TWI672486B - Cartridge and analyzer for fluid analysis - Google Patents

Cartridge and analyzer for fluid analysis Download PDF

Info

Publication number
TWI672486B
TWI672486B TW106120731A TW106120731A TWI672486B TW I672486 B TWI672486 B TW I672486B TW 106120731 A TW106120731 A TW 106120731A TW 106120731 A TW106120731 A TW 106120731A TW I672486 B TWI672486 B TW I672486B
Authority
TW
Taiwan
Prior art keywords
liquid
channel
analyzer
plug
sensor array
Prior art date
Application number
TW106120731A
Other languages
Chinese (zh)
Other versions
TW201805610A (en
Inventor
黃睿政
溫清華
陳東村
謝正祥
黃毓傑
林璟暉
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/406,066 external-priority patent/US11119101B2/en
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW201805610A publication Critical patent/TW201805610A/en
Application granted granted Critical
Publication of TWI672486B publication Critical patent/TWI672486B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1079Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices with means for piercing stoppers or septums
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本揭露闡述一種液體盒體及操作方法。該液體盒體包含一基板,該基板具有:複數個接點墊,其經設計以與一分析器電耦合;一半導體晶片,其具有一感測器陣列;及一參考電極。該液體盒體包含一第一液體通道,該第一液體通道具有一入口且耦合至一第二液體通道,該第二液體通道經對準使得該感測器陣列及該參考電極放置在該第二液體通道內。一第一插塞放置在第一入口處。該第一插塞包含經組態以由一毛細管刺穿但不會使液體穿過該第一插塞洩漏之一柔性材料。This disclosure describes a liquid box and a method of operation. The liquid box body includes a substrate having a plurality of contact pads designed to be electrically coupled to an analyzer, a semiconductor wafer having a sensor array, and a reference electrode. The liquid box body includes a first liquid channel, the first liquid channel has an inlet and is coupled to a second liquid channel, and the second liquid channel is aligned so that the sensor array and the reference electrode are placed on the first Two liquid channels. A first plug is placed at the first entrance. The first plug comprises a flexible material configured to be pierced by a capillary but not to allow liquid to leak through the first plug.

Description

用於分析液體的盒體及分析器Case and analyzer for analyzing liquid

本發明實施例係關於一種用於分析液體的盒體及分析器。The embodiment of the invention relates to a box body and an analyzer for analyzing liquid.

生物感測器係用於感測及偵測生物分子之裝置且在電子、電化學、光學及機械偵測原理之基礎上進行操作。包含電晶體之生物感測器係電感測電荷、光子及生物實體或生物分子之機械性質之感測器。可藉由偵測生物實體或生物分子自身或透過指定反應物與生物實體/生物分子之間的相互作用及反應而執行偵測。此類生物感測器可使用半導體程序來製造,可迅速地轉換電訊號,且可容易地應用於積體電路(IC)及MEMS。 生物樣本自身與生物感測器之相互作用可係一挑戰。通常,將含有生物樣本之一液體直接吸移至生物感測器之感測部分上方。此方法導致液體樣本之一大部分未使用,且對每一感測區進行手動裝載係耗時的。Biosensors are devices used to sense and detect biomolecules and operate on the basis of electronic, electrochemical, optical, and mechanical detection principles. Biosensors including transistors are sensors that sense the electrical properties of charge, photons, and the mechanical properties of biological entities or biomolecules. Detection can be performed by detecting biological entities or biomolecules themselves or through interactions and reactions between designated reactants and biological entities / biomolecules. Such biosensors can be manufactured using semiconductor programs, can quickly convert electrical signals, and can be easily applied to integrated circuits (ICs) and MEMS. The interaction of the biological sample itself with the biosensor can be a challenge. Generally, a liquid containing a biological sample is pipetted directly above the sensing portion of the biosensor. This method results in most of the liquid samples being unused and manual loading of each sensing area is time consuming.

根據本發明之一實施例,一種液體盒體包括:一基板,該基板包括:複數個接點墊,其經組態以與一分析器電耦合,一半導體晶片,其具有一感測器陣列,及一參考電極;一第一液體通道,其具有一第一入口且耦合至一第二液體通道,該第二液體通道經對準使得該感測器陣列及該參考電極放置在該第二液體通道內;一樣本入口,其用於將一樣本放在該第一液體通道或該第二液體通道之一路徑內;及一第一插塞,其放置在該第一入口處且包括經組態以由一毛細管刺穿但不會使液體穿過該第一插塞洩露之一柔性材料。 根據本發明之另一實施例,一種液體盒體包括:一第一液體通道,其具有一第一入口且耦合至一第二液體通道,該第二液體通道經對準使得一感測器陣列及一參考電極放置在該第二液體通道內;一樣本入口,其用於將一樣本放在該第一液體通道或該第二液體通道之一路徑內;及一第一插塞,其放置在該第一入口處且包括經組態以由一毛細管刺穿但不會使液體穿過該第一插塞洩漏之一柔性材料,其中該毛細管耦合至一分析器,且其中當使該液體盒體與該分析器實體接觸時該毛細管刺穿該第一插塞。 根據本發明之又一實施例,一種經組態以與一液體盒體耦合之分析器包括:一注射器,其經配置使得當該液體盒體實體地耦合至該分析器時該注射器之一針與該液體盒體之一對應輸入埠對準;一致動器,其經組態以控制該注射器之操作;一感測模組,其經組態以經由複數個導電墊發送及接收來自該液體盒體之訊號,當該液體盒體實體地耦合至該分析器時該複數個導電墊接觸該液體盒體上之對應複數個導電墊;及一處理器,其電耦合至該感測模組,且經組態以基於自該液體盒體接收之訊號而判定來自該液體盒體中之一樣本之一給定分析物之一濃度位準。According to an embodiment of the present invention, a liquid box body includes a substrate including a plurality of contact pads configured to be electrically coupled with an analyzer, a semiconductor wafer having a sensor array. And a reference electrode; a first liquid channel having a first inlet and coupled to a second liquid channel, the second liquid channel is aligned such that the sensor array and the reference electrode are placed on the second A liquid inlet; a sample inlet for placing a sample in one of the first liquid channel or the second liquid channel; and a first plug that is placed at the first inlet and includes a A flexible material configured to be pierced by a capillary but not to allow liquid to leak through the first plug. According to another embodiment of the present invention, a liquid box body includes: a first liquid channel having a first inlet and coupled to a second liquid channel, the second liquid channel is aligned so that a sensor array And a reference electrode is placed in the second liquid channel; a sample inlet is used to place a sample in a path of the first liquid channel or the second liquid channel; and a first plug is placed At the first inlet and includes a flexible material configured to be pierced by a capillary but not to allow liquid to leak through the first plug, wherein the capillary is coupled to an analyzer, and wherein when the liquid is made The capillary penetrates the first plug when the box body is in contact with the analyzer entity. According to yet another embodiment of the present invention, an analyzer configured to couple with a liquid cartridge includes: a syringe configured such that when the liquid cartridge is physically coupled to the analyzer a needle Aligned with one of the corresponding input ports of the liquid box; an actuator configured to control the operation of the syringe; a sensing module configured to send and receive liquid from the liquid via a plurality of conductive pads A signal of the box body, when the liquid box body is physically coupled to the analyzer, the plurality of conductive pads contact the corresponding plurality of conductive pads on the liquid box body; and a processor, which is electrically coupled to the sensing module And configured to determine a concentration level of a given analyte from a sample in a liquid cartridge based on a signal received from the liquid cartridge.

以下揭露提供用於實施所提供標的物之不同構件之諸多不同實施例或實例。下文闡述組件及配置之特定實例以簡化本揭露。當然,此等僅係實例且不意欲為限制性。舉例而言,在以下說明中,一第一構件形成於一第二構件上方可包含其中第一構件及第二構件形成為直接接觸之實施例,且亦可包含其中額外構件可形成及/或放置於第一構件與第二構件之間使得第一構件及第二構件可不直接接觸之實施例。另外,本揭露可在各種實例中重複元件符號及/或字母。此重複本身不指出所論述之各種實施例及/或組態之間的一關係。 進一步地,為了說明方便,本文中可使用空間相對術語(諸如,「在…下面」、「在…下方」、「下部」、「在…上面」、「上部」及諸如此類)來闡述一個元件或構件與另一(些)元件或構件之關係,如各圖中所圖解說明。該等空間相對術語意欲囊括除各圖中所繪示之定向之外的裝置在使用或操作中之不同定向。設備可以其他方式經定向(例如,旋轉90度或處於其他定向)且相應地可同樣地解釋本文中所使用之空間相對敘述語。術語 除非另有定義,否則本文中所使用之所有技術及科學術語皆具有與熟習本揭露所屬技術領域者通常所理解相同之含義。儘管類似或等效於本文中所闡述之彼等方法及材料之任何方法及材料可用於根據本揭露之實施例之實踐或測試中,但現在闡述方法、裝置及材料。出於闡述及揭露可結合本揭露使用之公開案中所報告之材料及方法之目的,本文中所提及之所有專利及公開案以引用方式併入本文中。 如本文中所使用之首字母縮寫「FET」係指一場效應電晶體。一非常常見類型之FET稱為一金屬氧化物半導體場效應電晶體(MOSFET)。在歷史上,MOSFET一直為建構在諸如一半導體晶圓之一基板之平面表面中及上之平面結構。但半導體製造之最近進展已產生三維基於鰭片之MOSFET結構。 術語「生物FET」係指包含充當表面受體以偵測生物來源之一目標分析物之存在之固定化捕獲試劑之一層的一FET。根據一實施例,一生物FET係具有一半導體傳感器之一場效應感測器。生物FET之一個優點係無標記操作之期望。具體而言,生物FET使得能夠避免昂貴且耗時標記操作,諸如用(例如)螢光或放射性探針標記一分析物。本文中闡述之一種特定類型之生物FET係一雙閘極背側感測生物FET。用於由一生物FET偵測之分析物通常將係為生物來源,諸如(不具限制地)蛋白質、碳水化合物、脂質、組織碎片或其若干部分。然而,在一更一般意義上,一生物FET係亦可偵測任何化學化合物之一種更廣義之FET感測器之部分(在此項技術中稱為一化學FET)或包含諸如質子或金屬離子之離子之任何其他元件(在此項技術中稱為一ISFET)。本揭露意欲適用於所有類型之基於FET之感測器(「FET感測器」)。本文中之一種特定類型之FET感測器係一雙閘極背側感測FET感測器(「DG BSS FET感測器」)。 「S/D」係指形成一FET之四個端子中之兩個端子之源極/汲極接面。 表達「高k」係指一高介電常數。在半導體裝置結構及製造程序之領域中,高k係指大於SiO2 之介電常數(亦即,大於3.9)之一介電常數。 術語「分析」一般係指涉及物理、化學、生物化學或生物分析之一程序或步驟,其包含但不限於表徵、測試、量測、最佳化、分離、合成、添加、過濾、溶解或混合。 術語「檢定」一般係指涉及對一化學物或一目標分析物之分析之一程序或步驟且包含但不限於基於細胞檢定、生物化學檢定、高通量檢定與篩選、診斷檢定、pH判定、核酸雜交檢定、聚合酶活性檢定、核酸與蛋白質定序、免疫檢定(例如,抗體-抗原結合檢定、ELISA及iqPCR)、用於偵測基因之甲基化型樣之亞硫酸氫鹽甲基化檢定、蛋白質檢定、蛋白質結合檢定(例如,蛋白質-蛋白質、蛋白質-核酸及蛋白質-配位子結合檢定)、酶檢定、偶合酶檢定、動力量測(例如,蛋白質摺疊動力學及酶反應動力學)、酶抑制劑及活化劑篩選、化學發光及電化學發光檢定、螢光檢定、螢光偏振及非等向性檢定、吸光度及色度檢定(例如,布拉福(Bradford)檢定、洛瑞(Lowry)檢定、哈特裡-洛瑞(Hartree-Lowry)檢定、縮二脲檢定及BCA檢定)、化學檢定(例如,用於偵測環境污染物及污染、奈米粒子或聚合物)及藥物發現檢定。本文中闡述之設備、系統及方法可使用或採用此等檢定中之一或多者以與FET感測器所闡述設計中之任一者一起使用。 術語「流體生檢」一般係指與一受驗者之組織樣本相比較自一受驗者之體液獲得之一生檢樣本。使用一體液樣本執行檢定之能力時常比使用一組織樣本合意。就患者福利、進行縱向疾病監測之能力及甚至在組織細胞係不容易接達的(例如,在前列腺中)時獲得表達譜之能力而言,使用一體液樣本之低創方法具有範圍很廣的含意。用於偵測流體生檢樣本中之目標分析物之檢定包含但不限於上文所闡述之彼等。作為一非限制性實例,可對一流體生檢樣本進行一循環腫瘤細胞(CTC)檢定。 舉例而言,固定化在一FET感測器上之一捕獲試劑(例如,一抗體)可用於使用一CTC檢定偵測一流體生檢樣本中之一目標分析物(例如,一腫瘤細胞標誌物)。CTC係已自一腫瘤散佈至血管中且(例如)在血流中循環之細胞。一般而言,CTC以極其低之濃度存在於循環中。為檢定CTC,藉由此項技術中已知之各種技術自患者血液或血漿富集CTC。可針對特定標誌物使用此項技術中已知之方法(包含但不限於基於細胞計量術(例如,流動式細胞計量術)方法及基於IHC方法)將CTC染色。針對本文中闡述之設備、系統及方法,可使用一捕獲試劑捕獲或偵測CTC或者可將來自CTC之核酸、蛋白質或其他細胞周圍環境定目標為用於結合至一捕獲試劑或由一捕獲試劑偵測之目標分析物。 當偵測一CTC上或來自一CTC之一目標分析物時,例如,表達或含有CTC之目標分析物之一增加可幫助將受驗者識別為具有可能對一特定治療(例如,其與一目標分析物相關聯)作出回應之一癌或允許用(例如)對目標分析物之一抗體最佳化一治療方案。CTC量測及定量可提供關於(例如)腫瘤階段、對治療之回應、疾病進展或其一組合之資訊。自偵測CTC上之目標分析物獲得之資訊可用作(例如)一預後、預測或藥效生物標誌物。另外,可單獨或與對固體生檢樣本之額外腫瘤標誌物分析組合使用對一流體生檢樣本之CTC檢定。 術語「識別」一般係指基於一目標分析物至一捕獲試劑(其身份係已知的)之結合而判定該目標分析物之身份之程序。 術語「量測」一般係指基於一目標分析物至一捕獲試劑之結合而判定該目標分析物之量、數量、品質或性質之程序。 術語「定量」一般係指基於一目標分析物至一捕獲試劑之結合而判定該目標分析物之數量或濃度之程序。 術語「偵測」一般係指基於一目標分析物至一捕獲試劑之結合而判定該目標分析物之存在或不存在之程序。偵測包含但不限於識別、量測及定量。 術語「化學物」係指一物質、化合物、混合物、溶液、乳液、分散質、分子、離子、二聚物、諸如一聚合物或蛋白質之巨分子、生物分子、沈澱物、晶體、化學部分體或基團、粒子、奈米粒子、試劑、反應產物、溶劑或液體,其中之任一者可以固體、流體或氣體狀態存在且通常係一分析之對象。 術語「反應」係指一物理、化學、生物化學或生物轉化,其涉及至少一種化學物且一般涉及(在化學、生物化學及生物轉化之情形中)諸如共價、非共價、範德瓦爾斯(van der Waals)、氫或離子鍵之一或多個鍵之斷開或形成。該術語包含典型化學反應,諸如合成反應、中和反應、分解反應、置換反應、氧化還原反應、沈澱、結晶、燃燒反應及聚合反應,以及共價及非共價結合、相位改變、色彩改變、相位形成、結晶、溶解、光發射、光吸收或發射性質之改變、溫度改變或熱吸收或發射、構形改變及諸如一蛋白質之一巨分子之摺疊或展開。 如本文中所使用之「捕獲試劑」係能夠結合可直接或間接附接至一實質上固體材料之目標分析物或目標試劑之一分子或化合物。該捕獲試劑可係一化學物,且具體而言為針對其存在一天然生成目標分析物(例如,一抗體、多肽、DNA、RNA、細胞、病毒等)或針對其可製備一目標分析物的任一物質,且該捕獲試劑可在一檢定中結合至一或多個目標分析物。 如本文中所使用之「目標分析物」係將使用本揭露在測試樣本中偵測之物質。該目標分析物可係一化合物,且具體而言為針對其存在一天然生成捕獲試劑(例如,一抗體、多肽、DNA、RNA、細胞、病毒等)或針對其可製備一捕獲試劑的任一物質,且該目標分析物可在一檢定中結合至一或多個捕獲試劑。「目標分析物」亦包含任何抗原物質、抗體及其組合。該目標分析物可包含一蛋白質、一肽、一氨基酸、一碳水化合物、一激素、一類固醇、一維生素、包含出於治療目的而實行之彼等以及出於非法目的而實行之彼等之一藥物、一細菌、一病毒及以上物質中之任一者之代謝物或抗體。 如本文中所使用之「測試樣本」意指含有將使用本揭露偵測及檢定之目標分析物的組合物、溶液、物質、氣體或流體。該測試樣本可含有除目標分析物以外之其他組分,可具有一流體或一氣體之物理屬性,且可係為任一大小或體積,包含(舉例而言)一移動流體或氣體流。該測試樣本可含有除目標分析物以外之任何物質,只要其他物質不干擾目標分析物與捕獲試劑之結合或第一結合部件至第二結合部件之特定結合。測試樣本之實例包含但不限於天然生成及非天然生成樣本或其組合。天然生成測試樣本可係合成物或經合成的。天然生成測試樣本包含與一受驗者之身體中或上之任何地方隔離之體液(body fluid或bodily fluid),包含但不限於血液、血漿、血清、尿、唾液或痰、脊髓液、腦脊髓液、胸膜液、乳頭吸出物、淋巴液、呼吸道、腸道及生殖泌尿道之液體、淚液、唾液、母乳、來自淋巴系統之液體、精液、腦脊髓液、器官系統內液體、腹水、腫瘤囊液、羊膜液及其組合,以及諸如地下水或廢水、土壤抽出液、空氣及農藥殘留或與食品相關之樣本的環境樣本。 所偵測物質可包含(例如)核酸(包含DNA及RNA)、激素、不同病原體(包含導致其宿主之疾病或患病之一生物劑,諸如一病毒(例如,H7N9或HIV)、一原蟲(例如,瘧原蟲導致之瘧疾)或一細菌(例如,大腸桿菌 或結核分枝桿菌))、蛋白質、抗體、各種藥物或治療或其他化學或生物物質,包含氫或其他離子、非離子分子或化合物、多醣、諸如化學組合庫成員之小化學化合物及諸如此類。所偵測或所判定參數可包含但不限於(例如) pH改變、乳糖改變、改變之濃度、每單位時間之粒子(其中一液體在裝置上方流動一時間週期以偵測粒子,例如,稀疏之粒子)及其他參數。 如本文中所使用,術語「固定化」在關於(例如)一捕獲試劑使用時包含將處於一分子位準之捕獲試劑實質上附接至一表面。舉例而言,一捕獲試劑可使用吸附技術固定化至基板材料之一表面,該等吸附技術包含非共價相互作用(例如,靜電力、範德瓦爾斯及疏水介面之脫水)及其中官能基團或連結器促進將捕獲試劑附接至表面之共價結合技術。將一捕獲試劑固定化一基板材料之一表面可基於基板表面之性質、攜載捕獲試劑之介質及捕獲試劑之性質。在某些情形中,可首先改質一基板表面以使官能基團結合至該表面。該等官能基團可然後結合至生物分子或者生物或化學物質以使該等官能基團固定化於其上。 術語「核酸」一般係指經由磷酸二酯鍵彼此連接之一核苷酸集合且係指自然中存在之一天然生成核苷酸所連接之一天然生成核酸,諸如包括使腺嘌呤、鳥嘌呤、胞嘧啶及胸嘧啶中之任何者彼此連接之去氧核苷酸之DNA及/或包括使腺嘌呤、鳥嘌呤、胞嘧啶及尿嘧啶中之任何者彼此連接之核糖核苷酸之RNA。另外,非天然生成核苷酸及非天然生成核酸在本揭露之核酸之範疇內。實例包含肽核酸(PNA)、具有磷酸基團之肽核酸(PHONA)、橋接核酸/鎖定核酸(BNA/LNA)及嗎啉基核酸。進一步實例包含化學改質之核酸及核酸類似物,諸如甲基膦酸酯DNA/RNA、硫代磷酸酯DNA/RNA、氨基磷酸酯DNA/RNA及2'-0-甲基DNA/RNA。核酸包含可經改質之彼等核酸。舉例而言,一核酸中之一磷酸基、一糖及/或一鹼可標記為必要的。用於此項技術中已知之核酸標記之任何物質可用於標記。其實例包含但不限於放射性同位素(例如,32P、3H及14C)、DIG、生物素、螢光染料(例如,FITC、Texas、cy3、cy5、cy7、FAM、HEX、VIC、JOE、Rox、TET、Bodipy493、NBD及TAMRA)及發光物質(例如,吖啶酯)。 如本文中所使用之適配體係指結合至一特定目標分子之寡核酸或肽分子。使用單股核酸(適配體)作為用於蛋白質結合之親和力分子之概念最初在1990年(Ellington及Szostak 1990年、1992年;Tuerk及Gold 1990年)揭露,且基於在存在一目標之情況下將短序列摺疊至結合具有高親和力及特異性之目標之獨特三維結構中之能力。Eugene W. M Ng等人在2006年揭露適配體係經選擇以用於至分子目標之高親和力結合之寡核苷酸配位子。 如本文中所使用之術語「抗體」係指能夠非共價地、可逆地且以一特定方式結合一對應抗原之免疫球蛋白家族之多肽。舉例而言,一天然生成IgG抗體係包括由二硫鍵互連之至少兩條重(H)鏈及兩條輕(L)鏈之四聚物。每一重鏈包括一重鏈可變區域(在本文中縮寫為VH)及一重鏈恆定區域。該重鏈恆定區域包括三個域:CH1、CH2及CH3。每一輕鏈包括一輕鏈可變區域(在本文中縮寫為VL)及一輕鏈恆定區域。該輕鏈恆定區域包括一個域CL。可將VH及VL區域進一步細分成超變區域(稱為互補性決定區域(CDR))及更保守之區域(稱為框架區域(FR)),二者穿插著。每一VH及VL由三個CDR及四個FR構成,其自胺基末端至羧基末端按下列次序配置:FR1、CDR1、FR2、CDR2、FR3、CDR3及FR4。該三個CDR構成可變域之大約15%至20%。重鏈及輕鏈之可變區域含有與一抗原相互作用之一結合域。抗體之恆定區域可介導免疫球蛋白與宿主組織或因子(包含免疫系統之各種細胞(例如,效應物細胞)及經典補體系統之第一組分(C1q))之結合。(Kuby免疫學,第四版,第四章,W.H. Freeman & Co.,紐約,2000年)。 術語「抗體」包含但不限於單株抗體、人抗體、人源化抗體、嵌合抗體及抗遺傳型(anti-Id)抗體(例如,包含本揭露之抗體之抗遺傳抗體)。該等抗體可係為任何同型/類別(例如,IgG、IgE、IgM、IgD、IgA及IgY)或子類別(例如,IgG1、IgG2、IgG3、IgG4、IgA1及IgA2)。 術語「聚合物」意指由彼此重複地連結之兩個或兩個以上建構組元(「單體單元」)組成之任一物質或化合物。舉例而言,「二聚物」係其中兩個建構組元已接合在一起之一化合物。聚合物包含縮合聚合物及加成聚合物兩者。縮合聚合物之典型實例包含聚醯胺、聚酯、蛋白質、羊毛、蠶絲、聚氨酯、纖維素及聚矽氧烷。加成聚合物之實例係聚乙烯、聚異丁烯、聚丙烯腈、聚(氯乙烯)及聚苯乙烯。其他實例包含具有增強電或光學性質(例如,一非線型光學性質)之聚合物,諸如導電或光致折射聚合物。聚合物包含線型聚合物及分枝聚合物兩者。生物感測盒體之概觀 圖1圖解說明整合在一起以形成一例示性生物感測盒體102之各種組件之一概觀。生物感測盒體102可包含經組態以控制既朝向又遠離一感測位置(在其中可偵測到一目標分析物之存在)之液體流動之複數個液體通道。 在此說明性實施例中,生物感測盒體102包含一FET感測器104陣列。FET感測器104構成生物感測盒體102之傳感器組件。FET感測器104可配置成一陣列且個別地經定址以偵測FET感測器感測層之表面處之結合事件。在一項實施例中,FET感測器104包含雙閘極背側FET感測器。在替代實施例中,可使用其他類型之基於FET感測器之感測器。 生物感測盒體102包含一生物介面106。生物介面106可耦合至雙閘極背側感測FET感測器104以促進雙閘極背側感測FET感測器104之表面處之結合反應,然後可偵測該結合反應。各種類型之生物分子可形成生物介面106之一部分,諸如DNA或RNA適配體及抗體(舉幾個實例)。本文中將詳細地論述關於生物介面之進一步細節及其相關聯化學及生物力學。 生物感測盒體102包含各種位準之晶片封裝108以便將一雙閘極背側感測FET感測器晶片整合至一液體環境中。生物感測盒體102亦包含具有微液體通道之一液體組件110以管理流體至FET感測器104之遞送。液體組件110亦併入有液體入口以用於與自生物感測盒體102之外側遞送之液體介接。 生物感測盒體102中之各種組件之整合產生可用於眾多各種生物感測應用之一緊湊且可攜式平臺。與整合式液體組件一起使用FET感測器在使用低樣本體積時產生準確結果。另外,生物感測盒體102可經組態以藉由一分析器以一完全自動方式操作,且然後在使用之後被處理掉。 將本文中之說明分成四個主要章節以進一步詳細地闡述生物感測盒體102之組件。