳述眾多特定細節以提供對實例之一透徹理解。然而,熟習此項技術者將認識到,本文中所闡述之技術可在不具有具體細節中之一或多者之情況下實踐或者可利用其他方法、組件、材料等來實踐。在其他例項中,未展示或闡述眾所周知之結構、材料或操作以避免使某些態樣模糊。 貫穿本說明書對「一項實例」或「一項實施例」之提及意指結合實例所闡述之一特定特徵、結構或特性包含於本發明之至少一項實例中。因此,貫穿本說明書各種位置中之片語「在一項實例中」或「在一項實施例中」之出現未必全部指代同一實例。此外,在一或多項實例中可以任何適合方式組合該等特定特徵、結構或特性。 在本說明書通篇中,使用數個技術術語。此等術語應理解為其在所屬領域中之普通含義,除非本文中另外具體定義或其使用之內容脈絡將另外清晰地暗示。應注意,在本文件中,元件名稱及符號可互換使用(例如,Si與矽);然而,其兩者具有相同含義。 1係圖解說明成像系統100之一項實例之一方塊圖。成像系統100包含像素陣列104、控制電路103、讀出電路101及功能邏輯102。在一項實例中,像素陣列104係光電二極體或影像感測器像素(例如,像素P1、P2、…、Pn)之一個二維(2D)陣列。如所圖解說明,光電二極體係配置成若干列(例如,列R1至列Ry)及若干行(例如,行C1至行Cx)以獲取一人、地點、物件等之影像資料,該影像資料然後可用於再現人、地點、物件等之一2D影像。然而,在其他實例中,應瞭解光電二極體未必被配置成若干列及若干行,而係可採取其他組態。 在一項實例中,在像素陣列104中之影像感測器光電二極體/像素已獲取其影像資料或影像電荷之後,該影像資料由讀出電路101讀出然後被傳送至功能邏輯102。在各項實例中,讀出電路101可包含放大電路、類比轉數位(ADC)轉換電路或其他。功能邏輯102可單純地儲存影像資料或甚至藉由應用後影像效應(例如,裁剪、旋轉、移除紅眼、調整亮度、調整對比度或以其他方式)來操縱影像資料。在一項實例中,讀出電路101可沿著讀出行線一次讀出一列影像資料(所圖解說明)或可使用多種其他技術(未圖解說明)讀出該影像資料,諸如一串列讀出或同時對所有像素之一全並行讀出。 在一項實例中,控制電路103耦合至像素陣列104以控制像素陣列104中之複數個光電二極體之操作。舉例而言,控制電路103可產生用於控制影像獲取之一快門信號。在一項實例中,該快門信號係用於同時啟用像素陣列104內之所有像素以在一單一獲取窗期間同時擷取其各別影像資料之一全域快門信號。在另一實例中,快門信號係一滾動快門信號,使得在連續獲取窗期間依序啟用每一像素列、每一像素行或每一像素群組。在另一實例中,影像獲取與諸如一閃光燈之照明效應同步。 在一項實例中,成像系統100可包含於一數位相機、行動電話、膝上型電腦、汽車或諸如此類中。另外,成像系統100可耦合至其他硬件,諸如一處理器(通用或其他)、記憶體元件、輸出(USB埠、無線傳輸器、HDMI埠等)、照明/閃光燈、電輸入(鍵盤、觸控顯示器、追蹤墊、滑鼠、麥克風等)及/或顯示器。其他硬件可將指令遞送至成像系統100、自成像系統100提取影像資料或操縱由成像系統100供應之影像資料。 2係一多色彩HDR影像感測器200之一平面圖圖解,該多色彩HDR影像感測器包含四個組合色彩像素,每一像素包含具有四個光電二極體之四個HDR子像素。四個組合色彩像素包含一組合紅色像素202、一第一組合綠色像素203、一第二組合綠色像素204及一組合藍色像素205。每一組合色彩像素包含四個HDR子像素,該四個HDR子像素包含在色彩像素之中心處共用一共同浮動擴散部之4個光電二極體,其中每一光電二極體具有一個別轉移閘極。作為一項實例,組合紅色像素202具有四個光電二極體202a、202b、202c及202d。光電二極體202a具有一轉移閘極202aa,光電二極體202b具有一轉移閘極202bb,光電二極體202c具有一轉移閘極202cc,且光電二極體202d具有一轉移閘極202dd。光電二極體202a、202b、202c及202d在組合紅色像素202之中心處共用一共同浮動擴散部202e。存在用以將毗鄰光電二極體隔離之一標準d-DTI結構201以便防止電串擾發生。然而,此d-DTI結構201可不完全阻擋具有不同彩色濾光器之毗鄰子像素光敏元件之間的光學串擾發生,諸如,202b與203a、202d與203c、204b與205a或204d與205c之間的光學串擾。期望改良具有不同彩色濾光器之毗鄰子像素之間的隔離結構以便不僅減少電串擾發生而且亦減少光學串擾發生以達成較佳成像解析度。 3係根據本發明之一實施例之一多色彩HDR影像感測器300之一平面圖圖解,該多色彩HDR影像感測器包含四個組合色彩像素,每一像素包含具有由h-DTI結構及d-DTI結構兩者隔離之四個光電二極體之四個HDR子像素。在一項實例中,四個組合色彩像素包含一組合紅色像素302、一組合藍色像素303、一組合綠色像素304及一組合IR像素305。四個組合色彩像素亦可包含組合二次原色(洋紅色、黃色及青色)像素、組合黑色像素及組合白色(或清透)像素。毗鄰組合色彩像素可係相同組合色彩像素或不同組合色彩像素。每一組合色彩像素包含四個HDR子像素,該四個HDR子像素包含在組合色彩像素之中心處共用一共同浮動擴散部之4個光電二極體,且每一光電二極體具有其自身轉移閘極。HDR子像素中之每一者可具有相同實體組態及電路組態。HDR子像素亦可具有不同實體組態及電路組態。在每一組合色彩像素內,存在用以將具有相同彩色濾光器之兩個毗鄰子像素之兩個毗鄰光電二極體隔離以便防止電串擾發生之一d-DTI結構301a。在具有不同彩色濾光器之兩個毗鄰組合色彩像素之間,存在用以將具有不同彩色濾光器之兩個毗鄰子像素之兩個毗鄰光電二極體隔離以便防止光學串擾及電串擾兩者發生之一h-DTI結構301b。在一項實例中,每一組合色彩像素在所有側上由h-DTI結構301b封圍。 在圖3中所演示之一項實例中,組合紅色像素302具有四個光電二極體302a、302b、302c及302d。光電二極體302a具有一轉移閘極302aa,光電二極體302b具有一轉移閘極302bb,光電二極體302c具有一轉移閘極302cc,且光電二極體302d具有一轉移閘極302dd。光電二極體302a、302b、302c及302d在組合紅色像素302之中心處共用一共同浮動擴散部302e。組合綠色像素304具有四個光電二極體304a、304b、304c及304d。光電二極體304a具有一轉移閘極304aa,光電二極體304b具有一轉移閘極304bb,光電二極體304c具有一轉移閘極304cc,且光電二極體304d具有一轉移閘極304dd。光電二極體304a、304b、304c及304d在組合綠色像素304之中心處共用一共同浮動擴散部304e。在組合紅色像素302內,d-DTI結構301a將光電二極體302a與光電二極體302b、將光電二極體302c與光電二極體302d、將光電二極體302a與光電二極體302c且將光電二極體302b與光電二極體302d隔離。在組合綠色像素304內,d-DTI結構301a將光電二極體304a與光電二極體304b、將光電二極體304c與光電二極體304d、將光電二極體304a與光電二極體304c且將光電二極體304b與光電二極體304d隔離。組合紅色像素302毗鄰於組合綠色像素304。在組合紅色像素302與組合綠色像素304之間,存在用以將光電二極體302c與毗鄰光電二極體304a且將光電二極體302d與毗鄰光電二極體304b隔離之h-DTI結構301b。組合紅色像素302及組合綠色像素304兩者在所有側上均由h-DTI結構301b封圍。 4係根據本發明之一實施例之一實例性影像感測器400沿著 3中之A-A’方向之一剖面圖解。影像感測器400包含一半導體材料410,半導體材料410具有作為半導體材料410之背側之一第一側414以及作為半導體材料410之前側之一第二側408。在第一側414上,存在介電質材料415、複數個金屬柵格416、複數個彩色濾光器402及404以及複數個微透鏡418。在第二側408上,存在複數個轉移閘極419及介電質材料407。在半導體材料410中,存在:複數個光電二極體401a、401b、401c及401d,其可具有相同或不同實體組態;複數個淺溝渠隔離(STI)結構409,其自第二側408朝向第一側414延伸;複數個深隔離井411,其安置於第一側414與第二側408之間;複數個d-DTI結構417,其自第一側414朝向第二側408延伸;及複數個h-DTI結構420,其自第一側414朝向第二側408延伸。 在所圖解說明實例中,毗鄰光電二極體藉由深隔離井411而彼此分離。安置於具有不同彩色濾光器之兩個毗鄰光電二極體之間的一第一深隔離井411a包含相對於法向於半導體材料410之第一側414之入射光經光學對準之一個各別h-DTI結構420及一個STI結構409。安置於具有相同彩色濾光器之兩個毗鄰光電二極體之間的第二深隔離井411b包含相對於法向於半導體材料410之第一側414之入射光經光學對準之一個各別d-DTI結構417及一個STI結構409。 在 4中之所圖解說明實例中,d-DTI結構417中之每一者僅包含一介電質材料且自半導體材料410之第一側414朝向第二側408延伸。h-DTI結構420中之每一者包含一淺部分413及一深部分412。淺部分413自半導體材料410之第一側414朝向第二側408延伸。淺部分413包含一介電質材料區域413a及一金屬區域413b,使得介電質材料區域413a之至少部分安置於金屬區域413b與半導體材料410之間。深部分412自淺部分413延伸且安置於淺部分413與半導體材料410之第二側408之間。深部分412可包含介電質材料區域412a,該介電質材料區域可具有與介電質材料區域413a中相同或不同之介電質材料。介電質材料區域412a及413a可包含一種類型之介電質材料。介電質材料區域412a及413a亦可包含利用不同類型之介電質材料所形成之多層,其中每一層可具有一不同類型之介電質材料,包含至少一個正電荷介電質材料或一個負電荷介電質材料。鄰接半導體材料410之層在所使用之所有介電質材料當中可具有最高介電常數。在一項實例中,多層可包含一SiO2層及位於SiO2層與半導體材料410之間的一高k材料層。 在某些實例中,金屬區域413b可包含由以下各項組成之群組中之任一者:W、Al、Cu、Ag、Au、Ti、Ta、Pb及Pt。d-DTI結構417及h-DTI結構420兩者中之介電質材料可包含氧化物/氮化物,諸如氧化矽(SiO 2)、氧化鉿(HfO 2)、氮化矽(Si 3N 4)、氮氧化矽(SiO xN y)、氧化鉭(Ta 2O 5)、氧化鈦(TiO 2)、氧化鋯(ZrO 2)、氧化鋁(Al 2O 3)、氧化鑭(La 2O 3)、氧化鐠(Pr 2O 3)、氧化鈰(CeO 2)、氧化釹(Nd 2O 3)、氧化鉕(Pm 2O 3)、氧化釤(Sm 2O 3)、氧化銪(Eu 2O 3)、氧化釓(Gd 2O 3)、氧化鋱(Tb 2O 3)、氧化鏑(Dy 2O 3)、氧化鈥(Ho 2O 3)、氧化鉺(Er 2O 3)、氧化銩(Tm 2O 3)、氧化鐿(Yb 2O 3)、氧化鑥(Lu 2O 3)、氧化釔(Y 2O 3)或諸如此類。另外,熟習此項技術者將認識到,根據本發明之教示,可使用以上金屬/半導體以及其氧化物/氮化物/氮氧化物之任何化學計量組合。 毗鄰光電二極體之間的電串擾之量值可藉由將個別光電二極體電隔離而減少。每一個別h-DTI結構420之淺部分413中之介電質材料區域413a及深部分412中之介電質材料區域412a可至少部分地將與不同彩色濾光器光學對準之毗鄰光電二極體電隔離,該等不同彩色濾光器接近於半導體材料410之第一側414而安置。淺部分413中之金屬區域413b亦藉由介電質材料區域413a而與個別光電二極體電隔離。具有相同彩色濾光器之毗鄰光電二極體可至少部分地藉由每一個別d-DTI結構417而電隔離。 複數個光電二極體401a、401b、401c及401d中具有不同彩色濾光器之毗鄰光電二極體之間的光學串擾之量值在每一個別h-DTI結構420中可藉由金屬區域413b而減少。金屬區域413b可吸收、反射或折射入射光,使得光學串擾最小化。在一項實例中,金屬區域413b之至少部分比h-DTI結構420之深部分412寬。如所圖解說明,個別h-DTI結構420之金屬區域413b可自半導體材料410之第一側414朝向深部分412逐漸變細。金屬區域413b之逐漸變細之量可經設計使得離軸入射光傳播穿過半導體材料410之第一側414,且由金屬區域413b朝向複數個光電二極體401a、401b、401c及401d中之每一者反射。 在 4中所圖解說明之一項實例中,存在用以使用h-DTI結構420或d-DTI結構417來隔離毗鄰光電二極體之一折衷。對於h-DTI結構420,金屬區域413b中之金屬材料(諸如W)可吸收入射光以便使光學串擾最小化,然而,光吸收亦使影像感測器之敏感性降級。對於d-DTI結構417,深溝渠中之介電質材料417a可無法吸收、反射或折射入射光以便使光學串擾最小化。為維持影像感測器之敏感性以及減少光學串擾及電串擾發生,h-DTI結構420僅置於具有不同彩色濾光器之兩個毗鄰光電二極體之間,而d-DTI結構417僅放在具有相同彩色濾光器之兩個毗鄰光電二極體之間。在一項實例中,具有紅色濾光器402之光電二極體401b與具有綠色濾光器404之光電二極體401c藉由h-DTI結構420而分離,且具有紅色濾光器402之光電二極體401a與同樣具有紅色濾光器之光電二極體401b藉由d-DTI結構417而分離。在 3中所圖解說明之另一實例中,組合多色彩像素202、203、204及205中之每一者在所有側上由h-DTI結構301環繞,且在組合多色彩像素中之每一者內,僅存在用以將毗鄰子像素分離之d-DTI結構302。 5A 至圖 5D圖解說明用於製作 4中之一影像感測器之一實例性方法500。 5A 至圖 5D中之某些或全部在方法500中出現之次序不應視為係限制性的。而係,受益於本發明之熟習此項技術者將理解,可以未圖解說明之各種次序或甚至並行地執行方法500中之某些方法。此外,方法500可省略某些程序步驟及圖以便避免使某些態樣模糊。另一選擇係,方法500可包含在本發明之某些實施例/實例中可能不必要之額外程序步驟及圖。 