TWI673034B - Methods and system for detecting blepharoptosis - Google Patents

Methods and system for detecting blepharoptosis Download PDF

Info

Publication number
TWI673034B
TWI673034B TW107126188A TW107126188A TWI673034B TW I673034 B TWI673034 B TW I673034B TW 107126188 A TW107126188 A TW 107126188A TW 107126188 A TW107126188 A TW 107126188A TW I673034 B TWI673034 B TW I673034B
Authority
TW
Taiwan
Prior art keywords
eyelid
eye
image
edge
pupil
Prior art date
Application number
TW107126188A
Other languages
Chinese (zh)
Other versions
TW202007353A (en
Inventor
賴春生
蔣依吾
Original Assignee
高雄醫學大學
國立中山大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高雄醫學大學, 國立中山大學 filed Critical 高雄醫學大學
Priority to TW107126188A priority Critical patent/TWI673034B/en
Application granted granted Critical
Publication of TWI673034B publication Critical patent/TWI673034B/en
Publication of TW202007353A publication Critical patent/TW202007353A/en

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Analysis (AREA)

Abstract

一種眼瞼下垂檢測方法及系統,用以解決習知人工眼瞼下垂檢測方法需耗費大量時間,以及不同醫師量測不一致造成測量結果產生誤差的問題。該方法及系統係包含:以一攝影單元拍攝產生一眼部影像;以一處理單元對該眼部影像執行影像處理,產生一邊緣影像;以該處理單元對該眼部影像及該邊緣影像執行影像運算,取得複數個特徵變數;以該處理單元依據該複數個特徵變數計算,取得一特徵參數組;及以該處理單元將該特徵參數組與一預設眼瞼下垂資訊相比對,推知眼瞼下垂之嚴重程度及提眼肌之功能。 An eyelid sagging detection method and system are used to solve the problems that the conventional artificial eyelid sagging detection method takes a lot of time and the measurement results are inconsistent by different doctors and cause errors in measurement results. The method and system include: shooting an eye image with a photographing unit to generate an eye image; performing image processing on the eye image with a processing unit to generate an edge image; and executing the eye image and the edge image with the processing unit. Image processing to obtain a plurality of characteristic variables; the processing unit calculates a characteristic parameter group based on the plurality of characteristic variables; and uses the processing unit to compare the characteristic parameter group with a preset eyelid droop information to infer the eyelid Severity of sagging and function of eye lift.

Description

眼瞼下垂檢測方法及系統 Eyelid droop detection method and system

本發明係關於一種檢測方法及系統,尤其是一種可以透過機器視覺技術推導用以判斷眼瞼下垂的相關數據,並依該數據推知眼瞼下垂嚴重程度及提眼肌功能正常與否的眼瞼下垂檢測方法及系統。 The present invention relates to a detection method and system, in particular to a method for detecting eyelid droop, which can be derived through machine vision technology and used to determine the severity of eyelid droop and whether eye muscle function is normal or not based on the data. And system.

眼瞼下垂可區分為先天性眼瞼下垂及後天性眼瞼下垂,造成先天性眼瞼下垂的其中一原因係病患於出生時,其提眼肌發育不良所造成,而造成後天性眼瞼下垂的其中一原因則係提眼肌無張力所引起,導致上眼瞼無法張開至正常高度。再且,當病患之眼瞼邊緣蓋住瞳孔後,病患除視野受到影響外,病患為張開上眼瞼容易無意識地提高眉毛或抬高下巴,更會造成額頭皺紋、肩頸痠痛、腰痛或造成眼睛疲勞等症狀。 Eyelid ptosis can be divided into congenital eyelid ptosis and acquired eyelid ptosis. One of the causes of congenital eyelid ptosis is that the patient's eyelid dysplasia is caused at birth and one of the causes of acquired ptosis It is caused by the tension of the eye-lifting muscles, which prevents the upper eyelid from opening to a normal height. In addition, after the pupil of the eyelid covers the pupil, in addition to the visual field is affected, the patient is likely to unconsciously raise the eyebrows or raise the chin by opening the upper eyelid, and it will also cause forehead wrinkles, shoulder and neck pain, and back pain Or cause symptoms such as eye fatigue.

習知治療眼瞼下垂的手術方式係取決於眼瞼下垂的程度,或/及提眼肌功能的狀態,因此,在決定適當手術方式前,醫師會以人工方式拿尺測量病患眼瞼靜態或眼瞼動態位置,以分別取得瞳孔中心點至上眼瞼下緣交集點距離(MRD1)、瞳孔中心點至下眼瞼上緣交集點距離(MRD2)、下垂嚴重程度(Ptosis Severity)及提眼肌功能(Levator Function)等相關數據,醫師再依據該些數據分析眼瞼下垂嚴重程度。再且,當醫師依眼瞼下垂嚴重程度決定合適的手術方式,並以該手術方式進行手術後,醫師會再以人工方式拿尺測量該些數據,評估手術功效。 Known surgical methods to treat eyelid droop depend on the degree of eyelid droop, and / or the state of eyelift function. Therefore, before deciding on the appropriate surgical method, the doctor will manually measure the patient's eyelid static or eyelid dynamics with a ruler. Position to obtain the distance from the center of the pupil to the intersection of the upper edge of the upper eyelid (MRD1), the distance from the center of the pupil to the intersection of the lower edge of the upper eyelid (MRD2), the severity of sagging (Ptosis Severity), and the levator function Based on the relevant data, the physician then analyzed the severity of eyelid droop based on the data. Furthermore, when the physician decides the appropriate surgical method according to the severity of eyelid droop, and after performing the operation in this surgical method, the physician will manually measure the data with a ruler to evaluate the surgical efficacy.

然而,上述習知眼瞼下垂檢測方式耗費大量時間於量測如瞳孔中心點至上眼瞼下緣交集點距離(MRD1)、瞳孔中心點至下眼瞼上緣交集點距離(MRD2)、下垂嚴重程度(Ptosis Severity)及提眼肌功能(Levator Function)等相關數據,且不同醫師的量測亦不一致,容易造成測量結果的誤差。 However, the above-mentioned conventional eyelid droop detection method takes a lot of time to measure such as the distance from the center of the pupil to the intersection of the upper edge of the upper eyelid (MRD1), the distance from the center of the pupil to the intersection of the upper edge of the lower eyelid (MRD2), and the severity of the sagging (Ptosis Severity, Levator Function, and other related data, and the measurements of different doctors are also inconsistent, which easily causes errors in the measurement results.

有鑑於此,習知的眼瞼下垂檢測方法確實仍有加以改善之必要。 In view of this, the conventional eyelid droop detection method still needs to be improved.

為解決上述問題,本發明目的是提供一種眼瞼下垂檢測方法,係可以透過機器視覺技術推導用以判斷眼瞼下垂的相關數據,並依該數據推知眼瞼下垂嚴重程度及提眼肌功能正常者。 In order to solve the above problems, the present invention aims to provide a method for detecting eyelid droop, which can derive relevant data for judging eyelid droop through machine vision technology, and infer the severity of eyelid droop and normal eye muscle function based on the data.

本發明的次一目的是提供一種眼瞼下垂檢測系統,能夠透過影像處理及機器視覺推導用以判斷眼瞼下垂的相關數據,並依該數據進行自動化檢測提眼肌功能正常與否及檢測眼瞼下垂嚴重程度者。 A secondary object of the present invention is to provide an eyelid droop detection system capable of deriving relevant data for eyelid droop through image processing and machine vision, and automatically detecting whether eye muscle function is normal and detecting severe eyelid droop based on the data. Degrees.

本發明的眼瞼下垂檢測方法,包含:拍攝產生眼部影像,該眼部影像係包含一瞳孔平視影像、一瞳孔用力朝上影像及一瞳孔用力朝下影像;對該眼部影像執行影像處理,產生一邊緣影像;對該眼部影像及該邊緣影像執行影像運算,取得複數個特徵變數;依據該複數個特徵變數計算,取得一特徵參數組;及將該特徵參數組與一預設眼瞼下垂資訊相比對,推知眼瞼下垂之嚴重程度及提眼肌之功能。 The method for detecting drooping eyelids of the present invention includes: photographing and generating an eye image, the eye image includes a pupil head-up image, a pupil force upward image, and a pupil force downward image; performing image processing on the eye image To generate an edge image; perform image calculations on the eye image and the edge image to obtain a plurality of feature variables; calculate according to the plurality of feature variables to obtain a feature parameter group; and the feature parameter group and a preset eyelid Comparison of sagging information, to infer the severity of eyelid droop and the function of eye muscles.