第一章節將闡述雙閘極背側生物FET感測器104之配置及製作。第二章節將闡述封裝程序。第三章節將闡述液體組件110,且進一步闡述生物感測盒體102與一分析器之間的相互作用。最後章節將提供關於使用雙閘極背側FET感測器104之生物學及各種生物感測應用之細節。雙閘極背側 FET 感測器 雙閘極背側FET感測器利用半導體製造技術及生物捕獲試劑來形成靈敏且容易排列之感測器。雖然習用MOSFET具有連接至一單個電節點之一單個閘極電極,但雙閘極背側感測FET感測器具有兩個閘極電極,該兩個閘極電極中之每一者連接至一不同電節點。該兩個閘極電極中之一第一閘極電極在本文中稱為前側閘極且該兩個閘極電極中之第二閘極電極在本文中稱為背側閘極。前側閘極及背側閘極兩者皆經組態使得在操作中每一閘極可經電充電及/或放電且因此每一閘極影響雙閘極背側感測FET感測器之源極/汲極端子之間的電場。該前側閘極係導電的,藉由一前側閘極介電質與一通道區域分開,且經組態以藉由該前側閘極所耦合之一電路經充電及放電。該背側閘極通常藉由一背側閘極介電質與通道區域分開,且包含放置在該背側閘極介電質上之一生物功能化感測層。該背側閘極上之電荷量係是否已發生一生物辨識反應之一函數。在雙閘極背側感測FET感測器之典型操作中,將前側閘極充電至在一預定電壓範圍內之一電壓。前側閘極上之該電壓判定FET感測器之通道區域之一對應傳導率。對背側閘極上之電荷之一相對小的改變量改變通道區域之傳導率。傳導率之此改變指示一生物辨識反應。 FET感測器之一個優點係無標記操作之期望。具體而言,FET感測器使得能夠避免昂貴且耗時標記操作,諸如用(例如)螢光或放射性探針標記一分析物。 參考圖2,圖解說明一例示性雙閘極背側感測FET感測器200。雙閘極背側感測FET感測器200包含形成於基板214上方且藉由放置在基板214上之一介入介電質215與基板214分開之一控制閘極202。基板214進一步包含一源極區域204、一汲極區域206及在源極區域204與汲極區域206之間的一通道區域208。在一實施例中,基板214具有在大約100 nm與大約130 nm之間的一厚度。可使用適合CMOS程序技術來形成閘極202、源極區域204、汲極區域206及通道區域208。閘極202、源極區域204、汲極區域206及通道區域208形成一FET。一隔離層210放置在基板214之與閘極202相對之側上。在一項實施例中,隔離層210具有大約1 μm之一厚度。在本揭露中,閘極202放置在其上的基板214之側稱為基板214之「前側」。類似地,隔離層210放置在其上的基板214之側稱為「背側」。 一開口212提供於隔離層210中。開口212可與閘極202實質上對準。在其他實施例中,開口212大於閘極202且可在多個雙閘極背側感測FET感測器上方延伸。一介面層(未展示)可放置在開口212中在通道區域208之表面上。該介面層可操作以提供用於定位及固定化一或多個受體以用於偵測生物分子或生物實體之一介面。本文中提供關於介面層之進一步細節。 雙閘極背側感測FET感測器200包含至汲極區域206 (Vd 216)、源極區域204 (Vs 218)、閘極結構202 (前側閘極220)及/或主動區域208 (例如,背側閘極222)之電接點。應注意,背側閘極222不需要實體地接觸基板214或基板214上方之任何介面層。因此,雖然一習用FET使用一閘極接點來控制源極與汲極之間的半導體(例如,通道)之傳導性,但雙閘極背側感測FET感測器200允許形成於FET裝置之相對側上之受體來控制傳導性,同時閘極結構202提供用以控制傳導性之另一閘極。因此,雙閘極背側感測FET感測器200可用於偵測開口212周圍及/或其中之環境中之一或多個特定生物分子或生物實體,如使用本文中之各種實例更詳細地論述。 雙閘極背側感測FET感測器200可連接至額外被動組件,諸如電阻器、電容器、電感器及/或熔斷器;及其他主動組件,包含P通道場效應電晶體(PFET)、N通道場效應電晶體(NFET)、金屬氧化物半導體場效應電晶體(MOSFET)、高電壓電晶體及/或高頻率電晶體;其他適合組件;及/或其組合。應進一步理解,額外構件可添加在雙閘極背側感測FET感測器200中,且針對雙閘極背側感測FET感測器200之額外實施例可替換或刪去所闡述之構件中之某些構件。關於雙閘極背側感測FET感測器200之實例性製作程序之進一步細節可存在於共同擁有之第2013/0200438號美國專利申請案及第2014/0252421號美國專利申請案中。 參考圖3,圖解說明連接至位元線306及字線308之FET感測器304之一例示性可定址陣列300之一示意圖。應注意,術語位元線及字線在本文中用於指示與記憶體裝置中之陣列構造之類似點,然而,並不暗示記憶體裝置或一儲存陣列必需包含於該陣列中。可定址陣列300可具有與其他半導體裝置中所採用之陣列(諸如動態隨機存取記憶體(DRAM)陣列)之類似點。舉例而言,上文參考圖2所闡述之雙閘極背側感測FET感測器200可形成於一電容器將存在於一DRAM陣列中之一位置中。示意圖300僅係例示性的且將認識到其他組態係可能的。 FET感測器304可各自實質上類似於雙閘極背側感測FET感測器200。FET 302經組態以提供FET感測器304之一汲極端子與位元線306之間的連接。以此方式,FET 302類似於一DRAM陣列中之存取電晶體。在此例示性實施例中,FET感測器304係一雙閘極背側感測FET感測器且包含放置在上覆於一FET主動區域(放置在一反應位點處)上之一介電層上之一受體材料所提供之一感測閘極,及放置在上覆於該FET主動區域上之一介電層上之一閘極電極(例如,多晶矽)所提供之一控制閘極。 示意圖300展示在偵測引入至FET感測器304之最小生物分子或生物實體所提供之小訊號改變中可係有利之一陣列形成。使用位元線306及字線308之排列格式允許減小數目個輸入/輸出墊。放大器可用於增強訊號強度以改良具有示意圖300之電路配置之裝置之偵測能力。在一實施例中,當確證特定字線308及位元線306時,將接通對應存取電晶體302 (例如,像一開關一樣)。當相關聯FET感測器304之閘極(例如,諸如雙閘極背側感測FET感測器200之背側閘極222)使其電荷受生物分子存在影響時,FET感測器304將轉移電子且引發裝置之場效應充電,因此調變電流(例如,Ids )。電流(例如,Ids )或臨限值電壓(Vt )之改變可用於指示相關生物分子或生物實體之偵測。因此,具有示意圖300之裝置可達成一生物感測器應用,包含具有用於經增強靈敏度之差動感測之應用。 參考圖4,呈現一例示性佈局400。例示性佈局400包含配置為可個別定址像素402之一陣列401之存取電晶體302及FET感測器304。陣列401可包含任一數目個像素402。舉例而言,陣列401可包含128×128個像素。其他配置可包含256×256個像素或非正方形陣列,諸如128×256個像素。 每一像素402包含存取電晶體302及雙閘極背側感測FET感測器304連同可包含一或多個加熱器408及一溫度感測器410之其他組件。在此實例中,存取電晶體302係一n通道FET。一n通道FET 412亦可充當用於溫度感測器410之一存取電晶體。在說明性實例中,FET 302及412之閘極共同耦合,儘管此並非需要的。可使用行解碼器406及列解碼器404個別地定址每一像素402 (及其相關聯組件)。在一項實例中,每一像素402具有大約10微米乘以大約10微米之一大小。在另一實例中,每一像素402具有大約5微米乘以大約5微米之一大小,或具有大約2微米乘以大約2微米之一大小。 行解碼器406及列解碼器404可用於判定n通道FET 302及412之接通/關斷狀態。接通n通道FET 302將一電流提供至雙閘極背側感測FET感測器304之一S/D區域。當此等裝置接通時,一電流Ids 流動穿過FET感測器304且可經量測。 加熱器408可用於局部增加一雙閘極背側感測FET感測器304周圍之一溫度。可使用任何已知技術構造加熱器408,諸如形成具有行進穿過其之一高電流之一金屬模型。加熱器408亦可係一熱電加熱器/冷卻器,如同一帕爾貼(Peltier)裝置。可在特定生物測試期間使用加熱器408,以便使DNA或RNA變性或為特定生物分子提供一更理想結合環境。溫度感測器410可用於量測雙閘極背側感測FET感測器304周圍之局部溫度。在一項實施例中,可形成一控制迴路以使用加熱器408及自溫度感測器410接收之回饋來控制溫度。在另一實施例中,加熱器408可係允許像素402內之組件之局部主動冷卻之一熱電加熱器/冷卻器。 參考圖5,提供一實例性雙閘極背側感測FET感測器500之一剖面。雙閘極背側感測FET感測器500係雙閘極背側感測FET感測器200之一項實施方案,因此用來自圖2之元件符號標記來自圖2之先前所闡述之元件且在此處不重複該等元件之說明。雙閘極背側感測FET感測器500包含閘極202、源極區域204、汲極區域206及通道區域208,其中源極區域204及汲極區域206形成於基板214內。閘極202、源極區域204、汲極區域206及通道區域208形成一FET。應注意,圖5之各種組件不意欲按比例繪製且為了視覺方便而放大,如熟習相關技術者將理解。 在一例示性實施例中,雙閘極背側感測FET感測器500耦合至與形成於基板214內之各種經摻雜區域及其他裝置進行電連接之金屬互連件502之各種層。可使用熟習相關技術者眾所周知之製作程序製造金屬互連件502。 雙閘極背側FET感測器500可包含與源極區域204及汲極區域206分開之一主體區域504。主體區域504可用於加偏壓於源極區域204與汲極區域206之間的主動區域208中之載子濃度。如此,一負電壓偏壓可施加至主體區域504以改良雙閘極背側FET感測器500之靈敏度。在一項實施例中,主體區域504與源極區域204電連接。在另一實施例中,主體區域504電接地。 雙閘極背側FET感測器500可耦合至在基板214內製作之額外電路506。電路506可包含任何數目個MOSFET裝置、電阻器、電容器或電感器以形成用以輔助雙閘極背側感測FET感測器500之操作之電路。舉例而言,行解碼器406及列解碼器404可形成於電路506中。電路506可包含任何放大器、類比/數位轉換器(ADC)、數位/類比轉換器(DAC)、電壓產生器、邏輯電路及DRAM記憶體(舉幾個實例)。額外電路506之組件中之所有或某些組件可整合在與雙閘極背側FET感測器500相同之基板214中。應理解,諸多FET感測器(每一者實質上類似於雙閘極背側FET感測器500)可整合在基板214上且耦合至額外電路506。在另一實例中,額外電路506之組件中之所有或某些組件提供於與基板214分開之另一半導體基板上。在又一實例中,額外電路506之某些組件整合在與雙閘極背側FET感測器500相同之基板214中,且額外電路506之某些組件提供於與基板214分開之另一半導體基板上。 仍參考圖5之說明性實例,雙閘極背側感測FET感測器500包含沈積在隔離層210上方且在通道區域208上方之開口內之一介面層508。在一項實施例中,介面層508具有在大約20Å與大約40 Å之間的一厚度。介面層508可係一高K介電材料,諸如矽酸鉿、氧化鉿、氧化鋯、氧化鋁、五氧化二鉭、二氧化鉿-氧化鋁(HfO2 -Al2 O3 )合金或其任何組合。介面層508可充當用於附接捕獲試劑之一支撐件,如稍後在針對於生物感測之章節中將更詳細地論述。 現在將闡述充當一pH感測器之雙閘極背側FET感測器500之一實例性操作。簡而言之,一液體閘極510用於提供至雙閘極背側感測FET感測器之「第二閘極」之電接點。具有一給定pH之一溶液512提供於雙閘極背側感測FET感測器500之反應位點上方,且液體閘極510放在溶液512內。溶液之pH一般與溶液中之氫離子[H+ ]之濃度相關。離子在通道區域208上面之介面層508之表面附近之累積將影響形成源極區域204與汲極區域206之間的導電路徑之通道區域208內之反轉層之形成。此可藉由FET感測器之傳導率之改變來量測。在一項實施例中,液體閘極510在感測期間用作電晶體之閘極而閘極202保持浮動。在另一實施例中,液體閘極510在感測期間用作電晶體之閘極而閘極202以一給定電位加偏壓。舉例而言,閘極202可取決於應用而以-2V與2V之間的一電位加偏壓,而液體閘極510在一電壓範圍之間拂略。在另一實施例中,液體閘極510以一給定電位加偏壓(或接地)而閘極202在感測期間用作電晶體之閘極(例如,其電壓跨越一電位範圍拂略)。液體閘極510可由鉑形成或可由在電化學分析中常用於參考電極之任何其他材料形成。最常見參考電極係具有大約0.230 V之一穩定電位值之Ag/AgCl電極。 圖6A展示溶液中之離子結合至介面層508之一表面。介面層508之一最頂部原子層經繪示為各種懸掛[O- ]、[OH]及[OH2 + ]鍵。由於離子在表面上累積,因此總表面電荷影響電晶體之臨限值電壓。如本文中所使用,臨限值電壓係形成一FET感測器之源極與汲極之間的一少數載子導電路徑所需要的該FET感測器之閘極與源極之間的最小電位。總電荷亦與溶液之pH直接相關,因為正電荷之一較高累積表示一低pH而負電荷之一較高累積表示一高pH。圖6B圖解說明由於一n通道FET感測器中之不同pH值而產生之臨限值電壓之改變。如圖中可觀察到,臨限值電壓之一59 mV增加大致表示溶液之pH中之一者之一增加。換言之,一個pH改變在經量測為接通電晶體所需要之電壓時產生等效於59 mV之總表面電荷。晶片封裝 參考圖7,展示一半導體晶片702之一例示性平面圖。晶片702包含感測器陣列704、一選用參考電極706、類比電路708及I/O墊716。晶片702可係矽、砷化鎵或磷化銦(舉幾個實例)。晶片702可具有大約3 mm乘以大約2.5 mm之尺寸。 感測器陣列704表示諸如上文在圖2及圖5中所圖解說明之彼等之雙閘極背側感測FET感測器之陣列。該陣列可配置為如(舉例而言)圖4中所圖解說明之像素之一列-行矩陣。可用相同或不同捕獲試劑功能化感測器陣列704中之各種FET感測器以執行對各種分析物之生物感測。 參考電極706可圖案化於包含感測器陣列704之同一晶片702上。參考電極706可沿著一X或Y方向與感測器陣列704大致對準,使得一液體通道可放在感測器陣列704及參考電極706兩者上方。在另一實施例中,參考電極706提供於離開晶片702之別處。 參考電極706可包括具有一相對穩定電位之任一材料。實例性參考電極材料包含鉑或Ag/AgCl。在一基板表面上製作一Ag/AgCl電極在此項技術中係眾所周知的,如(舉例而言)由Moschou等人 的「用可商購PCB技術製造之Ag/AgCl偽參考電極之表面及電表徵(Surface and Electrical Characterization of Ag/AgCl Pseudo-Reference Electrodes Manufactured with Commercially Available PCB Technologies)」(感測器,15(8)卷,2015年,18102至18113頁)所闡述。 類比電路708可包含與感測器陣列704之操作相關之電路。如此,類比電路708可經組態以在與各種I/O墊716介接時將訊號提供至感測器陣列704且量測來自感測器陣列704之訊號。在一項實施例中,類比電路708包含一串列周邊介面(SPI) 712及感測器陣列電路714。在此實施例中,感測器陣列704與感測器陣列電路714之間的一間隔不短於大約135微米。 SPI 712可係用以促進感測器陣列電路714與下文更詳細地闡述之一分析器單元之間的資料傳輸之一串列介面電路。熟習相關技術者將很好地理解一SPI之一般操作。感測器陣列電路714可包含任何數目個參考電壓產生器、操作放大器、低通濾波器、ADC及DAC以將訊號提供至感測器陣列704且自感測器陣列704接收訊號。 在一項實例中,可使用感測器陣列電路714產生一偏壓參考電壓以將大約-0.24伏特之一負電壓偏壓提供至感測器陣列704中之一給定FET感測器或FET感測器集合之主體區域。在執行感測時亦可將一可調諧電壓提供至感測器陣列704中之一給定FET感測器或FET感測器集合之液體閘極。 當量測自感測器陣列704中之一給定FET感測器或一FET感測器集合接收之訊號(諸如Ids)時,感測器陣列電路714可接收所量測訊號且在所得訊號輸出至一I/O墊716之前使所量測訊號傳遞穿過一跨阻抗放大器(亦即,一電流/電壓轉換器)後續接著一或多個額外放大級、低通濾波器及最終一ADC。在放大所量測訊號之前亦可藉由自所量測訊號減去一背景AC訊號而減少來自所量測訊號之雜訊。亦可對一溫度訊號(自感測器陣列704中之一或多個溫度感測器接收)進行放大、濾波且使其在輸出至一I/O墊716之前傳遞穿過一ADC。 在各種實施例中,可沿著晶片702之周邊圖案化複數個I/O墊716。可提供比由晶片702之各種組件使用之實際輸入及輸出多得多之I/O墊。在一項實施例中,可使用線接合技術將各種I/O墊716耦合至接合至晶片702之另一基板或封裝。在一項特定實施例中,可圍繞晶片702之周邊圖案化32個I/O墊。一給定I/O墊716之大小可係大約80微米乘以大約70微米,且I/O墊716之間的間距可係大約150微米。感測器陣列704與一最近I/O墊716之間的一間隔可不短於大約400微米,而I/O墊716與晶片702之一最外邊緣之間的一間隔可不短於大約177.5微米。 參考圖8,圖解說明用於晶片702之一例示性封裝方案。具有其I/O墊716之晶片702接合至一載體層802。載體層802可係另一半導體基板,諸如一矽基板。在另一實例中,載體層802係一絕緣體,諸如一硬塑膠材料。晶片702可使用任何已知結合技術(諸如藉由使用焊料或一黏合劑)結合至載體層802。 在一項實施例中,載體層802包含填充有一導電材料804之複數個通孔。導電材料804可係任何金屬,諸如但不限於錫、銅、鋁、金或其任一合金。導電材料804可包含在載體層802之一底部表面805處之一焊料凸塊或焊料球。焊料可延伸超過表面805。 根據一實施例,晶片封裝亦包含鄰接晶片702之側之一第一絕緣層806。第一絕緣層806亦可係填充晶片702周圍之區且可輔助將晶片702固定於適當位置中之一塑膠材料或樹脂。在一例示性實施例中,第一絕緣層806包含亦填充有導電插塞808之通孔。導電插塞808可係與導電材料804相同之材料。導電插塞808在導電材料804之對應區上方實質上對準使得在導電插塞808與導電材料804之間形成一歐姆接點。 一旦晶片702已固定至載體層802,且使第一絕緣層806圍繞其,便可進行I/O墊716與導電插塞808之間的電連接812。可使用線接合技術形成電連接812,如熟習相關技術者將理解。在另一實例中,使用微影圖案化技術形成電連接812以圖案化用以電連接I/O墊71與對應導電插塞808之一導電跡線。一旦形成電連接812,便可沈積一第二絕緣層810以保護電連接812免受環境影響。第二絕緣層810可係與第一絕緣層806相同之材料。第二絕緣層810可係圍繞電連接812流動且然後硬化以形成一保護殼體之一樹脂材料。一開口814形成於第二絕緣層810內以形成朝向存在於晶片702上之感測器陣列之一路徑。在其中一參考電極亦圖案化於晶片702上之一實施例中,然後開口814將形成朝向感測器陣列及參考電極之一路徑。 一最終晶片封裝816包含晶片702,晶片702結合至載體層802且電連接至在載體層802之底部表面805上之各種導電焊料點或金屬墊。亦經由第一絕緣層806及第二絕緣層810保護晶片702免受環境影響。晶片封裝816可更容易地經處置且耦合至一較大基板,諸如一印刷電路板(PCB)。在某些實施例中,晶片封裝816可耦合至一或多個散熱器以提供自晶片702至周圍空氣中或至晶片封裝816所耦合之任何基板中之一更有效熱耗散路徑。在其他實施例中,晶片封裝816可耦合至一帕爾貼裝置以提供熱電加熱及/或冷卻。 參考圖9之說明性實施例,晶片封裝816與一基板902接合在一起。基板902可係包含用以與載體層802之底部表面上之焊料或導電墊進行電接觸之導電接點墊的一PCB。可執行一覆晶接合技術以將晶片封裝816接合至基板902之表面上。簡而言之,沿著載體層802之底部表面之焊料或導電墊對準至圖案化於基板902上之對應導電墊,且接合在一起以將晶片封裝816實體地附接至基板902且將I/O墊自晶片702電耦合至存在於基板902上之導電跡線。基板902上之該等導電跡線可端接在邊緣連接器908中。 一或多個邊緣連接器908可提供至晶片702之電連接。一或多個其他邊緣連接器908可提供至圖案化於基板902之一表面上之一參考電極906之電連接。使用參考電極906可消除對在晶片702上提供一參考電極之需要。可使用諸如但不限於銅、金或鋁之一金屬圖案化一或多個邊緣連接器908中之每一者。可使用與上文針對晶片702上之參考電極706所論述之彼等類似之技術製作參考電極906。 例示性晶片封裝816之尺寸可在大約1至2公分乘以1至2公分之間或更小,而基板902之尺寸可在3至4公分乘以3至4公分之間或更小。 圖解說明在晶片702上方至少暴露晶片702之感測器陣列之開口814。在一例示性實施例中,開口814沿著一X或Y方向與參考電極906大致對準,使得一液體通道可放在開口814及參考電極906兩者上方。液體設計 參考圖10,提供一例示性液體盒體1000之一示意圖。該示意圖圖解說明盒體1000之一俯視圖,且應注意,並非所展示之所有元件在同一水平面上。而且,各種液體通道之特定尺寸及比例為了經改良可視化而有目的地未按比例繪製。盒體1000包含一外殼1002。外殼1002可使用射出成型、鑄造或3-D印刷技術(舉幾個實例)由任何塑膠材料(諸如聚甲基丙烯酸甲酯(PMMA))形成。外殼1002可由機械地或透過一黏合劑之使用連接在一起之一個以上區段形成。在一項實施例中,各種液體通道及室成型在外殼1002之一或多個組件內。在另一實施例中,各種液體通道及室由一不同成型聚合物材料(諸如聚二甲基矽氧烷(PDMS))形成。外殼1002之總體尺寸可在大約4公分至大約7公分乘以大約4公分至大約7公分之間。隨著技術進展,外殼1002可變得甚至更小。在一實施例中,具有經封裝晶片802之基板902放置在外殼1002內。在一項實例中,基板902之僅一部分封圍在外殼1002內,而邊緣連接器908暴露在外殼1002外側。 例示性外殼1002之液體設計包含至少一第一通道1004、一第二通道1006及一第三通道1008。第一通道1004及第二通道1006中之每一者分別包含一對應液體入口1010a及1010b。該等液體入口提供用以將液體自盒體1000之外側注入至盒體1000中之區。該等液體入口亦可提供用以將液體自盒體1000排出至盒體1000之外側之區。第三通道1008可在接合至基板902之經封裝晶片802上方對準。在一項實施例中,感測器陣列上方之開口814實質上在第三通道1008內。根據一實施例,圖案化於基板902上之參考電極906亦經對準為在第三通道1008內。 第一通道1004、第二通道1006及第三通道1008中之每一者可具有在大約一毫米與三毫米之間的通道寬度。通道高度可係大約1毫米。在另一實施例中,第一通道1004、第二通道1006及第三通道1008中之一或多者係具有小於1 mm之寬度及高度尺寸之微液體通道。第一通道1004、第二通道1006及第三通道1008中之每一者可具有一矩形、正方形或半圓形剖面。 在某些實施例中,第一通道1004及第二通道1006中之一或多者與第三通道1008連接。以此方式,流動穿過第一通道1004之液體將最終流動穿過第三通道1008,且類似地流動穿過第二通道1006之液體將最終流動穿過第三通道1008。在某些實施例中,第三通道1008最終流動至收集流動穿過盒體1000之所有液體之一廢物室1016中。廢物室1016可包含通向大氣之一通氣孔(未展示)以避免背壓在液體系統內積聚。 在某些實施例中,每一入口1010a及1010b分別包含一插塞1012a及1012b。插塞1012a/1012b可係緊密地裝配在入口l0l0a/l0l0b內以密封入口而阻止任何液體洩漏之一柔軟柔性材料。插塞1012a/1012b可係一聚合物材料(諸如聚四氟乙烯(PTFE))或軟木。插塞1012a/1012b可密封入口l0l0a/l0l0b同時允許一毛細管刺穿插塞1012a/1012b而不危及液體密封。該毛細管可係一針狀管,諸如一注射器針。該毛細管可包括一硬剛性材料,諸如一金屬或硬塑膠。稍後將在論述盒體1000與一分析器之耦合時更詳細地闡述毛細管至盒體1000之耦合。 盒體1000包含經配置以將一樣本引入至第一通道1004 (如圖10中所展示)或第二通道1006中之一樣本入口1014。在一項實例中,可經由樣本入口1014將一血液樣本放至液體系統中。一旦已引入樣本,便可使用一蓋或任一其他類似結構密封樣本入口1014以提供圍繞樣本入口1014之一防漏密封。在圖10之所圖解說明之通道配置中,自入口1010a流動穿過第一通道1004之液體將與經由樣本入口1014引入之一樣本混合且混合物將在第三通道1008中之開口814及參考電極906上方流動。一旦樣本已遞送至經由開口814暴露之感測器陣列,可發生生物分子之間的相互作用且FET感測器感測器可用於偵測樣本中之特定分析物之存在,或量測該等特定分析物之濃度。可使用壓力驅動流使液體沿著各種通道且在各種通道之間移動。壓力可由迫使流體或空氣穿過盒體1000之一注射器或由推擠流體之增壓空氣(舉幾個實例)引起。用於輸送流體穿過盒體1000之技術之其他實例包含電潤濕或使用一晶片上蠕動泵。在某些實施例中,可使用此項技術中已知之各種晶片上混合方法中之任一者在盒體1000內發生液體混合。盒體1000之液體通道之尺寸可足夠大使得在流體流動穿過通道時由於流體之紊流而發生某種液體混合。應理解,樣本入口1014之位置可變化。舉例而言,樣本入口1014可位於開口814正上方使得引入至樣本入口1014中之一樣本亦引入至經由開口814暴露之感測器陣列上方。 根據一實施例,一但基板902已整合至外殼1002中,便可用各種捕獲試劑功能化經由開口814存取之感測器陣列。此程序可涉及使包括捕獲試劑之一流體緩衝劑流動穿過第三通道1008,使得捕獲試劑具有結合至感測器陣列中之各種FET感測器之機會。在另一實例中,當樣本入口1014定位在開口814上方時捕獲試劑放置在開口814正上方。在已固定化捕獲試劑之後,可密封樣本入口1014使得盒體1000可經儲存直至其準備好執行一生物感測測試為止。捕獲試劑可保持在其初始緩衝劑溶液內,或在盒體1000等待測試時可引入一新鮮緩衝劑溶液以保存捕獲試劑。本文中提供不同捕獲試劑及用捕獲試劑執行之測試之實例。 參考圖11,圖解說明用於盒體1000之各種液體通道之另一設計。在此設計中,具有一第一入口1102a之一第一通道1104及具有一入口1102b之一第二通道1106在具有一樣本入口1110之一區處會聚。使開口814在其內對準之一第三通道1108與第一通道1104及第二通道1106在樣本入口1110處連接。開口814提供向下至一晶片之一路徑以至少將晶片上之感測器陣列暴露至第三通道1108中之液體。自第一通道1104或第二通道1106流動穿過第三通道1108之液體最終收集在廢物室1112內。可基於各種通道之幾何形狀或藉由使用閥來封鎖特定通道而將液體朝向廢物室1112引導。樣本入口1110亦可位於開口814上方。 第一通道1104、第二通道1106及第三通道1108中之一或多者可包含一氣泡陷阱1114。氣泡陷阱1114可表示具有一突然較大剖面(或一較高「天花板」)使得存在於溶液內之任何空氣可上升至在氣泡陷阱1114處形成之額外空間中的液體通道之一區。可利用而且熟習相關技術者將理解其他氣泡陷阱設計。在溶液到達開口814下面之感測器陣列之前自溶液移除空氣泡可係重要的以確保準確感測結果。 參考圖12,圖解說明盒體1000耦合至用於執行生物感測之一分析器1200。可藉由(舉例而言)將盒體1000壓在分析器1200之一接收埠上而使盒體1000與分析器1200實體接觸。分析器1200之該接收埠可包含電墊以形成至邊緣連接器908中之某些或全部邊緣連接器之歐姆接點。基板902之一邊緣可緊密地裝配至分析器1200之一接收埠中使得邊緣連接器908壓在分析器1200之對應導電墊上。組裝盒體1000與分析器1200之其他方法包含將其搭扣在一起、將一者插塞至另一者中以及其他。分析器1200可係足夠小以可容易地攜帶且可剛好放入一成人手之手掌中。 在某些實施例中,分析器1200包含至少一第一注射器1202a及一第二注射器1202b。第一注射器1202a及第二注射器1202b中之每一者可包含在盒體1000之操作期間使用之緩衝劑或其他液體。注射器1202a/1202b各自包含可經對準以延伸至遠離分析器1200之一剩餘部分之空間中之一針1204a/1204b。在某些實施例中,針1204a/1204b可經對準使得將盒體1000壓在分析器1200之一接收埠上致使針1204a/1204b刺穿對應插塞1012a/1012b且進入入口l010a/l0l0b。在此實施例中,針1204a/1204b係刺穿對應插塞1012a/1012b之一毛細管之一項實例。因此,形成一防漏密封以將溶液自每一注射器1202a/1202b轉移至盒體1000之對應入口l0l0a/l0l0b中。應理解,儘管此說明僅闡述與兩個輸入埠對準之兩個注射器,但可使用任何數目個注射器及液體輸入埠,包含其中僅一個注射器用於與一單個入口耦合之一實例。每一注射器1202a/1202b可預裝載有供在各種測試中使用之溶液。在另一實施例中,一使用者可容易地移除且用一不同注射器替換每一注射器1202a/1202b。 每一注射器1202a/1202b可使其相關聯活塞經由一對應致動器1206a/1206b受控制。致動器1206a/1206b之實例包含一步進馬達或一感應馬達。致動器1206a/1206b按壓注射器1202a/1202b之活塞之速度將直接影響盒體1000之液體通道內之溶液之流率。致動器1206a/1206b可經由馬達控制模組1208a/1208b受控制。馬達控制模組1208a/1208b包含產生電壓以用於控制致動器1206a/1206b之速度及操作所需要之電路,如熟習相關技術者將理解。 對盒體1000之邊緣連接器908進行之所有電連接可路由至感測電子器件1210。感測電子器件1210可包含經設計以既提供又接收感測電子器件1210與邊緣連接器908之間的眾多不同電訊號之任何數目個離散電路、積體電路及離散類比電路組件。舉例而言,感測電子器件1210可經組態以將電力、接地及時脈訊號提供至邊緣連接器908,該等信號可隨後用於對晶片702上之感測器陣列及其他電子器件進行供電及操作。感測電子器件1210亦可提供各種電壓偏壓位準以用於啟動感測器陣列內之特定FET感測器之閘極。感測電子器件1210可接收表示自特定FET感測器量測之汲極電流之訊號及表示來自晶片702上之溫度感測器之輸出之訊號。感測電子器件1210可將此所接收資料儲存於一記憶體中,或可使用所接收資料來變更電壓偏壓位準,或改變由晶片702上之加熱器產生之一熱量。一般而言,感測電子器件1210控制與由盒體1000之感測器陣列執行之生物感測相關之所有發訊號。 在某些實施例中,分析器1200亦包含控制分析器1200之其他模組(諸如馬達控制模組1208a/1208b及感測電子器件1210)中之每一者之功能及定時之一處理器1212。處理器1212可係任一類型之中央處理單元(CPU)或微控制器且可由一使用者程式化以執行與分析器1200之操作相關之特定功能。處理器1212可經組態以分析自感測電子器件1210接收之訊號以判定來自盒體1000中之樣本之一給定分析物之一濃度位準。與所判定濃度位準相關之資料可儲存於分析器1200之一記憶體中。在另一實施例中,感測電子器件1210判定來自盒體1000中之樣本之一給定分析物之一濃度位準,且進一步經組態以將與所判定濃度位準相關之資料儲存於分析器1200之一記憶體中。 