5A圖解說明具有與一第二側520對置之一第一側521之一半導體材料504。在一項實例中,半導體材料504係矽。複數個光電二極體501a、501b、501c及501d安置於半導體材料504中、位於第一側521與第二側520之間。在一項實例中,複數個光電二極體藉由離子植入而形成。複數個深隔離井502安置於半導體材料504中。每一個別深隔離井502可自半導體材料504之第一側521延伸至第二側520。在一項實例中,個別光電二極體501a、501b、501c及501d安置於個別深隔離井502之間。在一項實例中,複數個深隔離井502藉由離子植入而形成。蝕刻複數個第一溝渠503,該複數個第一溝渠自半導體材料504之第一側521朝向第二側520延伸。在一項實例中,在個別深隔離井502內蝕刻每一個別第一溝渠503,使得每一個別第一溝渠503安置於一對應深隔離井502內。 5B圖解說明選擇性地擴寬複數個第一溝渠503中之某些溝渠中之一淺部分505以接近於半導體材料504之第一側521而形成複數個第二溝渠503a之一步驟,其中具有經擴寬淺部分505之複數個第二溝渠503a中之每一者安置於具有不同彩色濾光器之兩個毗鄰光電二極體之間,該等不同彩色濾光器將在 5D中所圖解說明之步驟之後之後續步驟中被安置( 5A 至圖 5D中未圖解說明)。 在一項實例中,光電二極體501a及501b將與紅色濾光器光學對準,且光電二極體501c及501d將與綠色濾光器光學對準。第二溝渠503a安置於光電二極體501b與501c之間。第一溝渠503安置於光電二極體501a與501b之間。 在一項實例中,複數個第二溝渠503a中之一深部分506安置於淺部分505與半導體材料504之第二側520之間。在一項實例中,淺部分505自半導體材料504之第一側521朝向第二側520逐漸變細,使得接近於第一側521之淺部分505之一寬度大於接近於第二側520之深部分506之寬度。 5C圖解說明將一介電質材料508沈積於複數個第一溝渠503及第二溝渠503a內。在一項實例中,複數個第一溝渠503由介電質材料508完全填充。另一方面,複數個第二溝渠503a中之深部分506亦由介電質材料508完全填充。複數個第二溝渠503a之淺部分505由介電質材料508部分填充,介電質材料508安置於第二溝渠503a之淺部分505之側壁上。在如圖5C中所展示沈積介電質材料508之後,在淺部分505中間形成一空白空間507。 5D圖解說明將金屬509沈積於複數個第二溝渠503a之淺部分505中以填充 5C中所展示之空白空間507。在一項實例中, 5C中之空白空間507由金屬509完全填充。金屬509與半導體材料504之間存在介電質材料508之至少一部分以將金屬509與半導體材料504電隔離。 包含發明摘要中所闡述內容的本發明之所圖解說明實例之以上說明並非意欲係窮盡性的或將本發明限制於所揭示之精確形式。儘管出於說明性目的而在本文中闡述了本發明之特定實例,但如熟習此項技術者將認識到,可在本發明之範疇內做出各種修改。 可根據以上詳細說明對本發明做出此等修改。以下申請專利範圍中所使用之術語不應理解為將本發明限制於本說明書中所揭示之特定實例。而是,本發明之範疇應完全由以下申請專利範圍來判定,申請專利範圍應根據請求項解釋之所確立原則來加以理解。 This article describes an example of an apparatus and method for an image sensor with both a hybrid deep trench isolation structure and a dielectric deep trench isolation structure. In the following description, numerous specific details are set forth to provide a thorough understanding of one of the examples. However, those skilled in the art will recognize that the techniques set forth herein may be practiced without one or more of the specific details or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations have not been shown or described to avoid obscuring certain aspects. Reference throughout this specification to "an example" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example of the invention. Thus, the appearances of the phrases "in one instance" or "in an embodiment" in various places throughout this specification do not necessarily all refer to the same instance. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more examples. Throughout this specification, several technical terms are used. These terms should be understood to have their ordinary meaning in the art, unless otherwise specifically defined herein or the context of their use is otherwise clearly implied. It should be noted that in this document, component names and symbols are used interchangeably (for example, Si and silicon); however, both have the same meaning. FIG. 1 is a block diagram illustrating one example of an imaging system 100. The imaging system 100 includes a pixel array 104, a control circuit 103, a readout circuit 101, and a function logic 102. In one example, the pixel array 104 is a two-dimensional (2D) array of photodiodes or image sensor pixels (eg, pixels P1, P2, ..., Pn). As illustrated, the photodiode system is configured into columns (eg, columns R1 to Ry) and rows (eg, rows C1 to Cx) to obtain image data of a person, place, object, etc., which image data Can be used to reproduce 2D images of people, places, objects, etc. However, in other examples, it should be understood that the photodiodes may not be configured in columns and rows, but other configurations may be adopted. In one example, after the image sensor photodiode / pixel in the pixel array 104 has acquired its image data or image charge, the image data is read out by the readout circuit 101 and then transmitted to the function logic 102. In various examples, the readout circuit 101 may include an amplification circuit, an analog-to-digital (ADC) conversion circuit, or the like. The functional logic 102 may simply store the image data or even manipulate the image data by applying post-image effects (eg, cropping, rotating, removing red-eye, adjusting brightness, adjusting contrast, or otherwise). In one example, the readout circuit 101 may read out a column of image data (illustrated) along the readout line or may use a variety of other techniques (not illustrated) to read out the image data, such as a series of readouts. Or read out all of the pixels in parallel at the same time. In one example, the control circuit 103 is coupled to the pixel array 104 to control the operation of the plurality of photodiodes in the pixel array 104. For example, the control circuit 103 may generate a shutter signal for controlling image acquisition. In one example, the shutter signal is used to simultaneously enable all pixels in the pixel array 104 to simultaneously acquire a global shutter signal of one of its respective image data during a single acquisition window. In another example, the shutter signal is a rolling shutter signal, such that each pixel column, each pixel row, or each pixel group is sequentially enabled during a continuous acquisition window. In another example, image acquisition is synchronized with lighting effects such as a flash. In one example, the imaging system 100 may be included in a digital camera, mobile phone, laptop, car, or the like. In addition, the imaging system 100 may be coupled to other hardware, such as a processor (generic or other), memory components, output (USB port, wireless transmitter, HDMI port, etc.), lighting / flash, and electrical input (keyboard, touch Display, tracking pad, mouse, microphone, etc.) and / or display. Other hardware may deliver instructions to the imaging system 100, extract image data from the imaging system 100, or manipulate image data supplied by the imaging system 100. FIG. 2 is a plan view of a multi-color HDR image sensor 200. The multi-color HDR image sensor includes four combined color pixels, and each pixel includes four HDR sub-pixels having four photodiodes. The four combined color pixels include a combined red pixel 202, a first combined green pixel 