本發明的眼瞼下垂檢測系統,包含:一攝影單元,用以拍攝產生眼部影像,該眼部影像係包含一瞳孔平視影像、一瞳孔用力朝上影像及一瞳孔用力朝下影像;一儲存單元,用以儲存一預設眼瞼下垂資訊;及一處理 單元,耦接該攝影單元及該儲存單元,該處理單元對該眼部影像執行影像處理,產生一邊緣影像,該處理單元對該眼部影像及該邊緣影像執行影像運算,取得複數個特徵變數,該處理單元依該複數個特徵變數計算取得一特徵參數組,並將該特徵參數組與該預設眼瞼下垂資訊相比對,推知眼瞼下垂之嚴重程度及提眼肌之功能。 The eyelid droop detection system of the present invention includes: a photographing unit for photographing and generating an eye image, the eye image includes a pupil head-up image, a pupil force upward image, and a pupil force downward image; a storage A unit for storing a preset eyelid sagging information; and a process A unit coupled to the photographing unit and the storage unit, the processing unit performs image processing on the eye image to generate an edge image, and the processing unit performs image operations on the eye image and the edge image to obtain a plurality of feature variables The processing unit calculates and obtains a characteristic parameter group according to the plurality of characteristic variables, and compares the characteristic parameter group with the preset eyelid sagging information to infer the severity of the eyelid sagging and the function of the eye-lifting muscle.

據此,本發明的眼瞼下垂檢測方法及系統,能夠以影像處理技術搭配機器視覺取得病患眼部資訊,並以該眼部資訊推導用以判斷眼瞼下垂的相關數據,及依該數據進行自動化檢測提眼肌之功能及檢測眼瞼下垂之嚴重程度。藉此,係可以達到操作方便、大幅縮短測量時間及提升量測一致性、同時檢測眼瞼下垂之嚴重程度及提眼肌之功能等功效。 According to this, the eyelid droop detection method and system of the present invention can obtain the patient's eye information by using image processing technology and machine vision, and use the eye information to derive relevant data for judging eyelid droop, and to automate according to the data Detect the function of eyelift and detect the severity of eyelid droop. In this way, the system can achieve convenient operation, greatly shorten the measurement time and improve the measurement consistency, and simultaneously detect the severity of eyelid droop and the function of lifting eye muscles.

其中,該複數個特徵變數係包含一眼睛輪廓區域、一鞏膜區域、一虹膜區域、一瞳孔區域、一瞳孔中心點、一上眼瞼下緣曲線、一下眼瞼上緣曲線、一上眼瞼下緣交集點及一下眼瞼上緣交集點各自的位置座標。如此,本發明的眼瞼下垂檢測方法係具有提供較完整之靜態量測參數及動態量測參數,以同時檢測眼瞼下垂之嚴重程度及提眼肌之功能等功效。 The plurality of characteristic variables include an eye contour area, a scleral area, an iris area, a pupil area, a pupil center point, an upper eyelid lower edge curve, an upper eyelid upper edge curve, and an upper eyelid lower edge intersection. The position coordinates of the point where the upper edge of the eyelid meets. Thus, the eyelid droop detection method of the present invention has the functions of providing relatively complete static measurement parameters and dynamic measurement parameters to simultaneously detect the severity of eyelid droop and the function of raising eye muscles.

其中,該複數個特徵變數另包含一眼角左緣點及一眼角右緣點各自的位置座標。如此,本發明的眼瞼下垂檢測方法以上述參數輔助判斷眼瞼下垂之嚴重程度及提眼肌之功能的功效。 The plurality of characteristic variables further include position coordinates of a left edge point and a right edge point. In this way, the method for detecting drooping eyelids of the present invention uses the above parameters to assist in determining the severity of drooping eyelids and the function of lifting the function of the eye muscles.

其中,該特徵參數組係包含一虹膜直徑與一瞼裂高度之間的一高度差,以及瞳孔用力朝上與用力朝下時的一最大移動距離。如此,本發明的眼瞼下垂檢測方法係具有同時檢測眼瞼下垂之嚴重程度及提眼肌之功能的功效。 The characteristic parameter system includes a height difference between an iris diameter and a palpebral fissure height, and a maximum moving distance when the pupil is forced upward and downward. Thus, the eyelid droop detection method of the present invention has the effect of simultaneously detecting the severity of eyelid droop and the function of raising eye muscles.

其中,該特徵參數組另包含該瞳孔中心點至該上眼瞼下緣交集點之間的一第一距離、該瞳孔中心點至該下眼瞼上緣交集點之間的一第二距 離、該上眼瞼下緣交集點至該下眼瞼上緣交集點之間的瞼裂高度、該眼角左緣點至該眼角右緣點之間的一瞼裂寬度,以及依據該虹膜區域推導計算出的一眼球體表面積。如此,本發明的眼瞼下垂檢測方法係具有以上述參數輔助判斷眼瞼下垂之嚴重程度及提眼肌之功能的功效。 The feature parameter group further includes a first distance between the pupil center point and the intersection point of the upper edge of the lower eyelid, and a second distance between the pupil center point and the intersection point of the upper edge of the lower eyelid. The height of the palpebral fissure between the intersection of the lower edge of the upper eyelid and the intersection of the upper edge of the lower eyelid, the width of a palpebral fissure between the left edge of the eye corner and the right edge of the eye corner, and the calculation is derived based on the iris area. The surface area of an eyeball. In this way, the eyelid droop detection method of the present invention has the function of assisting in judging the severity of eyelid droop and the function of raising eye muscles by using the above parameters.

其中,依據該複數個特徵變數,形成一虛擬數位眼睛,將該虛擬數位眼睛與該眼部影像進行重疊,以分析該虛擬數位眼睛是否與該眼部影像之間具有極大偏差產生。如此,本發明的眼瞼下垂檢測方法係具有提升檢測準確性的功效。 A virtual digital eye is formed according to the plurality of characteristic variables, and the virtual digital eye is overlapped with the eye image to analyze whether the virtual digital eye has a great deviation from the eye image. In this way, the eyelid droop detection method of the present invention has the effect of improving detection accuracy.

其中,該複數個特徵變數係包含一眼睛輪廓區域、一鞏膜區域、一虹膜區域、一瞳孔區域、一瞳孔中心點、一上眼瞼下緣曲線、一下眼瞼上緣曲線、一上眼瞼下緣交集點及一下眼瞼上緣交集點各自的位置座標。如此,本發明的眼瞼下垂檢測系統係具有提供完整之靜態量測參數及動態量測參數,同時檢測眼瞼下垂之嚴重程度及提眼肌之功能等功效。 The plurality of characteristic variables include an eye contour area, a scleral area, an iris area, a pupil area, a pupil center point, an upper eyelid lower edge curve, an upper eyelid upper edge curve, and an upper eyelid lower edge intersection. The position coordinates of the point where the upper edge of the eyelid meets. In this way, the eyelid droop detection system of the present invention has the functions of providing complete static measurement parameters and dynamic measurement parameters, and simultaneously detecting the severity of eyelid droop and the function of lifting eye muscles.

其中,該複數個特徵變數另包含一眼角左緣點及一眼角右緣點各自的位置座標。如此,本發明的眼瞼下垂檢測系統以上述參數輔助判斷眼瞼下垂之嚴重程度及提眼肌之功能的功效。 The plurality of characteristic variables further include position coordinates of a left edge point and a right edge point. In this way, the eyelid droop detection system of the present invention assists in judging the severity of eyelid droop and the function of lifting the eye muscles by using the above parameters.

其中,該特徵參數組係包含一虹膜直徑與一瞼裂高度之間的一高度差,以及瞳孔用力朝上與用力朝下時的一最大移動距離。如此,本發明的眼瞼下垂檢測系統係具有同時檢測眼瞼下垂之嚴重程度及提眼肌之功能的功效。 The characteristic parameter system includes a height difference between an iris diameter and a palpebral fissure height, and a maximum moving distance when the pupil is forced upward and downward. In this way, the eyelid droop detection system of the present invention has the function of simultaneously detecting the severity of eyelid droop and the function of raising eye muscles.

其中,該特徵參數組另包含該瞳孔中心點至該上眼瞼下緣交集點之間的一第一距離、該瞳孔中心點至該下眼瞼上緣交集點之間的一第二距離、該上眼瞼下緣交集點至該下眼瞼上緣交集點之間的瞼裂高度、該眼角左緣點至該眼角右緣點之間的一瞼裂寬度,以及依據該虹膜區域推導計算出的 一眼球體表面積。如此,本發明的眼瞼下垂檢測系統係具有以上述參數輔助判斷眼瞼下垂之嚴重程度及提眼肌之功能的功效。 The feature parameter group further includes a first distance between the pupil center point and the intersection point of the upper edge of the upper eyelid, a second distance between the pupil center point and the intersection point of the upper edge of the lower eyelid, and the upper point. The height of the palpebral fissure between the intersection of the lower edge of the eyelid and the upper edge of the lower eyelid, the width of a palpebral fissure between the left edge of the eye corner and the right edge of the eye corner, and calculated based on the derivation of the iris area One glance at the sphere surface area. In this way, the eyelid droop detection system of the present invention has the function of assisting in judging the severity of eyelid droop and the function of raising eye muscles by using the above parameters.

