TWI674448B - Three-piece compact optical lens system - Google Patents

Three-piece compact optical lens system Download PDF

Info

Publication number
TWI674448B
TWI674448B TW107135703A TW107135703A TWI674448B TW I674448 B TWI674448 B TW I674448B TW 107135703 A TW107135703 A TW 107135703A TW 107135703 A TW107135703 A TW 107135703A TW I674448 B TWI674448 B TW I674448B
Authority
TW
Taiwan
Prior art keywords
lens
piece thin
focal length
thin imaging
imaging lens
Prior art date
Application number
TW107135703A
Other languages
Chinese (zh)
Other versions
TW202014754A (en
Inventor
黃靖昀
Original Assignee
新鉅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新鉅科技股份有限公司 filed Critical 新鉅科技股份有限公司
Priority to TW107135703A priority Critical patent/TWI674448B/en
Application granted granted Critical
Publication of TWI674448B publication Critical patent/TWI674448B/en
Publication of TW202014754A publication Critical patent/TW202014754A/en

Links

Landscapes

  • Lenses (AREA)

Abstract

本發明為一種三片式薄型成像鏡片組,由物侧至像侧依序包含:一平板元件,為玻璃材質;一第一透鏡,具有負屈折力,其物側表面近光軸處為凹面;一光圈;一第二透鏡,具有正屈折力,其物側表面近光軸處為凸面,其像側表面近光軸處為凸面;以及一第三透鏡,具有正屈折力;藉以有效蒐集大角度之光線,而令三片式薄型成像鏡片組在極短物距內接收更大範圍之影像與達成辨識功效,同時有助於縮減被攝物與三片式薄型成像鏡片組的距離,可有效縮小體積,維持其小型化。The invention relates to a three-piece thin imaging lens group, which comprises, in order from the object side to the image side, a plate element which is made of glass material, a first lens which has a negative refractive power, and a concave surface of the object side surface near the optical axis. a second lens having a positive refractive power, a convex surface of the object side surface near the optical axis, a convex surface at the near-optical axis of the image side surface, and a third lens having a positive refractive power; thereby effectively collecting The high-angle light allows the three-piece thin imaging lens set to receive a wider range of images and achieve recognition in a very short object distance, while helping to reduce the distance between the subject and the three-piece thin imaging lens set. It can effectively reduce the volume and maintain its miniaturization.