203, a second combined green pixel 204, and a combined blue pixel 205. Each combined color pixel includes four HDR sub-pixels. The four HDR sub-pixels include four photodiodes that share a common floating diffusion at the center of the color pixel. Each photodiode has a unique transfer. Gate. As an example, the combined red pixel 202 has four photodiodes 202a, 202b, 202c, and 202d. The photodiode 202a has a transfer gate 202aa, the photodiode 202b has a transfer gate 202bb, the photodiode 202c has a transfer gate 202cc, and the photodiode 202d has a transfer gate 202dd. The photodiodes 202a, 202b, 202c, and 202d share a common floating diffusion 202e at the center of the combined red pixel 202. A standard d-DTI structure 201 exists to isolate adjacent photodiodes in order to prevent electrical crosstalk from occurring. However, this d-DTI structure 201 may not completely block the occurrence of optical crosstalk between adjacent sub-pixel photosensitive elements with different color filters, such as 202b and 203a, 202d and 203c, 204b and 205a, or 204d and 205c. Optical crosstalk. It is desirable to improve the isolation structure between adjacent sub-pixels with different color filters in order to reduce not only the occurrence of electrical crosstalk but also the occurrence of optical crosstalk to achieve better imaging resolution. FIG. 3 is a plan view of a multi-color HDR image sensor 300 according to an embodiment of the present invention. The multi-color HDR image sensor includes four combined color pixels, and each pixel includes a h-DTI structure. And four HDR sub-pixels of four photodiodes isolated from both the d-DTI structure. In one example, the four combined color pixels include a combined red pixel 302, a combined blue pixel 303, a combined green pixel 304, and a combined IR pixel 305. The four combined color pixels may also include combined secondary primary colors (magenta, yellow, and cyan) pixels, combined black pixels, and combined white (or clear) pixels. Adjacent combined color pixels may be the same combined color pixel or different combined color pixels. Each combined color pixel includes four HDR sub-pixels, the four HDR sub-pixels include four photodiodes that share a common floating diffusion at the center of the combined color pixel, and each photodiode has its own Transfer gate. Each of the HDR sub-pixels may have the same physical configuration and circuit configuration. HDR sub-pixels can also have different physical configurations and circuit configurations. Within each combined color pixel, there is a d-DTI structure 301a to isolate two adjacent photodiodes of two adjacent sub-pixels having the same color filter in order to prevent electrical crosstalk from occurring. Between two adjacent combined color pixels with different color filters, there are two adjacent photodiodes used to isolate two adjacent sub-pixels with different color filters in order to prevent optical crosstalk and electrical crosstalk. One of the h-DTI structures 301b occurs. In one example, each combined color pixel is enclosed by h-DTI structure 301b on all sides. In an example illustrated in FIG. 3, the combined red pixel 302 has four photodiodes 302a, 302b, 302c, and 302d. The photodiode 302a has a transfer gate 302aa, the photodiode 302b has a transfer gate 302bb, the photodiode 302c has a transfer gate 302cc, and the photodiode 302d has a transfer gate 302dd. The photodiodes 302a, 302b, 302c, and 302d share a common floating diffusion 302e at the center of the combined red pixel 302. The combined green pixel 304 has four photodiodes 304a, 304b, 304c, and 304d. The photodiode 304a has a transfer gate 304aa, the photodiode 304b has a transfer gate 304bb, the photodiode 304c has a transfer gate 304cc, and the photodiode 304d has a transfer gate 304dd. The photodiodes 304a, 304b, 304c, and 304d share a common floating diffusion 304e at the center of the combined green pixel 304. In the combined red pixel 302, the d-DTI structure 301a includes a photodiode 302a and a photodiode 302b, a photodiode 302c and a photodiode 302d, and a photodiode 302a and a photodiode 302c. The photodiode 302b is isolated from the photodiode 302d. In the combined green pixel 304, the d-DTI structure 301a includes a photodiode 304a and a photodiode 304b, a photodiode 304c and a photodiode 304d, and a photodiode 304a and a photodiode 304c. The photodiode 304b is isolated from the photodiode 304d. The combined red pixel 302 is adjacent to the combined green pixel 304. Between the combined red pixel 302 and the combined green pixel 304, there is an h-DTI structure 301b that isolates the photodiode 302c from the adjacent photodiode 304a and isolates the photodiode 302d from the adjacent photodiode 304b. . Both the combined red pixel 302 and the combined green pixel 304 are enclosed by h-DTI structure 301b on all sides. FIG 4 based one exemplary embodiment the image sensor 400 in accordance with one embodiment of the present invention illustrated in FIG along one of the 3 A-A 'cross-sectional direction. The image sensor 400 includes a semiconductor material 410 having a first side 414 as one of the back sides of the semiconductor material 410 and a second side 408 as one of the front sides of the semiconductor material 410. On the first side 414, there are a dielectric material 415, a plurality of metal grids 416, a plurality of color filters 402 and 404, and a plurality of microlenses 418. On the second side 408, there are a plurality of transfer gates 419 and a dielectric material 407. In the semiconductor material 410, there are: a plurality of photodiodes 401a, 401b, 401c, and 401d, which may have the same or different physical configurations; a plurality of shallow trench isolation (STI) structures 409, which face from the second side 408 The first side 414 extends; a plurality of deep isolation wells 411 disposed between the first side 414 and the second side 408; a plurality of d-DTI structures 417 extending from the first side 414 toward the second side 408; and A plurality of h-DTI