在某些實施例中,分析器1200包含經設計以將資料傳達至一外部處理裝置之一通信模組1214。處理器1212可與通信模組1214電耦合以控制資料傳送。通信可係有線的或無線的。有線通信之實例包含經由一網路電纜或一通用串列匯流排(USB)電纜進行資料傳送。無線通信可包含無線電RF傳輸、藍芽、WiFi、3G或4G。通信模組1214亦可經設計以接收來自外部處理裝置之資料。舉例而言,用於如何操作分析器1200之各種組件之一程式可傳輸至通信模組1214且由處理器1212執行。通信模組1214可包含任一數目個眾所周知之硬體元件以促進類比及/或數位資料傳輸及接收。 在已執行一生物感測測試之後,盒體1000可自分析器1200移除且被丟棄。另外,注射器1202a/1202b可自分析器1200移除且被丟棄。因此,所有試劑保持含納在盒體1000或注射器1202a/1202b內且不會發生對分析器1200之任一其他部分之污染。以此方式,一單個分析器1200可重用於測試任一數目個額外盒體,其中每一盒體可用不同捕獲試劑個別地功能化以執行一不同生物感測測試。 在另一實施例中,注射器1202a/1202b整合在盒體1000上,且盒體1000與分析器1200之間的耦合將注射器1202a/1202b之相關聯活塞與分析器1200上之致動器1206a/1206b對準。在此實施例中,分析器1200完全擺脫任何攜載試劑容器。 在另一實施例中,盒體1000包含刺穿對應插塞1012a/1012b之一或多個毛細管。在此實施例中,當發生盒體1000與分析器1200之間的耦合時,毛細管與分析器1200中之注射器1202a/1202b之剩餘部分以液體方式耦合。在已執行一生物感測測試之後,盒體1000連同其毛細管可自分析器1200移除且被丟棄。 參考圖13,呈現一實例性方法1300。可在盒體1000已耦合至分析器1200之後由分析器1200執行方法1300。可在方法1300之所圖解說明操作之前、之間或之後執行方法1300中未圖解說明之與液體處置及電量測相關之其他操作。可以不同於所圖解說明之次序之一次序執行方法1300之各種操作。在一實施例中,在捕獲試劑已經固定化在盒體1000內之後執行方法1300。 在方塊1302處,一第一溶液流動穿過一盒體之一第一通道。該第一溶液可經由耦合至該第一通道之一入口進入該盒體。該第一溶液可由使其針刺穿放置在該第一通道之該入口處之一插塞之一注射器提供。該第一溶液可包含一緩衝劑溶液以提供一穩定pH環境。 在方塊1304處,在第一溶液中校準感測器陣列之雙閘極背側感測FET感測器。可執行該校準以量測各種FET感測器之一雜訊或背景訊號。此量測可經儲存且稍後在偵測生物分子時自所量測訊號減去以嘗試減少雜訊且達成一更清晰偵測訊號。第一溶液必須存在於在主要偵測通道內圖案化之感測器陣列及參考電極上方以執行校準。在某些實施例中,第一溶液在校準量測期間不流動。在某些實施例中,校準量測表示FET感測器之基線臨限值電壓。 在方塊1306處,經由一樣本入口將一樣本輸入至盒體之液體網路中。該樣本可係任何流體樣本,包含一血液樣本。在某些實施例中,該樣本係在溶液內解離之一半固體樣本。在已經由樣本入口輸入樣本之後,可藉由使用一蓋或其他類似結構密封樣本入口。 在方塊1308處,一第二溶液流動穿過盒體之一第二通道。該第二溶液可係與第一溶液相同之溶液。該第二溶液可橫越具有在方塊1306處輸入至液體系統中之樣本之路徑,且與該樣本混合。樣本與第二溶液之混合物可然後流動穿過第二通道且進入感測器陣列位於其中之主要偵測通道。第二溶液可係一緩衝劑溶液。在一項實例中,第二溶液係一溶化緩衝劑溶液。可使用壓力驅動流使第二溶液沿著各種通道且在各種通道之間移動。壓力可由迫使流體或空氣穿過盒體之一注射器或由推擠第二溶液之增壓空氣(舉幾個實例)引起。用於輸送第二溶液穿過盒體之技術之其他實例包含電潤濕或使用一晶片上蠕動泵。 在方塊1310處,在感測器陣列上方培養存在於樣本內之生物分子。培養可持續任一給定時間量,舉例而言,在30秒與10分鐘之間。在培養期間,與第二溶液混合之樣本可不流動,或可以一非常慢流率流動。該流率可經設計使得新鮮溶液隨著時間的過去而呈現在感測器陣列上方,但流量係不太強大的而不能導致對捕獲試劑之破壞或不允許發生結合反應。 在方塊1312處,在培養時間已期滿之後,一第三溶液流動穿過盒體之第一通道且穿過主要偵測通道以將與第二溶液混合之實質上全部樣本推動至廢物室中。可在一給定時間週期內透過主要偵測通道注入第三溶液以確保已自主要偵測通道清除樣本。在方塊1312中使用之第三溶液理想地應係與第一溶液相同之溶液。在另一實施例中,第三溶液不同於第一溶液。第三溶液可係一緩衝劑溶液。 在方塊1314處,量測來自感測器陣列之輸出以判定是否發生任何結合反應。感測器輸出可係自感測器陣列中之雙閘極背側感測FET感測器中之一或多者量測之一汲極電流。可比較該所量測汲極電流與在於方塊1304中校準同一感測器期間量測之一汲極電流。若臨限值電壓(例如,大致對應於接通FET且致使汲極電流流動所需要之電壓)已自校準感測器時改變,則可判定已發生一結合反應且一目標分析物存在於樣本中。臨限值電壓改變之量及正負號可取決於眾多因素,諸如雙閘極背側感測FET感測器是一n通道裝置還是一p通道裝置、所偵測之分析物之類型及與分析物相關聯之正或負電荷量。在另一實例中,來自感測器陣列之所量測輸出係臨限值電壓自身,可比較該臨限值電壓與在於方塊1304中校準同一感測器期間所量測之一臨限值電壓。化學、生物學及介面 如本申請案中所闡述之本揭露之設備、系統及方法可用於偵測及/或監測各種實體之間的相互作用。此等相互作用包含用以偵測一測試樣本中之目標分析物之生物及化學反應。作為一實例,可監測包含物理、化學、生物化學或生物轉化之反應以偵測中間物、副產物、產物及其組合之產生。另外,本揭露之設備、系統及方法可用於在如本文中所闡述之各種檢定(包含但不限於在流體生檢中使用之循環腫瘤細胞檢定及用以偵測重金屬及其他環境污染物之存在之螯合檢定)中偵測此等反應。可以一單個格式或以一陣列格式監測此等檢定及反應以偵測(例如)多個目標分析物。運用 DGBSS FET 感測器之生物感測實例 參考圖14,使用上文所闡述之雙閘極背側感測FET感測器執行一實例性生物感測測試。探針DNA 1404 (一捕獲試劑之一實例)經由一連結分子1402結合至介面層508。連結分子1402可具有結合至介面層508之一部分之一反應化學基團。連結分子之一實例包含硫醇。連結分子亦可經由介面層508之表面之矽烷化或藉由將介面層508之表面暴露於氨(NH3 )電漿以便在表面上形成反應NH2 基團而形成。矽烷化程序涉及將介面層508之表面循序地暴露於不同化學物以在介面層508之表面上積聚共價結合分子,如熟習相關技術者一般將理解。探針DNA 1404表示單股DNA。根據一實施例,在執行方法1300之任何步驟之前將連結分子1402結合至介面層508。亦可在執行方法1300之任何步驟之前將探針DNA 1404結合至連結分子1402。在另一實例中,在方法1300之方塊1302處將探針DNA 1404結合至連結分子1402。 根據一實施例,圖14中所圖解說明之雙閘極背側感測FET感測器係將存在於一晶片(諸如上文所闡述之晶片702)上之一感測器陣列內之一個FET。可在將一含晶圓晶片702切塊以將晶片702與晶圓分開之前將連結分子1402結合至介面層508。 可在使FET感測器經受樣本1401之前將探針DNA 1404固定化在介面層508上。樣本1401可包含強有力地結合至其匹配探針DNA 1404之匹配單股DNA序列1406。額外DNA之結合增加存在於介面層508上且在FET感測器之通道區域208正上面之負電荷。 圖15A中概念地圖解說明DNA結合。在此處,具有核酸序列TCGA之探針DNA結合至具有核酸序列AGCT之其互補匹配股。任何不匹配序列將不與探針DNA序列雜交。匹配DNA之結合增加在介面層508之介面處積聚之負電荷。在圖15A中所圖解說明之實例中,介面層508係氧化鉿。 圖15B圖解說明當匹配DNA結合至介面層508之表面時雙閘極背側感測FET感測器之臨限值電壓之一移位。簡而言之,電壓施加至液體閘極510直至FET感測器「接通」且電流在汲極區域206與源極區域204之間流動為止。當更多負電荷由於互補DNA結合而存在於介面層508處時,需要一較高電壓以在通道區域208內形成導電反轉層。因此,根據一實施例,在FET感測器導電且Ids 電流流動之前可將一較高電壓施加至液體閘極510。臨限值電壓之此差可經量測且用於不僅判定匹配DNA序列之目標之存在,而且判定其濃度。應理解,介面層508處之一淨所累積正電荷將致使臨限值電壓減小而非增加。另外,臨限值電壓之改變針對一n通道FET與一p通道FET相比較將具有相反正負號。 參考圖16,使用雙閘極背側感測FET感測器執行另一實例性生物感測測試。探針抗體1604 (捕獲試劑之另一實例)經由連結分子1602結合至介面層508。連結分子1602可具有結合至介面層508之一部分之一反應化學基團。一樣本溶液1601可提供於探針抗體1604上方以判定匹配抗原是否存在於樣本溶液1601內。根據一實施例,在執行方法1300之任何步驟之前將連結分子1602結合至介面層508。亦可在執行方法1300之任何步驟之前將探針抗體1604結合至連結分子1602。在另一實例中,在方法1300之方塊1302處將探針抗體1604結合至連結分子1602。 參考圖17,圖解說明匹配抗原至探針抗體1604之結合程序。在此處,匹配抗原將結合至固定化探針抗體而不匹配抗原將不結合。類似於上文所闡述之DNA雜交程序,匹配抗原將改變存在於介面層508處之所累積電荷。以與上文參考圖15B已經論述實質上相同之方式量測歸因於來自匹配抗體結合至探針抗體之所累積電荷的臨限值電壓之移位。最後備註 應理解,實施方式章節而非本揭露摘要章節意欲用於解釋申請專利範圍。本揭露摘要章節可陳述如發明人所預期之本揭露之一或多個而非全部例示性實施例,且因此不意欲以任一方式限制本揭露及所附申請專利範圍。 應理解,本文中之措辭或術語係出於說明而非限制目的,使得本說明書之術語或措辭將由熟習此項技術者鑒於教示及指導而解釋。 本揭露之寬度及範疇不應受上文所闡述之例示性實施例中之任一者限制,而應僅根據所附申請專利範圍及其等效內容來定義。The following disclosure provides many different embodiments or examples that provide different components for implementing the provided subject matter. Specific examples of components and configurations are described below to simplify this disclosure. Of course, these are merely examples and are not intended to be limiting. For example, in the following description, a first component formed over a second component may include an embodiment in which the first component and the second component are formed in direct contact, and may also include an embodiment in which additional components may be formed and / or An embodiment in which it is placed between the first member and the second member so that the first member and the second member cannot be in direct contact. In addition, the present disclosure may repeat element symbols and / or letters in various examples. This repetition does not in itself indicate a relationship between the various embodiments and / or configurations discussed. Further, for convenience of explanation, spatially relative terms (such as "below", "below", "lower", "above", "upper" and the like) may be used herein to describe an element or The relationship of a component to another element (s) or component is as illustrated in the figures. These spatial relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientations illustrated in the figures. The device may be otherwise oriented (eg, rotated 90 degrees or at other orientations) and the spatially relative narratives used herein may equally be interpreted accordingly. Terminology Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the embodiments in accordance with the present disclosure, the methods, devices, and materials are now described. For the purpose of clarifying and disclosing the materials and methods reported in the publications used in connection with this disclosure, all patents and publications mentioned herein are incorporated herein by reference. The acronym "FET" as used herein refers to a field effect transistor. A very common type of FET is called a metal oxide semiconductor field effect transistor (MOSFET). Historically, MOSFETs have been planar structures constructed in and on a planar surface such as a substrate of a semiconductor wafer. But recent advances in semiconductor manufacturing have produced three-dimensional fin-based MOSFET structures. The term "bioFET" refers to a FET comprising a layer of an immobilized capture reagent that acts as a surface receptor to detect the presence of a target analyte of biological origin. According to an embodiment, a bio-FET system has a semiconductor-effect field-effect sensor. One advantage of bioFETs is the desire for label-free operation. In particular, bioFETs make it possible to avoid expensive and time-consuming labeling operations, such as labeling an analyte with, for example, a fluorescent or radioactive probe. A particular type of bioFET described in this article is a dual-gate backside sensing bioFET. Analytes for detection by a bioFET will typically be of biological origin, such as (without limitation) proteins, carbohydrates, lipids, tissue fragments, or portions thereof. However, in a more general sense, a bio-FET system can also detect any chemical compound as part of a broader FET sensor (referred to as a chemical FET in this technology) or contains components such as protons or metal ions Any other element of the ion (referred to in the art as an ISFET). This disclosure is intended to apply to all types of FET-based sensors ("FET sensors"). One particular type of FET sensor in this article is a dual-gate backside sensing FET sensor ("DG BSS FET sensor"). "S / D" refers to the source / drain junction of two of the four terminals forming a FET. The expression "high k" refers to a high dielectric constant. In the field of semiconductor device structure and manufacturing procedures, high k refers to a dielectric constant that is greater than the dielectric constant of SiO 2 (ie, greater than 3.9). The term "analysis" generally refers to a procedure or step involving physical, chemical, biochemical, or biological analysis, which includes, but is not limited to, characterization, testing, measurement, optimization, separation, synthesis, addition, filtration, dissolution or mixing . The term `` assay '' generally refers to a procedure or step involving the analysis of a chemical or a target analyte and includes but is not limited to cell-based assays, biochemical assays, high-throughput assays and screening, diagnostic assays, pH determination, Nucleic acid hybridization assays, polymerase activity assays, nucleic acid and protein sequencing, immunoassays (e.g., antibody-antigen binding assays, ELISA and iqPCR), bisulfite methylation to detect methylation patterns of genes Assays, protein assays, protein binding assays (e.g., protein-protein, protein-nucleic acid, and protein-ligand binding assays), enzyme assays, coupling enzyme assays, kinetic measurements (e.g., protein folding kinetics and enzyme reaction kinetics ), Enzyme inhibitor and activator screening, chemiluminescence and electroluminescence assays, fluorescence assays, fluorescence polarization and anisotropy assays, absorbance and colorimetric assays (e.g. Bradford assay, Lowry (Lowry test, Hartree-Lowry test, Biuret test, and BCA test), chemical tests (e.g., for detecting environmental pollutants and pollution, nanometers Particles or polymers) and drug discovery tests. The devices, systems, and methods described herein can use or employ one or more of these assays for use with any of the designs described by FET sensors. The term "fluid biopsy" generally refers to a biopsy sample obtained from a subject's body fluid compared to a subject's tissue sample. The ability to perform an assay using a single fluid sample is often more desirable than using a tissue sample. Low-invasive methods using a single-fluid sample have a wide range of benefits in terms of patient welfare, the ability to monitor longitudinal disease, and the ability to obtain expression profiles even when tissue cell lines are not easily accessible (e.g., in the prostate). meaning. Assays for detecting target analytes in fluid biopsy samples include, but are not limited to, those described above. As a non-limiting example, a fluid biopsy sample can be subjected to a circulating tumor cell (CTC) assay. For example, a capture reagent (e.g., an antibody) immobilized on a FET sensor can be used to detect a target analyte (e.g., a tumor cell marker) in a fluid biopsy sample using a CTC assay ). CTCs are cells that have spread from a tumor into a blood vessel and, for example, circulate in the bloodstream. In general, CTC is present in the circulation at extremely low concentrations. To characterize CTCs, CTCs are enriched from the patient's blood or plasma by various techniques known in the art. CTCs can be stained for specific markers using methods known in the art, including, but not limited to, cytometry-based (eg, flow cytometry) methods and IHC-based methods. For the devices, systems, and methods described herein, a capture reagent can be used to capture or detect CTCs or nucleic acids, proteins, or other cell surroundings from CTCs can be targeted for binding to or by a capture reagent. Detected target analyte. When detecting a target analyte on or from a CTC, for example, the addition of one of the target analytes expressing or containing CTC can help identify a subject as having the potential to be associated with a particular treatment (e.g., it is associated with a The target analyte is associated) to respond to one of the cancers or to allow, for example, optimization of a treatment regimen with an antibody to the target analyte. CTC measurement and quantification can provide information on, for example, tumor stage, response to treatment, disease progression, or a combination thereof. Information obtained from detecting target analytes on CTCs can be used, for example, as a prognostic, predictive, or medicinal biomarker. In addition, the CTC assay on a fluid biopsy sample can be used alone or in combination with additional tumor marker analysis on a solid biopsy sample. The term "identification" generally refers to a process for determining the identity of a target analyte based on a combination of the target analyte and a capture reagent (whose identity is known). The term "measurement" generally refers to a procedure for determining the amount, quantity, quality, or nature of a target analyte based on a combination of the target analyte and a capture reagent. The term "quantification" generally refers to a procedure for determining the quantity or concentration of a target analyte based on a combination of the target analyte and a capture reagent. The term "detection" generally refers to a procedure for determining the presence or absence of a target analyte based on a combination of the target analyte and a capture reagent. Detection includes, but is not limited to, identification, measurement, and quantification. The term "chemical" refers to a substance, compound, mixture, solution, emulsion, dispersion, molecule, ion, dimer, macromolecule such as a polymer or