其中,該處理單元依據該複數個特徵變數,形成一虛擬數位眼睛,該處理單元將該虛擬數位眼睛與該眼部影像進行重疊,以分析該虛擬數位眼睛是否與該眼部影像之間具有極大偏差產生。如此,本發明的眼瞼下垂檢測方法係具有提升檢測準確性的功效。 Wherein, the processing unit forms a virtual digital eye according to the plurality of characteristic variables, and the processing unit overlaps the virtual digital eye with the eye image to analyze whether the virtual digital eye has a maximum distance between the eye image and the eye image. Deviations occur. In this way, the eyelid droop detection method of the present invention has the effect of improving detection accuracy.

〔本發明〕 〔this invention〕

S1‧‧‧影像擷取步驟 S1‧‧‧Image capture steps

S2‧‧‧影像處理步驟 S2‧‧‧Image processing steps

S3‧‧‧特徵擷取步驟 S3‧‧‧Feature Extraction Steps

S4‧‧‧特徵運算步驟 S4‧‧‧Feature calculation steps

S5‧‧‧特徵分析步驟 S5‧‧‧ Feature analysis steps

S6‧‧‧特徵重疊步驟 S6‧‧‧ Feature Overlap Step

1‧‧‧攝影單元 1‧‧‧Photography Unit

2‧‧‧儲存單元 2‧‧‧Storage unit

3‧‧‧處理單元 3‧‧‧ processing unit

LF‧‧‧最大移動距離 LF‧‧‧Maximum moving distance

A‧‧‧眼睛輪廓區域 A‧‧‧eye contour area

A1‧‧‧鞏膜區域 A1‧‧‧‧Scleral area

A2‧‧‧虹膜區域 A2‧‧‧Iris area

A3‧‧‧瞳孔區域 A3‧‧‧ pupil area

C1‧‧‧上眼瞼下緣曲線 C1‧‧‧Curve of lower edge of upper eyelid

C2‧‧‧下眼瞼上緣曲線 C2‧‧‧ Curve of upper edge of lower eyelid

P1‧‧‧瞳孔中心點 P1‧‧‧ pupil center

P2‧‧‧上眼瞼下緣交集點 P2‧‧‧Intersection of lower edge of upper eyelid

P3‧‧‧下眼瞼上緣交集點 P3‧‧‧Intersection of upper edge of lower eyelid

P4‧‧‧眼角左緣點 P4‧‧‧Left edge of eye corner

P5‧‧‧眼角右緣點 P5‧‧‧Right edge of eye corner

P6‧‧‧第一位置座標 P6‧‧‧ first position coordinates

P7‧‧‧第二位置座標 P7‧‧‧Second position coordinates

MRD1‧‧‧第一距離 MRD1‧‧‧First distance

MRD2‧‧‧第二距離 MRD2‧‧‧Second Distance

PFH‧‧‧瞼裂高度 PFH‧‧‧height

PFW‧‧‧瞼裂寬度 PFW‧‧‧ Eyelid width

PS‧‧‧高度差 PS‧‧‧ height difference

〔第1圖〕本發明一較佳實施例的處理流程圖。 [FIG. 1] A processing flowchart of a preferred embodiment of the present invention.

〔第2圖〕本發明一較佳實施例之一瞳孔平視影像的眼部影像示意圖。 [Fig. 2] A schematic diagram of an eye image of a pupil head-up image according to a preferred embodiment of the present invention.

〔第3圖〕本發明一較佳實施例之一瞳孔用力朝上影像及用力朝下影像的眼部影像示意圖。 [Figure 3] A schematic diagram of an eye image with a pupil forced upward and a downward forced image according to a preferred embodiment of the present invention.

〔第4圖〕本發明一較佳實施例的系統架構圖。 [FIG. 4] A system architecture diagram of a preferred embodiment of the present invention.

為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下:請參照第1圖所示,其係本發明眼瞼下垂檢測方法的一較佳實施例,係包含一影像擷取步驟S1、一影像處理步驟S2、一特徵擷取步驟S3、一特徵運算步驟S4及一特徵分析步驟S5。 In order to make the above and other objects, features, and advantages of the present invention more comprehensible, the following describes the preferred embodiments of the present invention in detail with the accompanying drawings as follows: Please refer to FIG. 1, It is a preferred embodiment of the eyelid droop detection method of the present invention, and includes an image capture step S1, an image processing step S2, a feature extraction step S3, a feature calculation step S4, and a feature analysis step S5.

請一併參照第2~3圖所示,該影像擷取步驟S1係能夠拍攝產生眼部影像,該眼部影像係為一彩色影像。較佳地,該眼部影像係可以包含一瞳孔平視影像、一瞳孔用力朝上影像及一瞳孔用力朝下影像。具體而言, 該影像擷取步驟S1係能夠拍攝產生一臉部影像,並由該臉部影像中選取一感興趣區域(Region of Interest,ROI)作為該眼部影像。該感興趣區域所形成的矩形之起始像素之位置座標及矩形的長度值與寬度值的設定,以能涵蓋包含上眼瞼、下眼瞼、鞏膜、虹膜及瞳孔等眼睛部位即可,係本發明相關領域中具有通常知識者可以理解,在此不多加贅述。 Please refer to FIG. 2 to FIG. 3 together. The image capturing step S1 is capable of shooting and generating an eye image, and the eye image is a color image. Preferably, the eye image system may include a pupil head-up image, a pupil force upward image, and a pupil force downward image. in particular, The image capturing step S1 is capable of capturing and generating a facial image, and selecting a Region of Interest (ROI) as the eye image from the facial image. The position coordinates of the starting pixel of the rectangle formed by the region of interest and the length and width values of the rectangle can be set so as to cover the eye parts including the upper eyelid, lower eyelid, sclera, iris, and pupil. Those with ordinary knowledge in related fields can understand it, so I won't go into details here.

該影像處理步驟S2係能夠對該眼部影像執行影像處理,產生一邊緣影像。具體而言,係對該眼部影像執行灰階化處理,以分割該眼部影像的前景與背景,產生一灰階影像。再且,該影像處理步驟S2將該眼部影像中感興趣的部分保留下來,簡化後續影像處理程序,並提高整體運算效能,該影像處理步驟S2係能夠對該灰階影像執行二值化處理,以產生一二值化影像,例如但不限制地,該二值化的閥值係可以區分為一固定閥值或一自適應閥值(如:Otsu、雙峰法、P參數法或疊代法)。再者,該影像處理步驟S2係能夠對該二值化影像執行邊緣偵測處理,使產生該邊緣影像,以進一步大幅度地減少該眼部影像的資料量,剔除可能不相關的資訊,並保留該眼部影像重要的結構屬性,例如但不限制地,該邊緣偵測係可以採用如:Sobel、Prewitt或Canny等邊緣偵測演算法。 The image processing step S2 is capable of performing image processing on the eye image to generate an edge image. Specifically, a gray-scale process is performed on the eye image to segment the foreground and background of the eye image to generate a gray-scale image. Furthermore, the image processing step S2 retains the part of interest in the eye image, simplifies subsequent image processing procedures, and improves overall computing performance. The image processing step S2 is capable of performing binarization processing on the grayscale image. To generate a binarized image, such as but not limited to, the binarized threshold can be distinguished as a fixed threshold or an adaptive threshold (such as: Otsu, bimodal method, P-parameter method, or superimposed Generation law). Furthermore, the image processing step S2 is capable of performing edge detection processing on the binarized image, so that the edge image is generated, so as to further greatly reduce the amount of data of the eye image, and to remove potentially irrelevant information, and The important structural attributes of the eye image are retained. For example, but not limited to, the edge detection system can use edge detection algorithms such as Sobel, Prewitt or Canny.

該特徵擷取步驟S3係能夠對該眼部影像及該邊緣影像執行影像運算,以取得用以分析眼瞼下垂之嚴重程度及提眼肌之功能的複數個特徵變數,該複數個特徵變數係可以包含一眼睛輪廓區域A、一鞏膜區域A1、一虹膜區域A2、一瞳孔區域A3、一瞳孔中心點P1、一上眼瞼下緣曲線C1、一下眼瞼上緣曲線C2、一上眼瞼下緣交集點P2及一下眼瞼上緣交集點P3各自的位置座標。較佳地,該複數個特徵變數還可以另包含一眼角左緣點P4及一眼角右緣點P5各自的位置座標。 The feature extraction step S3 is capable of performing image calculations on the eye image and the edge image to obtain a plurality of feature variables for analyzing the severity of eyelid droop and the function of lifting the eye muscles. The plurality of feature variables may be Contains an eye contour area A, a scleral area A1, an iris area A2, a pupil area A3, a pupil center point P1, an upper eyelid lower edge curve C1, an lower eyelid upper edge curve C2, and an upper eyelid lower edge intersection Position coordinates of the intersection point P2 and the upper edge of the lower eyelid P3. Preferably, the plurality of characteristic variables may further include position coordinates of a left edge point P4 and a right edge point P5 of the eye corner.