structures 420 extend from the first side 414 toward the second side 408. In the illustrated example, adjacent photodiodes are separated from each other by a deep isolation well 411. A first deep isolation well 411a disposed between two adjacent photodiodes with different color filters includes one optically aligned one with respect to the incident light normal to the first side 414 of the semiconductor material 410. Different h-DTI structure 420 and one STI structure 409. A second deep isolation well 411b disposed between two adjacent photodiodes having the same color filter contains an optically aligned one with respect to the incident light normal to the first side 414 of the semiconductor material 410 A d-DTI structure 417 and an STI structure 409. In the illustrated example of FIG. 4 illustrates, each of the 417 d-DTI structure contains only a dielectric material and a semiconductor material 410 extending from the first side 414 toward the second side 408. Each of the h-DTI structures 420 includes a shallow portion 413 and a deep portion 412. The shallow portion 413 extends from the first side 414 toward the second side 408 of the semiconductor material 410. The shallow portion 413 includes a dielectric material region 413a and a metal region 413b, so that at least a portion of the dielectric material region 413a is disposed between the metal region 413b and the semiconductor material 410. The deep portion 412 extends from the shallow portion 413 and is disposed between the shallow portion 413 and the second side 408 of the semiconductor material 410. The deep portion 412 may include a dielectric material region 412a, which may have the same or different dielectric material as in the dielectric material region 413a. The dielectric material regions 412a and 413a may include one type of dielectric material. The dielectric material regions 412a and 413a may also include multiple layers formed using different types of dielectric materials, each of which may have a different type of dielectric material, including at least one positively charged dielectric material or one negative Charge dielectric material. The layer adjacent to the semiconductor material 410 may have the highest dielectric constant among all the dielectric materials used. In one example, the multilayer may include a SiO2 layer and a high-k material layer between the SiO2 layer and the semiconductor material 410. In some examples, the metal region 413b may include any one of the group consisting of: W, Al, Cu, Ag, Au, Ti, Ta, Pb, and Pt. The dielectric materials in both the d-DTI structure 417 and the h-DTI structure 420 may include oxides / nitrides, such as silicon oxide (SiO 2 ), hafnium oxide (HfO 2 ), and silicon nitride (Si 3 N 4 ), Silicon oxynitride (SiO x N y ), tantalum oxide (Ta 2 O 5 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), praseodymium oxide (Pr 2 O 3 ), cerium oxide (CeO 2 ), neodymium oxide (Nd 2 O 3 ), praseodymium oxide (Pm 2 O 3 ), praseodymium oxide (Sm 2 O 3 ), praseodymium oxide (Eu 2 O 3 ), gadolinium oxide (Gd 2 O 3 ), gadolinium oxide (Tb 2 O 3 ), gadolinium oxide (Dy 2 O 3 ), oxide (Ho 2 O 3 ), gadolinium oxide (Er 2 O 3 ), Thorium oxide (Tm 2 O 3 ), hafnium oxide (Yb 2 O 3 ), hafnium oxide (Lu 2 O 3 ), yttrium oxide (Y 2 O 3 ), or the like. In addition, those skilled in the art will recognize that any stoichiometric combination of the above metals / semiconductors and their oxides / nitrides / nitrogen oxides may be used in accordance with the teachings of the present invention. The magnitude of electrical crosstalk between adjacent photodiodes can be reduced by electrically isolating individual photodiodes. The dielectric material region 413a in the shallow portion 413 and the dielectric material region 412a in the deep portion 412 of each individual h-DTI structure 420 may at least partially adjacently oppose the two optical filters that are optically aligned with different color filters. The polar bodies are electrically isolated, and the different color filters are disposed close to the first side 414 of the semiconductor material 410. The metal region 413b in the shallow portion 413 is also electrically isolated from the individual photodiodes by the dielectric material region 413a. Adjacent photodiodes with the same color filter can be electrically isolated at least in part by each individual d-DTI structure 417. The amount of optical crosstalk between adjacent photodiodes with different color filters in the plurality of photodiodes 401a, 401b, 401c, and 401d can be achieved by the metal region 413b in each individual h-DTI structure 420 And decrease. The metal region 413b can absorb, reflect, or refract incident light to minimize optical crosstalk. In one example, at least a portion of the metal region 413b is wider than the deep portion 412 of the h-DTI structure 420. As illustrated, the metal region 413 b of the individual h-DTI structure 420 may taper from the first side 414 of the semiconductor material 410 toward the deep portion 412. The tapered amount of the metal region 413b can be designed so that off-axis incident light propagates through the first side 414 of the semiconductor material 410, and the metal region 413b faces one of the plurality of photodiodes 401a, 401b, 401c, and 401d. Everyone reflects. In FIG. 4 illustrates an example of illustration, there are used for h-DTI or d-DTI structure 420 to isolated structure 417 adjacent one photodiode compromise. For the h-DTI structure 420, a metal material (such as W) in the metal region 413b can absorb incident light to minimize optical crosstalk, however, light absorption also degrades the sensitivity of the image sensor. For the d-DTI structure 417, the dielectric material 417a in the deep trenches cannot absorb, reflect or refract the incident light in order to minimize optical crosstalk. In order to maintain the sensitivity of the image sensor and reduce the occurrence of optical crosstalk and electrical crosstalk, the h-DTI structure 420 is only placed between two adjacent photodiodes with different color filters, while the d-DTI structure 417 is only Placed between two adjacent photodiodes with the same color filter. In one example, the photodiode 401b with the red filter 402 and the photodiode 401c with the green filter 404 are separated by the h-DTI structure 420, and the photodiode with the red filter 402 The diode 401a is separated from the photodiode 401b which also has a red filter by a d-DTI structure 417. In Figure 3 illustrates another example of the description, a combination of a plurality of color pixels 202, 203 and 205 each surrounded by the h-DTI structure 301 on all sides, and in combination of a plurality of color pixels in each Within one, only the d-DTI structure 302 exists to separate adjacent sub-pixels. 