protein, biomolecule, precipitate, crystal, chemical moiety Or groups, particles, nano particles, reagents, reaction products, solvents or liquids, any of which can exist in a solid, fluid or gas state and are usually the subject of analysis. The term "reaction" refers to a physical, chemical, biochemical, or biotransformation that involves at least one chemical and generally involves (in the case of chemical, biochemical, and biotransformation) such as Break or formation of one or more of van der Waals, hydrogen or ionic bonds. The term encompasses typical chemical reactions such as synthetic reactions, neutralization reactions, decomposition reactions, displacement reactions, redox reactions, precipitation, crystallization, combustion reactions, and polymerization reactions, as well as covalent and non-covalent binding, phase changes, color changes, Phase formation, crystallization, dissolution, light emission, change in light absorption or emission properties, temperature change or heat absorption or emission, change in configuration, and folding or unfolding of a giant molecule such as a protein. As used herein, a "capture reagent" is a molecule or compound capable of binding a target analyte or target reagent that can be directly or indirectly attached to a substantially solid material. The capture reagent may be a chemical, and in particular, for the presence of a naturally occurring target analyte (eg, an antibody, polypeptide, DNA, RNA, cell, virus, etc.) or for which a target analyte may be prepared. Either substance and the capture reagent can bind to one or more target analytes in an assay. As used herein, a "target analyte" is a substance that will be detected in a test sample using this disclosure. The target analyte can be a compound, and specifically any one for which the presence of a naturally occurring capture reagent (eg, an antibody, polypeptide, DNA, RNA, cell, virus, etc.) or for which a capture reagent can be prepared Substance, and the target analyte can be bound to one or more capture reagents in an assay. A "target analyte" also includes any antigenic substance, antibody, and combination thereof. The target analyte can include one of a protein, a peptide, an amino acid, a carbohydrate, a hormone, a steroid, a vitamin, one that is performed for therapeutic purposes, and one that is performed for illegal purposes. A drug, a bacterium, a virus, or a metabolite or antibody of any of the above. A "test sample" as used herein means a composition, solution, substance, gas, or fluid containing a target analyte that will be detected and characterized using this disclosure. The test sample may contain components other than the target analyte, may have the physical properties of a fluid or a gas, and may be of any size or volume, including, for example, a moving fluid or gas stream. The test sample may contain any substance other than the target analyte as long as the other substances do not interfere with the binding of the target analyte with the capture reagent or the specific binding of the first binding member to the second binding member. Examples of test samples include, but are not limited to, naturally occurring and non-naturally occurring samples or combinations thereof. Naturally generated test samples can be synthetic or synthetic. Naturally generated test samples contain body fluid or bodily fluid isolated from or on the subject's body, including but not limited to blood, plasma, serum, urine, saliva or sputum, spinal fluid, cerebral spinal Fluid, pleural fluid, nipple aspirate, lymph fluid, respiratory fluid, intestinal and genitourinary fluids, tears, saliva, breast milk, fluids from the lymphatic system, semen, cerebrospinal fluid, fluids in organ systems, ascites, tumor sacs Fluid, amniotic fluid, and combinations thereof, and environmental samples such as groundwater or wastewater, soil extracts, air and pesticide residues, or food-related samples. The detected substance may include, for example, nucleic acids (including DNA and RNA), hormones, different pathogens (including a biological agent that causes a disease or illness in their host, such as a virus (for example, H7N9 or HIV), a protozoa (For example, malaria caused by Plasmodium) or a bacterium (for example, E. coli or Mycobacterium tuberculosis), proteins, antibodies, various drugs or treatments or other chemical or biological substances, including hydrogen or other ionic, non-ionic molecules Or compounds, polysaccharides, small chemical compounds such as members of chemical combinatorial libraries, and the like. The detected or determined parameters may include, but are not limited to, for example, pH changes, lactose changes, changed concentrations, particles per unit time (where a liquid flows over the device for a period of time to detect particles, such as sparse Particles) and other parameters. As used herein, the term "immobilization" when used in connection with, for example, a capture reagent includes substantially attaching a capture reagent at a molecular level to a surface. For example, a capture reagent can be immobilized to a surface of a substrate material using adsorption techniques that include non-covalent interactions (e.g., electrostatic forces, dehydration of Van der Waals and hydrophobic interfaces) and their functional groups. Clusters or linkers facilitate covalent binding techniques that attach capture reagents to a surface. Immobilizing a capture reagent to a surface of a substrate material may be based on the properties of the substrate surface, the medium that carries the capture reagent, and the properties of the capture reagent. In some cases, a substrate surface may be modified first to allow functional groups to bind to the surface. The functional groups may then be bound to a biomolecule or a biological or chemical substance to immobilize the functional groups thereon. The term "nucleic acid" generally refers to a collection of nucleotides linked to each other via a phosphodiester bond and refers to a naturally occurring nucleic acid linked to a naturally occurring nucleotide that exists in nature, such as including adenine, guanine, DNA of deoxynucleotides linked to any of cytosine and thymine and / or RNA including ribonucleotides linked to any of adenine, guanine, cytosine and uracil. In addition, non-naturally occurring nucleotides and non-naturally occurring nucleic acids are within the scope of the nucleic acids disclosed herein. Examples include peptide nucleic acids (PNA), peptide nucleic acids (PHONA) with phosphate groups, bridged nucleic acids / locked nucleic acids (BNA / LNA), and morpholinyl nucleic acids. Further examples include chemically modified nucleic acids and nucleic acid analogs, such as methylphosphonate DNA / RNA, phosphorothioate DNA / RNA, phosphoramidate DNA / RNA, and 2'-0-methyl DNA / RNA. Nucleic acids include those nucleic acids that can be modified. For example, a phosphate group, a sugar and / or a base in a nucleic acid may be labeled as necessary. Any substance used in nucleic acid labeling known in the art can be used for labeling. Examples include, but are not limited to, radioisotopes (e.g., 32P, 3H, and 14C), DIG, biotin, fluorescent dyes (e.g., FITC, Texas, cy3, cy5, cy7, FAM, HEX, VIC, JOE, Rox, TET , Bodipy493, NBD and TAMRA) and luminescent substances (eg, acridinium esters). As used herein, an adaptation system refers to an oligonucleotide or peptide molecule that binds to a specific target molecule. The concept of using single-stranded nucleic acids (aptamers) as affinity molecules for protein binding was first revealed in 1990 (Ellington and Szostak 1990, 1992; Tuerk and Gold 1990), and was based on the existence of a goal The ability to fold short sequences into unique three-dimensional structures that bind to targets with high affinity and specificity. Eugene W. M Ng et al., In 2006, disclosed an oligonucleotide ligand that the adaptation system was selected for high affinity binding to molecular targets. The term "antibody" as used herein refers to a polypeptide of the immunoglobulin family capable of non-covalently, reversibly and in a specific manner binding a corresponding antigen. For example, a naturally occurring IgG antibody system includes a tetramer of at least two heavy (H) chains and two light (L) chains interconnected by disulfide bonds. Each heavy chain includes a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region. The heavy chain constant region includes three domains: CH1, CH2, and CH3. Each light chain includes a light chain variable region (abbreviated herein as VL) and a light chain constant region. The light chain constant region includes a domain CL. The VH and VL regions can be further subdivided into hypervariable regions (referred to as complementarity determining regions (CDR)) and more conservative regions (referred to as framework regions (FR)), which are interspersed. Each VH and VL is composed of three CDRs and four FRs, which are arranged in the following order from the amine terminal to the carboxy terminal: FR1, CDR1, FR2, CDR2, FR3, CDR3, and FR4. These three CDRs constitute approximately 15% to 20% of the variable domain. The variable regions of the heavy and light chains contain a binding domain that interacts with an antigen. The constant region of an antibody can mediate the binding of immunoglobulins to host tissues or factors (including various cells of the immune system (eg, effector cells) and the first component (C1q) of the classical complement system). (Kuby Immunology, Fourth Edition, Chapter 4, WH Freeman & Co., New York, 2000). The term "antibody" includes, but is not limited to, monoclonal antibodies, human antibodies, humanized antibodies, chimeric antibodies, and anti-Id antibodies (eg, anti-genetic antibodies including the antibodies disclosed herein). The antibodies can be of any isotype / class (e.g., IgG, IgE, IgM, IgD, IgA, and IgY) or subclasses (e.g., IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2). The term "polymer" means any substance or compound consisting of two or more building blocks ("monomer units") that are repeatedly linked to each other. For example, a "dimer" is a compound in which two building elements have been joined together. The polymer includes both a condensation polymer and an addition polymer. Typical examples of the condensation polymer include polyamide, polyester, protein, wool, silk, polyurethane, cellulose, and polysiloxane. Examples of addition polymers are polyethylene, polyisobutylene, polyacrylonitrile, poly (vinyl chloride), and polystyrene. Other examples include polymers having enhanced electrical or optical properties (e.g., a non-linear optical property), such as conductive or photorefractive polymers. The polymer includes both linear polymers and branched polymers. Overview of the Biosensor Cassette FIG. 1 illustrates an overview of one of the various components integrated together to form an exemplary biosensor cassette 102. The biosensor cartridge 102 may include a plurality of liquid channels configured to control the flow of liquid both toward and away from a sensing location in which the presence of a target analyte can be detected. In this illustrative embodiment, the biosensor box 102 includes an array of FET sensors 104. The FET sensor 104 constitutes a sensor component of the biosensor box 102. The FET sensors 104 may be configured as an array and individually addressed to detect bonding events at the surface of the FET sensor sensing layer. In one embodiment, the FET sensor 104 includes a dual-gate backside FET sensor. In alternative embodiments, other types of FET-based sensors may be used. The biosensor box 102 includes a biological interface 106. The biological interface 106 can be coupled to the double-gate backside sensing FET sensor 104 to promote a binding reaction at the surface of the double-gate backside sensing FET sensor 104, and then the binding reaction can be detected. Various types of biomolecules can form part of the biological interface 106, such as DNA or RNA aptamers and antibodies (to name a few). Further details on the biological interface and its associated chemistry and biomechanics are discussed in detail in this article. The biosensor box 102 includes various levels of chip packages 108 to integrate a dual-gate backside sensing FET sensor chip into a liquid environment. The biosensor cartridge 102 also includes a liquid component 110 with a microfluidic channel to manage the delivery of fluid to the FET sensor 104. The liquid assembly 110 also incorporates a liquid inlet for interfacing with liquid delivered from the outside of the biosensor cartridge 102. The integration of various components in the biosensor box 102 results in a compact and portable platform that can be used in one of many various biosensor applications. Using FET sensors with integrated liquid components produces accurate results when using low sample volumes. In addition, the biosensor cartridge 102 can be configured to operate in a fully automatic manner by an analyzer, and then disposed of after use. The description herein is divided into four main sections to further elaborate the components of the biosensor cartridge 102. The first section will explain the configuration and fabrication of the dual-gate backside bioFET sensor 104. The second chapter will explain the packaging procedure. The third section will explain the liquid assembly 110, and further explain the interaction between the biosensor box 102 and an analyzer. The last