Description

<title lang="zh">三片式薄型成像鏡片組</title><title lang="en">THREE-PIECE COMPACT OPTICAL LENS SYSTEM</title><technical-field><p>本發明係與鏡片組有關,特別是指一種應用於電子產品上的三片式薄型成像鏡片組。</p></technical-field><background-art><p>以每個生物獨有的生物特徵作為根據的生物辨識(Biometric)系統,因其具有唯一性、普遍性、永久性、可測性、方便性、接受性、及不可欺性等,因此常被使用在目前市面上現有的行動裝置上,甚至亦可使用在未來的電子裝置上。然而,目前行動裝置所搭配的生物辨識系統多採用電容原理,其雖然可以降低生物辨識系統所需的體積,但是電路結構過於複雜,使得製造成本過高,相對的產品單價也偏高。</p><p>目前雖然有利用光學成像原理的傳統生物辨識系統,如指紋辨識、靜脈辨識等,但傳統生物辨識系統存在體積過大的問題,使得搭載有生物辨識系統的電子裝置不易小型化,也更不易攜帶。</p><p>有鑑於此,如何提供一種薄型成像鏡片組,可以作為生物辨識系統之用並可搭載在電子裝置上,使該電子裝置可小型化以便於攜帶即是目前急欲克服之技術瓶頸。</p></background-art><disclosure><p>本發明的目的在於提供一種三片式薄型成像鏡片組,尤指一種有助於縮減被攝物與三片式薄型成像鏡片組的距離,可有效縮小體積,維持其小型化的三片式薄型成像鏡片組。</p><p>本發明另一目的在於提供一種三片式薄型成像鏡片組,尤指一種有效蒐集大角度之光線,而令三片式薄型成像鏡片組在極短物距內接收更大範圍之影像與達成辨識功效的三片式薄型成像鏡片組。</p><p>為了達成前述目的,依據本發明所提供之一種三片式薄型成像鏡片組,由物侧至像侧依序包含:一平板元件,為玻璃材質;一第一透鏡,具有負屈折力,其物側表面近光軸處為凹面,其物側表面與像側表面至少一表面為非球面;一光圈;一第二透鏡,具有正屈折力,其物側表面近光軸處為凸面,其像側表面近光軸處為凸面,其物側表面與像側表面至少一表面為非球面;以及一第三透鏡,具有正屈折力,其物側表面與像側表面至少一表面為非球面;</p><p>其中該三片式薄型成像鏡片組中具屈折力的透鏡為三片,該三片式薄型成像鏡片組中最大視場角為FOV,一被攝物至一成像面於光軸上的距離為OTL,該三片式薄型成像鏡片組的整體焦距為f,該第一透鏡的焦距為f1,該第二透鏡的焦距為f2,該第三透鏡的焦距為f3,並滿足下列條件:90度 < FOV < 140度;2公厘 < OTL < 6公厘;0.2 < | f/(f1×f2×f3) | < 0.7。</p><p>較佳地,其中該三片式薄型成像鏡片組的整體焦距為f,該第一透鏡的焦距為f1,並滿足下列條件:-0.7 < f/f1 < -0.1。藉此,可平衡三片式薄型成像鏡片組的屈折力配置,以有效修正三片式薄型成像鏡片組的像差,同時降低三片式薄型成像鏡片組的敏感度。</p><p>較佳地,其中該三片式薄型成像鏡片組的整體焦距為f,該第二透鏡的焦距為f2,並滿足下列條件:0.1 < f/f2 < 0.75。藉此,可平衡三片式薄型成像鏡片組的屈折力配置,以有效修正三片式薄型成像鏡片組的像差,同時降低三片式薄型成像鏡片組的敏感度。</p><p>較佳地,其中該三片式薄型成像鏡片組的整體焦距為f,該第三透鏡的焦距為f3,並滿足下列條件:0.07 < f/f3 < 0.68。藉此,可平衡三片式薄型成像鏡片組的屈折力配置,以有效修正三片式薄型成像鏡片組的像差,同時降低三片式薄型成像鏡片組的敏感度。</p><p>較佳地,其中該三片式薄型成像鏡片組的整體焦距為f,該第二透鏡與第三透鏡的合成焦距為f23,並滿足下列條件:0.4 < f/f23 < 1.0。藉此,該三片式薄型成像鏡片組可於縮短光學總長與修正像差之間取得平衡。</p><p>較佳地,其中該第一透鏡的焦距為f1,該第二透鏡與第三透鏡的合成焦距為f23,並滿足下列條件:-2.9 < f1/f23 < -1.0。藉此,該三片式薄型成像鏡片組的解像能力顯著提昇。</p><p>較佳地,其中該第一透鏡的焦距為f1,該第一透鏡物側表面的曲率半徑為R1,並滿足下列條件:0.6 < f1/R1 < 2.4。藉此,可有利於降低失真。</p><p>較佳地,其中該第一透鏡的焦距為f1,該第一透鏡像側表面的曲率半徑為R2,並滿足下列條件:-1.0 < f1/R2 < 0.6。藉此,第一透鏡像側表面的曲率較合適,有助於縮短三片式薄型成像鏡片組的總長度。</p><p>較佳地,其中該第二透鏡的焦距為f2,該第二透鏡物側表面的曲率半徑為R3,並滿足下列條件:0.2 < f2/R3 < 1.6。藉此,將有助於降低系統敏感度,可有效地提高生產良率。</p><p>較佳地,其中該第二透鏡的焦距為f2,該第二透鏡像側表面的曲率半徑為R4,並滿足下列條件:-1.8 < f2/R4 < -0.4。藉此,可進一步減緩第二透鏡像側表面之周邊曲率,更能實現降低雜散光的特性。</p><p>較佳地,其中該第三透鏡的焦距為f3,該第三透鏡物側表面的曲率半徑為R5,並滿足下列條件:-0.7 < f3/R5 < 2.7。藉此,修正成像的放大倍率。</p><p>較佳地,其中該第三透鏡的焦距為f3,該第三透鏡像側表面的曲率半徑為R6,並滿足下列條件:-2.1 < f3/R6 < 1.0。藉此,修正成像的放大倍率。</p><p>較佳地,其中該第一透鏡物側表面的曲率半徑為R1,該第一透鏡像側表面的曲率半徑為R2,並滿足下列條件:-0.9 < R1/R2 < 0.6。藉此,可以降低三片式薄型成像鏡片組的球差與像散。</p><p>較佳地,其中該第二透鏡物側表面的曲率半徑為R3,該第二透鏡像側表面的曲率半徑為R4,並滿足下列條件:-3.2 < R3/R4 < -0.1。藉此,可以降低三片式薄型成像鏡片組的像散。</p><p>較佳地,其中該第三透鏡物側表面的曲率半徑為R5,該第三透鏡像側表面的曲率半徑為R6,並滿足下列條件:-95 < R5/R6 < 10。藉此,有效平衡第三透鏡表面的曲率配置,以在視場角度與總長間取得平衡。</p><p>較佳地,其中該三片式薄型成像鏡片組的整體焦距為f,該被攝物至成像面於光軸上的距離為OTL,並滿足下列條件:8.0 < OTL/f < 18.0。藉此,可有利於維持該三片式薄型成像鏡片組的小型化及長焦點,以搭載於輕薄的電子產品上。</p><p>較佳地,其中該第一透鏡的焦距為f1,該第二透鏡的焦距為f2,該第三透鏡的焦距為f3,並滿足下列條件:-2.4 < (f1+f2+f3)/( f1×f2×f3) < -0.1。藉此,可以讓被攝物在短物距上以小像差及高相對照度,良好的成像於成像面上。</p><p>有關本發明為達成上述目的,所採用之技術、手段及其他之功效,茲舉八較佳可行實施例並配合圖式詳細說明如後。</p></disclosure><mode-for-invention><p><第一實施例></p><p>請參照圖1A、圖1B及圖1C,其中圖1A繪示依照本發明第一實施例之三片式薄型成像鏡片組的示意圖,圖1B為圖1A的局部放大圖。圖1C由左至右依序為第一實施例的三片式薄型成像鏡片組的像面彎曲及歪曲收差曲線圖。由圖1A及圖1B可知,三片式薄型成像鏡片組由物側至像側依序包含平板元件160、第一透鏡110、光圈100、第二透鏡120、第三透鏡130、紅外線濾除濾光片170、以及成像面180,其中該三片式薄型成像鏡片組中具屈折力的透鏡為三片(110、120、130)。該光圈100設置在該第一透鏡110與第二透鏡120之間。</p><p>該平板元件160為玻璃材質,其設置於一被攝物O及該第一透鏡110之間,且不影響該三片式薄型成像鏡片組的焦距。</p><p>該第一透鏡110具有負屈折力,且為塑膠材質,其物側表面111近光軸190處為凹面,其像側表面112近光軸190處為凸面,且該物側表面111及像側表面112皆為非球面。</p><p>該第二透鏡120具有正屈折力,且為塑膠材質,其物側表面121近光軸190處為凸面,其像側表面122近光軸190處為凸面,且該物側表面121及像側表面122皆為非球面。</p><p>該第三透鏡130具有正屈折力,且為塑膠材質,其物側表面131近光軸190處為凸面,其像側表面132近光軸190處為凸面,且該物側表面131及像側表面132皆為非球面。</p><p>該紅外線濾除濾光片170為玻璃材質,其設置於該第三透鏡130及成像面180間且不影響該三片式薄型成像鏡片組的焦距。</p><p><img he="44" wi="526" img-format="jpg" id="i0008" img-content="drawing" orientation="portrait" inline="no" file="TWI674448B_D0001.tif" />上述各透鏡的非球面的曲線方程式表示如下: </p><p><p>其中z為沿光軸190方向在高度為h的位置以表面頂點作參考的位置值;c是透鏡表面靠近光軸190的曲率,並為曲率半徑(R)的倒數(c=1/R),R為透鏡表面靠近光軸190的曲率半徑,h是透鏡表面距離光軸190的垂直距離,k為圓錐係數(conic constant),而A、B、C、D、E、F、G、……為高階非球面係數。</p><p>第一實施例的三片式薄型成像鏡片組中,三片式薄型成像鏡片組的焦距為f,三片式薄型成像鏡片組的光圈值(f-number)為Fno,三片式薄型成像鏡片組中最大視場角(畫角)為FOV,其數值如下:f= 0.37(公厘);Fno=1.35;以及FOV= 105.0(度)。</p><p>第一實施例的三片式薄型成像鏡片組中,該三片式薄型成像鏡片組的焦距為f,該第一透鏡110的焦距為f1,該第二透鏡120的焦距為f2,該第三透鏡130的焦距為f3,並滿足下列條件:| f/(f1×f2×f3) | = 0.38。</p><p>第一實施例的三片式薄型成像鏡片組中,該三片式薄型成像鏡片組的焦距為f,該第一透鏡110的焦距為f1,並滿足下列條件: f/f1 = -0.32。</p><p>第一實施例的三片式薄型成像鏡片組中,該三片式薄型成像鏡片組的焦距為f,該第二透鏡120的焦距為f2,並滿足下列條件: f/f2 = 0.53。</p><p>第一實施例的三片式薄型成像鏡片組中,該三片式薄型成像鏡片組的焦距為f,該第三透鏡130的焦距為f3,並滿足下列條件: f/f3 = 0.32。</p><p>第一實施例的三片式薄型成像鏡片組中,該三片式薄型成像鏡片組的焦距為f,該第二透鏡120與第三透鏡130的合成焦距為f23,並滿足下列條件: f/f23 = 0.75。</p><p>第一實施例的三片式薄型成像鏡片組中,該第一透鏡110的焦距為f1,該第二透鏡120與第三透鏡130的合成焦距為f23,並滿足下列條件: f1/f23 = -2.38。</p><p>第一實施例的三片式薄型成像鏡片組中,該第一透鏡110的焦距為f1,該第一透鏡110物側表面111的曲率半徑為R1,並滿足下列條件: f1/R1 = 1.86。</p><p>第一實施例的三片式薄型成像鏡片組中,該第一透鏡110的焦距為f1,該第一透鏡110像側表面112的曲率半徑為R2,並滿足下列條件: f1/R2 = 0.02。</p><p>第一實施例的三片式薄型成像鏡片組中,該第二透鏡120的焦距為f2,該第二透鏡120物側表面121的曲率半徑為R3,並滿足下列條件: f2/R3 = 0.83。</p><p>第一實施例的三片式薄型成像鏡片組中,該第二透鏡120的焦距為f2,該第二透鏡120像側表面122的曲率半徑為R4,並滿足下列條件: f2/R4 = -1.19。</p><p>第一實施例的三片式薄型成像鏡片組中,該第三透鏡130的焦距為f3,該第三透鏡130物側表面131的曲率半徑為R5,並滿足下列條件: f3/R5 = 0.86。</p><p>第一實施例的三片式薄型成像鏡片組中,該第三透鏡130的焦距為f3,該第三透鏡130像側表面132的曲率半徑為R6,並滿足下列條件: f3/R6 = -0.75。</p><p>第一實施例的三片式薄型成像鏡片組中,該第一透鏡110物側表面111的曲率半徑為R1,該第一透鏡110像側表面112的曲率半徑為R2,並滿足下列條件: R1/R2 = 0.01。</p><p>第一實施例的三片式薄型成像鏡片組中,該第二透鏡120物側表面121的曲率半徑為R3,該第二透鏡120像側表面122的曲率半徑為R4,並滿足下列條件: R3/R4 = -1.42。</p><p>第一實施例的三片式薄型成像鏡片組中,該第三透鏡130物側表面131的曲率半徑為R5,該第三透鏡130像側表面132的曲率半徑為R6,並滿足下列條件: R5/R6 = -0.86。</p><p>第一實施例的三片式薄型成像鏡片組中,該三片式薄型成像鏡片組的整體焦距為f,該被攝物O至該成像面180於光軸190上的距離為OTL,並滿足下列條件: OTL/f = 13.30。</p><p>再配合參照下列表1及表2。</p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td><b>表1</b></td></tr><tr><td> 第一實施例 </td></tr><tr><td><u>f(</u><u>焦距) =0.37 mm(公厘), Fno(光圈值) = 1.35, FOV(畫角) = 105 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 平板元件 </td><td> 無限 </td><td> 1.500 </td><td> 玻璃 </td><td> 1.52 </td><td> 64.2 </td><td> </td></tr><tr><td> 2 </td><td> </td><td> 無限 </td><td> 1.476 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第一透鏡 </td><td> -0.638 </td><td> (ASP) </td><td> 0.392 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> -1.19 </td></tr><tr><td> 4 </td><td> </td><td> -59.893 </td><td> (ASP) </td><td> 0.379 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 光圈 </td><td> 無限 </td><td> 0.005 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 6 </td><td> 第二透鏡 </td><td> 0.848 </td><td> (ASP) </td><td> 0.377 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> 0.71 </td></tr><tr><td> 7 </td><td> </td><td> -0.596 </td><td> (ASP) </td><td> 0.034 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 第三透鏡 </td><td> 1.354 </td><td> (ASP) </td><td> 0.244 </td><td> 塑膠 </td><td> 1.64 </td><td> 22.5 </td><td> 1.17 </td></tr><tr><td> 9 </td><td> </td><td> -1.566 </td><td> (ASP) </td><td> 0.361 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 紅外線濾 除濾光片 </td><td> 無限 </td><td> 0.210 </td><td> 玻璃 </td><td> 1.52 </td><td> 54.5 </td><td> </td></tr><tr><td> 11 </td><td> </td><td> 無限 </td><td> 無限 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 12 </td><td> 成像面 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr></tbody></table></tables></p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td><b>表 2</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 平面 </td><td> 3 </td><td> 4 </td><td> 6 </td><td> 7 </td><td> 8 </td><td> 9 </td></tr><tr><td> K: </td><td> -6.6639E+00 </td><td> -4.0007E+02 </td><td> -4.6984E+01 </td><td> 8.6056E-01 </td><td> -2.6278E+01 </td><td> -8.7212E+01 </td></tr><tr><td> A: </td><td> 2.1335E+00 </td><td> 6.6209E+00 </td><td> 4.6884E+00 </td><td> -4.1935E-02 </td><td> 1.0201E+00 </td><td> 2.1905E+00 </td></tr><tr><td> B: </td><td> -6.7124E+00 </td><td> 1.1143E+00 </td><td> -6.7574E+01 </td><td> -3.9365E+01 </td><td> -4.6967E+01 </td><td> -2.9033E+01 </td></tr><tr><td> C: </td><td> 1.5008E+01 </td><td> 2.8583E+02 </td><td> -4.1183E+02 </td><td> 2.2458E+02 </td><td> 1.3049E+02 </td><td> 1.3825E+01 </td></tr><tr><td> D: </td><td> -1.8686E+01 </td><td> -2.6398E+03 </td><td> 1.0258E+04 </td><td> 6.2920E+02 </td><td> 9.5193E+02 </td><td> 4.1848E+02 </td></tr><tr><td> E: </td><td> 8.7309E+00 </td><td> -1.3663E+04 </td><td> 8.5885E+04 </td><td> 3.3069E+02 </td><td> -4.2474E+02 </td><td> 4.3534E+03 </td></tr><tr><td> F </td><td> 4.9937E+00 </td><td> 2.4599E+05 </td><td> -1.9343E+06 </td><td> -6.1268E+04 </td><td> -7.4096E+04 </td><td> -4.8409E+04 </td></tr><tr><td> G </td><td> -5.1320E+00 </td><td> 5.4409E+03 </td><td> 6.9233E+06 </td><td> 2.1063E+05 </td><td> 2.9197E+05 </td><td> 1.1285E+05 </td></tr></tbody></table></tables></p><p>表1為圖1A及圖1B第一實施例詳細的結構數據,其中曲率半徑、厚度及焦距的單位為mm,且表面0-12依序表示由物側至像側的表面。表2為第一實施例中的非球面數據,其中,k表非球面曲線方程式中的錐面係數,A、B、C、D、E、F、G、……為高階非球面係數。此外,以下各實施例表格乃對應各實施例的示意圖與像差曲線圖,表格中數據的定義皆與第一實施例的表1、及表2的定義相同,在此不加贅述。</p><p><第二實施例></p><p>請參照圖2A、圖2B及圖2C,其中圖2A繪示依照本發明第二實施例之三片式薄型成像鏡片組的示意圖,圖2B為圖2A的局部放大圖。圖2C由左至右依序為第二實施例的三片式薄型成像鏡片組的像面彎曲及歪曲收差曲線圖。由圖2A及圖2B可知,三片式薄型成像鏡片組由物側至像側依序包含平板元件260、第一透鏡210、光圈200、第二透鏡220、第三透鏡230、紅外線濾除濾光片270、以及成像面280,其中該三片式薄型成像鏡片組中具屈折力的透鏡為三片(210、220、230)。該光圈200設置在該第一透鏡210與第二透鏡220之間。</p><p>該平板元件260為玻璃材質,其設置於一被攝物O及該第一透鏡210之間,且不影響該三片式薄型成像鏡片組的焦距。</p><p>該第一透鏡210具有負屈折力,且為塑膠材質,其物側表面211近光軸290處為凹面,其像側表面212近光軸290處為凸面,且該物側表面211及像側表面212皆為非球面。</p><p>該第二透鏡220具有正屈折力,且為塑膠材質,其物側表面221近光軸290處為凸面,其像側表面222近光軸290處為凸面,且該物側表面221及像側表面222皆為非球面。</p><p>該第三透鏡230具有正屈折力,且為塑膠材質,其物側表面231近光軸290處為凸面,其像側表面232近光軸290處為凸面,且該物側表面231及像側表面232皆為非球面。</p><p>該紅外線濾除濾光片270為玻璃材質,其設置於該第三透鏡230及成像面280間且不影響該三片式薄型成像鏡片組的焦距。</p><p>再配合參照下列表3、以及表4。</p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td><b>表3</b></td></tr><tr><td> 第二實施例 </td></tr><tr><td><u>f(</u><u>焦距) =0.38 mm(公厘), Fno(光圈值) = 1.40, FOV(畫角) = 109.2 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 平板元件 </td><td> 無限 </td><td> 1.500 </td><td> 玻璃 </td><td> 1.52 </td><td> 64.2 </td><td> </td></tr><tr><td> 2 </td><td> </td><td> 無限 </td><td> 1.308 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第一透鏡 </td><td> -0.593 </td><td> (ASP) </td><td> 0.384 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> -1.10 </td></tr><tr><td> 4 </td><td> </td><td> -100.001 </td><td> (ASP) </td><td> 0.370 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 光圈 </td><td> 無限 </td><td> 0.008 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 6 </td><td> 第二透鏡 </td><td> 0.923 </td><td> (ASP) </td><td> 0.427 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> 0.74 </td></tr><tr><td> 7 </td><td> </td><td> -0.593 </td><td> (ASP) </td><td> 0.030 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 第三透鏡 </td><td> 1.341 </td><td> (ASP) </td><td> 0.247 </td><td> 塑膠 </td><td> 1.64 </td><td> 22.5 </td><td> 1.21 </td></tr><tr><td> 9 </td><td> </td><td> -1.703 </td><td> (ASP) </td><td> 0.379 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 紅外線濾 除濾光片 </td><td> 無限 </td><td> 0.210 </td><td> 玻璃 </td><td> 1.52 </td><td> 54.5 </td><td> </td></tr><tr><td> 11 </td><td> </td><td> 無限 </td><td> 無限 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 12 </td><td> 成像面 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr></tbody></table></tables></p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td><b>表 4</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 平面 </td><td> 3 </td><td> 4 </td><td> 6 </td><td> 7 </td><td> 8 </td><td> 9 </td></tr><tr><td> K: </td><td> -6.4918E+00 </td><td> -3.9992E+02 </td><td> -4.9131E+01 </td><td> 8.9612E-01 </td><td> -1.5246E+01 </td><td> -8.1551E+01 </td></tr><tr><td> A: </td><td> 2.1426E+00 </td><td> 7.9165E+00 </td><td> 4.7911E+00 </td><td> -1.2361E-01 </td><td> 1.0724E+00 </td><td> 2.2809E+00 </td></tr><tr><td> B: </td><td> -6.7444E+00 </td><td> 2.1246E+00 </td><td> -6.7622E+01 </td><td> -3.9616E+01 </td><td> -4.7639E+01 </td><td> -2.8547E+01 </td></tr><tr><td> C: </td><td> 1.4949E+01 </td><td> 2.5606E+02 </td><td> -4.2869E+02 </td><td> 2.2480E+02 </td><td> 1.2582E+02 </td><td> 1.5003E+01 </td></tr><tr><td> D: </td><td> -1.8735E+01 </td><td> -2.7263E+03 </td><td> 9.9086E+03 </td><td> 6.1749E+02 </td><td> 9.3780E+02 </td><td> 4.1861E+02 </td></tr><tr><td> E: </td><td> 8.6996E+00 </td><td> -1.4381E+04 </td><td> 8.2215E+04 </td><td> 1.0358E+02 </td><td> -4.5273E+02 </td><td> 4.3494E+03 </td></tr><tr><td> F </td><td> 5.0113E+00 </td><td> 2.3365E+05 </td><td> -1.9549E+06 </td><td> -6.2854E+04 </td><td> -7.4033E+04 </td><td> -4.8444E+04 </td></tr><tr><td> G </td><td> -5.0411E+00 </td><td> -1.9075E+05 </td><td> 6.7066E+06 </td><td> 1.9852E+05 </td><td> 2.9307E+05 </td><td> 1.1268E+05 </td></tr></tbody></table></tables></p><p>第二實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。</p><p>配合表3、以及表4可推算出下列數據:</p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td> 第二實施例 </td></tr><tr><td> f[mm] </td><td> 0.38 </td><td> f1/R2 </td><td> 0.01 </td></tr><tr><td> Fno </td><td> 1.40 </td><td> f2/R3 </td><td> 0.80 </td></tr><tr><td> FOV[deg.] </td><td> 109.20 </td><td> f2/R4 </td><td> -1.24 </td></tr><tr><td> | f/(f1*f2*f3) | </td><td> 0.39 </td><td> f3/R5 </td><td> 0.90 </td></tr><tr><td> f/f1 </td><td> -0.35 </td><td> f3/R6 </td><td> -0.71 </td></tr><tr><td> f/f2 </td><td> 0.51 </td><td> R1/R2 </td><td> 0.01 </td></tr><tr><td> f/f3 </td><td> 0.31 </td><td> R3/R4 </td><td> -1.55 </td></tr><tr><td> f/f23 </td><td> 0.74 </td><td> R5/R6 </td><td> -0.79 </td></tr><tr><td> f1/f23 </td><td> -2.13 </td><td> OTL/f </td><td> 12.84 </td></tr><tr><td> f1/R1 </td><td> 1.85 </td><td> (f1+f2+f3)/(f1*f2*f3) </td><td> -0.87 </td></tr></tbody></table></tables></p><p><第三實施例></p><p>請參照圖3A、圖3B及圖3C,其中圖3A繪示依照本發明第三實施例之三片式薄型成像鏡片組的示意圖,圖3B為圖3A的局部放大圖。圖3C由左至右依序為第三實施例的三片式薄型成像鏡片組的像面彎曲及歪曲收差曲線圖。由圖3A及圖3B可知,三片式薄型成像鏡片組由物側至像側依序包含平板元件360、第一透鏡310、光圈300、第二透鏡320、第三透鏡330、紅外線濾除濾光片370、以及成像面380,其中該三片式薄型成像鏡片組中具屈折力的透鏡為三片(310、320、330)。該光圈300設置在該第一透鏡310與第二透鏡320之間。</p><p>該平板元件360為玻璃材質,其設置於一被攝物O及該第一透鏡310之間,且不影響該三片式薄型成像鏡片組的焦距。</p><p>該第一透鏡310具有負屈折力,且為塑膠材質,其物側表面311近光軸390處為凹面,其像側表面312近光軸390處為凹面,且該物側表面311及像側表面312皆為非球面。</p><p>該第二透鏡320具有正屈折力,且為塑膠材質,其物側表面321近光軸390處為凸面,其像側表面322近光軸390處為凸面,且該物側表面321及像側表面322皆為非球面。</p><p>該第三透鏡330具有正屈折力,且為塑膠材質,其物側表面331近光軸390處為凸面,其像側表面332近光軸390處為凸面,且該物側表面331及像側表面332皆為非球面。</p><p>該紅外線濾除濾光片370為玻璃材質,其設置於該第三透鏡330及成像面380間且不影響該三片式薄型成像鏡片組的焦距。</p><p>再配合參照下列表5、以及表6。</p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td><b>表5</b></td></tr><tr><td> 第三實施例 </td></tr><tr><td><u>f(</u><u>焦距) =0.36 mm(公厘), Fno(光圈值) = 1.30, FOV(畫角) = 114.6 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 平板元件 </td><td> 無限 </td><td> 1.500 </td><td> 玻璃 </td><td> 1.52 </td><td> 64.2 </td><td> </td></tr><tr><td> 2 </td><td> </td><td> 無限 </td><td> 1.186 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第一透鏡 </td><td> -0.556 </td><td> (ASP) </td><td> 0.367 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> -0.81 </td></tr><tr><td> 4 </td><td> </td><td> 2.575 </td><td> (ASP) </td><td> 0.401 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 光圈 </td><td> 無限 </td><td> 0.001 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 6 </td><td> 第二透鏡 </td><td> 0.795 </td><td> (ASP) </td><td> 0.502 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> 0.73 </td></tr><tr><td> 7 </td><td> </td><td> -0.615 </td><td> (ASP) </td><td> 0.031 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 第三透鏡 </td><td> 1.048 </td><td> (ASP) </td><td> 0.243 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> 1.29 </td></tr><tr><td> 9 </td><td> </td><td> -1.945 </td><td> (ASP) </td><td> 0.409 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 紅外線濾 除濾光片 </td><td> 無限 </td><td> 0.210 </td><td> 玻璃 </td><td> 1.52 </td><td> 54.5 </td><td> </td></tr><tr><td> 11 </td><td> </td><td> 無限 </td><td> 無限 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 12 </td><td> 成像面 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr></tbody></table></tables></p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td><b>表 6</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 平面 </td><td> 3 </td><td> 4 </td><td> 6 </td><td> 7 </td><td> 8 </td><td> 9 </td></tr><tr><td> K: </td><td> -8.0024E+00 </td><td> -1.9774E+01 </td><td> -4.7139E+01 </td><td> 9.2121E-01 </td><td> -1.1890E+01 </td><td> -4.5548E+01 </td></tr><tr><td> A: </td><td> 2.1115E+00 </td><td> 1.0690E+01 </td><td> 5.7393E+00 </td><td> 4.5153E-01 </td><td> 1.2507E+00 </td><td> 2.5234E+00 </td></tr><tr><td> B: </td><td> -6.7769E+00 </td><td> -1.0853E+01 </td><td> -6.5651E+01 </td><td> -4.0583E+01 </td><td> -4.7072E+01 </td><td> -2.8089E+01 </td></tr><tr><td> C: </td><td> 1.4913E+01 </td><td> 2.0963E+02 </td><td> -4.8839E+02 </td><td> 2.1330E+02 </td><td> 1.2716E+02 </td><td> 1.5595E+01 </td></tr><tr><td> D: </td><td> -1.8780E+01 </td><td> -2.4878E+03 </td><td> 9.0215E+03 </td><td> 5.8070E+02 </td><td> 9.3021E+02 </td><td> 4.2480E+02 </td></tr><tr><td> E: </td><td> 8.6506E+00 </td><td> -1.0689E+04 </td><td> 7.6354E+04 </td><td> 8.6568E+01 </td><td> -5.9265E+02 </td><td> 4.3670E+03 </td></tr><tr><td> F </td><td> 5.0120E+00 </td><td> 2.4047E+05 </td><td> -1.9212E+06 </td><td> -6.1195E+04 </td><td> -7.5340E+04 </td><td> -4.8618E+04 </td></tr><tr><td> G </td><td> -4.9036E+00 </td><td> -5.1120E+05 </td><td> 8.5642E+06 </td><td> 2.1358E+05 </td><td> 2.8301E+05 </td><td> 1.1002E+05 </td></tr></tbody></table></tables></p><p>第三實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。</p><p>配合表5、以及表6可推算出下列數據:</p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td> 第三實施例 </td></tr><tr><td> f[mm] </td><td> 0.36 </td><td> f1/R2 </td><td> -0.31 </td></tr><tr><td> Fno </td><td> 1.30 </td><td> f2/R3 </td><td> 0.92 </td></tr><tr><td> FOV[deg.] </td><td> 114.60 </td><td> f2/R4 </td><td> -1.18 </td></tr><tr><td> | f/(f1*f2*f3) | </td><td> 0.48 </td><td> f3/R5 </td><td> 1.23 </td></tr><tr><td> f/f1 </td><td> -0.45 </td><td> f3/R6 </td><td> -0.66 </td></tr><tr><td> f/f2 </td><td> 0.50 </td><td> R1/R2 </td><td> -0.22 </td></tr><tr><td> f/f3 </td><td> 0.28 </td><td> R3/R4 </td><td> -1.29 </td></tr><tr><td> f/f23 </td><td> 0.68 </td><td> R5/R6 </td><td> -0.54 </td></tr><tr><td> f1/f23 </td><td> -1.52 </td><td> OTL/f </td><td> 13.35 </td></tr><tr><td> f1/R1 </td><td> 1.45 </td><td> (f1+f2+f3)/(f1*f2*f3) </td><td> -1.60 </td></tr></tbody></table></tables></p><p><第四實施例></p><p>請參照圖4A、圖4B及圖4C,其中圖4A繪示依照本發明第四實施例之三片式薄型成像鏡片組的示意圖,圖4B為圖4A的局部放大圖。圖4C由左至右依序為第四實施例的三片式薄型成像鏡片組的像面彎曲及歪曲收差曲線圖。由圖4A及圖4B可知,三片式薄型成像鏡片組由物側至像側依序包含平板元件460、第一透鏡410、光圈400、第二透鏡420、第三透鏡430、紅外線濾除濾光片470、以及成像面480,其中該三片式薄型成像鏡片組中具屈折力的透鏡為三片(410、420、430)。該光圈400設置在該第一透鏡410與第二透鏡420之間。</p><p>該平板元件460為玻璃材質,其設置於一被攝物O及該第一透鏡410之間,且不影響該三片式薄型成像鏡片組的焦距。</p><p>該第一透鏡410具有負屈折力,且為塑膠材質,其物側表面411近光軸490處為凹面,其像側表面412近光軸490處為凹面,且該物側表面411及像側表面412皆為非球面。</p><p>該第二透鏡420具有正屈折力,且為塑膠材質,其物側表面421近光軸490處為凸面,其像側表面422近光軸490處為凸面,且該物側表面421及像側表面422皆為非球面。</p><p>該第三透鏡430具有正屈折力,且為塑膠材質,其物側表面431近光軸490處為凸面,其像側表面432近光軸490處為凸面,且該物側表面431及像側表面432皆為非球面。</p><p>該紅外線濾除濾光片470為玻璃材質,其設置於該第三透鏡430及成像面480間且不影響該三片式薄型成像鏡片組的焦距。</p><p>再配合參照下列表7、以及表8。</p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td><b>表7</b></td></tr><tr><td> 第四實施例 </td></tr><tr><td><u>f(</u><u>焦距) =0.34 mm(公厘), Fno(光圈值) = 1.20, FOV(畫角) = 121.8 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 平板元件 </td><td> 無限 </td><td> 1.500 </td><td> 玻璃 </td><td> 1.52 </td><td> 64.2 </td><td> </td></tr><tr><td> 2 </td><td> </td><td> 無限 </td><td> 1.010 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第一透鏡 </td><td> -0.504 </td><td> (ASP) </td><td> 0.385 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> -0.72 </td></tr><tr><td> 4 </td><td> </td><td> 2.208 </td><td> (ASP) </td><td> 0.414 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 光圈 </td><td> 無限 </td><td> 0.017 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 6 </td><td> 第二透鏡 </td><td> 1.415 </td><td> (ASP) </td><td> 0.508 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> 0.76 </td></tr><tr><td> 7 </td><td> </td><td> -0.510 </td><td> (ASP) </td><td> 0.030 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 第三透鏡 </td><td> 60.243 </td><td> (ASP) </td><td> 0.355 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> 1.23 </td></tr><tr><td> 9 </td><td> </td><td> -0.676 </td><td> (ASP) </td><td> 0.472 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 紅外線濾 除濾光片 </td><td> 無限 </td><td> 0.210 </td><td> 玻璃 </td><td> 1.52 </td><td> 54.5 </td><td> </td></tr><tr><td> 11 </td><td> </td><td> 無限 </td><td> 無限 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 12 </td><td> 成像面 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr></tbody></table></tables></p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td><b>表 8</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 平面 </td><td> 3 </td><td> 4 </td><td> 6 </td><td> 7 </td><td> 8 </td><td> 9 </td></tr><tr><td> K: </td><td> -8.9574E+00 </td><td> -1.8655E+01 </td><td> -3.0573E+02 </td><td> -1.2575E+00 </td><td> 1.5715E+02 </td><td> -1.2220E-01 </td></tr><tr><td> A: </td><td> 1.5447E+00 </td><td> 1.4497E+01 </td><td> 2.8808E+00 </td><td> 2.9669E+00 </td><td> 4.5606E+00 </td><td> 2.2079E+00 </td></tr><tr><td> B: </td><td> -4.6133E+00 </td><td> -2.1546E+02 </td><td> -1.4255E+01 </td><td> -3.1094E+01 </td><td> -3.4642E+01 </td><td> -9.0007E+00 </td></tr><tr><td> C: </td><td> 9.5150E+00 </td><td> 3.1999E+03 </td><td> -5.6413E+02 </td><td> 5.3776E+01 </td><td> 4.2944E+01 </td><td> 1.2699E+02 </td></tr><tr><td> D: </td><td> -1.2115E+01 </td><td> -1.5598E+04 </td><td> 6.5379E+03 </td><td> -1.7586E+02 </td><td> 4.0062E+02 </td><td> -1.0281E+03 </td></tr><tr><td> E: </td><td> 8.6388E+00 </td><td> -1.3702E+05 </td><td> 5.4097E+04 </td><td> 4.6999E+03 </td><td> 1.8345E+03 </td><td> 4.3686E+03 </td></tr><tr><td> F </td><td> -2.6923E+00 </td><td> 1.8193E+06 </td><td> -1.5332E+06 </td><td> -3.1483E+04 </td><td> -3.1188E+04 </td><td> -1.0830E+04 </td></tr><tr><td> G </td><td> 7.1730E-02 </td><td> -5.3407E+06 </td><td> 7.6274E+06 </td><td> 5.9102E+04 </td><td> 7.4691E+04 </td><td> 1.2056E+04 </td></tr></tbody></table></tables></p><p>第四實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。</p><p>配合表7、以及表8可推算出下列數據:</p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td> 第四實施例 </td></tr><tr><td> f[mm] </td><td> 0.34 </td><td> f1/R2 </td><td> -0.33 </td></tr><tr><td> Fno </td><td> 1.20 </td><td> f2/R3 </td><td> 0.54 </td></tr><tr><td> FOV[deg.] </td><td> 121.80 </td><td> f2/R4 </td><td> -1.49 </td></tr><tr><td> | f/(f1*f2*f3) | </td><td> 0.51 </td><td> f3/R5 </td><td> 0.02 </td></tr><tr><td> f/f1 </td><td> -0.48 </td><td> f3/R6 </td><td> -1.82 </td></tr><tr><td> f/f2 </td><td> 0.45 </td><td> R1/R2 </td><td> -0.23 </td></tr><tr><td> f/f3 </td><td> 0.28 </td><td> R3/R4 </td><td> -2.78 </td></tr><tr><td> f/f23 </td><td> 0.60 </td><td> R5/R6 </td><td> -89.08 </td></tr><tr><td> f1/f23 </td><td> -1.26 </td><td> OTL/f </td><td> 14.38 </td></tr><tr><td> f1/R1 </td><td> 1.42 </td><td> (f1+f2+f3)/(f1*f2*f3) </td><td> -1.90 </td></tr></tbody></table></tables></p><p><第五實施例></p><p>請參照圖5A、圖5B及圖5C,其中圖5A繪示依照本發明第五實施例之三片式薄型成像鏡片組的示意圖,圖5B為圖5A的局部放大圖。圖5C由左至右依序為第五實施例的三片式薄型成像鏡片組的像面彎曲及歪曲收差曲線圖。由圖5A及圖5B可知,三片式薄型成像鏡片組由物側至像側依序包含平板元件560、第一透鏡510、光圈500、第二透鏡520、第三透鏡530、紅外線濾除濾光片570、以及成像面580,其中該三片式薄型成像鏡片組中具屈折力的透鏡為三片(510、520、530)。該光圈500設置在該第一透鏡510與第二透鏡520之間。</p><p>該平板元件560為玻璃材質,其設置於一被攝物O及該第一透鏡510之間,且不影響該三片式薄型成像鏡片組的焦距。</p><p>該第一透鏡510具有負屈折力,且為塑膠材質,其物側表面511近光軸590處為凹面,其像側表面512近光軸590處為凸面,且該物側表面511及像側表面512皆為非球面。</p><p>該第二透鏡520具有正屈折力,且為塑膠材質,其物側表面521近光軸590處為凸面,其像側表面522近光軸590處為凸面,且該物側表面521及像側表面522皆為非球面。</p><p>該第三透鏡530具有正屈折力,且為塑膠材質,其物側表面531近光軸590處為凸面,其像側表面532近光軸590處為凸面,且該物側表面531及像側表面532皆為非球面。</p><p>該紅外線濾除濾光片570為玻璃材質,其設置於該第三透鏡530及成像面580間且不影響該三片式薄型成像鏡片組的焦距。</p><p>再配合參照下列表9、以及表10。