5A to 5D illustrate one produced in FIG. 4 for one exemplary method of the image sensor 500. FIGS. 5A to 5D of the order of some or all of the method 500 occurs in the system should not be considered limiting. Rather, those skilled in the art having the benefit of this disclosure will appreciate that certain methods of method 500 may be performed in various sequences not illustrated or even in parallel. In addition, the method 500 may omit certain program steps and diagrams in order to avoid obscuring certain aspects. Alternatively, the method 500 may include additional process steps and diagrams that may not be necessary in certain embodiments / examples of the invention. FIG. 5A illustrates a semiconductor material 504 having a first side 521 opposite a second side 520. In one example, the semiconductor material 504 is silicon. The plurality of photodiodes 501a, 501b, 501c, and 501d are disposed in the semiconductor material 504 between the first side 521 and the second side 520. In one example, a plurality of photodiodes are formed by ion implantation. A plurality of deep isolation wells 502 are disposed in the semiconductor material 504. Each individual deep isolation well 502 may extend from a first side 521 to a second side 520 of the semiconductor material 504. In one example, individual photodiodes 501a, 501b, 501c, and 501d are disposed between individual deep isolation wells 502. In one example, a plurality of deep isolation wells 502 are formed by ion implantation. A plurality of first trenches 503 are etched, and the plurality of first trenches extend from the first side 521 toward the second side 520 of the semiconductor material 504. In one example, each individual first trench 503 is etched in the individual deep isolation well 502 such that each individual first trench 503 is disposed in a corresponding deep isolation well 502. FIG 5B illustrates one selectively widened some shallow trench portion 503 in a plurality of first trenches in the semiconductor material 505 at close to a first side 521,504 of the step of forming one of a plurality of second trenches 503a, wherein each widened by having a plurality of shallow portion 505 of the second trench 503a disposed in the color filters having the two different between adjacent photodiode, such filters will be of different colors in FIG. 5D It is placed in subsequent steps after the illustrated step (not illustrated in Figs. 5A to 5D ). In one example, the photodiodes 501a and 501b will be optically aligned with the red filter, and the photodiodes 501c and 501d will be optically aligned with the green filter. The second trench 503a is disposed between the photodiodes 501b and 501c. The first trench 503 is disposed between the photodiodes 501a and 501b. In one example, a deep portion 506 of one of the plurality of second trenches 503a is disposed between the shallow portion 505 and the second side 520 of the semiconductor material 504. In one example, the shallow portion 505 tapers from the first side 521 toward the second side 520 of the semiconductor material 504 such that a width of one of the shallow portions 505 close to the first side 521 is greater than a depth close to the second side 520. The width of the portion 506. FIG. 5C illustrates the deposition of a dielectric material 508 in the plurality of first trenches 503 and the second trenches 503a. In one example, the plurality of first trenches 503 are completely filled with a dielectric material 508. On the other hand, the deep portions 506 in the plurality of second trenches 503a are also completely filled with the dielectric material 508. The shallow portions 505 of the plurality of second trenches 503a are partially filled with a dielectric material 508, and the dielectric material 508 is disposed on a sidewall of the shallow portions 505 of the second trench 503a. After the dielectric material 508 is deposited as shown in FIG. 5C, a blank space 507 is formed in the middle of the shallow portion 505. FIG 5D illustrates a metal 509 is deposited in the shallow part 505 of second plurality of trenches 503a to fill FIG. 5C shows the blank space 507. In one example, the blank space 507 in FIG. 5C is completely filled with metal 509. There is at least a portion of a dielectric material 508 between the metal 509 and the semiconductor material 504 to electrically isolate the metal 509 from the semiconductor material 504. The above description of illustrated examples of the invention, including what is set forth in the Abstract, is not intended to be exhaustive or to limit the invention to the precise form disclosed. Although specific examples of the invention have been set forth herein for illustrative purposes, those skilled in the art will recognize that various modifications can be made within the scope of the invention. These modifications can be made to the invention in light of the above detailed description. The terms used in the following patent application scope should not be construed to limit the invention to the specific examples disclosed in this specification. Instead, the scope of the present invention should be determined entirely by the following patent application scope, which should be understood in accordance with the principles established in the interpretation of the claims.