具體而言,該特徵擷取步驟S3能夠對該眼部影像執行對稱變 換(Symmetry Transform),以取得一眼部區域。對該眼部影像的各像素點執行對稱變換,產生複數個對稱變換結果,並將該複數個對稱變換結果中的一最大值的像素點之位置座標作為產生該眼睛輪廓區域A的初始點。該眼睛輪廓區域A係可以包含該鞏膜區域A1、該虹膜區域A2、該瞳孔區域A3、上眼瞼及下眼瞼等眼部特徵。再且,由於鞏膜相對於瞳孔、虹膜、上眼瞼及下眼瞼等眼部特徵而言,其色彩飽和度相對較低。因此,該特徵擷取步驟S3能夠將該眼部影像由RGB色彩空間轉換至HSV色彩空間,產生一HSV影像。由該HSV影像中取得S通道影像,並使該S通道影像中飽和度小於一門檻值的像素點形成該鞏膜區域A1。該門檻值的設定係本發明相關領域中具有通常知識者可以理解,茲不贅述。 Specifically, the feature extraction step S3 can perform a symmetric change on the eye image. Symmetry Transform to get an eye area. Performing a symmetric transformation on each pixel point of the eye image to generate a plurality of symmetric transformation results, and using the position coordinates of a maximum pixel point in the plurality of symmetric transformation results as an initial point for generating the eye contour area A. The eye contour area A may include eye features such as the scleral area A1, the iris area A2, the pupil area A3, the upper eyelid and the lower eyelid. Furthermore, because the sclera has relatively low color saturation compared to eye features such as the pupil, iris, upper eyelid, and lower eyelid. Therefore, the feature extraction step S3 can convert the eye image from the RGB color space to the HSV color space to generate an HSV image. An S-channel image is obtained from the HSV image, and pixels with saturation less than a threshold in the S-channel image form the scleral region A1. The setting of the threshold value can be understood by those having ordinary knowledge in the related field of the present invention, and details are not described herein.

另一方面,該特徵擷取步驟S3係能夠對該邊緣影像執行對稱變換(Symmetry Transform),以取得複數個候補瞳孔區域,在本實施例中,該對稱轉換可以為快速徑向對稱變換(Fast Radial Symmetry Transform,FRST)。該特徵擷取步驟S3計算取得該邊緣影像的各像素點在其梯度方向上的兩個投影點,並依據該兩個投影點分別形成的梯度投影影像(Orientation Projection Image)及梯度幅值影像(Magnitude Projection Image)取得複數個徑向對稱變換結果,即取得該複數個候補瞳孔區域。對該複數個候補瞳孔區域分別計算一瞳孔黑值比例,並以該複數個瞳孔黑值比例中比值最大者的候補瞳孔區域作為該瞳孔區域A3。該瞳孔黑值比例係為各該候補瞳孔區域的所有像素點中黑色像素點所佔有的比值。再且,係還能夠由該瞳孔區域A3中定位取得該瞳孔中心點P1的位置座標。 On the other hand, the feature extraction step S3 can perform a Symmetry Transform on the edge image to obtain a plurality of candidate pupil regions. In this embodiment, the symmetric transformation can be a fast radial symmetric transformation (Fast Radial Symmetry Transform (FRST). The feature extraction step S3 calculates and obtains two projection points of each edge point of the edge image in the gradient direction, and respectively forms a gradient projection image (Orientation Projection Image) and a gradient amplitude image ( Magnitude Projection Image) to obtain a plurality of radial symmetric transformation results, that is, to obtain the plurality of candidate pupil areas. A pupil black value ratio is calculated for each of the plurality of candidate pupil areas, and the candidate pupil area having the largest ratio among the plurality of pupil black values is used as the pupil area A3. The pupil black value ratio is a ratio occupied by black pixels among all pixels in each candidate pupil area. Furthermore, the system can also obtain the position coordinates of the pupil center point P1 by positioning in the pupil area A3.

該特徵擷取步驟S3能夠在該眼睛輪廓區域A中取得該上眼瞼下緣曲線C1及該下眼瞼上緣曲線C2。具體而言,以一梯度方向(Gradient Orientation)計算該鞏膜區域A1的邊界上的各像素點相對於該眼睛輪廓區域 A的切線斜率,該鞏膜區域A1的邊界上的各像素點與該眼睛輪廓區域A切線斜率為零的交界處,即表示為一眼瞼曲線。依據該眼瞼曲線之位置座標,將該眼瞼曲線區分為該上眼瞼下緣曲線C1及該下眼瞼上緣曲線C2。再且,還能夠由該瞳孔中心點P1朝與瞳孔平視方向所形成的平面之垂直方向延伸一垂直線,且使該垂直線分別交集於該上眼瞼下緣曲線C1及該下眼瞼上緣曲線C2,以分別取得該上眼瞼下緣交集點P2及該下眼瞼上緣交集點P3各自的位置座標。 The feature extraction step S3 can obtain the upper edge eyelid lower edge curve C1 and the lower eyelid upper edge curve C2 in the eye contour area A. Specifically, a gradient direction (Gradient Orientation) is used to calculate each pixel point on the boundary of the scleral area A1 with respect to the eye contour area. The tangent slope of A, the boundary between each pixel point on the boundary of the scleral area A1 and the tangent slope of the eye contour area A is zero, which is expressed as an eyelid curve. According to the position coordinates of the eyelid curve, the eyelid curve is divided into the upper eyelid lower edge curve C1 and the lower eyelid upper edge curve C2. Furthermore, it is also possible to extend a vertical line from the pupil center point P1 in a direction perpendicular to the plane formed by the pupil's head-up direction, and make the vertical lines intersect at the lower edge curve C1 and the upper edge of the lower eyelid, respectively. The curve C2 is used to obtain the position coordinates of the upper edge intersection point P2 and the lower edge intersection point P3 respectively.

較佳地,該特徵擷取步驟S3還能夠在該眼睛輪廓區域A中取得該眼角左緣點P4及該眼角右緣點P5各自的位置座標。具體而言,以一角點距離(Corner Distance)計算該上眼瞼下緣曲線C1與該下眼瞼上緣曲線C2的交界處,分別取得該眼角左緣點P4及該眼角右緣點P5各自的位置座標。 Preferably, the feature extraction step S3 can also obtain the position coordinates of the left corner point P4 and the right corner point P5 of the eye corner in the eye contour area A. Specifically, the corners of the upper eyelid lower edge curve C1 and the lower eyelid upper edge curve C2 are calculated at a corner distance, and the positions of the left edge point P4 and the right edge point P5 of the eye corner are obtained respectively. coordinate.

請參照第2~3圖所示,該特徵運算步驟S4係能夠依據該複數個特徵變數計算,取得一特徵參數組。舉例而言,該特徵參數組係包含一虹膜直徑與一瞼裂高度PFH(Palpebral Fissure Height)之間的一高度差PS(Ptosis Severity),以及瞳孔用力朝上與用力朝下時的一最大移動距離LF。較佳地,該特徵參數組還可以另包含該瞳孔中心點P1至該上眼瞼下緣交集點P2之間的一第一距離MRD1、該瞳孔中心點P1至該下眼瞼上緣交集點P3之間的一第二距離MRD2、該上眼瞼下緣交集點P2至該下眼瞼上緣交集點P3之間的瞼裂高度PFH、該眼角左緣點P4至該眼角右緣點P5之間的一瞼裂寬度PFW(Palpebral Fissure Width),以及依據該虹膜區域A2推導計算出的一眼球體表面積OSA(Ocular Surface Area)。 Please refer to Figs. 2 to 3, the feature calculation step S4 can be calculated according to the plurality of feature variables to obtain a feature parameter group. For example, the characteristic parameter system includes a height difference PS (Ptosis Severity) between an iris diameter and a palpebral fissure height (PFH), and a maximum movement when the pupil is forced upwards and downwards Distance LF. Preferably, the characteristic parameter group may further include a first distance MRD1 between the pupil center point P1 and the upper eyelid intersection point P2, and the pupil center point P1 to the lower eyelid upper edge intersection point P3. A second distance MRD2, a palpebral fissure height PFH between the upper edge lower edge intersection point P2 to the lower eyelid upper edge intersection point P3, a left edge point P4 to the right edge edge point P5 of the eyelid The palpebral fissure width (PFW) and the ocular surface area (OSA) of one eye calculated from the iris area A2.