</p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td><b>表9</b></td></tr><tr><td> 第五實施例 </td></tr><tr><td><u>f(</u><u>焦距) =0.39 mm(公厘), Fno(光圈值) = 1.40, FOV(畫角) = 108.3 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 平板元件 </td><td> 無限 </td><td> 1.500 </td><td> 玻璃 </td><td> 1.52 </td><td> 64.2 </td><td> </td></tr><tr><td> 2 </td><td> </td><td> 無限 </td><td> 1.565 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第一透鏡 </td><td> -0.664 </td><td> (ASP) </td><td> 0.409 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> -1.38 </td></tr><tr><td> 4 </td><td> </td><td> -6.569 </td><td> (ASP) </td><td> 0.391 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 光圈 </td><td> 無限 </td><td> 0.016 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 6 </td><td> 第二透鏡 </td><td> 0.835 </td><td> (ASP) </td><td> 0.364 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> 0.71 </td></tr><tr><td> 7 </td><td> </td><td> -0.621 </td><td> (ASP) </td><td> 0.034 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 第三透鏡 </td><td> 2.073 </td><td> (ASP) </td><td> 0.240 </td><td> 塑膠 </td><td> 1.64 </td><td> 22.5 </td><td> 1.25 </td></tr><tr><td> 9 </td><td> </td><td> -1.274 </td><td> (ASP) </td><td> 0.392 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 紅外線濾 除濾光片 </td><td> 無限 </td><td> 0.210 </td><td> 玻璃 </td><td> 1.52 </td><td> 54.5 </td><td> </td></tr><tr><td> 11 </td><td> </td><td> 無限 </td><td> 無限 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 12 </td><td> 成像面 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr></tbody></table></tables></p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td><b>表 10</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 平面 </td><td> 3 </td><td> 4 </td><td> 6 </td><td> 7 </td><td> 8 </td><td> 9 </td></tr><tr><td> K: </td><td> -5.7238E+00 </td><td> -4.0067E+02 </td><td> -5.2904E+01 </td><td> 8.2614E-01 </td><td> -1.0481E+02 </td><td> -4.2865E+01 </td></tr><tr><td> A: </td><td> 2.0697E+00 </td><td> 5.3198E+00 </td><td> 5.3103E+00 </td><td> 3.6295E-02 </td><td> 8.3613E-01 </td><td> 1.8141E+00 </td></tr><tr><td> B: </td><td> -6.5342E+00 </td><td> 4.9908E+00 </td><td> -6.2975E+01 </td><td> -3.9570E+01 </td><td> -4.8414E+01 </td><td> -2.8553E+01 </td></tr><tr><td> C: </td><td> 1.4819E+01 </td><td> 2.3533E+02 </td><td> -4.3756E+02 </td><td> 2.3037E+02 </td><td> 1.4503E+02 </td><td> 1.8849E+01 </td></tr><tr><td> D: </td><td> -1.8750E+01 </td><td> -2.6669E+03 </td><td> 9.9371E+03 </td><td> 7.9640E+02 </td><td> 1.1648E+03 </td><td> 5.0107E+02 </td></tr><tr><td> E: </td><td> 8.6757E+00 </td><td> -1.0270E+04 </td><td> 8.0681E+04 </td><td> 8.9252E+02 </td><td> -2.4243E+02 </td><td> 4.0494E+03 </td></tr><tr><td> F </td><td> 5.0286E+00 </td><td> 2.4881E+05 </td><td> -1.9089E+06 </td><td> -5.9985E+04 </td><td> -7.7409E+04 </td><td> -4.8657E+04 </td></tr><tr><td> G </td><td> -4.9380E+00 </td><td> -5.7851E+05 </td><td> 7.8503E+06 </td><td> 1.7726E+05 </td><td> 2.7741E+05 </td><td> 1.1330E+05 </td></tr></tbody></table></tables></p><p>第五實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。</p><p>配合表9、以及表10可推算出下列數據:</p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td> 第五實施例 </td></tr><tr><td> f[mm] </td><td> 0.39 </td><td> f1/R2 </td><td> 0.21 </td></tr><tr><td> Fno </td><td> 1.40 </td><td> f2/R3 </td><td> 0.85 </td></tr><tr><td> FOV[deg.] </td><td> 108.30 </td><td> f2/R4 </td><td> -1.15 </td></tr><tr><td> | f/(f1*f2*f3) | </td><td> 0.32 </td><td> f3/R5 </td><td> 0.60 </td></tr><tr><td> f/f1 </td><td> -0.28 </td><td> f3/R6 </td><td> -0.98 </td></tr><tr><td> f/f2 </td><td> 0.55 </td><td> R1/R2 </td><td> 0.10 </td></tr><tr><td> f/f3 </td><td> 0.31 </td><td> R3/R4 </td><td> -1.34 </td></tr><tr><td> f/f23 </td><td> 0.76 </td><td> R5/R6 </td><td> -1.63 </td></tr><tr><td> f1/f23 </td><td> -2.68 </td><td> OTL/f </td><td> 13.08 </td></tr><tr><td> f1/R1 </td><td> 2.08 </td><td> (f1+f2+f3)/(f1*f2*f3) </td><td> -0.47 </td></tr></tbody></table></tables></p><p><第六實施例></p><p>請參照圖6A、圖6B及圖6C,其中圖6A繪示依照本發明第六實施例之三片式薄型成像鏡片組的示意圖,圖6B為圖6A的局部放大圖。圖6C由左至右依序為第六實施例的三片式薄型成像鏡片組的像面彎曲及歪曲收差曲線圖。由圖6A及圖6B可知,三片式薄型成像鏡片組由物側至像側依序包含平板元件660、第一透鏡610、光圈600、第二透鏡620、第三透鏡630、紅外線濾除濾光片670、以及成像面680,其中該三片式薄型成像鏡片組中具屈折力的透鏡為三片(610、620、630)。該光圈600設置在該第一透鏡610與第二透鏡620之間。</p><p>該平板元件660為玻璃材質,其設置於一被攝物O及該第一透鏡610之間,且不影響該三片式薄型成像鏡片組的焦距。</p><p>該第一透鏡610具有負屈折力,且為塑膠材質,其物側表面611近光軸690處為凹面,其像側表面612近光軸690處為凹面,且該物側表面611及像側表面612皆為非球面。</p><p>該第二透鏡620具有正屈折力,且為塑膠材質,其物側表面621近光軸690處為凸面,其像側表面622近光軸690處為凸面,且該物側表面621及像側表面622皆為非球面。</p><p>該第三透鏡630具有正屈折力,且為塑膠材質,其物側表面631近光軸690處為凹面,其像側表面632近光軸690處為凸面,且該物側表面631及像側表面632皆為非球面。</p><p>該紅外線濾除濾光片670為玻璃材質,其設置於該第三透鏡630及成像面680間且不影響該三片式薄型成像鏡片組的焦距。</p><p>再配合參照下列表11、以及表12。</p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td><b>表11</b></td></tr><tr><td> 第六實施例 </td></tr><tr><td><u>f(</u><u>焦距) =0.41 mm(公厘), Fno(光圈值) = 1.50, FOV(畫角) = 108.4 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 平板元件 </td><td> 無限 </td><td> 1.500 </td><td> 玻璃 </td><td> 1.52 </td><td> 64.2 </td><td> </td></tr><tr><td> 2 </td><td> </td><td> 無限 </td><td> 1.335 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第一透鏡 </td><td> -0.853 </td><td> (ASP) </td><td> 0.376 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> -1.02 </td></tr><tr><td> 4 </td><td> </td><td> 1.820 </td><td> (ASP) </td><td> 0.377 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 光圈 </td><td> 無限 </td><td> 0.012 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 6 </td><td> 第二透鏡 </td><td> 0.971 </td><td> (ASP) </td><td> 0.294 </td><td> 塑膠 </td><td> 1.64 </td><td> 22.5 </td><td> 0.71 </td></tr><tr><td> 7 </td><td> </td><td> -0.756 </td><td> (ASP) </td><td> 0.030 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 第三透鏡 </td><td> -3.590 </td><td> (ASP) </td><td> 0.247 </td><td> 塑膠 </td><td> 1.64 </td><td> 22.5 </td><td> 1.12 </td></tr><tr><td> 9 </td><td> </td><td> -0.614 </td><td> (ASP) </td><td> 0.446 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 紅外線濾 除濾光片 </td><td> 無限 </td><td> 0.210 </td><td> 玻璃 </td><td> 1.52 </td><td> 54.5 </td><td> </td></tr><tr><td> 11 </td><td> </td><td> 無限 </td><td> 無限 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 12 </td><td> 成像面 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr></tbody></table></tables></p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td><b>表 12</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 平面 </td><td> 3 </td><td> 4 </td><td> 6 </td><td> 7 </td><td> 8 </td><td> 9 </td></tr><tr><td> K: </td><td> -2.2346E+00 </td><td> -4.8511E+02 </td><td> -1.1408E+02 </td><td> 2.4188E-01 </td><td> -1.9012E+01 </td><td> -2.1609E+00 </td></tr><tr><td> A: </td><td> 2.9713E+00 </td><td> 5.3750E+00 </td><td> 7.4884E+00 </td><td> 1.5791E+00 </td><td> 2.3434E+00 </td><td> 2.3264E+00 </td></tr><tr><td> B: </td><td> -1.1069E+01 </td><td> 5.7163E+00 </td><td> -1.0708E+02 </td><td> -7.1289E+01 </td><td> -5.7222E+01 </td><td> -2.7097E+01 </td></tr><tr><td> C: </td><td> 3.1272E+01 </td><td> 5.5173E+02 </td><td> -9.3982E+02 </td><td> 5.5065E+02 </td><td> 3.4089E+02 </td><td> 1.1892E+02 </td></tr><tr><td> D: </td><td> -5.0186E+01 </td><td> -6.4911E+03 </td><td> 2.5277E+04 </td><td> 2.3419E+03 </td><td> 2.9363E+03 </td><td> 1.2778E+03 </td></tr><tr><td> E: </td><td> 2.8950E+01 </td><td> -3.6649E+04 </td><td> 2.6515E+05 </td><td> -3.3832E+03 </td><td> 2.4960E+03 </td><td> 1.0108E+04 </td></tr><tr><td> F </td><td> 2.0721E+01 </td><td> 9.3083E+05 </td><td> -7.3370E+06 </td><td> -3.0990E+05 </td><td> -3.4077E+05 </td><td> -2.1811E+05 </td></tr><tr><td> G </td><td> -2.5192E+01 </td><td> -3.5967E+06 </td><td> 3.4937E+07 </td><td> 9.6920E+05 </td><td> 1.1034E+06 </td><td> 6.7718E+05 </td></tr></tbody></table></tables></p><p>第六實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。</p><p>配合表11、以及表12可推算出下列數據:</p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td> 第六實施例 </td></tr><tr><td> f[mm] </td><td> 0.41 </td><td> f1/R2 </td><td> -0.56 </td></tr><tr><td> Fno </td><td> 1.50 </td><td> f2/R3 </td><td> 0.73 </td></tr><tr><td> FOV[deg.] </td><td> 108.40 </td><td> f2/R4 </td><td> -0.94 </td></tr><tr><td> | f/(f1*f2*f3) | </td><td> 0.51 </td><td> f3/R5 </td><td> -0.31 </td></tr><tr><td> f/f1 </td><td> -0.40 </td><td> f3/R6 </td><td> -1.82 </td></tr><tr><td> f/f2 </td><td> 0.57 </td><td> R1/R2 </td><td> -0.47 </td></tr><tr><td> f/f3 </td><td> 0.36 </td><td> R3/R4 </td><td> -1.28 </td></tr><tr><td> f/f23 </td><td> 0.79 </td><td> R5/R6 </td><td> 5.85 </td></tr><tr><td> f1/f23 </td><td> -1.97 </td><td> OTL/f </td><td> 11.88 </td></tr><tr><td> f1/R1 </td><td> 1.19 </td><td> (f1+f2+f3)/(f1*f2*f3) </td><td> -1.01 </td></tr></tbody></table></tables></p><p><第七實施例></p><p>請參照圖7A、圖7B及圖7C,其中圖7A繪示依照本發明第七實施例之三片式薄型成像鏡片組的示意圖,圖7B為圖7A的局部放大圖。圖7C由左至右依序為第七實施例的三片式薄型成像鏡片組的像面彎曲及歪曲收差曲線圖。由圖7A及圖7B可知,三片式薄型成像鏡片組由物側至像側依序包含平板元件760、第一透鏡710、光圈700、第二透鏡720、第三透鏡730、紅外線濾除濾光片770、以及成像面780,其中該三片式薄型成像鏡片組中具屈折力的透鏡為三片(710、720、730)。該光圈700設置在該第一透鏡710與第二透鏡720之間。</p><p>該平板元件760為玻璃材質,其設置於一被攝物O及該第一透鏡710之間,且不影響該三片式薄型成像鏡片組的焦距。</p><p>該第一透鏡710具有負屈折力,且為塑膠材質,其物側表面711近光軸790處為凹面,其像側表面712近光軸790處為凹面,且該物側表面711及像側表面712皆為非球面。</p><p>該第二透鏡720具有正屈折力,且為塑膠材質,其物側表面721近光軸790處為凸面,其像側表面722近光軸790處為凸面,且該物側表面721及像側表面722皆為非球面。</p><p>該第三透鏡730具有正屈折力,且為塑膠材質,其物側表面731近光軸790處為凸面,其像側表面732近光軸790處為凸面,且該物側表面731及像側表面732皆為非球面。</p><p>該紅外線濾除濾光片770為玻璃材質,其設置於該第三透鏡730及成像面780間且不影響該三片式薄型成像鏡片組的焦距。</p><p>再配合參照下列表13、以及表14。</p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td><b>表13</b></td></tr><tr><td> 第七實施例 </td></tr><tr><td><u>f(</u><u>焦距) =0.36 mm(公厘), Fno(光圈值) = 1.20, FOV(畫角) = 129.4 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 平板元件 </td><td> 無限 </td><td> 1.500 </td><td> 玻璃 </td><td> 1.52 </td><td> 64.2 </td><td> </td></tr><tr><td> 2 </td><td> </td><td> 無限 </td><td> 1.028 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第一透鏡 </td><td> -0.489 </td><td> (ASP) </td><td> 0.265 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> -0.71 </td></tr><tr><td> 4 </td><td> </td><td> 2.118 </td><td> (ASP) </td><td> 0.498 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 光圈 </td><td> 無限 </td><td> -0.014 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 6 </td><td> 第二透鏡 </td><td> 0.887 </td><td> (ASP) </td><td> 0.414 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> 1.11 </td></tr><tr><td> 7 </td><td> </td><td> -1.573 </td><td> (ASP) </td><td> 0.034 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 第三透鏡 </td><td> 1.496 </td><td> (ASP) </td><td> 0.367 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> 0.78 </td></tr><tr><td> 9 </td><td> </td><td> -0.544 </td><td> (ASP) </td><td> 0.504 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 紅外線濾 除濾光片 </td><td> 無限 </td><td> 0.210 </td><td> 玻璃 </td><td> 1.52 </td><td> 54.5 </td><td> </td></tr><tr><td> 11 </td><td> </td><td> 無限 </td><td> 無限 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 12 </td><td> 成像面 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr></tbody></table></tables></p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td><b>表 14</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 平面 </td><td> 3 </td><td> 4 </td><td> 6 </td><td> 7 </td><td> 8 </td><td> 9 </td></tr><tr><td> K: </td><td> -1.0288E+01 </td><td> 2.9716E+00 </td><td> -3.9551E+01 </td><td> 8.7948E+00 </td><td> -1.1155E+02 </td><td> 2.5315E-02 </td></tr><tr><td> A: </td><td> 2.2526E+00 </td><td> 1.0575E+01 </td><td> 2.4959E+00 </td><td> 1.4729E-01 </td><td> 2.7440E+00 </td><td> 6.0590E-01 </td></tr><tr><td> B: </td><td> -7.2346E+00 </td><td> -8.1161E+01 </td><td> 1.2231E+01 </td><td> -5.7392E+00 </td><td> -3.3256E+01 </td><td> 2.4679E+01 </td></tr><tr><td> C: </td><td> 1.4705E+01 </td><td> 1.1763E+03 </td><td> -7.4918E+02 </td><td> 4.7381E+00 </td><td> 1.0577E+02 </td><td> -1.1530E+02 </td></tr><tr><td> D: </td><td> -1.6762E+01 </td><td> -7.4568E+03 </td><td> 3.8984E+03 </td><td> -6.0267E+02 </td><td> 3.2770E+02 </td><td> -2.8869E+02 </td></tr><tr><td> E: </td><td> 8.4455E+00 </td><td> -2.1681E+04 </td><td> 9.6229E+04 </td><td> 4.3158E+03 </td><td> 1.4087E+03 </td><td> 6.3091E+03 </td></tr><tr><td> F </td><td> 7.5050E-01 </td><td> 4.7807E+05 </td><td> -1.4250E+06 </td><td> -1.5818E+04 </td><td> -5.3255E+04 </td><td> -2.8925E+04 </td></tr><tr><td> G </td><td> -1.7802E+00 </td><td> -1.4468E+06 </td><td> 5.4193E+06 </td><td> 2.5578E+04 </td><td> 1.6613E+05 </td><td> 4.5475E+04 </td></tr></tbody></table></tables></p><p>第七實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。</p><p>配合表13、以及表14可推算出下列數據:</p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td> 第七實施例 </td></tr><tr><td> f[mm] </td><td> 0.36 </td><td> f1/R2 </td><td> -0.33 </td></tr><tr><td> Fno </td><td> 1.20 </td><td> f2/R3 </td><td> 1.25 </td></tr><tr><td> FOV[deg.] </td><td> 129.40 </td><td> f2/R4 </td><td> -0.70 </td></tr><tr><td> | f/(f1*f2*f3) | </td><td> 0.59 </td><td> f3/R5 </td><td> 0.52 </td></tr><tr><td> f/f1 </td><td> -0.51 </td><td> f3/R6 </td><td> -1.44 </td></tr><tr><td> f/f2 </td><td> 0.32 </td><td> R1/R2 </td><td> -0.23 </td></tr><tr><td> f/f3 </td><td> 0.46 </td><td> R3/R4 </td><td> -0.56 </td></tr><tr><td> f/f23 </td><td> 0.62 </td><td> R5/R6 </td><td> -2.75 </td></tr><tr><td> f1/f23 </td><td> -1.21 </td><td> OTL/f </td><td> 13.39 </td></tr><tr><td> f1/R1 </td><td> 1.44 </td><td> (f1+f2+f3)/(f1*f2*f3) </td><td> -1.94 </td></tr></tbody></table></tables></p><p><第八實施例></p><p>請參照圖8A、圖8B及圖8C,其中圖8A繪示依照本發明第八實施例之三片式薄型成像鏡片組的示意圖,圖8B為圖8A的局部放大圖。圖8C由左至右依序為第八實施例的三片式薄型成像鏡片組的像面彎曲及歪曲收差曲線圖。由圖8A及圖8B可知,三片式薄型成像鏡片組由物側至像側依序包含平板元件860、第一透鏡810、光圈800、第二透鏡820、第三透鏡830、紅外線濾除濾光片870、以及成像面880,其中該三片式薄型成像鏡片組中具屈折力的透鏡為三片(810、820、830)。該光圈800設置在該第一透鏡810與第二透鏡820之間。</p><p>該平板元件860為玻璃材質,其設置於一被攝物O及該第一透鏡810之間,且不影響該三片式薄型成像鏡片組的焦距。</p><p>該第一透鏡810具有負屈折力,且為塑膠材質,其物側表面811近光軸890處為凹面,其像側表面812近光軸890處為凹面,且該物側表面811及像側表面812皆為非球面。</p><p>該第二透鏡820具有正屈折力,且為塑膠材質,其物側表面821近光軸890處為凸面,其像側表面822近光軸890處為凸面,且該物側表面821及像側表面822皆為非球面。</p><p>該第三透鏡830具有正屈折力,且為塑膠材質,其物側表面831近光軸890處為凸面,其像側表面832近光軸890處為凸面,且該物側表面831及像側表面832皆為非球面。</p><p>該紅外線濾除濾光片870為玻璃材質,其設置於該第三透鏡830及成像面880間且不影響該三片式薄型成像鏡片組的焦距。</p><p>再配合參照下列表15、以及表16。</p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td><b>表15</b></td></tr><tr><td> 第八實施例 </td></tr><tr><td><u>f(</u><u>焦距) =0.39 mm(公厘), Fno(光圈值) = 1.60, FOV(畫角) = 111.0 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> 平板元件 </td><td> 無限 </td><td> 1.500 </td><td> 玻璃 </td><td> 1.52 </td><td> 64.2 </td><td> </td></tr><tr><td> 2 </td><td> </td><td> 無限 </td><td> 1.192 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第一透鏡 </td><td> -0.862 </td><td> (ASP) </td><td> 0.267 </td><td> 塑膠 </td><td> 1.64 </td><td> 22.5 </td><td> -0.92 </td></tr><tr><td> 4 </td><td> </td><td> 2.251 </td><td> (ASP) </td><td> 0.413 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 光圈 </td><td> 無限 </td><td> 0.023 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 6 </td><td> 第二透鏡 </td><td> 1.124 </td><td> (ASP) </td><td> 0.391 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> 1.06 </td></tr><tr><td> 7 </td><td> </td><td> -1.060 </td><td> (ASP) </td><td> 0.115 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 8 </td><td> 第三透鏡 </td><td> 0.353 </td><td> (ASP) </td><td> 0.264 </td><td> 塑膠 </td><td> 1.54 </td><td> 56 </td><td> 0.81 </td></tr><tr><td> 9 </td><td> </td><td> 1.280 </td><td> (ASP) </td><td> 0.337 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 10 </td><td> 紅外線濾 除濾光片 </td><td> 無限 </td><td> 0.145 </td><td> 玻璃 </td><td> 1.52 </td><td> 54.5 </td><td> </td></tr><tr><td> 11 </td><td> </td><td> 無限 </td><td> 無限 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 12 </td><td> 成像面 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr></tbody></table></tables></p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td><b>表 16</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 平面 </td><td> 3 </td><td> 4 </td><td> 6 </td><td> 7 </td><td> 8 </td><td> 9 </td></tr><tr><td> K: </td><td> -1.0334E+01 </td><td> -3.2949E+02 </td><td> -6.5202E+01 </td><td> 2.7538E+00 </td><td> -3.9237E-01 </td><td> 4.8950E+00 </td></tr><tr><td> A: </td><td> 2.3249E+00 </td><td> 6.4379E+00 </td><td> -3.1459E-01 </td><td> -1.0773E+01 </td><td> -9.2564E+00 </td><td> 3.8193E+00 </td></tr><tr><td> B: </td><td> -5.4793E+00 </td><td> -2.9503E+00 </td><td> 7.7474E+00 </td><td> 6.4661E+01 </td><td> 8.2212E+01 </td><td> -4.3656E+01 </td></tr><tr><td> C: </td><td> 8.8566E+00 </td><td> 4.9837E+01 </td><td> -4.4062E+02 </td><td> -1.0320E+02 </td><td> -1.0312E+03 </td><td> 9.7123E+01 </td></tr><tr><td> D: </td><td> -5.9101E+00 </td><td> 4.4457E+02 </td><td> 9.0463E+03 </td><td> -1.4259E+03 </td><td> 5.8260E+03 </td><td> -7.6089E+01 </td></tr><tr><td> E: </td><td> 2.3959E-03 </td><td> -1.7922E+03 </td><td> -2.8651E+05 </td><td> 4.1769E+03 </td><td> -1.5877E+04 </td><td> 1.0505E+02 </td></tr><tr><td> F </td><td> 7.0452E-01 </td><td> -2.6077E+03 </td><td> 3.0193E+06 </td><td> -1.9325E+03 </td><td> 8.8566E+03 </td><td> -6.6612E+02 </td></tr><tr><td> G </td><td> 9.6205E-03 </td><td> -5.9073E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr></tbody></table></tables></p><p>第八實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。</p><p>配合表15、以及表16可推算出下列數據:</p><p><tables><table border="1" bordercolor="#000000" width="85%"><tbody><tr><td> 第八實施例 </td></tr><tr><td> f[mm] </td><td> 0.39 </td><td> f1/R2 </td><td> -0.41 </td></tr><tr><td> Fno </td><td> 1.60 </td><td> f2/R3 </td><td> 0.95 </td></tr><tr><td> FOV[deg.] </td><td> 111.00 </td><td> f2/R4 </td><td> -1.00 </td></tr><tr><td> | f/(f1*f2*f3) | </td><td> 0.49 </td><td> f3/R5 </td><td> 2.29 </td></tr><tr><td> f/f1 </td><td> -0.42 </td><td> f3/R6 </td><td> 0.63 </td></tr><tr><td> f/f2 </td><td> 0.36 </td><td> R1/R2 </td><td> -0.38 </td></tr><tr><td> f/f3 </td><td> 0.48 </td><td> R3/R4 </td><td> -1.06 </td></tr><tr><td> f/f23 </td><td> 0.76 </td><td> R5/R6 </td><td> 0.28 </td></tr><tr><td> f1/f23 </td><td> -1.81 </td><td> OTL/f </td><td> 12.02 </td></tr><tr><td> f1/R1 </td><td> 1.07 </td><td> (f1+f2+f3)/(f1*f2*f3) </td><td> -1.20 </td></tr></tbody></table></tables></p><p>本發明提供的三片式薄型成像鏡片組,透鏡的材質可為塑膠或玻璃,當透鏡材質為塑膠,可以有效降低生產成本,另當透鏡的材質為玻璃,則可以增加三片式薄型成像鏡片組屈折力配置的自由度。此外,三片式薄型成像鏡片組中透鏡的物側表面及像側表面可為非球面,非球面可以容易製作成球面以外的形狀,獲得較多的控制變數,用以消減像差,進而縮減透鏡使用的數目,因此可以有效降低本發明三片式薄型成像鏡片組的總長度。</p><p>本發明提供的三片式薄型成像鏡片組中,就以具有屈折力的透鏡而言,若透鏡表面係為凸面且未界定該凸面位置時,則表示該透鏡表面於近光軸處為凸面;若透鏡表面係為凹面且未界定該凹面位置時,則表示該透鏡表面於近光軸處為凹面。</p><p>綜上所述,上述各實施例及圖式僅為本發明的較佳實施例而已,當不能以之限定本發明實施之範圍,即大凡依本發明申請專利範圍所作的均等變化與修飾,皆應屬本發明專利涵蓋的範圍內。</p></mode-for-invention><description-of-drawings><description-of-element><p>100、200、300、400、500、600、700、800‧‧‧光圈</p><p>110、210、310、410、510、610、710、810‧‧‧第一透鏡</p><p>111、211、311、411、511、611、711、811‧‧‧物側表面</p><p>112、212、312、412、512、612、712、812‧‧‧像側表面</p><p>120、220、320、420、520、620、720、820‧‧‧第二透鏡</p><p>121、221、321、421、521、621、721、821‧‧‧物側表面</p><p>122、222、322、422、522、622、722、822‧‧‧像側表面</p><p>130、230、330、430、530、630、730、830‧‧‧第三透鏡</p><p>131、231、331、431、531、631、731、831‧‧‧物側表面</p><p>132、232、332、432、532、632、732、832‧‧‧像側表面</p><p>160、260、360、460、560、660、760、860‧‧‧平板元件</p><p>170、270、370、470、570、670、770、870‧‧‧紅外線濾除濾光片</p><p>180、280、380、480、580、680、780、880‧‧‧成像面</p><p>190、290、390、490、590、690、790、890‧‧‧光軸</p><p>f‧‧‧三片式薄型成像鏡片組的焦距</p><p>Fno‧‧‧三片式薄型成像鏡片組的光圈值</p><p>FOV‧‧‧三片式薄型成像鏡片組中最大視場角</p><p>f1‧‧‧第一透鏡的焦距</p><p>f2‧‧‧第二透鏡的焦距</p><p>f3‧‧‧第三透鏡的焦距</p><p>R1‧‧‧第一透鏡物側表面的曲率半徑</p><p>R2‧‧‧第一透鏡像側表面的曲率半徑</p><p>R3‧‧‧第二透鏡物側表面的曲率半徑</p><p>R4‧‧‧第二透鏡像側表面的曲率半徑</p><p>R5‧‧‧第三透鏡物側表面的曲率半徑</p><p>R6‧‧‧第三透鏡像側表面的曲率半徑</p><p>OTL‧‧‧被攝物至成像面於光軸上的距離</p></description-of-element><p>圖1A係本發明第一實施例之三片式薄型成像鏡片組的示意圖。 圖1B係圖1A的局部放大圖。 圖1C由左至右依序為第一實施例的三片式薄型成像鏡片組的像面彎曲及歪曲收差曲線圖。 圖2A係本發明第二實施例之三片式薄型成像鏡片組的示意圖。 圖2B係圖2A的局部放大圖。 圖2C由左至右依序為第二實施例的三片式薄型成像鏡片組的像面彎曲及歪曲收差曲線圖。 圖3A係本發明第三實施例之三片式薄型成像鏡片組的示意圖。 圖3B係圖3A的局部放大圖。 圖3C由左至右依序為第三實施例的三片式薄型成像鏡片組的像面彎曲及歪曲收差曲線圖。 圖4A係本發明第四實施例之三片式薄型成像鏡片組的示意圖。 圖4B係圖4A的局部放大圖。 圖4C由左至右依序為第四實施例的三片式薄型成像鏡片組的像面彎曲及歪曲收差曲線圖。 圖5A係本發明第五實施例之三片式薄型成像鏡片組的示意圖。 圖5B係圖5A的局部放大圖。 圖5C由左至右依序為第五實施例的三片式薄型成像鏡片組的像面彎曲及歪曲收差曲線圖。 圖6A係本發明第六實施例之三片式薄型成像鏡片組的示意圖。 圖6B係圖6A的局部放大圖。 圖6C由左至右依序為第六實施例的三片式薄型成像鏡片組的像面彎曲及歪曲收差曲線圖。 圖7A係本發明第七實施例之三片式薄型成像鏡片組的示意圖。 圖7B係圖7A的局部放大圖。 圖7C由左至右依序為第七實施例的三片式薄型成像鏡片組的像面彎曲及歪曲收差曲線圖。 圖8A係本發明第八實施例之三片式薄型成像鏡片組的示意圖。 圖8B係圖8A的局部放大圖。 圖8C由左至右依序為第八實施例的三片式薄型成像鏡片組的像面彎曲及歪曲收差曲線圖。</p></description-of-drawings><bio-deposit /><sequence-list-text /><title lang="zh">Three-piece thin imaging lens set </title> <title lang="en">THREE-PIECE COMPACT OPTICAL LENS SYSTEM </title> <technical-field> <p> The present invention relates to a lens group, and more particularly to a three-piece thin imaging lens set for use in an electronic product. </p> </technical-field> <background-art> <p>The Biometric system based on the unique biometrics of each organism is unique, universal, permanent, measurable, convenient, receptive, and non-deceptive. Therefore, it is often used in existing mobile devices currently on the market, and can even be used in future electronic devices. However, the biometric identification system currently used in mobile devices mostly adopts the principle of capacitance, which can reduce the volume required for the biometric identification system, but the circuit structure is too complicated, so that the manufacturing cost is too high, and the relative product unit price is also high. </p> <p>Although there are traditional biometric systems that use optical imaging principles, such as fingerprint recognition and vein identification, traditional biometric systems have problems of excessive volume, making electronic devices equipped with biometric systems less prone to miniaturization. Not easy to carry. </p> <p> In view of this, how to provide a thin imaging lens set can be used as a biometric system and can be mounted on an electronic device, so that the electronic device can be miniaturized for carrying, which is a technical bottleneck that is currently urgently overcome. </p> </background-art> <disclosure> <p>The object of the present invention is to provide a three-piece thin imaging lens set, in particular to a distance that helps reduce the distance between the subject and the three-piece thin imaging lens set, and can effectively reduce the volume and maintain the miniaturization thereof. Sheet type thin imaging lens set. </p> <p> Another object of the present invention is to provide a three-piece thin imaging lens set, especially an effective collection of large angle light, and a three-piece thin imaging lens group to receive a wider range of images in a very short object distance. A three-piece thin imaging lens set that achieves identification. </p> <p> In order to achieve the above object, a three-piece thin imaging lens set according to the present invention comprises, from the object side to the image side, a plate member, which is made of glass; and a first lens, which has a negative refractive power. The object side surface is concave at the near optical axis, and at least one surface of the object side surface and the image side surface is aspherical; an aperture; a second lens having a positive refractive power, and the object side surface is convex at the near optical axis The image side surface has a convex surface at a near optical axis, and at least one surface of the object side surface and the image side surface is aspherical; and a third lens has a positive refractive power, and at least one surface of the object side surface and the image side surface is Aspherical; </p> <p> Among the three-piece thin imaging lens group, there are three lenses with refractive power, and the maximum angle of view of the three-piece thin imaging lens group is FOV, and one object to an imaging surface on the optical axis The distance is OTL, the overall focal length of the three-piece thin imaging lens group is f, the focal length of the first lens is f1, the focal length of the second lens is f2, the focal length of the third lens is f3, and the following conditions are met. : 90 degrees < FOV < 140 degrees; 2 mm < OTL < 6 mm; 0.2 < | f / (f1 × f2 × f3) | < 0.7. </p> <p> Preferably, wherein the three-piece thin imaging lens group has an overall focal length of f, the focal length of the first lens is f1, and the following condition is satisfied: -0.7 < f/f1 < -0.1. Thereby, the refractive power configuration of the three-piece thin imaging lens group can be balanced to effectively correct the aberration of the three-piece thin imaging lens group while reducing the sensitivity of the three-piece thin imaging lens group. </p> <p> Preferably, wherein the three-piece thin imaging lens group has an overall focal length of f, the second lens has a focal length of f2, and satisfies the following condition: 0.1 < f/f2 < 0.75. Thereby, the refractive power configuration of the three-piece thin imaging lens group can be balanced to effectively correct the aberration of the three-piece thin imaging lens group while reducing the sensitivity of the three-piece thin imaging lens group. </p> <p> Preferably, wherein the three-piece thin imaging lens group has an overall focal length of f, the third lens has a focal length of f3, and satisfies the following condition: 0.07 < f/f3 < 0.68. Thereby, the refractive power configuration of the three-piece thin imaging lens group can be balanced to effectively correct the aberration of the three-piece thin imaging lens group while reducing the sensitivity of the three-piece thin imaging lens group. </p> <p> Preferably, wherein the three-piece thin