100  100 成像系統  Imaging system 101  101 讀出電路  Readout circuit 102  102 功能邏輯  Functional logic 103  103 控制電路  Control circuit 104  104 像素陣列  Pixel array 200  200 多色彩高動態範圍影像感測器  Multi-color high dynamic range image sensor 201  201 標準介電質深溝渠隔離結構/介電質深溝渠隔離結構  Standard dielectric deep trench isolation structure / dielectric deep trench isolation structure 202  202 組合紅色像素  Combine red pixels 202a  202a 光電二極體  Photodiode 202aa  202aa 轉移閘極  Transfer gate 202b  202b 光電二極體  Photodiode 202bb  202bb 轉移閘極  Transfer gate 202c  202c 光電二極體  Photodiode 202cc  202cc 轉移閘極  Transfer gate 202d  202d 光電二極體  Photodiode 202dd  202dd 轉移閘極  Transfer gate 202e  202e 共同浮動擴散部  Common floating diffusion 203  203 第一組合綠色像素  The first combination of green pixels 204  204 第二組合綠色像素  The second combination of green pixels 205  205 組合藍色像素  Combine blue pixels 300  300 多色彩高動態範圍影像感測器  Multi-color high dynamic range image sensor 301a  301a 介電質深溝渠隔離結構  Dielectric deep trench isolation structure 301b  301b 混合深溝渠隔離結構  Hybrid deep trench isolation structure 302  302 組合紅色像素  Combine red pixels 302a  302a 光電二極體  Photodiode 302aa  302aa 轉移閘極  Transfer gate 302b  302b 光電二極體  Photodiode 302bb  302bb 轉移閘極  Transfer gate 302c  302c 光電二極體  Photodiode 302cc  302cc 轉移閘極  Transfer gate 302d  302d 光電二極體  Photodiode 302dd  302dd 轉移閘極  Transfer gate 302e  302e 共同浮動擴散部  Common floating diffusion 303  303 組合藍色像素  Combine blue pixels 304  304 組合綠色像素  Combine green pixels 304a  304a 光電二極體  Photodiode 304aa  304aa 轉移閘極  Transfer gate 304b  304b 光電二極體  Photodiode 304bb  304bb 轉移閘極  Transfer gate 304c  304c 光電二極體  Photodiode 304cc  304cc 轉移閘極  Transfer gate 304d  304d 光電二極體  Photodiode 304dd  304dd 轉移閘極  Transfer gate 304e  304e 共同浮動擴散部  Common floating diffusion 305  305 組合IR像素  Combined IR pixels 400  400 影像感測器  Image sensor 401a  401a 光電二極體  Photodiode 401b  401b 光電二極體  Photodiode 401c  401c 光電二極體  Photodiode 401d  401d 光電二極體  Photodiode 402  402 彩色濾光器/紅色濾光器  Color filter / red filter 404  404 彩色濾光器/綠色濾光器  Color filter / green filter 407  407 介電質材料  Dielectric material 408  408 第二側  Second side 409  409 淺溝渠隔離結構  Shallow trench isolation structure 410  410 半導體材料  semiconductors 411a  411a 第一深隔離井  First deep isolation well 411b  411b 第二深隔離井  Second deep isolation well 412  412 深部分  Deep part 412a  412a 介電質材料區域  Dielectric material area 413  413 淺部分  Shallow part 413a  413a 介電質材料區域  Dielectric material area 413b  413b 金屬區域  Metal area 414  414 第一側  First side 415  415 介電質材料  Dielectric material 416  416 金屬柵格  Metal grid 417  417 介電質深溝渠隔離結構  Dielectric deep trench isolation structure 417a  417a 介電質材料  Dielectric material 418  418 微透鏡  Micro lens 419  419 轉移閘極  Transfer gate 420  420 混合深溝渠隔離結構  Hybrid deep trench isolation structure 500  500 方法  Method 501a  501a 光電二極體  Photodiode 501b  501b 光電二極體  Photodiode 501c  501c 光電二極體  Photodiode 501d  501d 光電二極體  Photodiode 502  502 深隔離井  Deep isolation well 503  503 第一溝渠  First ditch 503a  503a 第二溝渠  Second ditch 504  504 半導體材料  semiconductors 505  505 淺部分/經擴寬淺部分  Shallow part / widened shallow part 506  506 深部分  Deep part 507  507 空白空間  White space 508  508 介電質材料  Dielectric material 509  509 金屬  Metal 520  520 第二側  Second side 521  521 第一側  First side C1-Cx  C1-Cx  Row P1-Pn  P1-Pn 像素  Pixel R1-Ry  R1-Ry  Column

參考以下各圖闡述本發明之非限制性及非窮盡性實例,其中除非另有規定,否則貫穿各種視圖中相似參考編號指代相似部件。 1係示意性圖解說明根據本發明之一實施例之一高動態範圍(「HDR」)成像系統之一項實例之一方塊圖。 2係一多色彩HDR影像感測器之一平面圖圖解,該多色彩HDR影像感測器包含四個組合色彩像素,每一像素包含具有由介電質深溝渠隔離(d-DTI)結構隔離之四個光電二極體之四個HDR子像素。 3係根據本發明之一實施例之一多色彩HDR影像感測器之一平面圖圖解,該多色彩HDR影像感測器包含四個組合色彩像素,每一像素包含具有由混合深溝渠隔離(h-DTI)結構及d-DTI結構兩者隔離之四個光電二極體之四個HDR子像素。 4係根據本發明之一實施例之 3中之一實例性影像感測器沿著A-A’方向之一經放大剖面圖解。 5A 至圖 5D圖解說明根據本發明之一實施例之 4中之影像感測器之一實例性製作方法。 貫穿圖式之數個視圖,對應參考字符指示對應組件。熟習此項技術者將瞭解,各圖中之元件係為簡單及清晰起見而圖解說明,且未必按比例繪製。舉例而言,為幫助提高對本發明之各項實施例之理解,各圖中之元件中之某些元件之尺寸可相對於其他元件放大。並且,通常未繪示在一商業上可行之實施例中有用或必要之常見而眾所周知之元件以便促進對本發明之此等各項實施例之一較不受阻擋之觀看。 Non-limiting and non-exhaustive examples of the present invention are explained with reference to the following drawings, wherein, unless otherwise specified, like reference numerals refer to like parts throughout the various views. FIG. 1 is a block diagram schematically illustrating an example of a high dynamic range ("HDR") imaging system according to an embodiment of the present invention. FIG. 2 is a plan view of a multi-color HDR image sensor. The multi-color HDR image sensor includes four combined color pixels, each of which includes a dielectric trench isolation (d-DTI) structure. Four HDR subpixels of the four photodiodes. FIG. 3 is a plan view diagram of a multi-color HDR image sensor according to an embodiment of the present invention. The multi-color HDR image sensor includes four combined color pixels, and each pixel includes h-DTI) structure and d-DTI structure, four HDR sub-pixels of four photodiodes isolated. FIG 4 lines in FIG. 3, one embodiment of an exemplary image sensor in accordance with one embodiment of the present invention along the A-A 'cross-sectional view illustrating the direction of one of the amplified. 5A to 5D illustrate one image sensor in the embodiment of FIG. 4 an example manufacturing method of the present invention according to one embodiment. Throughout the drawings, corresponding reference characters indicate corresponding components. Those skilled in the art will appreciate that the elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, to help improve the understanding of the embodiments of the present invention, the dimensions of some of the elements in the figures may be enlarged relative to other elements. Also, common and well-known elements that are useful or necessary in a commercially feasible embodiment are generally not shown in order to facilitate a more unobstructed view of one of these embodiments of the invention.