該特徵分析步驟S5係能夠依據該特徵參數組與一預設眼瞼下垂資訊相比對,推知眼瞼下垂之嚴重程度及提眼肌之功能。舉例而言,由該該虹膜區域A2計算取得該虹膜直徑為11毫米,另,計算取得該上眼瞼下緣 交集點P2至該下眼瞼上緣交集點P3之間的瞼裂高度PFH為8毫米,則該虹膜直徑與該瞼裂高度PFH的高度差為3毫米,即眼瞼下垂嚴重程度係為輕度。該預設眼瞼下垂資訊係可以如下表一所示: The feature analysis step S5 is capable of inferring the severity of the eyelid droop and the function of the eye-lifting muscles by comparing the characteristic parameter set with a preset eyelid droop information. For example, the iris diameter is 11 mm calculated from the iris area A2, and the height of the palpebral fissure PFH between the intersection point P2 of the upper edge of the upper eyelid and the intersection point P3 of the upper edge of the lower eyelid is 8 mm. , The height difference between the diameter of the iris and the height of the eyelid PFH is 3 mm, that is, the severity of eyelid droop is mild. The preset eyelid sagging information can be shown in Table 1 below:

本發明的眼瞼下垂檢測方法,還可以包含一特徵重疊步驟S6,該特徵重疊步驟S6係依據該複數個特徵變數,形成一虛擬數位眼睛,將該虛擬數位眼睛與該眼部影像進行重疊,以分析該虛擬數位眼睛是否與該眼部影像之間具有極大偏差產生。具體而言,該特徵重疊步驟S6能夠對該鞏膜區域A1、該瞳孔區域A3及該眼瞼曲線分別設定一權重值,其中,該鞏膜區域A1之權重值的計算公式可以如下式(1)所示:D color =αΣ△P sclera -βΣ△P skin (1)其中,P sclera 係表示鞏膜上之像素點;P skin 係表示皮膚上之像素點;α係表示控制P sclera 之權重,β係表示控制P skin 之權重,且α+β=1。 The eyelid droop detection method of the present invention may further include a feature overlapping step S6. The feature overlapping step S6 is to form a virtual digital eye according to the plurality of feature variables. The virtual digital eye and the eye image are overlapped to form a virtual digital eye. Analyze whether the virtual digital eye has a great deviation from the eye image. Specifically, the feature overlapping step S6 can set a weight value for the scleral area A1, the pupil area A3, and the eyelid curve, respectively. The formula for calculating the weight value of the scleral area A1 can be shown in the following formula (1) : D color = α Σ △ P sclera - β Σ △ P skin (1) wherein, P sclera line represents a pixel point on the sclera; P skin lines indicates a pixel on the skin; [alpha] line represents the control P sclera of weights, β Is the weight that controls P skin , and α + β = 1.

該瞳孔區域A3之權重值的計算公式可以如下式(2)所示: 其中,eye total 係表示瞳孔全部像素;eye black 係表示瞳孔黑色像素。 The calculation formula of the weight value of the pupil area A3 can be shown in the following formula (2): Among them, eye total represents all pixels of the pupil; eye black represents pupil black pixels.

該眼瞼曲線之權重值的計算公式可以如下式(3)所示: 其中,Ω係表示該眼睛輪廓區域A的邊界;|Ω|係表示該眼睛輪廓區域A的邊界長度;θ(x,y)係表示在(x,y)座標系之梯度方向;m (x,y)係表示該眼睛輪廓區域A之切線斜率。 The calculation formula of the weight value of the eyelid curve can be shown in the following formula (3): Among them, Ω indicates the boundary of the eye contour area A; | Ω | indicates the boundary length of the eye contour area A; θ ( x, y ) indicates the gradient direction in the ( x, y ) coordinate system; m ( x , y ) is the slope of the tangent to the contour area A of the eye.

較佳地,該特徵重疊步驟S6還能夠對該眼角左緣點P4與該眼角右緣點P5另設定一權重值,該眼角左緣點P4與該眼角右緣點P5之權重值的計算公式可以如下式(4)~(5)所示:D cor =|H|-ktrace(H)2 (4) Preferably, the feature overlapping step S6 can also set another weight value for the left corner point P4 and the right corner point P5 of the eye corner, and a formula for calculating the weight value of the left corner point P4 and the right corner point P5 of the eye corner. It can be shown by the following formulas (4) ~ (5): D cor = | H | -k . trace ( H ) 2 (4)

其中,w(x,y)係表示以x,y座標為中心之加權值;G x 係表示x軸方向之導數;G y 係表示y軸方向之導數;k係表示Harris演算法參數。 Among them, w ( x, y ) is a weighted value centered on the x, y coordinates; G x is a derivative in the x-axis direction; G y is a derivative in the y-axis direction; k is a Harris algorithm parameter.

以上述權重值作為一權重值公式的輸入變數,並計算取得複數個具有不同權重的虛擬數位眼睛,由該複數個虛擬數位眼睛中選擇具有最高權重者取代由原本的複數個特徵變數所形成的虛擬數位眼睛。該權重值之計算公式可以如下式(6)所示: 其中,D θ 係表示眼瞼曲線的權重值;D color 係表示該鞏膜區域A1的權重值;D sym 係表示瞳孔區域A3的權重值;D cor 係表示眼角緣點的權重值;σ i 係表示經由反覆試驗得到之最適參數值;d i 係表示D θ D color D sym D cor 各別的參數值;μ i 係表示D θ D color D sym D cor 之權重平均值。 The above weight value is used as an input variable of a weight value formula, and a plurality of virtual digital eyes with different weights are calculated and obtained. Among the plurality of virtual digital eyes, a person having the highest weight is selected to replace the original formed by the plurality of characteristic variables. Virtual digital eyes. The formula for calculating the weight value can be shown in the following formula (6): Among them, D θ represents the weight value of the eyelid curve; D color represents the weight value of the scleral area A1; D sym represents the weight value of the pupil area A3; D cor represents the weight value of the corner point of the eye; σ i represents The optimal parameter values obtained through repeated experiments; d i represents the respective parameter values of D θ , D color , D sym and D cor ; μ i represents the average weight of D θ , D color , D sym and D cor .

請參照第4圖所示,其係本發明眼瞼下垂檢測系統的一較佳實施例,係包含一攝影單元1、一儲存單元2及一處理單元3,該處理單元3耦接該攝影單元1及該儲存單元2。 Please refer to FIG. 4, which is a preferred embodiment of the eyelid droop detection system of the present invention, which includes a photographing unit 1, a storage unit 2, and a processing unit 3. The processing unit 3 is coupled to the photographing unit 1. And the storage unit 2.

該攝影單元1能夠用以拍攝產生一臉部影像,較佳係拍攝產生一眼部影像,該眼部影像係可以包含一瞳孔平視影像、一瞳孔用力朝上影像及一瞳孔用力朝下影像。例如但不限制地,該攝影單元1可以為一電荷耦合元件CCD彩色攝影機或一互補式金屬氧化半導體CMOS彩色攝影機。 The photographing unit 1 can be used for shooting and generating a face image, preferably shooting and generating an eye image. The eye image system can include a pupil head-up image, a pupil forced upward image, and a pupil forced downward image. . For example, without limitation, the photographing unit 1 may be a charge coupled device CCD color camera or a complementary metal oxide semiconductor CMOS color camera.

該儲存單元2可以為任何用以儲存電子資料的儲存媒體,例如可以為一硬碟或一記憶體,惟不以此為限,該儲存單元2能夠用以儲存一預設眼瞼下垂資訊。該預設眼瞼下垂資訊係可以如上述表一所示。 The storage unit 2 may be any storage medium used to store electronic data, such as a hard disk or a memory, but is not limited thereto. The storage unit 2 can be used to store preset eyelid sagging information. The preset eyelid sagging information can be as shown in Table 1 above.

該處理單元3耦接該攝影單元1及該儲存單元2,該處理單元3係可以為具有資料處理、訊號產生及控制等功能的電路單元,例如可以為一微處理器、一微控制器、一數位訊號處理器、一邏輯電路或一特殊應用積體電路(ASIC),在本實施例中,該處理單元3可以為一微處理器,惟不以此為限。該處理單元3能夠對該眼部影像執行影像處理,以產生一邊緣影像。具體而言,該影像處理係可以包含對該眼部影像執行灰階化、二值化及邊緣偵測等影像處理程序,以產生該邊緣影像。其中,當該拍攝單元1係拍攝產生一臉部影像時,該處理單元3能夠於該臉部影像中設定一感興趣區域作為該眼部影像。該感興趣區域所形成的矩形之起始像素之位置座標及矩形的長度值與寬度值的設定,以能涵蓋包含上眼瞼、下眼瞼、鞏膜、虹膜及瞳孔等眼睛部位即可,係本發明相關領域中具有通常知識者可以理解,茲不贅述。 The processing unit 3 is coupled to the photographing unit 1 and the storage unit 2. The processing unit 3 may be a circuit unit having functions such as data processing, signal generation, and control, such as a microprocessor, a microcontroller, A digital signal processor, a logic circuit or a special application integrated circuit (ASIC). In this embodiment, the processing unit 3 may be a microprocessor, but it is not limited thereto. The processing unit 3 can perform image processing on the eye image to generate an edge image. Specifically, the image processing system may include performing image processing procedures such as grayscale, binarization, and edge detection on the eye image to generate the edge image. Wherein, when the photographing unit 1 generates a facial image, the processing unit 3 can set a region of interest in the facial image as the eye image. The position coordinates of the starting pixel of the rectangle formed by the region of interest and the length and width values of the rectangle can be set so as to cover the eye parts including the upper eyelid, lower eyelid, sclera, iris, and pupil. Those with ordinary knowledge in the related field can understand it, and will not repeat it here.