imaging lens group has an overall focal length of f, the second lens and the third lens have a combined focal length of f23, and satisfy the following condition: 0.4 < f/f23 < 1.0. Thereby, the three-piece thin imaging lens group can achieve a balance between shortening the total optical length and correcting the aberration. </p> <p> Preferably, wherein the focal length of the first lens is f1, the combined focal length of the second lens and the third lens is f23, and the following condition is satisfied: -2.9 < f1/f23 < -1.0. Thereby, the resolution capability of the three-piece thin imaging lens group is remarkably improved. </p> <p> Preferably, wherein the focal length of the first lens is f1, the radius of curvature of the first lens object side surface is R1, and the following condition is satisfied: 0.6 < f1/R1 < 2.4. Thereby, it is advantageous to reduce distortion. </p> <p> Preferably, wherein the focal length of the first lens is f1, the radius of curvature of the side surface of the first lens image is R2, and the following condition is satisfied: -1.0 < f1/R2 < 0.6. Thereby, the curvature of the side surface of the first lens image is suitable, which contributes to shortening the total length of the three-piece thin imaging lens group. </p> <p> Preferably, wherein the focal length of the second lens is f2, the radius of curvature of the second lens object side surface is R3, and the following condition is satisfied: 0.2 < f2 / R3 < 1.6. This will help reduce system sensitivity and effectively increase production yield. </p> <p> Preferably, wherein the focal length of the second lens is f2, the radius of curvature of the side surface of the second lens image is R4, and the following condition is satisfied: -1.8 < f2 / R4 < -0.4. Thereby, the curvature of the periphery of the side surface of the second lens image can be further slowed down, and the characteristics of stray light can be further reduced. </p> <p> Preferably, wherein the focal length of the third lens is f3, the radius of curvature of the third lens object side surface is R5, and the following condition is satisfied: -0.7 < f3/R5 < 2.7. Thereby, the magnification of the image is corrected. </p> <p> Preferably, wherein the focal length of the third lens is f3, the radius of curvature of the side surface of the third lens image is R6, and the following condition is satisfied: -2.1 < f3/R6 < 1.0. Thereby, the magnification of the image is corrected. </p> <p> Preferably, wherein the first lens object side surface has a radius of curvature R1, the first lens image side surface has a radius of curvature of R2, and satisfies the following condition: -0.9 < R1/R2 < 0.6. Thereby, the spherical aberration and astigmatism of the three-piece thin imaging lens group can be reduced. </p> Preferably, wherein the second lens object side surface has a radius of curvature R3, the second lens image side surface has a radius of curvature of R4, and satisfies the following condition: -3.2 < R3/R4 < -0.1. Thereby, the astigmatism of the three-piece thin imaging lens group can be reduced. </p> <p> Preferably, wherein the third lens object side surface has a radius of curvature of R5, the third lens image side surface has a radius of curvature of R6, and satisfies the following condition: -95 < R5/R6 < 10. Thereby, the curvature configuration of the third lens surface is effectively balanced to achieve a balance between the field of view angle and the total length. </p> <p> Preferably, wherein the overall focal length of the three-piece thin imaging lens group is f, the distance from the subject to the imaging plane on the optical axis is OTL, and the following condition is satisfied: 8.0 < OTL/f < 18.0 . Thereby, it is advantageous to maintain the miniaturization and long focus of the three-piece thin imaging lens group to be mounted on a thin electronic product. </p> <p> Preferably, wherein the focal length of the first lens is f1, the focal length of the second lens is f2, the focal length of the third lens is f3, and the following condition is satisfied: -2.4 < (f1+f2+f3) /( f1 × f2 × f3) < -0.1. Thereby, the subject can be imaged on the imaging surface with a small aberration and a high phase contrast on the short object distance. </p> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </p> </disclosure> <mode-for-invention> <p><First embodiment> </p> Referring to FIG. 1A, FIG. 1B and FIG. 1C, FIG. 1A is a schematic view showing a three-piece thin imaging lens unit according to a first embodiment of the present invention, and FIG. 1B is a partial enlarged view of FIG. 1A. Fig. 1C is a graph showing the curvature of field and the distortion of the distortion of the three-piece thin imaging lens group of the first embodiment from left to right. As shown in FIG. 1A and FIG. 1B, the three-piece thin imaging lens group sequentially includes the plate member 160, the first lens 110, the aperture 100, the second lens 120, the third lens 130, and the infrared filter filter from the object side to the image side. The light sheet 170, and the imaging surface 180, wherein the three-piece thin type imaging lens group has three refractive sheets (110, 120, 130). The aperture 100 is disposed between the first lens 110 and the second lens 120. </p> <p> The plate member 160 is made of glass and disposed between a subject O and the first lens 110 without affecting the focal length of the three-piece thin imaging lens group. </p> <p> The first lens 110 has a negative refractive power and is made of a plastic material, and the object side surface 111 is concave at the near optical axis 190, and the image side surface 112 is convex at the near optical axis 190, and the object side surface 111 is The image side surface 112 is aspherical. </p> <p> The second lens 120 has a positive refractive power and is made of a plastic material, and the object side surface 121 is convex at the near optical axis 190, and the image side surface 122 is convex at the near optical axis 190, and the object side surface 121 The image side surface 122 is aspherical. </p> <p> The third lens 130 has a positive refractive power and is made of a plastic material, and the object side surface 131 is convex at the near optical axis 190, and the image side surface 132 is convex at the near optical axis 190, and the object side surface 131 The image side surface 132 is aspherical. </p> <p> The infrared filter filter 170 is made of glass and disposed between the third lens 130 and the imaging surface 180 without affecting the focal length of the three-piece thin imaging lens group. </p> <p> <img he="44" wi="526" img-format="jpg" id="i0008" img-content="drawing" orientation="portrait" inline="no" file="TWI674448B_D0001.tif" /> The aspherical curve equations of the above lenses are expressed as follows:   </p> <p> <p> where z is a position value with reference to the surface apex at a position of height h in the direction of the optical axis 190; c is the curvature of the lens surface near the optical axis 190, and is the reciprocal of the radius of curvature (R) (c=1) /R), R is the radius of curvature of the lens surface near the optical axis 190, h is the vertical distance of the lens surface from the optical axis 190, k is a conic constant, and A, B, C, D, E, F, G, ... are high-order aspheric coefficients. </p> <p> In the three-piece thin imaging lens group of the first embodiment, the focal length of the three-piece thin imaging lens group is f, and the aperture value (f-number) of the three-piece thin imaging lens group is Fno, three-piece The maximum angle of view (arrow angle) in the thin imaging lens set is FOV, and the values are as follows: f = 0.37 (millimeter); Fno = 1.35; and FOV = 105.0 (degrees). </p> <p> In the three-piece thin imaging lens group of the first embodiment, the focal length of the three-piece thin imaging lens group is f, the focal length of the first lens 110 is f1, and the focal length of the second lens 120 is f2. The third lens 130 has a focal length of f3 and satisfies the following condition: | f / (f1 × f2 × f3) | = 0.38. </p> <p> In the three-piece thin imaging lens group of the first embodiment, the focal length of the three-piece thin imaging lens group is f, the focal length of the first lens 110 is f1, and the following conditions are satisfied: f/f1 = - 0.32. </p> <p> In the three-piece thin imaging lens group of the first embodiment, the focal length of the three-piece thin imaging lens group is f, the focal length of the second lens 120 is f2, and the following conditions are satisfied: f/f2 = 0.53 . </p> <p> In the three-piece thin imaging lens group of the first embodiment, the focal length of the three-piece thin imaging lens group is f, the focal length of the third lens 130 is f3, and the following conditions are satisfied: f/f3 = 0.32 . </p> <p> In the three-piece thin imaging lens group of the first embodiment, the focal length of the three-piece thin imaging lens group is f, and the combined focal length of the second lens 120 and the third lens 130 is f23, and the following conditions are satisfied. : f/f23 = 0.75. </p> <p> In the three-piece thin imaging lens group of the first embodiment, the focal length of the first lens 110 is f1, and the combined focal length of the second lens 120 and the third lens 130 is f23, and the following conditions are satisfied: f1/ F23 = -2.38. </p> <p> In the three-piece thin imaging lens group of the first embodiment, the focal length of the first lens 110 is f1, and the radius of curvature of the object side surface 111 of the first lens 110 is R1, and the following conditions are satisfied: f1/R1 = 1.86. </p> <p> In the three-piece thin imaging lens group of the first embodiment, the focal length of the first lens 110 is f1, and the radius of curvature of the image side surface 112 of the first lens 110 is R2, and the following conditions are satisfied: f1/R2 = 0.02. </p> <p> In the three-piece thin imaging lens group of the first embodiment, the focal length of the second lens 120 is f2, and the radius of curvature of the object side surface 121 of the second lens 120 is R3, and the following conditions are satisfied: f2/R3 = 0.83. </p> <p> In the three-piece thin imaging lens group of the first embodiment, the focal length of the second lens 120 is f2, and the radius of curvature of the image side surface 122 of the second lens 120 is R4, and the following conditions are satisfied: f2/R4 = -1.19. </p> <p> In the three-piece thin imaging lens group of the first embodiment, the focal length of the third lens 130 is f3, and the radius of curvature of the object side surface 131 of the third lens 130 is R5, and the following conditions are satisfied: f3/R5 = 0.86. </p> <p> In the three-piece thin imaging lens group of the first embodiment, the focal length of the third lens 130 is f3, and the radius of curvature of the image side surface 132 of the third lens 130 is R6, and the following conditions are satisfied: f3/R6 = -0.75. </p> <p> In the three-piece thin imaging lens group of the first embodiment, the radius of curvature of the object side surface 111 of the first lens 110 is R1, and the radius of curvature of the image side surface 112 of the first lens 110 is R2, and satisfies the following Condition: R1/R2 = 0.01. </p> <p> In the three-piece thin imaging lens group of the first embodiment, the radius of curvature of the object side surface 121 of the second lens 120 is R3, and the radius of curvature of the image side surface 122 of the second lens 120 is R4, and the following Condition: R3/R4 = -1.42. </p> <p> In the three-piece thin imaging lens group of the first embodiment, the radius of curvature of the object side surface 131 of the third lens 130 is R5, and the radius of curvature of the image side surface 132 of the third lens 130 is R6, and the following Condition: R5/R6 = -0.86. </p> <p> In the three-piece thin imaging lens group of the first embodiment, the overall focal length of the three-piece thin imaging lens group is f, and the distance from the subject O to the imaging surface 180 on the optical axis 190 is OTL. And meet the following conditions: OTL / f = 13.30. </p> <p>Refer to refer to Table 1 and Table 2 below. </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> <b>Table 1 </b> </td> </tr> <tr> <td> First embodiment </td> </tr> <tr> <td> <u>f( </u> <u>focal length) = 0.37 mm (mm), Fno (aperture value) = 1.35, FOV (drawn angle) = 105 deg. (degrees) </u> </td> </tr> <tr> <td> surface </td> <td> </td> <td> radius of curvature </td> <td> thickness </td> <td> material </td> <td> refractive index </td> <td> dispersion coefficient </td> <td> focal length </td> </tr> <tr> <td> 0 </td> <td> Subject </td> <td> unlimited </td> <td> 0.000 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 1 </td> <td> tablet components </td> <td> unlimited </td> <td> 1.500 </td> <td> glass </td> <td> 1.52 </td> <td> 64.2 </td> <td> </td> </tr> <tr> <td> 2 </td> <td> </td> <td> unlimited </td> <td> 1.476 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 3 </td> <td> first lens </td> <td> -0.638 </td> <td> (ASP) </td> <td> 0.392 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> -1.19 </td> </tr> <tr> <td> 4 </td> <td> </td> <td> -59.893 </td> <td> (ASP) </td> <td> 0.379 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 5 </td> <td> aperture </td> <td> unlimited </td> <td> 0.005 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 6 </td> <td> second lens </td> <td> 0.848 </td> <td> (ASP) </td> <td> 0.377 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> 0.71 </td> </tr> <tr> <td> 7 </td> <td> </td> <td> -0.596 </td> <td> (ASP) </td> <td> 0.034 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 8 </td> <td> third lens </td> <td> 1.354 </td> <td> (ASP) </td> <td> 0.244 </td> <td> plastic </td> <td> 1.64 </td> <td> 22.5 </td> <td> 1.17 </td> </tr> <tr> <td> 9 </td> <td> </td> <td> -1.566 </td> <td> (ASP) </td> <td> 0.361 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 10 </td> <td> Infrared filter Remove filter </td> <td> unlimited </td> <td> 0.210 </td> <td> glass </td> <td> 1.52 </td> <td> 54.5 </td> <td> </td> </tr> <tr> <td> 11 </td> <td> </td> <td> unlimited </td> <td> unlimited </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 12 </td> <td> imaging surface </td> <td> unlimited </td> <td> 0.000 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> </tbody> </table> </tables> </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> <b>Table 2 </b> </td> </tr> <tr> <td> aspheric coefficient </td> </tr> <tr> <td> plane </td> <td> 3 </td> <td> 4 </td> <td> 6 </td> <td> 7 </td> <td> 8 </td> <td> 9 </td> </tr> <tr> <td> K: </td> <td> -6.6639E+00 </td> <td> -4.0007E+02 </td> <td> -4.6984E+01 </td> <td> 8.6056E-01 </td> <td> -2.6278E+01 </td> <td> -8.7212E+01 </td> </tr> <tr> <td> A: </td> <td> 2.1335E+00 </td> <td> 6.6209E+00 </td> <td> 4.6884E+00 </td> <td> -4.1935E-02 </td> <td> 1.0201E+00 </td> <td> 2.1905E+00 </td> </tr> <tr> <td> B: </td> <td> -6.7124E+00 </td> <td> 1.1143E+00 </td> <td> -6.7574E+01 </td> <td> -3.9365E+01 </td> <td> -4.6967E+01 </td> <td> -2.9033E+01 </td> </tr> <tr> <td> C: </td> <td> 1.5008E+01 </td> <td> 2.8583E+02 </td> <td> -4.1183E+02 </td> <td> 2.2458E+02 </td> <td> 1.3049E+02 </td> <td> 1.3825E+01 </td> </tr> <tr> <td> D: </td> <td> -1.8686E+01 </td> <td> -2.6398E+03 </td> <td> 1.0258E+04 </td> <td> 6.2920E+02 </td> <td> 9.5193E+02 </td> <td> 4.1848E+02 </td> </tr> <tr> <td> E: </td> <td> 8.7309E+00 </td> <td> -1.3663E+04 </td> <td> 8.5885E+04 </td> <td> 3.3069E+02 </td> <td> -4.2474E+02 </td> <td> 4.3534E+03 </td> </tr> <tr> <td> F </td> <td> 4.9937E+00 </td> <td> 2.4599E+05 </td> <td> -1.9343E+06 </td> <td> -6.1268E+04 </td> <td> -7.4096E+04 </td> <td> -4.8409E+04 </td> </tr> <tr> <td> G </td> <td> -5.1320E+00 </td> <td> 5.4409E+03 </td> <td> 6.9233E+06 </td> <td> 2.1063E+05 </td> <td> 2.9197E+05 </td> <td> 1.1285E+05 </td> </tr> </tbody> </table> </tables> </p> <p> Table 1 is the detailed structural data of the first embodiment of Figs. 1A and 1B, in which the unit of curvature radius, thickness, and focal length is mm, and the surfaces 0-12 sequentially represent the surfaces from the object side to the image side. Table 2 is the aspherical data in the first embodiment, wherein the cone coefficients in the a-spherical curve equation of k, A, B, C, D, E, F, G, ... are high-order aspheric coefficients. In addition, the table of the following embodiments corresponds to the schematic diagram and the aberration diagram of each embodiment, and the definition of the data in the table is the same as the definitions of Table 1 and Table 2 of the first embodiment, and details are not described herein. </p> <p><Second embodiment> </p> Referring to FIG. 2A, FIG. 2B and FIG. 2C, FIG. 2A is a schematic diagram of a three-piece thin imaging lens set according to a second embodiment of the present invention, and FIG. 2B is a partial enlarged view of FIG. 2A. 2C is a graph showing the curvature of field and the distortion of the distortion of the three-piece thin imaging lens group of the second embodiment from left to right. 2A and 2B, the three-piece thin imaging lens group sequentially includes a flat plate member 260, a first lens 210, a diaphragm 200, a second lens 220, a third lens 230, and an infrared filter filter from the object side to the image side. The light sheet 270, and the imaging surface 280, wherein the three-piece thin imaging lens group has three refractive sheets (210, 220, 230). The aperture 200 is disposed between the first lens 210 and the second lens 220. </p> <p> The plate member 260 is made of glass and disposed between a subject O and the first lens 210 without affecting the focal length of the three-piece thin imaging lens group. </p> <p> The first lens 210 has a negative refractive power and is made of a plastic material, and the object side surface 211 is concave at the near optical axis 290, and the image side surface 212 is convex at the near optical axis 290, and the object side surface 211 The image side surface 212 is aspherical. </p> <p> The second lens 220 has a positive refractive power and is made of a plastic material. The object side surface 221 is convex at the near optical axis 290, and the image side surface 222 is convex at the near optical axis 290, and the object side surface 221 The image side surface 222 is aspherical. </p> <p> The third lens 230 has a positive refractive power and is made of a plastic material. The object side surface 231 is convex at the near optical axis 290, and the image side surface 232 is convex at the near optical axis 290, and the object side surface 231 is 231. The image side surface 232 is aspherical. </p> <p> The infrared filter 270 is made of glass, and is disposed between the third lens 230 and the imaging surface 280 without affecting the focal length of the three-piece thin imaging lens group. </p> <p>Refer to refer to Table 3 and Table 4 below. </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> <b>Table 3 </b> </td> </tr> <tr> <td> Second embodiment </td> </tr> <tr> <td> <u>f( </u> <u>focal length) = 0.38 mm (millimeter), Fno (aperture value) = 1.40, FOV (drawn angle) = 109.2 deg. (degrees) </u> </td> </tr> <tr> <td> surface </td> <td> </td> <td> radius of curvature </td> <td> thickness </td> <td> material </td> <td> refractive index </td> <td> dispersion coefficient </td> <td> focal length </td> </tr> <tr> <td> 0 </td> <td> Subject </td> <td> unlimited </td> <td> 0.000 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 1 </td> <td> tablet components </td> <td> unlimited </td> <td> 1.500 </td> <td> glass </td> <td> 1.52 </td> <td> 64.2 </td> <td> </td> </tr> <tr> <td> 2 </td> <td> </td> <td> unlimited </td> <td> 1.308 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 3 </td> <td> first lens </td> <td> -0.593 </td> <td> (ASP) </td> <td> 0.384 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> -1.10 </td> </tr> <tr> <td> 4 </td> <td> </td> <td> -100.001 </td> <td> (ASP) </td> <td> 0.370 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 5 </td> <td> aperture </td> <td> unlimited </td> <td> 0.008 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 6 </td> <td> second lens </td> <td> 0.923 </td> <td> (ASP) </td> <td> 0.427 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> 0.74 </td> </tr> <tr> <td> 7 </td> <td> </td> <td> -0.593 </td> <td> (ASP) </td> <td> 0.030 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 8 </td> <td> third lens </td> <td> 1.341 </td> <td> (ASP) </td> <td> 0.247 </td> <td> plastic </td> <td> 1.64 </td> <td> 22.5 </td> <td> 1.21 </td> </tr> <tr> <td> 9 </td> <td> </td> <td> -1.703 </td> <td> (ASP) </td> <td> 0.379 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 10 </td> <td> Infrared filter Remove filter </td> <td> unlimited </td> <td> 0.210 </td> <td> glass </td> <td> 1.52 </td> <td> 54.5 </td> <td> </td> </tr> <tr> <td> 11 </td> <td> </td> <td> unlimited </td> <td> unlimited </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 12 </td> <td> imaging surface </td> <td> unlimited </td> <td> 0.000 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> </tbody> </table> </tables> </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> <b>Table 4 </b> </td> </tr> <tr> <td> aspheric coefficient </td> </tr> <tr> <td> plane </td> <td> 3 </td> <td> 4 </td> <td> 6 </td> <td> 7 </td> <td> 8 </td> <td> 9 </td> </tr> <tr> <td> K: </td> <td> -6.4918E+00 </td> <td> -3.9992E+02 </td> <td> -4.9131E+01 </td> <td> 8.9612E-01 </td> <td> -1.5246E+01 </td> <td> -8.1551E+01 </td> </tr> <tr> <td> A: </td> <td> 2.1426E+00 </td> <td> 7.9165E+00 </td> <td> 4.7911E+00 </td> <td> -1.2361E-01 </td> <td> 1.0724E+00 </td> <td> 2.2809E+00 </td> </tr> <tr> <td> B: </td> <td> -6.7444E+00 </td> <td> 2.1246E+00 </td> <td> -6.7622E+01 </td> <td> -3.9616E+01 </td> <td> -4.7639E+01 </td> <td> -2.8547E+01 </td> </tr> <tr> <td> C: </td> <td> 1.4949E+01 </td> <td> 2.5606E+02 </td> <td> -4.2869E+02 </td> <td> 2.2480E+02 </td> <td> 1.2582E+02 </td> <td> 1.5003E+01 </td> </tr> <tr> <td> D: </td> <td> -1.8735E+01 </td> <td> -2.7263E+03 </td> <td> 9.9086E+03 </td> <td> 6.1749E+02 </td> <td> 9.3780E+02 </td> <td> 4.1861E+02 </td> </tr> <tr> <td> E: </td> <td> 8.6996E+00 </td> <td> -1.4381E+04 </td> <td> 8.2215E+04 </td> <td> 1.0358E+02 </td> <td> -4.5273E+02 </td> <td> 4.3494E+03 </td> </tr> <tr> <td> F </td> <td> 5.0113E+00 </td> <td> 2.3365E+05 </td> <td> -1.9549E+06 </td> <td> -6.2854E+04 </td> <td> -7.4033E+04 </td> <td> -4.8444E+04 </td> </tr> <tr> <td> G </td> <td> -5.0411E+00 </td> <td> -1.9075E+05 </td> <td> 6.7066E+06 </td> <td> 1.9852E+05 </td> <td> 2.9307E+05 </td> <td> 1.1268E+05 </td> </tr> </tbody> </table> </tables> </p> <p> In the second embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein. </p> <p>With Table 3 and Table 4, the following data can be derived: </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> Second embodiment </td> </tr> <tr> <td> f[mm] </td> <td> 0.38 </td> <td> f1/R2 </td> <td> 0.01 </td> </tr> <tr> <td> Fno </td> <td> 1.40 </td> <td> f2/R3 </td> <td> 0.80 </td> </tr> <tr> <td> FOV[deg.] </td> <td> 109.20 </td> <td> f2/R4 </td> <td> -1.24 </td> </tr> <tr> <td> | f/(f1*f2*f3) | </td> <td> 0.39 </td> <td> f3/R5 </td> <td> 0.90 </td> </tr> <tr> <td> f/f1 </td> <td> -0.35 </td> <td> f3/R6 </td> <td> -0.71 </td> </tr> <tr> <td> f/f2 </td> <td> 0.51 </td> <td> R1/R2 </td> <td> 0.01 </td> </tr> <tr> <td> f/f3 </td> <td> 0.31 </td> <td> R3/R4 </td> <td> -1.55 </td> </tr> <tr> <td> f/f23 </td> <td> 0.74 </td> <td> R5/R6 </td> <td> -0.79 </td> </tr> <tr> <td> f1/f23 </td> <td> -2.13 </td> <td> OTL/f </td> <td> 12.84 </td> </tr> <tr> <td> f1/R1 </td> <td> 1.85 </td> <td> (f1+f2+f3)/(f1*f2*f3) </td> <td> -0.87 </td> </tr> </tbody> </table> </tables> </p> <p><Third embodiment> </p> Referring to FIG. 3A, FIG. 3B and FIG. 3C, FIG. 3A is a schematic diagram of a three-piece thin imaging lens set according to a third embodiment of the present invention, and FIG. 3B is a partial enlarged view of FIG. 3A. Fig. 3C is a graph showing the curvature of field and the distortion of the distortion of the three-piece thin imaging lens group of the third embodiment, from left to right. 