chapter will provide details on the biology and various biosensing applications using the dual-gate backside FET sensor 104. Double-Gate Backside FET Sensor The double-gate backside FET sensor uses semiconductor manufacturing technology and biological capture reagents to form a sensitive and easy-to-align sensor. Although a conventional MOSFET has a single gate electrode connected to one of a single electrical node, a dual-gate backside sensing FET sensor has two gate electrodes, each of the two gate electrodes being connected to a Different electrical nodes. A first gate electrode of one of the two gate electrodes is referred to herein as a front-side gate and a second gate electrode of the two gate electrodes is referred to herein as a back-side gate. Both the front gate and the back gate are configured so that each gate can be electrically charged and / or discharged during operation and therefore each gate affects the source of the dual gate backside sensing FET sensor The electric field between the pole / drain terminals. The front-side gate is conductive, separated from a channel region by a front-side gate dielectric, and configured to be charged and discharged by a circuit coupled by the front-side gate. The back gate is usually separated from the channel region by a back gate dielectric and includes a bio-functionalized sensing layer placed on the back gate dielectric. The amount of charge on the back gate is a function of whether a biometric response has occurred. In a typical operation of a dual-gate backside sensing FET sensor, the front-side gate is charged to a voltage within a predetermined voltage range. This voltage on the front gate determines the corresponding conductivity of one of the channel regions of the FET sensor. A relatively small change in one of the charges on the backside gate changes the conductivity of the channel region. This change in conductivity is indicative of a biometric response. One advantage of FET sensors is the desire for tag-free operation. In particular, FET sensors make it possible to avoid expensive and time-consuming labeling operations, such as labeling an analyte with, for example, a fluorescent or radioactive probe. Referring to FIG. 2, an exemplary dual-gate backside sensing FET sensor 200 is illustrated. The dual-gate backside sensing FET sensor 200 includes a gate 202 that is formed above the substrate 214 and is separated from the substrate 214 by an intervening dielectric 215 placed on the substrate 214. The substrate 214 further includes a source region 204, a drain region 206, and a channel region 208 between the source region 204 and the drain region 206. In one embodiment, the substrate 214 has a thickness between about 100 nm and about 130 nm. Gate 202, source region 204, drain region 206, and channel region 208 may be formed using a suitable CMOS process technology. The gate 202, the source region 204, the drain region 206, and the channel region 208 form a FET. An isolation layer 210 is placed on the substrate 214 on the side opposite to the gate electrode 202. In one embodiment, the isolation layer 210 has a thickness of about 1 μm. In the present disclosure, the side of the substrate 214 on which the gate electrode 202 is placed is referred to as the “front side” of the substrate 214. Similarly, the side of the substrate 214 on which the isolation layer 210 is placed is referred to as the "back side". An opening 212 is provided in the isolation layer 210. The opening 212 may be substantially aligned with the gate electrode 202. In other embodiments, the opening 212 is larger than the gate 202 and may extend over a plurality of double-gate backside sensing FET sensors. An interface layer (not shown) may be placed in the opening 212 on the surface of the channel region 208. The interface layer is operable to provide an interface for locating and immobilizing one or more receptors for detecting a biological molecule or biological entity. Further details on the interface layer are provided in this article. The dual gate backside sensing FET sensor 200 includes a drain region 206 (Vd 216), a source region 204 (Vs 218), a gate structure 202 (front gate 220), and / or an active region 208 (e.g., , The electrical contacts of the back gate 222). It should be noted that the back gate 222 does not need to physically contact the substrate 214 or any interface layer above the substrate 214. Therefore, although a conventional FET uses a gate contact to control the conductivity of a semiconductor (for example, a channel) between a source and a drain, the dual-gate backside sensing FET sensor 200 allows formation in a FET device The receptor on the opposite side controls the conductivity, while the gate structure 202 provides another gate to control the conductivity. Therefore, the dual-gate backside sensing FET sensor 200 can be used to detect one or more specific biomolecules or biological entities in and / or around the opening 212, as described in more detail using various examples herein Exposition. Dual-gate backside sensing FET sensor 200 can be connected to additional passive components such as resistors, capacitors, inductors and / or fuses; and other active components including P-channel field effect transistors (PFETs), N Channel field effect transistor (NFET), metal oxide semiconductor field effect transistor (MOSFET), high voltage transistor and / or high frequency transistor; other suitable components; and / or combinations thereof. It should be further understood that additional components may be added to the dual-gate backside sensing FET sensor 200, and additional embodiments for the dual-gate backside sensing FET sensor 200 may replace or delete the components described Some of the building blocks. Further details regarding an example fabrication process for the dual-gate backside sensing FET sensor 200 may exist in co-owned US Patent Application No. 2013/0200438 and US Patent Application No. 2014/0252421. Referring to FIG. 3, a schematic diagram of an exemplary addressable array 300 of a FET sensor 304 connected to a bit line 306 and a word line 308 is illustrated. It should be noted that the terms bit line and word line are used herein to indicate similarities to the array structure in a memory device, however, it does not imply that a memory device or a storage array must be included in the array. Addressable array 300 may have similarities to arrays used in other semiconductor devices, such as dynamic random access memory (DRAM) arrays. For example, the dual-gate backside sensing FET sensor 200 described above with reference to FIG. 2 may be formed in a position where a capacitor will exist in a DRAM array. The diagram 300 is merely exemplary and it will be recognized that other configurations are possible. The FET sensors 304 may each be substantially similar to the double-gate backside sensing FET sensor 200. The FET 302 is configured to provide a connection between one of the drain terminals of the FET sensor 304 and the bit line 306. In this manner, the FET 302 is similar to an access transistor in a DRAM array. In this exemplary embodiment, the FET sensor 304 is a dual-gate backside sensing FET sensor and includes a dielectric layer overlying an FET active area (placed at a reaction site). A sensing gate provided by an acceptor material on the electrical layer, and a control gate provided by a gate electrode (e.g., polycrystalline silicon) placed on a dielectric layer overlying the active area of the FET pole. Schematic diagram 300 shows an array formation that can be advantageous in detecting small signal changes provided by the smallest biomolecule or biological entity introduced into the FET sensor 304. The use of an arrangement of bit lines 306 and word lines 308 allows a reduction in the number of input / output pads. The amplifier can be used to enhance the signal strength to improve the detection capability of the device with the circuit configuration of the schematic diagram 300. In one embodiment, when the specific word line 308 and bit line 306 are verified, the corresponding access transistor 302 is turned on (for example, like a switch). When the gate of the associated FET sensor 304 (e.g., such as the back gate 222 of the dual-gate backside sensing FET sensor 200) has its charge affected by the presence of biomolecules, the FET sensor 304 will The electrons are transferred and cause field effect charging of the device, thus modulating the current (eg, I ds ). Changes in current (eg, I ds ) or threshold voltage (V t ) can be used to indicate the detection of related biomolecules or biological entities. Therefore, a device with a schematic diagram 300 can achieve a biosensor application, including an application with differential sensing for enhanced sensitivity. Referring to FIG. 4, an exemplary layout 400 is presented. The exemplary layout 400 includes an access transistor 302 and an FET sensor 304 configured as an array 401 of individually addressable pixels 402. The array 401 may include any number of pixels 402. For example, the array 401 may include 128 × 128 pixels. Other configurations may include 256 × 256 pixels or non-square arrays, such as 128 × 256 pixels. Each pixel 402 includes an access transistor 302 and a dual-gate backside sensing FET sensor 304 along with other components that may include one or more heaters 408 and a temperature sensor 410. In this example, the access transistor 302 is an n-channel FET. An n-channel FET 412 can also act as an access transistor for the temperature sensor 410. In the illustrative example, the gates of FETs 302 and 412 are commonly coupled, although this is not required. Each pixel 402 (and its associated components) may be individually addressed using a row decoder 406 and a column decoder 404. In one example, each pixel 402 has a size of about 10 microns by about 10 microns. In another example, each pixel 402 has a size of about 5 microns by about 5 microns, or a size of about 2 microns by about 2 microns. The row decoder 406 and the column decoder 404 can be used to determine the on / off states of the n-channel FETs 302 and 412. Turning on the n-channel FET 302 provides a current to an S / D region of the double-gate backside sensing FET sensor 304. When these devices are turned on, a current I ds flows through the FET sensor 304 and can be measured. The heater 408 may be used to locally increase a temperature around a double-gate backside sensing FET sensor 304. The heater 408 may be constructed using any known technique, such as forming a metal model with one of the high currents traveling through it. The heater 408 may also be a thermoelectric heater / cooler, such as the same Peltier device. The heater 408 may be used during specific biological tests to denature DNA or RNA or to provide a more ideal binding environment for specific biological molecules. The temperature sensor 410 can be used to measure a local temperature around the dual-gate backside sensing FET sensor 304. In one embodiment, a control loop may be formed to control the temperature using the heater 408 and the feedback received from the temperature sensor 410. In another embodiment, the heater 408 may be a thermoelectric heater / cooler that allows local active cooling of components within the pixel 402. Referring to FIG. 5, a cross-section of an exemplary dual-gate backside sensing FET sensor 500 is provided. The dual-gate backside sensing FET sensor 500 is an implementation of the dual-gate backside sensing FET sensor 200, so the components from FIG. 2 previously labeled with the component symbols from FIG. 2 are labeled and The description of these components is not repeated here. The dual-gate backside sensing FET sensor 500 includes a gate 202, a source region 204, a drain region 206, and a channel region 208. The source region 204 and the drain region 206 are formed in the substrate 214. The gate 202, the source region 204, the drain region 206, and the channel region 208 form a FET. It should be noted that the various components of FIG. 5 are not intended to be drawn to scale and are enlarged for visual convenience, as those skilled in the relevant art will understand. In an exemplary embodiment, the dual-gate backside sensing FET sensor 500 is coupled to various layers of the metal interconnect 502 that are electrically connected to various doped regions and other devices formed within the substrate 214. The metal interconnect 502 can be manufactured using manufacturing procedures well known to those skilled in the relevant art. The dual-gate backside FET sensor 500 may include a body region 504 separate from the source region 204 and the drain region 206. The body region 504 can be used to bias the carrier concentration in the active region 208 between the source region 204 and the drain region 206. As such, a negative voltage bias can be applied to the body region 504 to improve the sensitivity of the dual-gate backside FET sensor 500. In one embodiment, the body region 504 is electrically connected to the source region 204. In another embodiment, the body region 504 is electrically grounded. The dual-gate backside FET sensor 500 may be coupled to an additional circuit 506 fabricated in the substrate 214. The circuit 506 may include any number of MOSFET devices, resistors, capacitors, or inductors to form circuits to assist the operation of the dual-gate backside sensing FET sensor 500. For example, the row decoder 406 and the column decoder 404 may be formed in the circuit 506. The circuit 506 