該處理單元3能夠對該眼部影像及該邊緣影像執行影像運算,以取得用以分析眼瞼下垂之嚴重程度及提眼肌之功能的複數個特徵變數,該複數個特徵變數係可以包含一眼睛輪廓區域A、一鞏膜區域A1、一虹膜區域A2、一瞳孔區域A3、一瞳孔中心點P1、一上眼瞼下緣曲線C1、一下眼瞼上緣曲線C2、一上眼瞼下緣交集點P2及一下眼瞼上緣交集點P3各自的位置座標。較佳地,該複數個特徵變數還可以另包含一眼角左緣點P4及一眼角右緣 點P5各自的位置座標。 The processing unit 3 can perform image calculations on the eye image and the edge image to obtain a plurality of characteristic variables for analyzing the severity of eyelid droop and the function of lifting the eye muscle. The plurality of characteristic variables may include an eye. Contour area A, one scleral area A1, one iris area A2, one pupil area A3, one pupil center point P1, one upper eyelid lower edge curve C1, one lower eyelid upper edge curve C2, one upper eyelid lower edge intersection point P2, and one The position coordinates of the intersection point P3 of the upper edge of the eyelid. Preferably, the plurality of characteristic variables may further include a left edge point P4 and a right edge edge of the eye corner. The coordinates of the respective positions of point P5.

具體而言,該處理單元3對該眼部影像執行對稱變換,取得一眼部區域。該處理單元3能夠對該眼部影像的各像素點執行對稱變換,產生複數個對稱變換結果,該處理單元3將該對稱變換結果中的一最大值的像素點之位置座標作為產生該眼睛輪廓區域A的初始點。該眼睛輪廓區域A係可以包含該鞏膜區域A1、該虹膜區域A2、該瞳孔區域A3、上眼瞼及下眼瞼等眼部特徵。再且,由於鞏膜相對於瞳孔、虹膜、上眼瞼及下眼瞼等眼部特徵而言,其色彩飽和度相對較低,因此,該處理單元3將該眼部影像由RGB色彩空間轉換至HSV色彩空間,產生一HSV影像。該處理單元3由該HSV影像中取得S通道影像,並將該S通道影像中飽和度小於一門檻值的像素點形成該鞏膜區域A1。該門檻值的設定係本發明相關領域中具有通常知識者可以理解,茲不贅述。 Specifically, the processing unit 3 performs a symmetric transformation on the eye image to obtain an eye region. The processing unit 3 can perform a symmetric transformation on each pixel of the eye image to generate a plurality of symmetrical transformation results. The processing unit 3 uses the position coordinates of a maximum pixel point in the symmetrical transformation result to generate the eye contour. The starting point of area A. The eye contour area A may include eye features such as the scleral area A1, the iris area A2, the pupil area A3, the upper eyelid and the lower eyelid. Furthermore, because the sclera has relatively low color saturation compared to eye features such as the pupil, iris, upper eyelid, and lower eyelid, the processing unit 3 converts the eye image from RGB color space to HSV color Space to produce an HSV image. The processing unit 3 obtains an S-channel image from the HSV image, and forms pixels in the S-channel image with saturation less than a threshold to form the scleral region A1. The setting of the threshold value can be understood by those having ordinary knowledge in the related field of the present invention, and details are not described herein.

另一方面,該處理單元3對該邊緣影像執行對稱變換,以取得複數個候補瞳孔區域,在本實施例中,該對稱轉換可以為快速徑向對稱變換。該處理單元3計算取得該邊緣影像的各像素點在其梯度方向上的兩個投影點,並依據該兩個投影點分別形成的梯度投影影像及梯度幅值影像取得複數個徑向對稱變換結果,即取得該複數個候補瞳孔區域。該處理單元3對該複數個候補瞳孔區域分別計算一瞳孔黑值比例,並以該複數個瞳孔黑值比例中比值最大者的候補瞳孔區域作為該瞳孔區域A3。該瞳孔黑值比例係為各該候補瞳孔區域的所有像素點中黑色像素點所佔有的比值。再且,該處理單元3係還能夠由該瞳孔區域A3中定位取得該瞳孔中心點P1的位置座標。 On the other hand, the processing unit 3 performs a symmetric transformation on the edge image to obtain a plurality of candidate pupil regions. In this embodiment, the symmetric transformation may be a fast radial symmetric transformation. The processing unit 3 calculates two projection points of each edge point of the edge image in the gradient direction, and obtains a plurality of radial symmetrical transformation results according to the gradient projection image and the gradient amplitude image formed by the two projection points respectively. , That is, to obtain the plurality of candidate pupil regions. The processing unit 3 calculates a pupil black value ratio for each of the plurality of candidate pupil areas, and uses the candidate pupil area with the largest ratio among the plurality of pupil black values as the pupil area A3. The pupil black value ratio is a ratio occupied by black pixels among all pixels in each candidate pupil area. Furthermore, the processing unit 3 can also obtain the position coordinates of the pupil center point P1 by positioning in the pupil area A3.

該處理單元3能夠在該眼睛輪廓區域A中取得該上眼瞼下緣曲線C1及該下眼瞼上緣曲線C2。具體而言,該處理單元3以一梯度方向公式計算該鞏膜區域A1的邊界上的各像素點相對於該眼睛輪廓區域A的切線 斜率,該鞏膜區域A1的邊界上的各像素點與該眼睛輪廓區域A切線斜率為零的交界處,即表示為一眼瞼曲線。該處理單元3能夠依據該眼瞼曲線之位置座標,將該眼瞼曲線區分為該上眼瞼下緣曲線C1及該下眼瞼上緣曲線C2。再且,還能夠以該處理單元3由該瞳孔中心點P1朝與瞳孔平視方向所形成的平面之垂直方向延伸一垂直線,且使該垂直線分別交集於該上眼瞼下緣曲線C1及該下眼瞼上緣曲線C2,以分別取得該上眼瞼下緣交集點P2及該下眼瞼上緣交集點P3各自的位置座標。 The processing unit 3 can obtain the upper eyelid lower edge curve C1 and the lower eyelid upper edge curve C2 in the eye contour area A. Specifically, the processing unit 3 calculates a tangent of each pixel point on the boundary of the scleral area A1 with respect to the eye contour area A by using a gradient direction formula. The slope is the boundary where each pixel on the boundary of the scleral area A1 and the slope of the tangent line A of the eye contour area are zero, which is expressed as an eyelid curve. The processing unit 3 can distinguish the eyelid curve into the upper eyelid lower edge curve C1 and the lower eyelid upper edge curve C2 according to the position coordinates of the eyelid curve. Furthermore, the processing unit 3 can also extend a vertical line from the pupil center point P1 in a direction perpendicular to the plane formed by the pupil viewing direction, and make the vertical lines intersect the lower edge curve C1 and The lower eyelid upper edge curve C2 is used to obtain position coordinates of the upper eyelid lower edge intersection point P2 and the lower eyelid upper edge intersection point P3, respectively.

較佳地,該處理單元3能夠在該眼睛輪廓區域A中取得該眼角左緣點P4及該眼角右緣點P5。具體而言,該處理單元3以一角點距離公式計算該上眼瞼下緣曲線C1與該下眼瞼上緣曲線C2的交界處,取得該眼角左緣點P4及該眼角右緣點P5。較佳地,該處理單元3還能夠由該瞳孔中心點P1延伸且分別交集於該上眼瞼下緣曲線C1及該下眼瞼上緣曲線C2,分別取得該上眼瞼下緣交集點P2及該下眼瞼上緣交集點P3各自的位置座標。 Preferably, the processing unit 3 can obtain the left edge point P4 and the right edge point P5 of the eye corner in the eye contour area A. Specifically, the processing unit 3 calculates the boundary between the upper edge lower eye curve C1 and the lower edge upper eye curve C2 by using a corner distance formula, and obtains the left edge point P4 and the right edge point P5 of the eye corner. Preferably, the processing unit 3 can also extend from the pupil center point P1 and intersect at the lower edge curve C1 of the upper eyelid and the upper edge curve C2 of the lower eyelid respectively to obtain the intersection point P2 of the upper eyelid and the lower edge The position coordinates of the intersection point P3 of the upper edge of the eyelid.