3A and 3B, the three-piece thin imaging lens group sequentially includes a flat plate member 360, a first lens 310, an aperture 300, a second lens 320, a third lens 330, and an infrared filter filter from the object side to the image side. The light sheet 370, and the imaging surface 380, wherein the three-piece thin imaging lens group has three refractive sheets (310, 320, 330). The aperture 300 is disposed between the first lens 310 and the second lens 320. </p> <p> The plate member 360 is made of glass and disposed between a subject O and the first lens 310 without affecting the focal length of the three-piece thin imaging lens group. </p> <p> The first lens 310 has a negative refractive power and is made of a plastic material, and the object side surface 311 is concave at the near optical axis 390, and the image side surface 312 is concave at the near optical axis 390, and the object side surface 311 The image side surface 312 is aspherical. </p> <p> The second lens 320 has a positive refractive power and is made of a plastic material, and the object side surface 321 is convex at the near optical axis 390, and the image side surface 322 is convex at the near optical axis 390, and the object side surface 321 The image side surface 322 is aspherical. </p> <p> The third lens 330 has a positive refractive power and is made of a plastic material. The object side surface 331 is convex at the near optical axis 390, and the image side surface 332 is convex at the near optical axis 390, and the object side surface 331 The image side surface 332 is aspherical. </p> <p> The infrared filter 370 is made of glass, and is disposed between the third lens 330 and the imaging surface 380 without affecting the focal length of the three-piece thin imaging lens group. </p> <p>Refer to refer to Table 5 and Table 6 below. </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> <b>Table 5 </b> </td> </tr> <tr> <td> Third embodiment </td> </tr> <tr> <td> <u>f( </u> <u>focal length) =0.36 mm (millimeter), Fno (aperture value) = 1.30, FOV (drawn angle) = 114.6 deg. (degrees) </u> </td> </tr> <tr> <td> surface </td> <td> </td> <td> radius of curvature </td> <td> thickness </td> <td> material </td> <td> refractive index </td> <td> dispersion coefficient </td> <td> focal length </td> </tr> <tr> <td> 0 </td> <td> Subject </td> <td> unlimited </td> <td> 0.000 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 1 </td> <td> tablet components </td> <td> unlimited </td> <td> 1.500 </td> <td> glass </td> <td> 1.52 </td> <td> 64.2 </td> <td> </td> </tr> <tr> <td> 2 </td> <td> </td> <td> unlimited </td> <td> 1.186 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 3 </td> <td> first lens </td> <td> -0.556 </td> <td> (ASP) </td> <td> 0.367 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> -0.81 </td> </tr> <tr> <td> 4 </td> <td> </td> <td> 2.575 </td> <td> (ASP) </td> <td> 0.401 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 5 </td> <td> aperture </td> <td> unlimited </td> <td> 0.001 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 6 </td> <td> second lens </td> <td> 0.795 </td> <td> (ASP) </td> <td> 0.502 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> 0.73 </td> </tr> <tr> <td> 7 </td> <td> </td> <td> -0.615 </td> <td> (ASP) </td> <td> 0.031 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 8 </td> <td> third lens </td> <td> 1.048 </td> <td> (ASP) </td> <td> 0.243 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> 1.29 </td> </tr> <tr> <td> 9 </td> <td> </td> <td> -1.945 </td> <td> (ASP) </td> <td> 0.409 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 10 </td> <td> Infrared filter Remove filter </td> <td> unlimited </td> <td> 0.210 </td> <td> glass </td> <td> 1.52 </td> <td> 54.5 </td> <td> </td> </tr> <tr> <td> 11 </td> <td> </td> <td> unlimited </td> <td> unlimited </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 12 </td> <td> imaging surface </td> <td> unlimited </td> <td> 0.000 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> </tbody> </table> </tables> </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> <b>Table 6 </b> </td> </tr> <tr> <td> aspheric coefficient </td> </tr> <tr> <td> plane </td> <td> 3 </td> <td> 4 </td> <td> 6 </td> <td> 7 </td> <td> 8 </td> <td> 9 </td> </tr> <tr> <td> K: </td> <td> -8.0024E+00 </td> <td> -1.9774E+01 </td> <td> -4.7139E+01 </td> <td> 9.2121E-01 </td> <td> -1.1890E+01 </td> <td> -4.5548E+01 </td> </tr> <tr> <td> A: </td> <td> 2.1115E+00 </td> <td> 1.0690E+01 </td> <td> 5.7393E+00 </td> <td> 4.5153E-01 </td> <td> 1.2507E+00 </td> <td> 2.5234E+00 </td> </tr> <tr> <td> B: </td> <td> -6.7769E+00 </td> <td> -1.0853E+01 </td> <td> -6.5651E+01 </td> <td> -4.0583E+01 </td> <td> -4.7072E+01 </td> <td> -2.8089E+01 </td> </tr> <tr> <td> C: </td> <td> 1.4913E+01 </td> <td> 2.0963E+02 </td> <td> -4.8839E+02 </td> <td> 2.1330E+02 </td> <td> 1.2716E+02 </td> <td> 1.5595E+01 </td> </tr> <tr> <td> D: </td> <td> -1.8780E+01 </td> <td> -2.4878E+03 </td> <td> 9.0215E+03 </td> <td> 5.8070E+02 </td> <td> 9.3021E+02 </td> <td> 4.2480E+02 </td> </tr> <tr> <td> E: </td> <td> 8.6506E+00 </td> <td> -1.0689E+04 </td> <td> 7.6354E+04 </td> <td> 8.6568E+01 </td> <td> -5.9265E+02 </td> <td> 4.3670E+03 </td> </tr> <tr> <td> F </td> <td> 5.0120E+00 </td> <td> 2.4047E+05 </td> <td> -1.9212E+06 </td> <td> -6.1195E+04 </td> <td> -7.5340E+04 </td> <td> -4.8618E+04 </td> </tr> <tr> <td> G </td> <td> -4.9036E+00 </td> <td> -5.1120E+05 </td> <td> 8.5642E+06 </td> <td> 2.1358E+05 </td> <td> 2.8301E+05 </td> <td> 1.1002E+05 </td> </tr> </tbody> </table> </tables> </p> <p> In the third embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein. </p> <p>With Table 5 and Table 6, the following data can be derived: </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> Third embodiment </td> </tr> <tr> <td> f[mm] </td> <td> 0.36 </td> <td> f1/R2 </td> <td> -0.31 </td> </tr> <tr> <td> Fno </td> <td> 1.30 </td> <td> f2/R3 </td> <td> 0.92 </td> </tr> <tr> <td> FOV[deg.] </td> <td> 114.60 </td> <td> f2/R4 </td> <td> -1.18 </td> </tr> <tr> <td> | f/(f1*f2*f3) | </td> <td> 0.48 </td> <td> f3/R5 </td> <td> 1.23 </td> </tr> <tr> <td> f/f1 </td> <td> -0.45 </td> <td> f3/R6 </td> <td> -0.66 </td> </tr> <tr> <td> f/f2 </td> <td> 0.50 </td> <td> R1/R2 </td> <td> -0.22 </td> </tr> <tr> <td> f/f3 </td> <td> 0.28 </td> <td> R3/R4 </td> <td> -1.29 </td> </tr> <tr> <td> f/f23 </td> <td> 0.68 </td> <td> R5/R6 </td> <td> -0.54 </td> </tr> <tr> <td> f1/f23 </td> <td> -1.52 </td> <td> OTL/f </td> <td> 13.35 </td> </tr> <tr> <td> f1/R1 </td> <td> 1.45 </td> <td> (f1+f2+f3)/(f1*f2*f3) </td> <td> -1.60 </td> </tr> </tbody> </table> </tables> </p> <p><Fourth embodiment> </p> Referring to FIG. 4A, FIG. 4B and FIG. 4C, FIG. 4A is a schematic diagram of a three-piece thin imaging lens set according to a fourth embodiment of the present invention, and FIG. 4B is a partial enlarged view of FIG. 4A. 4C is a graph showing the curvature of field and the distortion of the distortion of the three-piece thin imaging lens group of the fourth embodiment from left to right. As shown in FIG. 4A and FIG. 4B, the three-piece thin imaging lens group sequentially includes a flat plate member 460, a first lens 410, a diaphragm 400, a second lens 420, a third lens 430, and an infrared filter filter from the object side to the image side. The light sheet 470, and the imaging surface 480, wherein the three-piece thin imaging lens group has three refractive sheets (410, 420, 430). The aperture 400 is disposed between the first lens 410 and the second lens 420. </p> <p> The plate member 460 is made of glass and disposed between a subject O and the first lens 410 without affecting the focal length of the three-piece thin imaging lens group. </p> <p> The first lens 410 has a negative refractive power and is made of a plastic material, and the object side surface 411 is concave at the near optical axis 490, and the image side surface 412 is concave at the near optical axis 490, and the object side surface 411 The image side surface 412 is aspherical. </p> <p> The second lens 420 has a positive refractive power and is made of a plastic material, and the object side surface 421 is convex at the near optical axis 490, and the image side surface 422 is convex at the near optical axis 490, and the object side surface 421 The image side surface 422 is aspherical. </p> <p> The third lens 430 has a positive refractive power and is made of a plastic material, and the object side surface 431 is convex at the near optical axis 490, and the image side surface 432 is convex at the near optical axis 490, and the object side surface 431 is convex. The image side surface 432 is aspherical. </p> <p> The infrared filter 470 is made of glass and disposed between the third lens 430 and the imaging surface 480 without affecting the focal length of the three-piece thin imaging lens group. </p> <p>Refer to refer to Table 7 and Table 8 below. </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> <b>Table 7 </b> </td> </tr> <tr> <td> Fourth embodiment </td> </tr> <tr> <td> <u>f( </u> <u>focal length) = 0.34 mm (millimeter), Fno (aperture value) = 1.20, FOV (drawn angle) = 121.8 deg. (degrees) </u> </td> </tr> <tr> <td> surface </td> <td> </td> <td> radius of curvature </td> <td> thickness </td> <td> material </td> <td> refractive index </td> <td> dispersion coefficient </td> <td> focal length </td> </tr> <tr> <td> 0 </td> <td> Subject </td> <td> unlimited </td> <td> 0.000 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 1 </td> <td> tablet components </td> <td> unlimited </td> <td> 1.500 </td> <td> glass </td> <td> 1.52 </td> <td> 64.2 </td> <td> </td> </tr> <tr> <td> 2 </td> <td> </td> <td> unlimited </td> <td> 1.010 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 3 </td> <td> first lens </td> <td> -0.504 </td> <td> (ASP) </td> <td> 0.385 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> -0.72 </td> </tr> <tr> <td> 4 </td> <td> </td> <td> 2.208 </td> <td> (ASP) </td> <td> 0.414 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 5 </td> <td> aperture </td> <td> unlimited </td> <td> 0.017 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 6 </td> <td> second lens </td> <td> 1.415 </td> <td> (ASP) </td> <td> 0.508 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> 0.76 </td> </tr> <tr> <td> 7 </td> <td> </td> <td> -0.510 </td> <td> (ASP) </td> <td> 0.030 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 8 </td> <td> third lens </td> <td> 60.243 </td> <td> (ASP) </td> <td> 0.355 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> 1.23 </td> </tr> <tr> <td> 9 </td> <td> </td> <td> -0.676 </td> <td> (ASP) </td> <td> 0.472 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 10 </td> <td> Infrared filter Remove filter </td> <td> unlimited </td> <td> 0.210 </td> <td> glass </td> <td> 1.52 </td> <td> 54.5 </td> <td> </td> </tr> <tr> <td> 11 </td> <td> </td> <td> unlimited </td> <td> unlimited </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 12 </td> <td> imaging surface </td> <td> unlimited </td> <td> 0.000 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> </tbody> </table> </tables> </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> <b>Table 8 </b> </td> </tr> <tr> <td> aspheric coefficient </td> </tr> <tr> <td> plane </td> <td> 3 </td> <td> 4 </td> <td> 6 </td> <td> 7 </td> <td> 8 </td> <td> 9 </td> </tr> <tr> <td> K: </td> <td> -8.9574E+00 </td> <td> -1.8655E+01 </td> <td> -3.0573E+02 </td> <td> -1.2575E+00 </td> <td> 1.5715E+02 </td> <td> -1.2220E-01 </td> </tr> <tr> <td> A: </td> <td> 1.5447E+00 </td> <td> 1.4497E+01 </td> <td> 2.8808E+00 </td> <td> 2.9669E+00 </td> <td> 4.5606E+00 </td> <td> 2.2079E+00 </td> </tr> <tr> <td> B: </td> <td> -4.6133E+00 </td> <td> -2.1546E+02 </td> <td> -1.4255E+01 </td> <td> -3.1094E+01 </td> <td> -3.4642E+01 </td> <td> -9.0007E+00 </td> </tr> <tr> <td> C: </td> <td> 9.5150E+00 </td> <td> 3.1999E+03 </td> <td> -5.6413E+02 </td> <td> 5.3776E+01 </td> <td> 4.2944E+01 </td> <td> 1.2699E+02 </td> </tr> <tr> <td> D: </td> <td> -1.2115E+01 </td> <td> -1.5598E+04 </td> <td> 6.5379E+03 </td> <td> -1.7586E+02 </td> <td> 4.0062E+02 </td> <td> -1.0281E+03 </td> </tr> <tr> <td> E: </td> <td> 8.6388E+00 </td> <td> -1.3702E+05 </td> <td> 5.4097E+04 </td> <td> 4.6999E+03 </td> <td> 1.8345E+03 </td> <td> 4.3686E+03 </td> </tr> <tr> <td> F </td> <td> -2.6923E+00 </td> <td> 1.8193E+06 </td> <td> -1.5332E+06 </td> <td> -3.1483E+04 </td> <td> -3.1188E+04 </td> <td> -1.0830E+04 </td> </tr> <tr> <td> G </td> <td> 7.1730E-02 </td> <td> -5.3407E+06 </td> <td> 7.6274E+06 </td> <td> 5.9102E+04 </td> <td> 7.4691E+04 </td> <td> 1.2056E+04 </td> </tr> </tbody> </table> </tables> </p> <p> In the fourth embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein. </p> <p>With Table 7, and Table 8, the following data can be derived: </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> Fourth embodiment </td> </tr> <tr> <td> f[mm] </td> <td> 0.34 </td> <td> f1/R2 </td> <td> -0.33 </td> </tr> <tr> <td> Fno </td> <td> 1.20 </td> <td> f2/R3 </td> <td> 0.54 </td> </tr> <tr> <td> FOV[deg.] </td> <td> 121.80 </td> <td> f2/R4 </td> <td> -1.49 </td> </tr> <tr> <td> | f/(f1*f2*f3) | </td> <td> 0.51 </td> <td> f3/R5 </td> <td> 0.02 </td> </tr> <tr> <td> f/f1 </td> <td> -0.48 </td> <td> f3/R6 </td> <td> -1.82 </td> </tr> <tr> <td> f/f2 </td> <td> 0.45 </td> <td> R1/R2 </td> <td> -0.23 </td> </tr> <tr> <td> f/f3 </td> <td> 0.28 </td> <td> R3/R4 </td> <td> -2.78 </td> </tr> <tr> <td> f/f23 </td> <td> 0.60 </td> <td> R5/R6 </td> <td> -89.08 </td> </tr> <tr> <td> f1/f23 </td> <td> -1.26 </td> <td> OTL/f </td> <td> 14.38 </td> </tr> <tr> <td> f1/R1 </td> <td> 1.42 </td> <td> (f1+f2+f3)/(f1*f2*f3) </td> <td> -1.90 </td> </tr> </tbody> </table> </tables> </p> <p><Fifth Embodiment> </p> Referring to FIG. 5A, FIG. 5B and FIG. 5C, FIG. 5A is a schematic view showing a three-piece thin imaging lens unit according to a fifth embodiment of the present invention, and FIG. 5B is a partial enlarged view of FIG. 5A. Fig. 5C is a graph showing the curvature of field and the distortion of the distortion of the three-piece thin imaging lens group of the fifth embodiment from left to right. As can be seen from FIG. 5A and FIG. 5B, the three-piece thin imaging lens group sequentially includes the plate member 560, the first lens 510, the aperture 500, the second lens 520, the third lens 530, and the infrared filter filter from the object side to the image side. The light sheet 570 and the imaging surface 580, wherein the lens of the three-piece thin imaging lens group has a refractive power of three (510, 520, 530). The aperture 500 is disposed between the first lens 510 and the second lens 520. </p> <p> The plate member 560 is made of glass and disposed between a subject O and the first lens 510 without affecting the focal length of the three-piece thin imaging lens group. </p> <p> The first lens 510 has a negative refractive power and is made of a plastic material, and the object side surface 511 is concave at the near optical axis 590, and the image side surface 512 is convex at the near optical axis 590, and the object side surface 511 The image side surface 512 is aspherical. </p> <p> The second lens 520 has a positive refractive power and is made of a plastic material. The object side surface 521 is convex at the near optical axis 590, and the image side surface 522 is convex at the near optical axis 590, and the object side surface 521 is formed. The image side surface 522 is aspherical. </p> <p> The third lens 530 has a positive refractive power and is made of a plastic material, and the object side surface 531 is convex at the near optical axis 590, and the image side surface 532 is convex at the near optical axis 590, and the object side surface 531 is formed. The image side surface 532 is aspherical. </p> <p> The infrared filter 570 is made of glass, and is disposed between the third lens 530 and the imaging surface 580 without affecting the focal length of the three-piece thin imaging lens group. </p> <p>Refer to refer to Table 9 and Table 10 below. </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> <b>Table 9 </b> </td> </tr> <tr> <td> Fifth Embodiment </td> </tr> <tr> <td> <u>f( </u> <u>focal length) = 0.39 mm (mm), Fno (aperture value) = 1.40, FOV (drawn angle) = 108.3 deg. (degrees) </u> </td> </tr> <tr> <td> surface </td> <td> </td> <td> radius of curvature </td> <td> thickness </td> <td> material </td> <td> refractive index </td> <td> dispersion coefficient </td> <td> focal length </td> </tr> <tr> <td> 0 </td> <td> Subject </td> <td> unlimited </td> <td> 0.000 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 1 </td> <td> tablet components </td> <td> unlimited </td> <td> 1.500 </td> <td> glass </td> <td> 1.52 </td> <td> 64.2 </td> <td> </td> </tr> <tr> <td> 2 </td> <td> </td> <td> unlimited </td> <td> 1.565 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 3 </td> <td> first lens </td> <td> -0.664 </td> <td> (ASP) </td> <td> 0.409 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> -1.38 </td> </tr> <tr> <td> 4 </td> <td> </td> <td> -6.569 </td> <td> (ASP) </td> <td> 0.391 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 5 </td> <td> aperture </td> <td> unlimited </td> <td> 0.016 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 6 </td> <td> second lens </td> <td> 0.835 </td> <td> (ASP) </td> <td> 0.364 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> 0.71 </td> </tr> <tr> <td> 7 </td> <td> </td> <td> -0.621 </td> <td> (ASP) </td> <td> 0.034 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 8 </td> <td> third lens </td> <td> 2.073 </td> <td> (ASP) </td> <td> 0.240 </td> <td> plastic </td> <td> 1.64 </td> <td> 22.5 </td> <td> 1.25 </td> </tr> <tr> <td> 9 </td> <td> </td> <td> -1.274 </td> <td> (ASP) </td> <td> 0.392 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 10 </td> <td> Infrared filter Remove filter </td> <td> unlimited </td> <td> 0.210 </td> <td> glass </td> <td> 1.52 </td> <td> 54.5 </td> <td> </td> </tr> <tr> <td> 11 </td> <td> </td> <td> unlimited </td> <td> unlimited </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 12 </td> <td> imaging surface </td> <td> unlimited </td> <td> 0.000 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> </tbody> </table> </tables> </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> <b>Table 10 </b> </td> </tr> <tr> <td> aspheric coefficient </td> </tr> <tr> <td> plane </td> <td> 3 </td> <td> 4 </td> <td> 6 </td> <td> 7 </td> <td> 8 </td> <td> 9 </td> </tr> <tr> <td> K: </td> <td> -5.7238E+00 </td> <td> -4.0067E+02 </td> <td> -5.2904E+01 </td> <td> 8.2614E-01 </td> <td> -1.0481E+02 </td> <td> -4.2865E+01 </td> </tr> <tr> <td> A: </td> <td> 2.0697E+00 </td> <td> 5.3198E+00 </td> <td> 5.3103E+00 </td> <td> 3.6295E-02 </td> <td> 8.3613E-01 </td> <td> 1.8141E+00 </td> </tr> <tr> <td> B: </td> <td> -6.5342E+00 </td> <td> 4.9908E+00 </td> <td> -6.2975E+01 </td> <td> -3.9570E+01 </td> <td> -4.8414E+01 </td> <td> -2.8553E+01 </td> </tr> <tr> <td> C: </td> <td> 1.4819E+01 </td> <td> 2.3533E+02 </td> <td> -4.3756E+02 </td> <td> 2.3037E+02 </td> <td> 1.4503E+02 </td> <td> 1.8849E+01 </td> </tr> <tr> <td> D: </td> <td> -1.8750E+01 </td> <td> -2.6669E+03 </td> <td> 9.9371E+03 </td> <td> 7.9640E+02 </td> <td> 1.1648E+03 </td> <td> 5.0107E+02 </td> </tr> <tr> <td> E: </td> <td> 8.6757E+00 </td> <td> -1.0270E+04 </td> <td> 8.0681E+04 </td> <td> 8.9252E+02 </td> <td> -2.4243E+02 </td> <td> 4.0494E+03 </td> </tr> <tr> <td> F </td> <td> 5.0286E+00 </td> <td> 2.4881E+05 </td> <td> -1.9089E+06 </td> <td> -5.9985E+04 </td> <td> -7.7409E+04 </td> <td> -4.8657E+04 </td> </tr> <tr> <td> G </td> <td> -4.9380E+00 </td> <td> -5.7851E+05 </td> <td> 7.8503E+06 </td> <td> 1.7726E+05 </td> <td> 2.7741E+05 </td> <td> 1.1330E+05 </td> </tr> </tbody> </table> </tables> </p> <p> In the fifth embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein. </p> <p>With Table 9, and Table 10, the following data can be derived: </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> Fifth Embodiment </td> </tr> <tr> <td> f[mm] </td> <td> 0.39 </td> <td> f1/R2 </td> <td> 0.21 </td> </tr> <tr> <td> Fno </td> <td> 1.40 </td> <td> f2/R3 </td> <td> 0.85 </td> </tr> <tr> <td> FOV[deg.] </td> <td> 108.30 </td> <td> f2/R4 </td> <td> -1.15 </td> </tr> <tr> <td> | f/(f1*f2*f3) | </td> <td> 0.32 </td> <td> f3/R5 </td> <td> 0.60 </td> </tr> <tr> <td> f/f1 </td> <td> -0.28 </td> <td> f3/R6 </td> <td> -0.98 </td> </tr> <tr> <td> f/f2 </td> <td> 0.55 </td> <td> R1/R2 </td> <td> 0.10 </td> </tr> <tr> <td> f/f3 </td> <td> 0.31 </td> <td> R3/R4 </td> <td> -1.34 </td> </tr> <tr> <td> f/f23 </td> <td> 0.76 </td> <td> R5/R6 </td> <td> -1.63 </td> </tr> <tr> <td> f1/f23 </td> <td> -2.68 </td> <td> OTL/f </td> <td> 13.08 </td> </tr> <tr> <td> f1/R1 </td> <td> 2.08 </td> <td> (f1+f2+f3)/(f1*f2*f3) </td> <td> -0.47 </td> </tr> </tbody> </table> </tables> </p> <p><Sixth embodiment> </p> 6A, 6B, and 6C, wherein FIG. 6A is a schematic diagram of a three-piece thin imaging lens set according to a sixth embodiment of the present invention, and FIG. 6B is a partial enlarged view of FIG. 6A. Fig. 6C is a graph showing the curvature of field and the distortion of the distortion of the three-piece thin imaging lens unit of the sixth embodiment from left to right. 