Claims (16)

一種像素陣列,其安置於一半導體材料中、位於該半導體材料之一第一側與一第二側之間,該像素陣列包括:複數個第一組合像素、第二組合像素、介電質深溝渠隔離(d-DTI)結構及混合深溝渠隔離(h-DTI)結構;其中該等第一組合像素中之每一者包含經組態以由該半導體材料之該第一側接收一第一波長之光之至少兩個毗鄰第一光敏元件,其中該兩個毗鄰第一光敏元件藉由該等d-DTI結構中之一者而分離;其中該等第二組合像素中之每一者包含經組態以由該半導體材料之該第一側接收一第二波長之光之至少兩個毗鄰第二光敏元件,其中該兩個毗鄰第二光敏元件藉由該等d-DTI結構中之一者而分離;其中該等第一組合像素中之至少一者毗鄰於該等第二組合像素中之至少一者;其中該等h-DTI結構中之至少一者安置於該第一組合像素與該第二組合像素之間;且其中該等h-DTI結構中之每一者包括一淺部分及一深部分,其中該淺部分包含一金屬區域,該金屬區域比該深部分寬。 A pixel array is disposed in a semiconductor material between a first side and a second side of the semiconductor material. The pixel array includes a plurality of first combined pixels, a second combined pixel, and a dielectric material. Trench isolation (d-DTI) structure and hybrid deep trench isolation (h-DTI) structure; wherein each of the first combined pixels includes a first configured to receive a first from the first side of the semiconductor material At least two of the wavelengths of light adjacent to the first photosensitive element, wherein the two adjacent first photosensitive elements are separated by one of the d-DTI structures; wherein each of the second combined pixels includes At least two adjacent second photosensitive elements configured to receive light of a second wavelength from the first side of the semiconductor material, wherein the two adjacent second photosensitive elements pass one of the d-DTI structures Or at least one of the first combined pixels is adjacent to at least one of the second combined pixels; at least one of the h-DTI structures is disposed at the first combined pixel and Between the second combined pixels; and wherein h-DTI each of the structures comprising a shallow portion and a deep portion, wherein the metal region comprises a shallow portion which is wider than the metal regions of the deep portion. 如請求項1之像素陣列,其中該等第一及第二組合像素中之每一者在所有側上由該等h-DTI結構封圍。 As in the pixel array of claim 1, wherein each of the first and second combined pixels is enclosed on all sides by the h-DTI structure. 如請求項1之像素陣列;其中該淺部分自該半導體材料之該第一側朝向該第二側延伸,且包 含一介電質區域及該金屬區域,使得該介電質區域之至少部分安置於該半導體材料與該金屬區域之間;且其中該深部分自該淺部分延伸且安置於該淺部分與該半導體材料之該第二側之間。 The pixel array as in claim 1; wherein the shallow portion extends from the first side toward the second side of the semiconductor material, and includes Including a dielectric region and the metal region such that at least a portion of the dielectric region is disposed between the semiconductor material and the metal region; and wherein the deep portion extends from the shallow portion and is disposed between the shallow portion and the Between the second side of the semiconductor material. 如請求項3之像素陣列,其中該淺部分自該半導體材料之該第一側朝向該深部分逐漸變細,使得接近於該第一側之該淺部分之一寬度大於接近於該第二側之該深部分之一寬度。 The pixel array of claim 3, wherein the shallow portion is tapered from the first side of the semiconductor material toward the deep portion, so that a width of one of the shallow portions close to the first side is larger than that of the second side The width of one of the deep portions. 如請求項3之像素陣列,其中該金屬區域之至少部分比該深部分寬。 The pixel array of claim 3, wherein at least part of the metal region is wider than the deep part. 如請求項3之像素陣列,其中每一h-DTI結構之該深部分包含一介電質材料。 As in the pixel array of claim 3, the deep portion of each h-DTI structure includes a dielectric material. 如請求項6之像素陣列,其中每一h-DTI結構中之該淺部分之該介電質區域包含該介電質材料。 As in the pixel array of claim 6, wherein the dielectric region of the shallow portion of each h-DTI structure includes the dielectric material. 如請求項1之像素陣列,其中該第一波長不同於該第二波長。 The pixel array of claim 1, wherein the first wavelength is different from the second wavelength. 一種高動態範圍影像感測器像素陣列,其安置於一半導體材料中位於該半導體材料之一第一側與一第二側之間,該高動態範圍影像感測器像素陣列包括:複數個第一組合像素、第二組合像素、d-DTI結構及h-DTI結構; 其中該等第一組合像素中之每一者包含經組態以由該半導體材料之該第一側接收一第一波長之光之至少兩個毗鄰第一光電二極體,其中該兩個毗鄰第一光電二極體藉由該等d-DTI結構中之一者而分離,且每一第一光電二極體透過一第一轉移閘極而耦合至一第一浮動擴散部,其中該第一浮動擴散部在該至少兩個毗鄰第一光電二極體之間被共用;其中該等第二組合像素中之每一者包含經組態以由該半導體材料之該第一側接收一第二波長之光之至少兩個毗鄰第二光電二極體,其中該兩個毗鄰第二光電二極體藉由該等d-DTI結構中之一者而分離,且每一第二光電二極體透過一第二轉移閘極而耦合至一第二浮動擴散部,其中該第二浮動擴散部在該至少兩個毗鄰第二光電二極體之間被共用;其中該等第一組合像素中之至少一者毗鄰於該等第二組合像素中之至少一者;其中該等h-DTI結構中之至少一者安置於該第一組合像素與該第二組合像素之間;且其中該等h-DTI結構中之每一者包括一淺部分及一深部分,其中該淺部分包含一金屬區域,該金屬區域比該深部分寬。 A high dynamic range image sensor pixel array is disposed in a semiconductor material between a first side and a second side of the semiconductor material. The high dynamic range image sensor pixel array includes: a plurality of first A combined pixel, a second combined pixel, a d-DTI structure and an h-DTI structure; Each of the first combined pixels includes at least two adjacent first photodiodes configured to receive light of a first wavelength from the first side of the semiconductor material, wherein the two adjacent The first photodiode is separated by one of the d-DTI structures, and each first photodiode is coupled to a first floating diffusion through a first transfer gate, wherein the first A floating diffusion is shared between the at least two adjacent first photodiodes; wherein each of the second combined pixels includes a first configured to receive a first from the first side of the semiconductor material. At least two of the two wavelengths of light are adjacent to the second photodiode, wherein the two adjacent second photodiodes are separated by one of the d-DTI structures, and each second photodiode is The body is coupled to a second floating diffusion through a second transfer gate, wherein the second floating diffusion is shared between the at least two adjacent second photodiodes; At least one of them is adjacent to at least one of the second combined pixels; Wherein at least one of the h-DTI structures is disposed between the first combined pixel and the second combined pixel; and wherein each of the h-DTI structures includes a shallow portion and a deep portion, The shallow portion includes a metal region, and the metal region is wider than the deep portion. 