該處理單元3能夠依據該複數個特徵變數計算,以取得一特徵參數組。舉例而言,該特徵參數組係包含一虹膜直徑與一瞼裂高度PFH(Palpebral Fissure Height)之間的一高度差PS(Ptosis Severity),以及瞳孔用力朝上與用力朝下時的一最大移動距離LF。較佳地,該特徵參數組還可以另包含該瞳孔中心點P1至該上眼瞼下緣交集點P2之間的一第一距離MRD1、該瞳孔中心點P1至該下眼瞼上緣交集點P3之間的一第二距離MRD2、該上眼瞼下緣交集點P2至該下眼瞼上緣交集點P3之間的瞼裂高度PFH、該眼角左緣點P4至該眼角右緣點P5之間的一瞼裂寬度PFW(Palpebral Fissure Width),以及依據該虹膜區域A2推導計算出的一眼球體表面積OSA(Ocular Surface Area)。 The processing unit 3 can calculate according to the plurality of characteristic variables to obtain a characteristic parameter group. For example, the characteristic parameter system includes a height difference PS (Ptosis Severity) between an iris diameter and a palpebral fissure height (PFH), and a maximum movement when the pupil is forced upwards and downwards Distance LF. Preferably, the characteristic parameter group may further include a first distance MRD1 between the pupil center point P1 and the upper eyelid intersection point P2, and the pupil center point P1 to the lower eyelid upper edge intersection point P3. A second distance MRD2, a palpebral fissure height PFH between the upper edge lower edge intersection point P2 to the lower eyelid upper edge intersection point P3, a left edge point P4 to the right edge edge point P5 of the eyelid The palpebral fissure width (PFW) and the ocular surface area (OSA) of one eye calculated from the iris area A2.

該處理單元3依據該特徵參數組與一預設眼瞼下垂資訊相比 對,推知眼瞼下垂之嚴重程度及提眼肌之功能。舉例而言,該處理單元3依據該瞳孔用力朝上影像所產生的複數個特徵變數,計算取得瞳孔用力朝上時的一第一位置座標P6,另依據瞳孔用力朝下影像所產生的複數個特徵變數,計算取得瞳孔用力朝下時的一第二位置座標P7,該處理單元3計算該第一位置座標P6與該第二位置座標P7的距離差,以產生該最大移動距離LF,當該最大移動距離LF等於7毫米時,依據上述表一為例,則表示提眼肌功能為中度異常。 The processing unit 3 compares with a preset eyelid droop information according to the feature parameter group Yes, we can infer the severity of eyelid droop and the function of eye lift. For example, the processing unit 3 calculates and obtains a first position coordinate P6 when the pupil is forced upwards according to a plurality of characteristic variables generated by the pupil with the pupil upwards, and according to a plurality of images generated by the pupils downward. The characteristic variable calculates a second position coordinate P7 when the pupil is forced downward, and the processing unit 3 calculates a distance difference between the first position coordinate P6 and the second position coordinate P7 to generate the maximum moving distance LF. When the maximum moving distance LF is equal to 7 mm, according to the above table 1 as an example, it means that the eye lifting muscle function is moderately abnormal.

本發明的眼瞼下垂檢測系統,該處理單元3還可以依據該複數個特徵變數,形成一虛擬數位眼睛,該處理單元3可以將該虛擬數位眼睛與該眼部影像進行重疊,以分析該虛擬數位眼睛是否與該眼部影像之間具有極大偏差產生。具體而言,該處理單元3對該鞏膜區域A1、該瞳孔區域A3及該眼瞼曲線分別設定一權重值,較佳地,還能夠以該處理單元3對該眼角左緣點P4與該眼角右緣點P5另設定一權重值,該複數個權重值之計算公式係可以如上述式(1)~(5)所示。該處理單元3能夠以上述權重值作為一權重值公式的輸入變數,並計算取得複數個具有不同權重的虛擬數位眼睛,該處理單元3由該複數個虛擬數位眼睛中選擇具有最高權重者取代由原本的複數個特徵變數所形成的虛擬數位眼睛。該權重值之計算公式可以如上述式(6)所示。 According to the eyelid droop detection system of the present invention, the processing unit 3 may further form a virtual digital eye according to the plurality of characteristic variables, and the processing unit 3 may overlap the virtual digital eye with the eye image to analyze the virtual digital Whether there is a great deviation between the eye and the eye image. Specifically, the processing unit 3 sets a weight value for the scleral region A1, the pupil region A3, and the eyelid curve, respectively. Preferably, the processing unit 3 can also use the left edge point P4 of the corner of the eye and the right corner of the eye The edge point P5 sets another weight value. The calculation formula of the plurality of weight values can be shown in the above formulas (1) to (5). The processing unit 3 can use the weight value as an input variable of a weight value formula, and calculate and obtain a plurality of virtual digital eyes with different weights. The processing unit 3 selects the virtual digital eyes with the highest weight from the plurality of virtual digital eyes to replace the A virtual digital eye formed by a plurality of original characteristic variables. The calculation formula of the weight value can be shown in the above formula (6).

綜上所述,本發明的眼瞼下垂檢測方法及系統,能夠以影像處理技術搭配機器視覺取得病患眼部資訊,並以該眼部資訊推導用以判斷眼瞼下垂的相關數據,及依該數據進行自動化檢測提眼肌之功能及檢測眼瞼下垂之嚴重程度。藉此,係可以達到操作方便、大幅縮短測量時間及提升量測一致性等功效。 To sum up, the eyelid droop detection method and system of the present invention can use image processing technology and machine vision to obtain patient's eye information, and use the eye information to derive relevant data for judging eyelid droop, and according to the data Automated testing of the function of the eyelift and detection of the severity of eyelid sagging. In this way, the system can achieve convenient operation, greatly shorten the measurement time and improve the measurement consistency.

雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施 例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed by using the above-mentioned preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make relative to the above implementation without departing from the spirit and scope of the present invention. Various changes and modifications are still included in the technical scope protected by the present invention. Therefore, the scope of protection of the present invention shall be determined by the scope of the appended patent application.

Claims (12)