6A and 6B, the three-piece thin imaging lens group sequentially includes a flat plate member 660, a first lens 610, a diaphragm 600, a second lens 620, a third lens 630, and an infrared filter filter from the object side to the image side. The light sheet 670, and the imaging surface 680, wherein the three-piece thin imaging lens group has three refractive sheets (610, 620, 630). The aperture 600 is disposed between the first lens 610 and the second lens 620. </p> <p> The flat member 660 is made of glass and disposed between a subject O and the first lens 610 without affecting the focal length of the three-piece thin imaging lens group. </p> <p> The first lens 610 has a negative refractive power and is made of a plastic material, and the object side surface 611 is concave at the near optical axis 690, and the image side surface 612 is concave at the near optical axis 690, and the object side surface 611 The image side surface 612 is aspherical. </p> <p> The second lens 620 has a positive refractive power and is made of a plastic material. The object side surface 621 is convex at the near optical axis 690, and the image side surface 622 is convex at the near optical axis 690, and the object side surface 621 The image side surface 622 is aspherical. </p> <p> The third lens 630 has a positive refractive power and is made of a plastic material, and the object side surface 631 is concave at the near optical axis 690, and the image side surface 632 is convex at the near optical axis 690, and the object side surface 631 And the image side surface 632 is aspherical. </p> <p> The infrared filter 670 is made of glass and disposed between the third lens 630 and the imaging surface 680 without affecting the focal length of the three-piece thin imaging lens group. </p> <p>Refer to refer to Table 11 and Table 12 below. </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> <b>Table 11 </b> </td> </tr> <tr> <td> Sixth Embodiment </td> </tr> <tr> <td> <u>f( </u> <u>focal length) = 0.41 mm (millimeter), Fno (aperture value) = 1.50, FOV (drawn angle) = 108.4 deg. (degrees) </u> </td> </tr> <tr> <td> surface </td> <td> </td> <td> radius of curvature </td> <td> thickness </td> <td> material </td> <td> refractive index </td> <td> dispersion coefficient </td> <td> focal length </td> </tr> <tr> <td> 0 </td> <td> Subject </td> <td> unlimited </td> <td> 0.000 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 1 </td> <td> tablet components </td> <td> unlimited </td> <td> 1.500 </td> <td> glass </td> <td> 1.52 </td> <td> 64.2 </td> <td> </td> </tr> <tr> <td> 2 </td> <td> </td> <td> unlimited </td> <td> 1.335 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 3 </td> <td> first lens </td> <td> -0.853 </td> <td> (ASP) </td> <td> 0.376 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> -1.02 </td> </tr> <tr> <td> 4 </td> <td> </td> <td> 1.820 </td> <td> (ASP) </td> <td> 0.377 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 5 </td> <td> aperture </td> <td> unlimited </td> <td> 0.012 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 6 </td> <td> second lens </td> <td> 0.971 </td> <td> (ASP) </td> <td> 0.294 </td> <td> plastic </td> <td> 1.64 </td> <td> 22.5 </td> <td> 0.71 </td> </tr> <tr> <td> 7 </td> <td> </td> <td> -0.756 </td> <td> (ASP) </td> <td> 0.030 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 8 </td> <td> third lens </td> <td> -3.590 </td> <td> (ASP) </td> <td> 0.247 </td> <td> plastic </td> <td> 1.64 </td> <td> 22.5 </td> <td> 1.12 </td> </tr> <tr> <td> 9 </td> <td> </td> <td> -0.614 </td> <td> (ASP) </td> <td> 0.446 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 10 </td> <td> Infrared filter Remove filter </td> <td> unlimited </td> <td> 0.210 </td> <td> glass </td> <td> 1.52 </td> <td> 54.5 </td> <td> </td> </tr> <tr> <td> 11 </td> <td> </td> <td> unlimited </td> <td> unlimited </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 12 </td> <td> imaging surface </td> <td> unlimited </td> <td> 0.000 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> </tbody> </table> </tables> </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> <b>Table 12 </b> </td> </tr> <tr> <td> aspheric coefficient </td> </tr> <tr> <td> plane </td> <td> 3 </td> <td> 4 </td> <td> 6 </td> <td> 7 </td> <td> 8 </td> <td> 9 </td> </tr> <tr> <td> K: </td> <td> -2.2346E+00 </td> <td> -4.8511E+02 </td> <td> -1.1408E+02 </td> <td> 2.4188E-01 </td> <td> -1.9012E+01 </td> <td> -2.1609E+00 </td> </tr> <tr> <td> A: </td> <td> 2.9713E+00 </td> <td> 5.3750E+00 </td> <td> 7.4884E+00 </td> <td> 1.5791E+00 </td> <td> 2.3434E+00 </td> <td> 2.3264E+00 </td> </tr> <tr> <td> B: </td> <td> -1.1069E+01 </td> <td> 5.7163E+00 </td> <td> -1.0708E+02 </td> <td> -7.1289E+01 </td> <td> -5.7222E+01 </td> <td> -2.7097E+01 </td> </tr> <tr> <td> C: </td> <td> 3.1272E+01 </td> <td> 5.5173E+02 </td> <td> -9.3982E+02 </td> <td> 5.5065E+02 </td> <td> 3.4089E+02 </td> <td> 1.1892E+02 </td> </tr> <tr> <td> D: </td> <td> -5.0186E+01 </td> <td> -6.4911E+03 </td> <td> 2.5277E+04 </td> <td> 2.3419E+03 </td> <td> 2.9363E+03 </td> <td> 1.2778E+03 </td> </tr> <tr> <td> E: </td> <td> 2.8950E+01 </td> <td> -3.6649E+04 </td> <td> 2.6515E+05 </td> <td> -3.3832E+03 </td> <td> 2.4960E+03 </td> <td> 1.0108E+04 </td> </tr> <tr> <td> F </td> <td> 2.0721E+01 </td> <td> 9.3083E+05 </td> <td> -7.3370E+06 </td> <td> -3.0990E+05 </td> <td> -3.4077E+05 </td> <td> -2.1811E+05 </td> </tr> <tr> <td> G </td> <td> -2.5192E+01 </td> <td> -3.5967E+06 </td> <td> 3.4937E+07 </td> <td> 9.6920E+05 </td> <td> 1.1034E+06 </td> <td> 6.7718E+05 </td> </tr> </tbody> </table> </tables> </p> <p> In the sixth embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein. </p> <p>With Table 11, and Table 12, the following data can be derived: </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> Sixth Embodiment </td> </tr> <tr> <td> f[mm] </td> <td> 0.41 </td> <td> f1/R2 </td> <td> -0.56 </td> </tr> <tr> <td> Fno </td> <td> 1.50 </td> <td> f2/R3 </td> <td> 0.73 </td> </tr> <tr> <td> FOV[deg.] </td> <td> 108.40 </td> <td> f2/R4 </td> <td> -0.94 </td> </tr> <tr> <td> | f/(f1*f2*f3) | </td> <td> 0.51 </td> <td> f3/R5 </td> <td> -0.31 </td> </tr> <tr> <td> f/f1 </td> <td> -0.40 </td> <td> f3/R6 </td> <td> -1.82 </td> </tr> <tr> <td> f/f2 </td> <td> 0.57 </td> <td> R1/R2 </td> <td> -0.47 </td> </tr> <tr> <td> f/f3 </td> <td> 0.36 </td> <td> R3/R4 </td> <td> -1.28 </td> </tr> <tr> <td> f/f23 </td> <td> 0.79 </td> <td> R5/R6 </td> <td> 5.85 </td> </tr> <tr> <td> f1/f23 </td> <td> -1.97 </td> <td> OTL/f </td> <td> 11.88 </td> </tr> <tr> <td> f1/R1 </td> <td> 1.19 </td> <td> (f1+f2+f3)/(f1*f2*f3) </td> <td> -1.01 </td> </tr> </tbody> </table> </tables> </p> <p><Seventh embodiment> </p> Referring to FIG. 7A, FIG. 7B and FIG. 7C, FIG. 7A is a schematic view showing a three-piece thin imaging lens unit according to a seventh embodiment of the present invention, and FIG. 7B is a partial enlarged view of FIG. 7A. Fig. 7C is a graph showing the curvature of field and the distortion of the distortion of the three-piece thin imaging lens group of the seventh embodiment, from left to right. 7A and 7B, the three-piece thin imaging lens group sequentially includes a flat plate member 760, a first lens 710, an aperture 700, a second lens 720, a third lens 730, and an infrared filter filter from the object side to the image side. The light sheet 770, and the imaging surface 780, wherein the three-piece thin imaging lens group has three refractive sheets (710, 720, 730). The aperture 700 is disposed between the first lens 710 and the second lens 720. </p> <p> The plate member 760 is made of glass and disposed between a subject O and the first lens 710 without affecting the focal length of the three-piece thin imaging lens group. </p> <p> The first lens 710 has a negative refractive power and is made of a plastic material, and the object side surface 711 is concave at the near optical axis 790, and the image side surface 712 is concave at the near optical axis 790, and the object side surface 711 The image side surface 712 is aspherical. </p> <p> The second lens 720 has a positive refractive power and is made of a plastic material. The object side surface 721 is convex at the near optical axis 790, and the image side surface 722 is convex at the near optical axis 790, and the object side surface 721 The image side surface 722 is aspherical. </p> <p> The third lens 730 has a positive refractive power and is made of a plastic material, and the object side surface 731 is convex at the near optical axis 790, and the image side surface 732 is convex at the near optical axis 790, and the object side surface 731 The image side surface 732 is aspherical. </p> <p> The infrared filter 770 is made of glass and disposed between the third lens 730 and the imaging surface 780 without affecting the focal length of the three-piece thin imaging lens group. </p> <p>Refer to refer to Table 13 and Table 14 below. </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> <b>Table 13 </b> </td> </tr> <tr> <td> Seventh embodiment </td> </tr> <tr> <td> <u>f( </u> <u>focal length) =0.36 mm (mm), Fno (aperture value) = 1.20, FOV (drawn angle) = 129.4 deg. (degrees) </u> </td> </tr> <tr> <td> surface </td> <td> </td> <td> radius of curvature </td> <td> thickness </td> <td> material </td> <td> refractive index </td> <td> dispersion coefficient </td> <td> focal length </td> </tr> <tr> <td> 0 </td> <td> Subject </td> <td> unlimited </td> <td> 0.000 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 1 </td> <td> tablet components </td> <td> unlimited </td> <td> 1.500 </td> <td> glass </td> <td> 1.52 </td> <td> 64.2 </td> <td> </td> </tr> <tr> <td> 2 </td> <td> </td> <td> unlimited </td> <td> 1.028 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 3 </td> <td> first lens </td> <td> -0.489 </td> <td> (ASP) </td> <td> 0.265 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> -0.71 </td> </tr> <tr> <td> 4 </td> <td> </td> <td> 2.118 </td> <td> (ASP) </td> <td> 0.498 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 5 </td> <td> aperture </td> <td> unlimited </td> <td> -0.014 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 6 </td> <td> second lens </td> <td> 0.887 </td> <td> (ASP) </td> <td> 0.414 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> 1.11 </td> </tr> <tr> <td> 7 </td> <td> </td> <td> -1.573 </td> <td> (ASP) </td> <td> 0.034 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 8 </td> <td> third lens </td> <td> 1.496 </td> <td> (ASP) </td> <td> 0.367 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> 0.78 </td> </tr> <tr> <td> 9 </td> <td> </td> <td> -0.544 </td> <td> (ASP) </td> <td> 0.504 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 10 </td> <td> Infrared filter Remove filter </td> <td> unlimited </td> <td> 0.210 </td> <td> glass </td> <td> 1.52 </td> <td> 54.5 </td> <td> </td> </tr> <tr> <td> 11 </td> <td> </td> <td> unlimited </td> <td> unlimited </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 12 </td> <td> imaging surface </td> <td> unlimited </td> <td> 0.000 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> </tbody> </table> </tables> </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> <b>Table 14 </b> </td> </tr> <tr> <td> aspheric coefficient </td> </tr> <tr> <td> plane </td> <td> 3 </td> <td> 4 </td> <td> 6 </td> <td> 7 </td> <td> 8 </td> <td> 9 </td> </tr> <tr> <td> K: </td> <td> -1.0288E+01 </td> <td> 2.9716E+00 </td> <td> -3.9551E+01 </td> <td> 8.7948E+00 </td> <td> -1.1155E+02 </td> <td> 2.5315E-02 </td> </tr> <tr> <td> A: </td> <td> 2.2526E+00 </td> <td> 1.0575E+01 </td> <td> 2.4959E+00 </td> <td> 1.4729E-01 </td> <td> 2.7440E+00 </td> <td> 6.0590E-01 </td> </tr> <tr> <td> B: </td> <td> -7.2346E+00 </td> <td> -8.1161E+01 </td> <td> 1.2231E+01 </td> <td> -5.7392E+00 </td> <td> -3.3256E+01 </td> <td> 2.4679E+01 </td> </tr> <tr> <td> C: </td> <td> 1.4705E+01 </td> <td> 1.1763E+03 </td> <td> -7.4918E+02 </td> <td> 4.7381E+00 </td> <td> 1.0577E+02 </td> <td> -1.1530E+02 </td> </tr> <tr> <td> D: </td> <td> -1.6762E+01 </td> <td> -7.4568E+03 </td> <td> 3.8984E+03 </td> <td> -6.0267E+02 </td> <td> 3.2770E+02 </td> <td> -2.8869E+02 </td> </tr> <tr> <td> E: </td> <td> 8.4455E+00 </td> <td> -2.1681E+04 </td> <td> 9.6229E+04 </td> <td> 4.3158E+03 </td> <td> 1.4087E+03 </td> <td> 6.3091E+03 </td> </tr> <tr> <td> F </td> <td> 7.5050E-01 </td> <td> 4.7807E+05 </td> <td> -1.4250E+06 </td> <td> -1.5818E+04 </td> <td> -5.3255E+04 </td> <td> -2.8925E+04 </td> </tr> <tr> <td> G </td> <td> -1.7802E+00 </td> <td> -1.4468E+06 </td> <td> 5.4193E+06 </td> <td> 2.5578E+04 </td> <td> 1.6613E+05 </td> <td> 4.5475E+04 </td> </tr> </tbody> </table> </tables> </p> <p> In the seventh embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein. </p> <p>With Table 13, and Table 14, the following data can be derived: </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> Seventh embodiment </td> </tr> <tr> <td> f[mm] </td> <td> 0.36 </td> <td> f1/R2 </td> <td> -0.33 </td> </tr> <tr> <td> Fno </td> <td> 1.20 </td> <td> f2/R3 </td> <td> 1.25 </td> </tr> <tr> <td> FOV[deg.] </td> <td> 129.40 </td> <td> f2/R4 </td> <td> -0.70 </td> </tr> <tr> <td> | f/(f1*f2*f3) | </td> <td> 0.59 </td> <td> f3/R5 </td> <td> 0.52 </td> </tr> <tr> <td> f/f1 </td> <td> -0.51 </td> <td> f3/R6 </td> <td> -1.44 </td> </tr> <tr> <td> f/f2 </td> <td> 0.32 </td> <td> R1/R2 </td> <td> -0.23 </td> </tr> <tr> <td> f/f3 </td> <td> 0.46 </td> <td> R3/R4 </td> <td> -0.56 </td> </tr> <tr> <td> f/f23 </td> <td> 0.62 </td> <td> R5/R6 </td> <td> -2.75 </td> </tr> <tr> <td> f1/f23 </td> <td> -1.21 </td> <td> OTL/f </td> <td> 13.39 </td> </tr> <tr> <td> f1/R1 </td> <td> 1.44 </td> <td> (f1+f2+f3)/(f1*f2*f3) </td> <td> -1.94 </td> </tr> </tbody> </table> </tables> </p> <p> <Eighth Embodiment> </p> Referring to FIG. 8A, FIG. 8B and FIG. 8C, FIG. 8A is a schematic view showing a three-piece thin imaging lens unit according to an eighth embodiment of the present invention, and FIG. 8B is a partial enlarged view of FIG. 8A. Fig. 8C is a graph showing the curvature of field and the distortion of the distortion of the three-piece thin imaging lens group of the eighth embodiment from left to right. As shown in FIG. 8A and FIG. 8B, the three-piece thin imaging lens group sequentially includes a flat plate member 860, a first lens 810, an aperture 800, a second lens 820, a third lens 830, and an infrared filter filter from the object side to the image side. The light sheet 870, and the imaging surface 880, wherein the three-piece thin imaging lens group has three refractive sheets (810, 820, 830). The aperture 800 is disposed between the first lens 810 and the second lens 820. </p> <p> The plate member 860 is made of glass and disposed between a subject O and the first lens 810 without affecting the focal length of the three-piece thin imaging lens group. </p> <p> The first lens 810 has a negative refractive power and is made of a plastic material, and the object side surface 811 is concave at the near optical axis 890, and the image side surface 812 is concave at the near optical axis 890, and the object side surface 811 The image side surface 812 is aspherical. </p> <p> The second lens 820 has a positive refractive power and is made of a plastic material, and the object side surface 821 is convex at the near optical axis 890, and the image side surface 822 is convex at the near optical axis 890, and the object side surface 821 The image side surface 822 is aspherical. </p> <p> The third lens 830 has a positive refractive power and is made of a plastic material, and the object side surface 831 is convex at the near optical axis 890, and the image side surface 832 is convex at the near optical axis 890, and the object side surface 831 The image side surface 832 is aspherical. </p> <p> The infrared filter 870 is made of glass and disposed between the third lens 830 and the imaging surface 880 without affecting the focal length of the three-piece thin imaging lens group. </p> <p>Refer to refer to Table 15 and Table 16 below. </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> <b>Table 15 </b> </td> </tr> <tr> <td> Eighth embodiment </td> </tr> <tr> <td> <u>f( </u> <u>focal length) = 0.39 mm (millimeter), Fno (aperture value) = 1.60, FOV (drawn angle) = 111.0 deg. (degrees) </u> </td> </tr> <tr> <td> surface </td> <td> </td> <td> radius of curvature </td> <td> thickness </td> <td> material </td> <td> refractive index </td> <td> dispersion coefficient </td> <td> focal length </td> </tr> <tr> <td> 0 </td> <td> Subject </td> <td> unlimited </td> <td> 0.000 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 1 </td> <td> tablet components </td> <td> unlimited </td> <td> 1.500 </td> <td> glass </td> <td> 1.52 </td> <td> 64.2 </td> <td> </td> </tr> <tr> <td> 2 </td> <td> </td> <td> unlimited </td> <td> 1.192 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 3 </td> <td> first lens </td> <td> -0.862 </td> <td> (ASP) </td> <td> 0.267 </td> <td> plastic </td> <td> 1.64 </td> <td> 22.5 </td> <td> -0.92 </td> </tr> <tr> <td> 4 </td> <td> </td> <td> 2.251 </td> <td> (ASP) </td> <td> 0.413 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 5 </td> <td> aperture </td> <td> unlimited </td> <td> 0.023 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 6 </td> <td> second lens </td> <td> 1.124 </td> <td> (ASP) </td> <td> 0.391 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> 1.06 </td> </tr> <tr> <td> 7 </td> <td> </td> <td> -1.060 </td> <td> (ASP) </td> <td> 0.115 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 8 </td> <td> third lens </td> <td> 0.353 </td> <td> (ASP) </td> <td> 0.264 </td> <td> plastic </td> <td> 1.54 </td> <td> 56 </td> <td> 0.81 </td> </tr> <tr> <td> 9 </td> <td> </td> <td> 1.280 </td> <td> (ASP) </td> <td> 0.337 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 10 </td> <td> Infrared filter Remove filter </td> <td> unlimited </td> <td> 0.145 </td> <td> glass </td> <td> 1.52 </td> <td> 54.5 </td> <td> </td> </tr> <tr> <td> 11 </td> <td> </td> <td> unlimited </td> <td> unlimited </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> <tr> <td> 12 </td> <td> imaging surface </td> <td> unlimited </td> <td> 0.000 </td> <td> </td> <td> </td> <td> </td> <td> </td> </tr> </tbody> </table> </tables> </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> <b>Table 16 </b> </td> </tr> <tr> <td> aspheric coefficient </td> </tr> <tr> <td> plane </td> <td> 3 </td> <td> 4 </td> <td> 6 </td> <td> 7 </td> <td> 8 </td> <td> 9 </td> </tr> <tr> <td> K: </td> <td> -1.0334E+01 </td> <td> -3.2949E+02 </td> <td> -6.5202E+01 </td> <td> 2.7538E+00 </td> <td> -3.9237E-01 </td> <td> 4.8950E+00 </td> </tr> <tr> <td> A: </td> <td> 2.3249E+00 </td> <td> 6.4379E+00 </td> <td> -3.1459E-01 </td> <td> -1.0773E+01 </td> <td> -9.2564E+00 </td> <td> 3.8193E+00 </td> </tr> <tr> <td> B: </td> <td> -5.4793E+00 </td> <td> -2.9503E+00 </td> <td> 7.7474E+00 </td> <td> 6.4661E+01 </td> <td> 8.2212E+01 </td> <td> -4.3656E+01 </td> </tr> <tr> <td> C: </td> <td> 8.8566E+00 </td> <td> 4.9837E+01 </td> <td> -4.4062E+02 </td> <td> -1.0320E+02 </td> <td> -1.0312E+03 </td> <td> 9.7123E+01 </td> </tr> <tr> <td> D: </td> <td> -5.9101E+00 </td> <td> 4.4457E+02 </td> <td> 9.0463E+03 </td> <td> -1.4259E+03 </td> <td> 5.8260E+03 </td> <td> -7.6089E+01 </td> </tr> <tr> <td> E: </td> <td> 2.3959E-03 </td> <td> -1.7922E+03 </td> <td> -2.8651E+05 </td> <td> 4.1769E+03 </td> <td> -1.5877E+04 </td> <td> 1.0505E+02 </td> </tr> <tr> <td> F </td> <td> 7.0452E-01 </td> <td> -2.6077E+03 </td> <td> 3.0193E+06 </td> <td> -1.9325E+03 </td> <td> 8.8566E+03 </td> <td> -6.6612E+02 </td> </tr> <tr> <td> G </td> <td> 9.6205E-03 </td> <td> -5.9073E+00 </td> <td> 0.0000E+00 </td> <td> 0.0000E+00 </td> <td> 0.0000E+00 </td> <td> 0.0000E+00 </td> </tr> </tbody> </table> </tables> </p> <p> In the eighth embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein. </p> <p>With Table 15, and Table 16, the following data can be derived: </p> <p> <tables> <table border="1" bordercolor="#000000" width="85%"> <tbody> <tr> <td> Eighth embodiment </td> </tr> <tr> <td> f[mm] </td> <td> 0.39 </td> <td> f1/R2 </td> <td> -0.41 </td> </tr> <tr> <td> Fno </td> <td> 1.60 </td> <td> f2/R3 </td> <td> 0.95 </td> </tr> <tr> <td> FOV[deg.] </td> <td> 111.00 </td> <td> f2/R4 </td> <td> -1.00 </td> </tr> <tr> <td> | f/(f1*f2*f3) | </td> <td> 0.49 </td> <td> f3/R5 </td> <td> 2.29 </td> </tr> <tr> <td> f/f1 </td> <td> -0.42 </td> <td> f3/R6 </td> <td> 0.63 </td> </tr> <tr> <td> f/f2 </td> <td> 0.36 </td> <td> R1/R2 </td> <td> -0.38 </td> </tr> <tr> <td> f/f3 </td> <td> 0.48 </td> <td> R3/R4 </td> <td> -1.06 </td> </tr> <tr> <td> f/f23 </td> <td> 0.76 </td> <td> R5/R6 </td> <td> 0.28 </td> </tr> <tr> <td> f1/f23 </td> <td> -1.81 </td> <td> OTL/f </td> <td> 12.02 </td> </tr> <tr> <td> f1/R1 </td> <td> 1.07 </td> <td> (f1+f2+f3)/(f1*f2*f3) </td> <td> -1.20 </td> </tr> </tbody> </table> </tables> </p> <p>The three-piece thin imaging lens set provided by the invention can be made of plastic or glass. When the lens material is plastic, the production cost can be effectively reduced. When the lens is made of glass, the three-piece type can be added. The freedom of the flexural force configuration of the thin imaging lens set. In addition, the object side surface and the image side surface of the lens in the three-piece thin imaging lens group may be aspherical, and the aspheric surface can be easily formed into a shape other than the spherical surface, and more control variables are obtained to reduce the aberration and thereby reduce The number of lenses used can therefore effectively reduce the overall length of the three-piece thin imaging lens set of the present invention. </p> <p> In the three-piece thin imaging lens set provided by the present invention, in the case of a lens having a refractive power, if the lens surface is convex and the convex position is not defined, it means that the lens surface is at the low beam axis. If the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is concave at the low beam axis. </p> In the above, the above embodiments and the drawings are only the preferred embodiments of the present invention, and the scope of the present invention is not limited thereto, that is, the average variation of the scope of the patent application of the present invention is Modifications are all within the scope of the invention. </p> </mode-for-invention> <description-of-drawings> <description-of-element> <p>100, 200, 300, 400, 500, 600, 700, 800‧‧ ‧ aperture </p> <p>110, 210, 310, 410, 510, 610, 710, 810‧‧‧ first lens </p> <p>111, 211, 311, 411, 511, 611, 711, 811‧‧‧ ‧ side surface </p> <p>112, 212, 312, 412, 512, 612, 712, 812‧‧‧ image side surface </p> <p>120, 220, 320, 420, 520, 620, 720, 820‧‧‧ second lens </p> <p>121, 221, 321, 421, 521, 621, 721, 821‧‧‧ ‧ side surface </p> <p>122, 222, 322, 422, 522, 622, 722, 822‧‧‧ image side surface </p> <p>130, 230, 330, 430, 530, 630, 730, 830 ‧ ‧ third lens </p> <p>131, 231, 331, 431, 531, 631, 731, 831 ‧ ‧ ‧ side surface </p> <p>132, 232, 332, 432, 532, 632, 732, 832‧‧‧ image side surface </p> <p>160, 260, 360, 460, 560, 660, 760, 860 ‧ ‧ tablet components </p> <p>170, 270, 370, 470, 570, 670, 770, 870‧‧‧ Infrared Filters </p> <p>180, 280, 380, 480, 580, 680, 780, 880 ‧ ‧ imaging surface </p> <p>190, 290, 390, 490, 590, 690, 790, 890‧‧‧ optical axis </p> <p>f‧‧‧Focus of the three-piece thin imaging lens set </p> <p>Anodic value of Fno‧‧‧ three-piece thin imaging lens set </p> <p>Maximum field of view in the FOV‧‧‧ three-piece thin imaging lens set </p> <p>f1‧‧‧The focal length of the first lens </p> <p>f2‧‧‧The focal length of the second lens </p> <p>f3‧‧‧The focal length of the third lens </p> <p>R1‧‧‧The radius of curvature of the side surface of the first lens </p> <p>R2‧‧‧The radius of curvature of the side surface of the first lens image </p> <p>R3‧‧‧The radius of curvature of the side surface of the second lens </p> <p>R4‧‧‧The radius of curvature of the side surface of the second lens image </p> <p>R5‧‧‧ radius of curvature of the side surface of the third lens </p> <p>R6‧‧‧The radius of curvature of the side surface of the third lens image </p> <p>OTL‧‧‧The distance from the subject to the imaging surface on the optical axis </p> </description-of-element> <1> Fig. 1A is a schematic view showing a three-piece thin imaging lens group of the first embodiment of the present invention. Fig. 1B is a partial enlarged view of Fig. 1A. Fig. 1C is a graph showing the curvature of field and the distortion of the distortion of the three-piece thin imaging lens group of the first embodiment from left to right. 2A is a schematic view of a three-piece thin imaging lens set of a second embodiment of the present invention. 2B is a partial enlarged view of FIG. 2A. 2C is a graph showing the curvature of field and the distortion of the distortion of the three-piece thin imaging lens group of the second embodiment from left to right. Fig. 3A is a schematic view showing a three-piece thin imaging lens group of a third embodiment of the present invention. Fig. 3B is a partial enlarged view of Fig. 3A. Fig. 3C is a graph showing the curvature of field and the distortion of the distortion of the three-piece thin imaging lens group of the third embodiment, from left to right. 4A is a schematic view of a three-piece thin imaging lens set of a fourth embodiment of the present invention. Fig. 4B is a partial enlarged view of Fig. 4A. 4C is a graph showing the curvature of field and the distortion of the distortion of the three-piece thin imaging lens group of the fourth embodiment from left to right. Fig. 5A is a schematic view showing a three-piece thin imaging lens group of a fifth embodiment of the present invention. Fig. 5B is a partial enlarged view of Fig. 5A. Fig. 5C is a graph showing the curvature of field and the distortion of the distortion of the three-piece thin imaging lens group of the fifth embodiment from left to right. Fig. 6A is a schematic view showing a three-piece thin imaging lens group of a sixth embodiment of the present invention. Fig. 6B is a partial enlarged view of Fig. 6A. Fig. 6C is a graph showing the curvature of field and the distortion of the distortion of the three-piece thin imaging lens unit of the sixth embodiment from left to right. Fig. 7A is a schematic view showing a three-piece thin imaging lens group of a seventh embodiment of the present invention. Fig. 7B is a partial enlarged view of Fig. 7A. Fig. 7C is a graph showing the curvature of field and the distortion of the distortion of the three-piece thin imaging lens group of the seventh embodiment, from left to right. Fig. 8A is a schematic view showing a three-piece thin imaging lens group of an eighth embodiment of the present invention. Fig. 8B is a partial enlarged view of Fig. 8A. Fig. 8C is a graph showing the curvature of field and the distortion of the distortion of the three-piece thin imaging lens group of the eighth embodiment from left to right. </p> </description-of-drawings> <bio-deposit /> <sequence-list-text />