may include any amplifier, analog / digital converter (ADC), digital / analog converter (DAC), voltage generator, logic circuit, and DRAM memory (to name a few). All or some of the components of the additional circuit 506 may be integrated in the same substrate 214 as the dual-gate backside FET sensor 500. It should be understood that many FET sensors (each substantially similar to the dual-gate backside FET sensor 500) may be integrated on the substrate 214 and coupled to the additional circuit 506. In another example, all or some of the components of the additional circuit 506 are provided on another semiconductor substrate separate from the substrate 214. In yet another example, certain components of the additional circuit 506 are integrated in the same substrate 214 as the dual-gate backside FET sensor 500, and some components of the additional circuit 506 are provided on another semiconductor separate from the substrate 214 On the substrate. Still referring to the illustrative example of FIG. 5, the dual-gate backside sensing FET sensor 500 includes an interface layer 508 deposited over the isolation layer 210 and in an opening above the channel region 208. In one embodiment, the interface layer 508 has a thickness between about 20 Å and about 40 Å. The interface layer 508 may be a high-K dielectric material, such as hafnium silicate, hafnium oxide, zirconia, alumina, tantalum pentoxide, hafnium dioxide-alumina (HfO 2 -Al 2 O 3 ) alloy or any of them combination. The interface layer 508 may serve as a support for attaching a capture reagent, as will be discussed in more detail later in the section for biosensing. An example operation of a dual-gate backside FET sensor 500 serving as a pH sensor will now be described. In short, a liquid gate 510 is used to provide an electrical contact to the "second gate" of the dual-gate backside sensing FET sensor. A solution 512 having a given pH is provided above the reaction site of the dual-gate backside sensing FET sensor 500, and the liquid gate 510 is placed in the solution 512. The pH of a solution is generally related to the concentration of hydrogen ions [H + ] in the solution. The accumulation of ions near the surface of the interface layer 508 above the channel region 208 will affect the formation of the inversion layer in the channel region 208 that forms a conductive path between the source region 204 and the drain region 206. This can be measured by a change in the conductivity of the FET sensor. In one embodiment, the liquid gate 510 acts as a gate for the transistor and the gate 202 remains floating during sensing. In another embodiment, the liquid gate 510 is used as the gate of the transistor and the gate 202 is biased at a given potential during sensing. For example, the gate 202 may be biased at a potential between -2V and 2V depending on the application, while the liquid gate 510 is flicked between a voltage range. In another embodiment, the liquid gate 510 is biased (or grounded) at a given potential and the gate 202 is used as the gate of the transistor during sensing (for example, its voltage is flicked across a range of potentials) . The liquid gate 510 may be formed of platinum or may be formed of any other material commonly used for reference electrodes in electrochemical analysis. The most common reference electrode is an Ag / AgCl electrode with a stable potential value of about 0.230 V. FIG. 6A shows that ions in the solution are bound to one surface of the interface layer 508. One of the interface layer 508 topmost atomic layers were depicted as various suspension [O -], [OH] and [OH 2 +] key. Because ions accumulate on the surface, the total surface charge affects the threshold voltage of the transistor. As used herein, the threshold voltage is the minimum required between the gate and source of the FET sensor required to form a minority carrier conduction path between the source and the drain of the FET sensor. Potential. The total charge is also directly related to the pH of the solution, because a higher accumulation of a positive charge indicates a lower pH and a higher accumulation of a negative charge indicates a higher pH. FIG. 6B illustrates changes in threshold voltage due to different pH values in an n-channel FET sensor. As can be seen in the figure, a 59 mV increase in one of the threshold voltages roughly indicates an increase in one of the pHs of the solution. In other words, a pH change produces a total surface charge equivalent to 59 mV when measured as the voltage required to turn on the transistor. Wafer Package Referring to FIG. 7, an exemplary plan view of a semiconductor wafer 702 is shown. The chip 702 includes a sensor array 704, an optional reference electrode 706, an analog circuit 708, and an I / O pad 716. The chip 702 may be silicon, gallium arsenide, or indium phosphide (to name a few). The wafer 702 may have a size of about 3 mm by about 2.5 mm. The sensor array 704 represents an array of dual-gate backside sensing FET sensors such as those illustrated above in FIGS. 2 and 5. The array may be configured as a column-row matrix of pixels as illustrated, for example, in FIG. 4. Various FET sensors in the sensor array 704 can be functionalized with the same or different capture reagents to perform biosensing of various analytes. The reference electrode 706 may be patterned on the same wafer 702 including the sensor array 704. The reference electrode 706 can be substantially aligned with the sensor array 704 along an X or Y direction, so that a liquid channel can be placed over both the sensor array 704 and the reference electrode 706. In another embodiment, the reference electrode 706 is provided elsewhere from the wafer 702. The reference electrode 706 may include any material having a relatively stable potential. Example reference electrode materials include platinum or Ag / AgCl. Making an Ag / AgCl electrode on the surface of a substrate is well known in the art, such as (for example) the surface and electrical properties of a Ag / AgCl pseudo-reference electrode manufactured using commercially available PCB technology by Moschou et al . Characterization (Surface and Electrical Characterization of Ag / AgCl Pseudo-Reference Electrodes Manufactured with Commercially Available PCB Technologies) "(Sensors, Vol. 15 (8), 2015, pages 18102 to 18113). The analog circuit 708 may include circuits related to the operation of the sensor array 704. As such, the analog circuit 708 may be configured to provide signals to the sensor array 704 and measure signals from the sensor array 704 when interfacing with various I / O pads 716. In one embodiment, the analog circuit 708 includes a serial peripheral interface (SPI) 712 and a sensor array circuit 714. In this embodiment, an interval between the sensor array 704 and the sensor array circuit 714 is not shorter than about 135 microns. The SPI 712 may be a serial interface circuit to facilitate data transmission between the sensor array circuit 714 and an analyzer unit described in more detail below. Those skilled in the relevant arts will have a good understanding of the general operation of an SPI. The sensor array circuit 714 may include any number of reference voltage generators, operational amplifiers, low-pass filters, ADCs, and DACs to provide signals to the sensor array 704 and receive signals from the sensor array 704. In one example, the sensor array circuit 714 may be used to generate a bias reference voltage to provide a negative voltage bias of approximately -0.24 volts to a given FET sensor or FET in the sensor array 704 The body area of the sensor collection. A tunable voltage may also be provided to a given FET sensor or a liquid gate of a FET sensor set in the sensor array 704 when performing sensing. When a signal (such as Ids) received from a given FET sensor or a set of FET sensors is measured from one of the sensor arrays 704, the sensor array circuit 714 may receive the measured signal and Pass the measured signal through a transimpedance amplifier (i.e., a current / voltage converter) before outputting to an I / O pad 716 followed by one or more additional amplifier stages, low-pass filters, and finally an ADC . Noise from the measured signal can also be reduced before the measured signal is amplified by subtracting a background AC signal from the measured signal. A temperature signal (received from one or more temperature sensors in the sensor array 704) can also be amplified, filtered, and passed through an ADC before being output to an I / O pad 716. In various embodiments, a plurality of I / O pads 716 may be patterned along the periphery of the wafer 702. Much more I / O pads can be provided than the actual inputs and outputs used by the various components of the chip 702. In one embodiment, various I / O pads 716 may be coupled to another substrate or package bonded to the wafer 702 using wire bonding technology. In a particular embodiment, 32 I / O pads can be patterned around the periphery of the wafer 702. The size of a given I / O pad 716 may be approximately 80 microns by approximately 70 microns, and the spacing between the I / O pads 716 may be approximately 150 microns. An interval between the sensor array 704 and a nearest I / O pad 716 may be not shorter than about 400 microns, and an interval between the I / O pad 716 and an outermost edge of the wafer 702 may not be shorter than approximately 177.5 microns . Referring to FIG. 8, an exemplary packaging scheme for a wafer 702 is illustrated. The wafer 702 with its I / O pads 716 is bonded to a carrier layer 802. The carrier layer 802 may be another semiconductor substrate, such as a silicon substrate. In another example, the carrier layer 802 is an insulator, such as a hard plastic material. The wafer 702 may be bonded to the carrier layer 802 using any known bonding technique, such as by using solder or an adhesive. In one embodiment, the carrier layer 802 includes a plurality of through holes filled with a conductive material 804. The conductive material 804 may be any metal such as, but not limited to, tin, copper, aluminum, gold, or any alloy thereof. The conductive material 804 may include a solder bump or solder ball at one bottom surface 805 of the carrier layer 802. The solder may extend beyond the surface 805. According to an embodiment, the chip package also includes a first insulating layer 806 adjacent to one side of the chip 702. The first insulating layer 806 may also be a plastic material or resin that fills the area around the wafer 702 and assists in fixing the wafer 702 in place. In an exemplary embodiment, the first insulating layer 806 includes a via hole also filled with a conductive plug 808. The conductive plug 808 may be the same material as the conductive material 804. The conductive plug 808 is substantially aligned above the corresponding area of the conductive material 804 such that an ohmic contact is formed between the conductive plug 808 and the conductive material 804. Once the chip 702 has been fixed to the carrier layer 802 and the first insulating layer 806 surrounds it, the electrical connection 812 between the I / O pad 716 and the conductive plug 808 can be made. The electrical connection 812 may be formed using wire bonding technology, as will be understood by those skilled in the relevant art. In another example, an electrical connection 812 is formed using a lithographic patterning technique to pattern the conductive trace for electrically connecting the I / O pad 71 and a corresponding conductive plug 808. Once the electrical connection 812 is formed, a second insulating layer 810 can be deposited to protect the electrical connection 812 from environmental influences. The second insulating layer 810 may be the same material as the first insulating layer 806. The second insulating layer 810 may be a resin material flowing around the electrical connection 812 and then hardened to form a protective case. An opening 814 is formed in the second insulating layer 810 to form a path toward the sensor array existing on the wafer 702. In one embodiment where one of the reference electrodes is also patterned on the wafer 702, then the opening 814 will form a path towards the sensor array and the reference electrode. A final chip package 816 includes a wafer 702 that is bonded to the carrier layer 802 and electrically connected to various conductive solder spots or metal pads on the bottom surface 805 of the carrier layer 802. The wafer 702 is also protected from the environment through the first insulating layer 806 and the second insulating layer 810. The chip package 816 can be more easily processed and coupled to a larger substrate, such as a printed circuit board (PCB). In some embodiments, the chip package 816 may be coupled to one or more heat sinks to provide a more efficient heat dissipation path from the chip 702 to one of the surrounding air or to any of the substrates to which the chip package 816 is coupled. In other embodiments, the chip package 816 may be coupled to a Peltier device to provide thermoelectric heating and / or cooling. Referring to the illustrative embodiment of FIG. 9, a chip package 816 is bonded to a substrate 902. The substrate 902 may be a PCB including conductive contact pads for making electrical contact with solder or conductive pads on the bottom surface of the carrier layer 802. A flip-chip bonding technique may be performed to bond the chip package 816 to the surface of the substrate 902. In short, the solder or conductive pads