如請求項9之高動態範圍影像感測器像素陣列,其中該等第一及第二組合像素中之每一者在所有側上由該等h-DTI結構封圍。 If the high dynamic range image sensor pixel array of claim 9, wherein each of the first and second combined pixels is enclosed on all sides by the h-DTI structure. 如請求項9之高動態範圍影像感測器像素陣列;其中該淺部分自該半導體材料之該第一側朝向該第二側延伸,且包含一介電質區域及該金屬區域,使得該介電質區域之至少部分安置於該半 導體材料與該金屬區域之間;且其中該深部分自該淺部分延伸且安置於該淺部分與該半導體材料之該第二側之間。 For example, the high dynamic range image sensor pixel array of item 9; wherein the shallow portion extends from the first side toward the second side of the semiconductor material, and includes a dielectric region and the metal region, so that the dielectric At least part of the electrical region is placed in the half Between the conductive material and the metal region; and wherein the deep portion extends from the shallow portion and is disposed between the shallow portion and the second side of the semiconductor material. 如請求項10之高動態範圍影像感測器像素陣列,其中該淺部分自該半導體材料之該第一側朝向該深部分逐漸變細,使得接近於該第一側之該淺部分之一寬度大於接近於該第二側之該深部分之一寬度。 For example, the high dynamic range image sensor pixel array of claim 10, wherein the shallow portion gradually tapers from the first side of the semiconductor material toward the deep portion, so as to approach a width of the shallow portion near the first side. Greater than a width of the deep portion near the second side. 如請求項10之高動態範圍影像感測器像素陣列,其中該金屬區域之至少部分比該深部分寬。 For example, the high dynamic range image sensor pixel array of claim 10, wherein at least part of the metal region is wider than the deep part. 如請求項10之高動態範圍影像感測器像素陣列,其中每一h-DTI結構之該深部分包含一介電質材料。 For example, the high dynamic range image sensor pixel array of claim 10, wherein the deep portion of each h-DTI structure includes a dielectric material. 如請求項14之高動態範圍影像感測器像素陣列,其中每一h-DTI結構中之該淺部分之該介電質區域包含該介電質材料。 For example, the high dynamic range image sensor pixel array of claim 14, wherein the dielectric region of the shallow portion of each h-DTI structure includes the dielectric material. 如請求項9之高動態範圍影像感測器像素陣列,其中該第一波長不同於該第二波長。 For example, the high dynamic range image sensor pixel array of claim 9, wherein the first wavelength is different from the second wavelength.
TW107104599A 2018-02-09 2018-02-09 Cross talk reduction for high dynamic range image sensors TWI674668B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107104599A TWI674668B (en) 2018-02-09 2018-02-09 Cross talk reduction for high dynamic range image sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107104599A TWI674668B (en) 2018-02-09 2018-02-09 Cross talk reduction for high dynamic range image sensors

Publications (2)

Publication Number Publication Date
TW201935672A TW201935672A (en) 2019-09-01
TWI674668B true TWI674668B (en) 2019-10-11

Family

ID=68618336

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107104599A TWI674668B (en) 2018-02-09 2018-02-09 Cross talk reduction for high dynamic range image sensors

Country Status (1)

Country Link
TW (1) TWI674668B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490259A (en) * 2020-12-28 2021-03-12 上海集成电路装备材料产业创新中心有限公司 Pixel unit structure and manufacturing method
TWI782461B (en) * 2021-03-25 2022-11-01 力晶積成電子製造股份有限公司 Back-side illuminated image sensor and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150243805A1 (en) * 2014-02-27 2015-08-27 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device and method for forming the same
TWI554110B (en) * 2014-08-21 2016-10-11 豪威科技股份有限公司 Image sensor and method of fabricating the same
TW201711178A (en) * 2015-09-10 2017-03-16 台灣積體電路製造股份有限公司 Semiconductor device and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150243805A1 (en) * 2014-02-27 2015-08-27 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device and method for forming the same
TWI554110B (en) * 2014-08-21 2016-10-11 豪威科技股份有限公司 Image sensor and method of fabricating the same
TW201711178A (en) * 2015-09-10 2017-03-16 台灣積體電路製造股份有限公司 Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
TW201935672A (en) 2019-09-01

Similar Documents

Publication Publication Date Title
TWI677086B (en) Method of a pixel array fabrication
TWI649866B (en) Image sensor with hybrid deep trench isolation
KR102135529B1 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
US11056524B2 (en) Image pickup device, method of manufacturing image pickup device, and electronic apparatus
US10269850B2 (en) Biased deep trench isolation
US8450728B2 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
TWI698027B (en) Cmos image sensor having enhanced near infrared quantum efficiency
TWI677974B (en) Cmos image sensor having enhanced near infrared quantum efficiency and modulation transfer function
JP2015029054A (en) Solid state image pickup device, manufacturing method thereof and electronic apparatus
US11244979B2 (en) Deep trench isolation (DTI) structure for CMOS image sensor
CN104508821A (en) Solid-state imaging device, method for producing solid-state imaging device and electronic apparatus
CN113130522B (en) Image sensor with partially encapsulated attenuation layer
TWI674668B (en) Cross talk reduction for high dynamic range image sensors
US9799696B1 (en) Isolation structure in photodiode
US11152404B2 (en) Tunnel contact for a pixel cell in an imaging system
US9986192B1 (en) Through-semiconductor and through-dielectric isolation structure
US20230361136A1 (en) Pixel structure and method for manufacturing a pixel structure