Claims (16)

一種三片式薄型成像鏡片組,由物侧至像侧依序包含:一平板元件,為玻璃材質;一第一透鏡,具有負屈折力,其物側表面近光軸處為凹面,其物側表面與像側表面至少一表面為非球面;一光圈;一第二透鏡,具有正屈折力,其物側表面近光軸處為凸面,其像側表面近光軸處為凸面,其物側表面與像側表面至少一表面為非球面;以及一第三透鏡,具有正屈折力,其物側表面與像側表面至少一表面為非球面;其中該三片式薄型成像鏡片組中具屈折力的透鏡為三片,該三片式薄型成像鏡片組中最大視場角為FOV,一被攝物至一成像面於光軸上的距離為OTL,該三片式薄型成像鏡片組的整體焦距為f,該第一透鏡的焦距為f1,該第二透鏡的焦距為f2,該第三透鏡的焦距為f3,該第三透鏡物側表面的曲率半徑為R5,並滿足下列條件:90度<FOV<140度;2公厘<OTL<6公厘;0.2<|f/(f1×f2×f3)|<0.7;-0.7<f3/R5<2.7。 A three-piece thin imaging lens group comprises, in order from the object side to the image side, a plate member, which is made of glass material; a first lens having a negative refractive power, and a concave surface of the object side surface near the optical axis, At least one surface of the side surface and the image side surface is aspherical; an aperture; a second lens having a positive refractive power, the object side surface being convex at the near optical axis, and the image side surface being convex at the near optical axis, At least one surface of the side surface and the image side surface is aspherical; and a third lens having a positive refractive power, wherein at least one surface of the object side surface and the image side surface is aspherical; wherein the three-piece thin imaging lens group has The lens of the refractive power is three. The maximum angle of view of the three-piece thin imaging lens group is FOV, and the distance from a subject to an imaging surface on the optical axis is OTL, and the three-piece thin imaging lens group The overall focal length is f, the focal length of the first lens is f1, the focal length of the second lens is f2, the focal length of the third lens is f3, and the radius of curvature of the surface of the third lens object is R5, and the following conditions are met: 90 degrees <FOV < 140 degrees; 2 mm <OTL < 6 mm; 0. 2<|f/(f1×f2×f3)|<0.7; -0.7<f3/R5<2.7. 如請求項1所述的三片式薄型成像鏡片組,其中該三片式薄型成像鏡片組的整體焦距為f,該第一透鏡的焦距為f1,並滿足下列條件:-0.7<f/f1<-0.1。 The three-piece thin imaging lens set according to claim 1, wherein the three-piece thin imaging lens group has an overall focal length of f, the first lens has a focal length of f1, and satisfies the following condition: -0.7 < f/f1 <-0.1. 如請求項1所述的三片式薄型成像鏡片組,其中該三片式薄型成像鏡片組的整體焦距為f,該第二透鏡的焦距為f2,並滿足下列條件:0.1<f/f2<0.75。 The three-piece thin imaging lens set according to claim 1, wherein the three-piece thin imaging lens group has an overall focal length of f, the second lens has a focal length of f2, and satisfies the following condition: 0.1<f/f2< 0.75. 如請求項1所述的三片式薄型成像鏡片組,其中該三片式薄型成像鏡片組的整體焦距為f,該第三透鏡的焦距為f3,並滿足下列條件:0.07<f/f3<0.68。 The three-piece thin imaging lens set according to claim 1, wherein the three-piece thin imaging lens group has an overall focal length of f, the third lens has a focal length of f3, and satisfies the following condition: 0.07<f/f3< 0.68. 如請求項1所述的三片式薄型成像鏡片組,其中該三片式薄型成像鏡片組的整體焦距為f,該第二透鏡與第三透鏡的合成焦距為f23,並滿足下列條件:0.4<f/f23<1.0。 The three-piece thin imaging lens set according to claim 1, wherein the three-piece thin imaging lens group has an overall focal length of f, and the second lens and the third lens have a combined focal length of f23 and satisfy the following condition: 0.4 <f/f23<1.0. 如請求項1所述的三片式薄型成像鏡片組,其中該第一透鏡的焦距為f1,該第二透鏡與第三透鏡的合成焦距為f23,並滿足下列條件:-2.9<f1/f23<-1.0。 The three-piece thin imaging lens set according to claim 1, wherein a focal length of the first lens is f1, a combined focal length of the second lens and the third lens is f23, and the following condition is satisfied: -2.9 <f1/f23 <-1.0. 如請求項1所述的三片式薄型成像鏡片組,其中該第一透鏡的焦距為f1,該第一透鏡物側表面的曲率半徑為R1,並滿足下列條件:0.6<f1/R1<2.4。 The three-piece thin imaging lens set according to claim 1, wherein the focal length of the first lens is f1, the radius of curvature of the first lens object side surface is R1, and the following condition is satisfied: 0.6 < f1/R1 < 2.4 . 如請求項1所述的三片式薄型成像鏡片組,其中該第一透鏡的焦距為f1,該第一透鏡像側表面的曲率半徑為R2,並滿足下列條件:-1.0<f1/R2<0.6。 The three-piece thin imaging lens set according to claim 1, wherein the focal length of the first lens is f1, the radius of curvature of the side surface of the first lens image is R2, and the following condition is satisfied: -1.0<f1/R2< 0.6. 如請求項1所述的三片式薄型成像鏡片組,其中該第二透鏡的焦距為f2,該第二透鏡物側表面的曲率半徑為R3,並滿足下列條件:0.2<f2/R3<1.6。 The three-piece thin imaging lens set according to claim 1, wherein the second lens has a focal length of f2, and the second lens object side surface has a radius of curvature of R3 and satisfies the following condition: 0.2 < f2 / R3 < 1.6 . 如請求項1所述的三片式薄型成像鏡片組,其中該第二透鏡的焦距為f2,該第二透鏡像側表面的曲率半徑為R4,並滿足下列條件:-1.8<f2/R4<-0.4。 The three-piece thin imaging lens set according to claim 1, wherein the second lens has a focal length of f2, and the second lens image side surface has a radius of curvature of R4 and satisfies the following condition: -1.8<f2/R4< -0.4. 如請求項1所述的三片式薄型成像鏡片組,其中該第三透鏡的焦距為f3,該第三透鏡像側表面的曲率半徑為R6,並滿足下列條件:-2.1<f3/R6<1.0。 The three-piece thin imaging lens set according to claim 1, wherein the third lens has a focal length of f3, and the third lens image side surface has a radius of curvature of R6 and satisfies the following condition: -2.1<f3/R6< 1.0. 如請求項1所述的三片式薄型成像鏡片組,其中該第一透鏡物側表面的曲率半徑為R1,該第一透鏡像側表面的曲率半徑為R2,並滿足下列條件:-0.9<R1/R2<0.6。 The three-piece thin imaging lens set according to claim 1, wherein a radius of curvature of the first lens object side surface is R1, a radius of curvature of the first lens image side surface is R2, and the following condition is satisfied: -0.9< R1/R2 < 0.6. 如請求項1所述的三片式薄型成像鏡片組,其中該第二透鏡物側表面的曲率半徑為R3,該第二透鏡像側表面的曲率半徑為R4,並滿足下列條件:-3.2<R3/R4<-0.1。 The three-piece thin imaging lens set according to claim 1, wherein a radius of curvature of the second lens object side surface is R3, a radius of curvature of the second lens image side surface is R4, and the following condition is satisfied: -3.2< R3/R4<-0.1. 如請求項1所述的三片式薄型成像鏡片組,其中該第三透鏡物側表面的曲率半徑為R5,該第三透鏡像側表面的曲率半徑為R6,並滿足下列條件:-95<R5/R6<10。 The three-piece thin imaging lens set according to claim 1, wherein a radius of curvature of the third lens object side surface is R5, and a radius of curvature of the third lens image side surface is R6, and the following condition is satisfied: -95< R5/R6<10. 如請求項1所述的三片式薄型成像鏡片組,其中該三片式薄型成像鏡片組的整體焦距為f,該被攝物至成像面於光軸上的距離為OTL,並滿足下列條件:8.0<OTL/f<18.0。 The three-piece thin imaging lens group according to claim 1, wherein the overall focal length of the three-piece thin imaging lens group is f, the distance from the object to the imaging surface on the optical axis is OTL, and the following conditions are satisfied. : 8.0 <OTL/f<18.0. 如請求項1所述的三片式薄型成像鏡片組,其中該第一透鏡的焦距為f1,該第二透鏡的焦距為f2,該第三透鏡的焦距為f3,並滿足下列條件:-2.4<(f1+f2+f3)/(f1*f2*f3)<-0.1。 The three-piece thin imaging lens set according to claim 1, wherein a focal length of the first lens is f1, a focal length of the second lens is f2, a focal length of the third lens is f3, and the following condition is satisfied: -2.4 <(f1+f2+f3)/(f1*f2*f3)<-0.1.
TW107135703A 2018-10-11 2018-10-11 Three-piece compact optical lens system TWI674448B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107135703A TWI674448B (en) 2018-10-11 2018-10-11 Three-piece compact optical lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107135703A TWI674448B (en) 2018-10-11 2018-10-11 Three-piece compact optical lens system