along the bottom surface of the carrier layer 802 are aligned to the corresponding conductive pads patterned on the substrate 902 and bonded together to physically attach the chip package 816 to the substrate 902 and place The I / O pads are electrically coupled from the wafer 702 to the conductive traces present on the substrate 902. The conductive traces on the substrate 902 may be terminated in the edge connector 908. One or more edge connectors 908 may provide electrical connections to the chip 702. One or more other edge connectors 908 may provide electrical connections to a reference electrode 906 patterned on a surface of the substrate 902. Using reference electrode 906 eliminates the need to provide a reference electrode on wafer 702. Each of the one or more edge connectors 908 may be patterned using a metal such as, but not limited to, one of copper, gold, or aluminum. The reference electrode 906 can be made using techniques similar to those discussed above for the reference electrode 706 on the wafer 702. The size of the exemplary chip package 816 may be between approximately 1 to 2 cm by 1 to 2 cm or less, and the size of the substrate 902 may be between 3 to 4 cm by 3 to 4 cm or less. Illustrated above the wafer 702 is an opening 814 that exposes at least the sensor array of the wafer 702. In an exemplary embodiment, the opening 814 is substantially aligned with the reference electrode 906 along an X or Y direction, so that a liquid channel can be placed over both the opening 814 and the reference electrode 906. Liquid Design Referring to FIG. 10, a schematic diagram of an exemplary liquid cartridge 1000 is provided. This schematic diagram illustrates a top view of one of the cases 1000, and it should be noted that not all components shown are on the same horizontal plane. Moreover, the specific sizes and proportions of various liquid channels are purposely not drawn to scale for improved visualization. The box body 1000 includes a casing 1002. The housing 1002 may be formed from any plastic material, such as polymethyl methacrylate (PMMA), using injection molding, casting, or 3-D printing technology (to name a few). The housing 1002 may be formed from more than one section mechanically or through the use of an adhesive. In one embodiment, various liquid channels and chambers are formed within one or more components of the housing 1002. In another embodiment, the various liquid channels and chambers are formed from a different shaped polymer material, such as polydimethylsiloxane (PDMS). The overall size of the housing 1002 may be between about 4 cm to about 7 cm by about 4 cm to about 7 cm. As technology advances, the housing 1002 may become even smaller. In one embodiment, a substrate 902 having a packaged wafer 802 is placed within a housing 1002. In one example, only a portion of the substrate 902 is enclosed within the housing 1002, and the edge connector 908 is exposed outside the housing 1002. The liquid design of the exemplary housing 1002 includes at least a first channel 1004, a second channel 1006, and a third channel 1008. Each of the first channel 1004 and the second channel 1006 includes a corresponding liquid inlet 1010a and 1010b, respectively. The liquid inlets provide areas for injecting liquid from the outside of the case 1000 into the case 1000. The liquid inlets may also provide areas for discharging liquid from the case 1000 to the outside of the case 1000. The third channel 1008 may be aligned over the packaged wafer 802 bonded to the substrate 902. In one embodiment, the opening 814 above the sensor array is substantially within the third channel 1008. According to an embodiment, the reference electrode 906 patterned on the substrate 902 is also aligned within the third channel 1008. Each of the first channel 1004, the second channel 1006, and the third channel 1008 may have a channel width between approximately one millimeter and three millimeters. The channel height can be tied to about 1 mm. In another embodiment, one or more of the first channel 1004, the second channel 1006, and the third channel 1008 are micro liquid channels having a width and a height dimension of less than 1 mm. Each of the first channel 1004, the second channel 1006, and the third channel 1008 may have a rectangular, square, or semi-circular cross section. In some embodiments, one or more of the first channel 1004 and the second channel 1006 are connected to the third channel 1008. In this manner, liquid flowing through the first channel 1004 will eventually flow through the third channel 1008, and similarly liquid flowing through the second channel 1006 will eventually flow through the third channel 1008. In some embodiments, the third channel 1008 eventually flows into a waste chamber 1016 that collects all the liquid flowing through the box 1000. The waste chamber 1016 may include an air vent (not shown) to the atmosphere to prevent back pressure from accumulating within the liquid system. In some embodiments, each of the inlets 1010a and 1010b includes a plug 1012a and 1012b, respectively. Plug 1012a / 1012b can be a soft flexible material that fits tightly in the inlet 10l0a / 10l0b to seal the inlet and prevent any liquid leakage. The plug 1012a / 1012b may be a polymer material such as polytetrafluoroethylene (PTFE) or cork. The plugs 1012a / 1012b can seal the inlets 1010a / 1010b while allowing a capillary to pierce the plugs 1012a / 1012b without compromising the liquid seal. The capillary may be a needle-like tube, such as a syringe needle. The capillary may include a hard rigid material, such as a metal or hard plastic. The capillary-to-box 1000 coupling will be explained in more detail later when the coupling of the box 1000 to an analyzer is discussed. Cassette 1000 contains a sample inlet 1014 configured to introduce a sample into one of the first channel 1004 (as shown in FIG. 10) or the second channel 1006. In one example, a blood sample may be placed into the liquid system via the sample inlet 1014. Once the sample has been introduced, the sample inlet 1014 can be sealed using a cover or any other similar structure to provide a leak-proof seal around one of the sample inlets 1014. In the channel configuration illustrated in FIG. 10, the liquid flowing from the inlet 1010a through the first channel 1004 will be mixed with a sample introduced through the sample inlet 1014 and the mixture will be in the opening 814 and the reference electrode in the third channel 1008 Flowing above 906. Once the sample has been delivered to the sensor array exposed through the opening 814, interactions between biomolecules can occur and the FET sensor sensor can be used to detect the presence of specific analytes in the sample, or measure such Specific analyte concentration. Pressure-driven flow can be used to move liquid along and between various channels. Pressure may be caused by forcing fluid or air through one of the syringes of the cartridge 1000 or by pressurized air (to name a few) that pushes the fluid. Other examples of techniques for transporting fluid through the cartridge 1000 include electrowetting or using a peristaltic pump on a wafer. In some embodiments, liquid mixing can occur within the cartridge 1000 using any of a variety of on-wafer mixing methods known in the art. The size of the liquid channel of the box 1000 may be large enough that a certain liquid mixing occurs due to the turbulent flow of the fluid when the fluid flows through the channel. It should be understood that the location of the sample inlet 1014 may vary. For example, the sample inlet 1014 may be located directly above the opening 814 such that one of the samples introduced into the sample inlet 1014 is also introduced above the sensor array exposed through the opening 814. According to an embodiment, once the substrate 902 has been integrated into the housing 1002, the sensor array accessed via the opening 814 can be functionalized with various capture reagents. This procedure may involve flowing a fluid buffer including one of the capture reagents through the third channel 1008 so that the capture reagent has an opportunity to bind to various FET sensors in the sensor array. In another example, the capture reagent is placed directly above the opening 814 when the sample inlet 1014 is positioned above the opening 814. After the capture reagent has been immobilized, the sample inlet 1014 can be sealed so that the cartridge 1000 can be stored until it is ready to perform a biosensing test. The capture reagent may be kept in its initial buffer solution, or a fresh buffer solution may be introduced to hold the capture reagent while the cartridge 1000 is waiting for testing. Examples of different capture reagents and tests performed with capture reagents are provided herein. Referring to FIG. 11, another design of various liquid channels for the case 1000 is illustrated. In this design, a first channel 1104 having a first inlet 1102a and a second channel 1106 having an inlet 1102b meet at a region having a sample inlet 1110. One of the third channels 1108 with the opening 814 aligned therein is connected to the first channel 1104 and the second channel 1106 at the sample inlet 1110. The opening 814 provides a path down to a wafer to expose at least the sensor array on the wafer to the liquid in the third channel 1108. The liquid flowing from the first channel 1104 or the second channel 1106 through the third channel 1108 is finally collected in the waste chamber 1112. The liquid can be directed toward the waste chamber 1112 based on the geometry of the various channels or by using valves to block specific channels. The sample inlet 1110 may also be located above the opening 814. One or more of the first channel 1104, the second channel 1106, and the third channel 1108 may include a bubble trap 1114. The bubble trap 1114 may represent a region with a sudden larger profile (or a higher "ceiling") so that any air present in the solution can rise to a liquid channel in the extra space formed at the bubble trap 1114. Available and familiar to those skilled in the art will understand other bubble trap designs. It may be important to remove air bubbles from the solution before the solution reaches the sensor array below the opening 814 to ensure accurate sensing results. Referring to FIG. 12, a cartridge 1000 is illustrated coupled to one of the analyzers 1200 for performing biosensing. The cartridge 1000 can be brought into physical contact with the analyzer 1200 by, for example, pressing the cartridge 1000 against a receiving port of the analyzer 1200. The receiving port of the analyzer 1200 may include electrical pads to form ohmic contacts to some or all of the edge connectors 908. An edge of the substrate 902 can be tightly fitted into a receiving port of the analyzer 1200 so that the edge connector 908 is pressed against a corresponding conductive pad of the analyzer 1200. Other methods of assembling the box 1000 and the analyzer 1200 include snapping them together, plugging one into the other, and others. The analyzer 1200 may be small enough to be easily carried and fit into the palm of an adult hand. In some embodiments, the analyzer 1200 includes at least a first syringe 1202a and a second syringe 1202b. Each of the first syringe 1202a and the second syringe 1202b may contain a buffer or other liquid used during operation of the cartridge 1000. The syringes 1202a / 1202b each include a needle 1204a / 1204b that can be aligned to extend away from a remainder of the analyzer 1200. In some embodiments, the needles 1204a / 1204b may be aligned such that pressing the cartridge 1000 against one of the receiving ports of the analyzer 1200 causes the needles 1204a / 1204b to pierce through the corresponding plugs 1012a / 1012b and enter the inlet 1010a / 1010b. In this embodiment, the needles 1204a / 1204b are an example of piercing a capillary of the corresponding plug 1012a / 1012b. Therefore, a leak-proof seal is formed to transfer the solution from each syringe 1202a / 1202b to the corresponding inlet 1010a / 1010b of the case 1000. It should be understood that although this description only illustrates two syringes aligned with two input ports, any number of syringes and liquid input ports can be used, including an example in which only one syringe is used to couple to a single inlet. Each syringe 1202a / 1202b can be preloaded with a solution for use in various tests. In another embodiment, a user can easily remove and replace each syringe 1202a / 1202b with a different syringe. Each injector 1202a / 1202b may have its associated piston controlled via a corresponding actuator 1206a / 1206b. Examples of the actuators 1206a / 1206b include a stepping motor or an induction motor. The speed at which the actuators 1206a / 1206b press the pistons of the syringes 1202a / 1202b will directly affect the flow rate of the solution in the liquid channel of the box 1000. The actuators 1206a / 1206b can be controlled via the motor control modules 1208a / 1208b. The motor control module 1208a / 1208b includes the circuits required to generate voltages for controlling the speed and operation of the actuators 1206a / 1206b, as those skilled in the relevant art will understand. All electrical connections made to the edge connector 908 of the box 1000 can be routed to the sensing electronics 1210. The sensing electronics 1210 may include any number of discrete circuits, integrated circuits, and discrete analog circuit components designed to