一種眼瞼下垂檢測方法,包含:拍攝產生眼部影像,該眼部影像係包含一瞳孔平視影像、一瞳孔用力朝上影像及一瞳孔用力朝下影像;對該眼部影像執行影像處理,產生一邊緣影像;對該眼部影像及該邊緣影像執行影像運算,取得複數個特徵變數;依據該複數個特徵變數計算,取得一特徵參數組;及將該特徵參數組與一預設眼瞼下垂資訊相比對,推知眼瞼下垂之嚴重程度及提眼肌之功能。 An eyelid droop detection method includes: shooting to generate an eye image, the eye image includes a pupil head-up image, a pupil force upward image, and a pupil force downward image; performing image processing on the eye image to generate An edge image; performing image operations on the eye image and the edge image to obtain a plurality of feature variables; calculating based on the plurality of feature variables to obtain a feature parameter group; and the feature parameter group and a preset eyelid droop information In contrast, the severity of eyelid droop and the function of the eye-lifting muscles are inferred. 如申請專利範圍第1項所述之眼瞼下垂檢測方法,其中,該複數個特徵變數係包含一眼睛輪廓區域、一鞏膜區域、一虹膜區域、一瞳孔區域、一瞳孔中心點、一上眼瞼下緣曲線、一下眼瞼上緣曲線、一上眼瞼下緣交集點及一下眼瞼上緣交集點各自的位置座標。 The eyelid droop detection method according to item 1 of the scope of patent application, wherein the plurality of characteristic variables include an eye contour area, a scleral area, an iris area, a pupil area, a pupil center point, and an upper eyelid Location coordinates of the edge curve, the upper edge of the lower eyelid, the intersection of the upper edge of the lower eyelid, and the intersection of the upper edge of the lower eyelid. 如申請專利範圍第2項所述之眼瞼下垂檢測方法,其中,該複數個特徵變數另包含一眼角左緣點及一眼角右緣點各自的位置座標。 The eyelid droop detection method according to item 2 of the scope of the patent application, wherein the plurality of characteristic variables further include position coordinates of a left edge point of the eye corner and a right edge point of the eye corner. 如申請專利範圍第3項所述之眼瞼下垂檢測方法,其中,該特徵參數組係包含一虹膜直徑與一瞼裂高度之間的一高度差,以及瞳孔用力朝上與用力朝下時的一最大移動距離。 The eyelid droop detection method according to item 3 of the scope of the patent application, wherein the characteristic parameter set includes a height difference between an iris diameter and a palpebral fissure height, and a time when the pupil is forced upwards and downwards. Maximum travel distance. 如申請專利範圍第4項所述之眼瞼下垂檢測方法,其中,該特徵參數組另包含該瞳孔中心點至該上眼瞼下緣交集點之間的一第一距離、該瞳孔中心點至該下眼瞼上緣交集點之間的一第二距離、該上眼瞼下緣交集點至該下眼瞼上緣交集點之間的瞼裂高度、該眼角左緣點至該眼角右緣點之間的一瞼裂寬度,以及依據該虹膜區域推導計算出的一眼球體表面積。 The eyelid droop detection method according to item 4 of the scope of patent application, wherein the feature parameter group further includes a first distance between the pupil center point and the intersection point of the upper edge of the upper eyelid, and the pupil center point to the lower eyelid. A second distance between the intersection of the upper edge of the eyelid, the height of the palpebral fissure between the intersection of the upper edge of the lower eyelid and the intersection of the upper edge of the lower eyelid, and the distance between the left edge of the eye and the right edge of the eye Eyelid fissure width, and the surface area of a sphere calculated from the iris area. 如申請專利範圍第3項所述之眼瞼下垂檢測方法,其中,依據 該複數個特徵變數,形成一虛擬數位眼睛,將該虛擬數位眼睛與該眼部影像進行重疊,以分析該虛擬數位眼睛是否與該眼部影像之間具有極大偏差產生。 The method for detecting droopy eyelids according to item 3 of the scope of patent application, wherein The plurality of characteristic variables form a virtual digital eye, and the virtual digital eye is overlapped with the eye image to analyze whether the virtual digital eye has a great deviation from the eye image. 一種眼瞼下垂檢測系統,包含:一攝影單元,用以拍攝產生眼部影像,該眼部影像係包含一瞳孔平視影像、一瞳孔用力朝上影像及一瞳孔用力朝下影像;一儲存單元,用以儲存一預設眼瞼下垂資訊;及一處理單元,耦接該攝影單元及該儲存單元,該處理單元對該眼部影像執行影像處理,產生一邊緣影像,該處理單元對該眼部影像及該邊緣影像執行影像運算,取得複數個特徵變數,該處理單元依該複數個特徵變數計算取得一特徵參數組,並將該特徵參數組與該預設眼瞼下垂資訊相比對,推知眼瞼下垂之嚴重程度及提眼肌之功能。 An eyelid droop detection system includes: a photographing unit for photographing and generating an eye image. The eye image includes a pupil head-up image, a pupil force upward image, and a pupil force downward image; a storage unit, For storing a preset eyelid sagging information; and a processing unit coupled to the photographing unit and the storage unit, the processing unit performing image processing on the eye image to generate an edge image, and the processing unit for the eye image And the edge image performs image calculation to obtain a plurality of feature variables, the processing unit calculates a feature parameter group according to the plurality of feature variables, and compares the feature parameter group with the preset eyelid sagging information to infer eyelid sagging The severity and function of eye lift. 如申請專利範圍第7項所述之眼瞼下垂檢測系統,其中,該複數個特徵變數係包含一眼睛輪廓區域、一鞏膜區域、一虹膜區域、一瞳孔區域、一瞳孔中心點、一上眼瞼下緣曲線、一下眼瞼上緣曲線、一上眼瞼下緣交集點及一下眼瞼上緣交集點各自的位置座標。 The eyelid droop detection system according to item 7 of the scope of patent application, wherein the plurality of characteristic variables include an eye contour area, a sclera area, an iris area, a pupil area, a pupil center point, and an upper eyelid Location coordinates of the edge curve, the upper edge of the lower eyelid, the intersection of the upper edge of the lower eyelid, and the intersection of the upper edge of the lower eyelid. 如申請專利範圍第8項所述之眼瞼下垂檢測系統,其中,該複數個特徵變數另包含一眼角左緣點及一眼角右緣點各自的位置座標。 The eyelid droop detection system according to item 8 of the scope of the patent application, wherein the plurality of characteristic variables further include position coordinates of a left edge point of the eye corner and a right edge point of the eye corner. 如申請專利範圍第9項所述之眼瞼下垂檢測系統,其中,該特徵參數組係包含一虹膜直徑與一瞼裂高度之間的一高度差,以及瞳孔用力朝上與用力朝下時的一最大移動距離。 The eyelid droop detection system according to item 9 of the scope of the patent application, wherein the characteristic parameter set includes a height difference between an iris diameter and a palpebral fissure height, and Maximum travel distance. 如申請專利範圍第10項所述之眼瞼下垂檢測系統,其中,該特徵參數組另包含該瞳孔中心點至該上眼瞼下緣交集點之間的一第一距離、該瞳孔中心點至該下眼瞼上緣交集點之間的一第二距離、該上眼瞼下緣交集點至該下眼瞼上緣交集點之間的瞼裂高度、該眼角左緣點至該眼角右緣點之 間的一瞼裂寬度,以及依據該虹膜區域推導計算出的一眼球體表面積。 The eyelid droop detection system according to item 10 of the scope of patent application, wherein the feature parameter group further includes a first distance between the pupil center point and the intersection point of the lower edge of the upper eyelid, and the pupil center point to the lower eyelid. A second distance between the intersection of the upper edge of the eyelid, the height of the palpebral fissure between the intersection of the upper edge of the upper eyelid and the intersection of the upper edge of the lower eyelid, and the distance from the left edge of the eye to the right edge of the eye Between the width of a palpebral fissure, and the surface area of a sphere calculated from the iris area. 如申請專利範圍第9項所述之眼瞼下垂檢測系統,其中,該處理單元依據該複數個特徵變數,形成一虛擬數位眼睛,該處理單元將該虛擬數位眼睛與該眼部影像進行重疊,以分析該虛擬數位眼睛是否與該眼部影像之間具有極大偏差產生。 The eyelid sagging detection system according to item 9 of the scope of patent application, wherein the processing unit forms a virtual digital eye according to the plurality of characteristic variables, and the processing unit overlaps the virtual digital eye with the eye image to Analyze whether the virtual digital eye has a great deviation from the eye image.
TW107126188A 2018-07-27 2018-07-27 Methods and system for detecting blepharoptosis TWI673034B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107126188A TWI673034B (en) 2018-07-27 2018-07-27 Methods and system for detecting blepharoptosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107126188A TWI673034B (en) 2018-07-27 2018-07-27 Methods and system for detecting blepharoptosis

Publications (2)

Publication Number Publication Date
TWI673034B true TWI673034B (en) 2019-10-01
TW202007353A TW202007353A (en) 2020-02-16

Family

ID=69023654

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107126188A TWI673034B (en) 2018-07-27 2018-07-27 Methods and system for detecting blepharoptosis

Country Status (1)

Country Link
TW (1) TWI673034B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI780879B (en) * 2021-08-27 2022-10-11 長庚醫療財團法人林口長庚紀念醫院 System of measuring mrd1 value and method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010056228A1 (en) * 2000-06-27 2001-12-27 Drdc Limited Diagnosis system, diagnosis data producing method, information processing device, terminal device and recording medium used in the diagnosis data producing method
CN105559802A (en) * 2015-07-29 2016-05-11 北京工业大学 Tristimania diagnosis system and method based on attention and emotion information fusion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010056228A1 (en) * 2000-06-27 2001-12-27 Drdc Limited Diagnosis system, diagnosis data producing method, information processing device, terminal device and recording medium used in the diagnosis data producing method
CN105559802A (en) * 2015-07-29 2016-05-11 北京工业大学 Tristimania diagnosis system and method based on attention and emotion information fusion

Also Published As

Publication number Publication date
TW202007353A (en) 2020-02-16

Similar Documents

Publication Publication Date Title
WO2020019286A1 (en) Blepharoptosis detection method and system
JP4307496B2 (en) Facial part detection device and program
JP4845698B2 (en) Eye detection device, eye detection method, and program
JP6651074B2 (en) Method for detecting eye movement, program thereof, storage medium for the program, and apparatus for detecting eye movement
WO2014031086A1 (en) Methods and systems for automatic location of optic structures in an image of an eye, and for automatic retina cup-to-disc ratio computation
Ramlee et al. Using iris recognition algorithm, detecting cholesterol presence
CN106570447B (en) Based on the matched human face photo sunglasses automatic removal method of grey level histogram
Septiarini et al. Automatic detection of peripapillary atrophy in retinal fundus images using statistical features
JP6956986B1 (en) Judgment method, judgment device, and judgment program
US20150029461A1 (en) Cycloduction measurement device, cycloduction measurement method, and cycloduction measurement program
JPWO2018078857A1 (en) Gaze estimation apparatus, gaze estimation method, and program recording medium
Thangaraj et al. Glaucoma diagnosis using support vector machine
WO2019073962A1 (en) Image processing device and program
TWI673034B (en) Methods and system for detecting blepharoptosis
Tan et al. Automatic notch detection in retinal images
CN116030042B (en) Diagnostic device, method, equipment and storage medium for doctor's diagnosis
Bhangdiya Cholesterol presence detection using iris recognition
Septiarini et al. Peripapillary atrophy detection in fundus images based on sectors with scan lines approach
Akhade et al. Automatic optic disc detection in digital fundus images using image processing techniques
WO2011108995A1 (en) Automatic analysis of images of the anterior chamber of an eye
Mittal et al. Optic disk and macula detection from retinal images using generalized motion pattern
CN110096958B (en) Method and device for recognizing front face image and computing equipment
JP2010015463A (en) Method for detecting eye position
Pavitra et al. Automated diagnose of neovascular glaucoma disease using advance image analysis technique
Lotankar et al. Glaucoma Screening using Digital Fundus Image through Optic Disc and Cup Segmentation