Publications (2)

Publication Number Publication Date
TWI674448B true TWI674448B (en) 2019-10-11
TW202014754A TW202014754A (en) 2020-04-16

Family

ID=69023756

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107135703A TWI674448B (en) 2018-10-11 2018-10-11 Three-piece compact optical lens system

Country Status (1)

Country Link
TW (1) TWI674448B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021147012A1 (en) * 2020-01-22 2021-07-29 深圳市汇顶科技股份有限公司 Optical fingerprint recognition device and electronic apparatus
US11106009B2 (en) 2018-12-03 2021-08-31 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device
US11385440B2 (en) 2019-04-10 2022-07-12 Largan Precision Co., Ltd. Optical photographing lens assembly, fingerprint identification module and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM459408U (en) * 2013-04-15 2013-08-11 Ability Opto Electronics Technology Co Ltd Thin type wide-angle three-piece type imaging lens module
TW201626037A (en) * 2015-01-09 2016-07-16 大立光電股份有限公司 Compact optical system, image capturing unit and electronic device
CN107976770A (en) * 2016-10-21 2018-05-01 大立光电股份有限公司 Miniature image capturing system, image capturing device and electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM459408U (en) * 2013-04-15 2013-08-11 Ability Opto Electronics Technology Co Ltd Thin type wide-angle three-piece type imaging lens module
TW201626037A (en) * 2015-01-09 2016-07-16 大立光電股份有限公司 Compact optical system, image capturing unit and electronic device
CN107976770A (en) * 2016-10-21 2018-05-01 大立光电股份有限公司 Miniature image capturing system, image capturing device and electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11106009B2 (en) 2018-12-03 2021-08-31 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device
US11668906B2 (en) 2018-12-03 2023-06-06 Largan Precision Co., Ltd. Optical imaging lens assembly, image capturing unit and electronic device
US11385440B2 (en) 2019-04-10 2022-07-12 Largan Precision Co., Ltd. Optical photographing lens assembly, fingerprint identification module and electronic device
WO2021147012A1 (en) * 2020-01-22 2021-07-29 深圳市汇顶科技股份有限公司 Optical fingerprint recognition device and electronic apparatus

Also Published As

Publication number Publication date
TW202014754A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
TWI467220B (en) Imaging lens system
TWI467221B (en) Image capturing optical lens assembly
US8619375B2 (en) Image pickup lens
TWI674448B (en) Three-piece compact optical lens system
CN111123489B (en) Three-piece thin imaging lens group
CN201035206Y (en) Two glasses lens type optical pick-up lens
CN211653281U (en) Three-piece thin imaging lens group
TWM474142U (en) Thinned four-piece imaging lens module
CN106526803B (en) Miniature camera lens
TWI716220B (en) Three-piece compact optical lens system
TW202240235A (en) Optical lens system and photographing module
TW202001325A (en) Four-piece infrared single wavelength lens system
CN110737080B (en) Thin imaging lens group
TWI588532B (en) Four-piece infrared single wavelength lens assembly
TWI516798B (en) Optical lens system with a wide field of view
TWI696859B (en) Compact optical lens system
TWI753815B (en) Optical lens system,imaging device and electronic device
TWI606260B (en) Six-piece optical lens system
TWI612325B (en) Five-piece optical lens system
TWM466268U (en) Five-piece type imaging lens module
TW202234117A (en) Optical lens system and photographing module
TWI407139B (en) Compact imaging lens assembly
TW202141112A (en) Five-piece infrared single focus lens system
CN113156609A (en) Three-piece thin imaging lens group
TWI709782B (en) Four-piece infrared single wavelength lens system