both provide and receive a number of different electrical signals between the sensing electronics 1210 and the edge connector 908. For example, the sensing electronics 1210 can be configured to provide power, ground, and pulse signals to the edge connector 908, which can then be used to power the sensor array and other electronics on the chip 702 And operation. The sensing electronics 1210 can also provide various voltage bias levels for activating the gates of specific FET sensors in the sensor array. The sensing electronics 1210 may receive a signal indicating a drain current measured from a specific FET sensor and a signal indicating an output from a temperature sensor on the chip 702. The sensing electronics 1210 may store this received data in a memory, or may use the received data to change the voltage bias level, or change a heat generated by a heater on the chip 702. Generally speaking, the sensing electronics 1210 controls all the signals related to the bio-sensing performed by the sensor array of the case 1000. In some embodiments, the analyzer 1200 also includes one of the functions and timing of each of the other modules controlling the analyzer 1200, such as the motor control modules 1208a / 1208b and the sensing electronics 1210. . The processor 1212 may be any type of central processing unit (CPU) or microcontroller and may be programmed by a user to perform specific functions related to the operation of the analyzer 1200. The processor 1212 may be configured to analyze a signal received from the sensing electronics 1210 to determine a concentration level of a given analyte of one of the samples from the cartridge 1000. Data related to the determined concentration level may be stored in a memory of the analyzer 1200. In another embodiment, the sensing electronics 1210 determines a concentration level of a given analyte from one of the samples in the cartridge 1000 and is further configured to store data related to the determined concentration level in One of the analyzers 1200 is in memory. In some embodiments, the analyzer 1200 includes a communication module 1214 designed to communicate data to an external processing device. The processor 1212 may be electrically coupled with the communication module 1214 to control data transmission. Communication can be wired or wireless. Examples of wired communications include data transfer via a network cable or a universal serial bus (USB) cable. Wireless communication may include radio RF transmission, Bluetooth, WiFi, 3G or 4G. The communication module 1214 may also be designed to receive data from an external processing device. For example, a program for how to operate various components of the analyzer 1200 may be transmitted to the communication module 1214 and executed by the processor 1212. The communication module 1214 may include any number of well-known hardware components to facilitate analog and / or digital data transmission and reception. After a biosensor test has been performed, the cartridge 1000 may be removed from the analyzer 1200 and discarded. In addition, the syringes 1202a / 1202b can be removed from the analyzer 1200 and discarded. Therefore, all reagents remain contained in the cartridge 1000 or the syringe 1202a / 1202b and no contamination of any other part of the analyzer 1200 occurs. In this manner, a single analyzer 1200 can be reused for testing any number of additional cassettes, where each cassette can be individually functionalized with a different capture reagent to perform a different biosensing test. In another embodiment, the syringe 1202a / 1202b is integrated on the case 1000, and the coupling between the case 1000 and the analyzer 1200 couples the associated piston of the syringe 1202a / 1202b with the actuator 1206a / on the analyzer 1200 1206b aligned. In this embodiment, the analyzer 1200 is completely free of any carried reagent containers. In another embodiment, the cartridge 1000 includes one or more capillaries that pierce the corresponding plugs 1012a / 1012b. In this embodiment, when the coupling between the cartridge 1000 and the analyzer 1200 occurs, the capillary is coupled with the remainder of the syringe 1202a / 1202b in the analyzer 1200 in a liquid manner. After a biosensing test has been performed, the cartridge 1000 with its capillaries can be removed from the analyzer 1200 and discarded. Referring to FIG. 13, an example method 1300 is presented. The method 1300 may be performed by the analyzer 1200 after the cartridge 1000 has been coupled to the analyzer 1200. Other operations related to liquid handling and electricity measurement that are not illustrated in method 1300 may be performed before, during, or after the illustrated operations of method 1300. Various operations of method 1300 may be performed in an order different from one of the illustrated sequences. In one embodiment, the method 1300 is performed after the capture reagent has been immobilized within the cartridge 1000. At block 1302, a first solution flows through a first channel of a box. The first solution can enter the box via an inlet coupled to one of the first channels. The first solution may be provided by a syringe having its needle pierced through a plug placed at the entrance of the first channel. The first solution may include a buffer solution to provide a stable pH environment. At block 1304, the dual gate backside sensing FET sensor of the sensor array is calibrated in a first solution. This calibration can be performed to measure the noise or background signal of one of the various FET sensors. This measurement can be stored and later subtracted from the measured signal when detecting biomolecules in an attempt to reduce noise and achieve a clearer detection signal. The first solution must be present above the sensor array and reference electrode patterned in the main detection channel to perform calibration. In some embodiments, the first solution does not flow during the calibration measurement. In some embodiments, the calibration measurement represents a baseline threshold voltage of the FET sensor. At block 1306, the sample is entered into the liquid network of the box via the sample inlet. The sample can be any fluid sample, including a blood sample. In some embodiments, the sample is a semi-solid sample that dissociates in solution. After the sample has been entered from the sample inlet, the sample inlet can be sealed by using a cover or other similar structure. At block 1308, a second solution flows through a second channel of the box. The second solution may be the same solution as the first solution. The second solution may traverse a path having a sample input into the liquid system at block 1306 and be mixed with the sample. The mixture of sample and second solution may then flow through the second channel and into the main detection channel in which the sensor array is located. The second solution may be a buffer solution. In one example, the second solution is a dissolution buffer solution. The pressure-driven flow can be used to move the second solution along and between channels. Pressure can be caused by forcing fluid or air through one of the syringes of the cartridge or by pressurized air (to name a few) that pushes the second solution. Other examples of techniques for delivering a second solution through the cartridge include electrowetting or using a peristaltic pump on a wafer. At block 1310, biomolecules present in the sample are cultured over the sensor array. Cultivation can last for any given amount of time, for example, between 30 seconds and 10 minutes. During the culture, the sample mixed with the second solution may not flow, or may flow at a very slow flow rate. The flow rate can be designed so that the fresh solution appears over the sensor array over time, but the flow rate is not so powerful that it cannot cause damage to the capture reagent or allow binding reactions to occur. At block 1312, after the incubation time has expired, a third solution flows through the first channel of the box and through the main detection channel to push substantially all of the sample mixed with the second solution into the waste chamber. . A third solution can be injected through the main detection channel within a given time period to ensure that the sample has been cleared from the main detection channel. The third solution used in block 1312 should ideally be the same solution as the first solution. In another embodiment, the third solution is different from the first solution. The third solution may be a buffer solution. At block 1314, the output from the sensor array is measured to determine if any binding reactions have occurred. The sensor output may be a drain current measured by one or more of the dual-gate backside sensing FET sensors in the sensor array. The measured drain current may be compared to one of the drain currents measured during calibration of the same sensor in block 1304. If the threshold voltage (e.g., approximately the voltage required to turn on the FET and cause the drain current to flow) has changed since the sensor was calibrated, it can be determined that a binding reaction has occurred and a target analyte is present in the sample in. The threshold voltage change amount and sign can depend on many factors, such as whether the dual-gate backside sensing FET sensor is an n-channel device or a p-channel device, the type of analyte detected, and the analysis The amount of positive or negative charge associated with an object. In another example, the measured output from the sensor array is the threshold voltage itself, and the threshold voltage can be compared to a threshold voltage measured during the same sensor calibration in block 1304. . Chemistry, Biology, and Interfaces The devices, systems, and methods of this disclosure as set forth in this application can be used to detect and / or monitor interactions between various entities. These interactions include biological and chemical reactions used to detect a target analyte in a test sample. As an example, reactions involving physical, chemical, biochemical, or biotransformation can be monitored to detect the production of intermediates, by-products, products, and combinations thereof. In addition, the devices, systems, and methods disclosed herein can be used in various assays (including, but not limited to, circulating tumor cell assays used in fluid biopsies) and to detect the presence of heavy metals and other environmental pollutants Chelation test). These assays and reactions can be monitored in a single format or in an array format to detect, for example, multiple target analytes. Example of Biosensing Using DGBSS FET Sensor Referring to FIG. 14, an example biosensing test is performed using the dual- gate backside sensing FET sensor described above. The probe DNA 1404 (an example of a capture reagent) is bound to the interface layer 508 via a linking molecule 1402. The linking molecule 1402 may have a reactive chemical group bonded to a portion of the interface layer 508. One example of a linker molecule includes a thiol. The linking molecules may also be formed by silylation of the surface of the interface layer 508 or by exposing the surface of the interface layer 508 to an ammonia (NH 3 ) plasma to form reactive NH 2 groups on the surface. The silylation process involves sequentially exposing the surface of the interface layer 508 to different chemicals to accumulate covalent binding molecules on the surface of the interface layer 508, as will be understood by those skilled in the relevant art. Probe DNA 1404 represents single-stranded DNA. According to one embodiment, the linker molecules 1402 are bonded to the interface layer 508 before any steps of the method 1300 are performed. Probe DNA 1404 can also be bound to the linker molecule 1402 before performing any of the steps of method 1300. In another example, the probe DNA 1404 is bound to the linker molecule 1402 at block 1302 of method 1300. According to an embodiment, the dual-gate backside sensing FET sensor illustrated in FIG. 14 is a FET that will be present in a sensor array on a chip, such as chip 702 described above . The bonding molecules 1402 may be bonded to the interface layer 508 before dicing a wafer-containing wafer 702 to separate the wafer 702 from the wafer. The probe DNA 1404 may be immobilized on the interface layer 508 before subjecting the FET sensor to the sample 1401. Sample 1401 may include a matched single-stranded DNA sequence 1406 that is strongly bound to its matching probe DNA 1404. The binding of the additional DNA increases the negative charge present on the interface layer 508 and directly above the channel region 208 of the FET sensor. The concept map in Figure 15A illustrates DNA binding. Here, the probe DNA with the nucleic acid sequence TCGA is bound to its complementary matching strand with the nucleic acid sequence AGCT. Any mismatched sequence will not hybridize to the probe DNA sequence. The binding of the matching DNA increases the negative charge accumulated at the interface of the interface layer 508. In the example illustrated in FIG. 15A, the interface layer 508 is hafnium oxide. FIG. 15B illustrates one of the threshold voltage shifts of the double-gate backside sensing FET sensor when the matching DNA is bound to the surface of the interface layer 508. In short, a voltage is applied to the liquid gate 510 until the FET sensor is "on" and a current flows between the drain region 206 and the source region 204. When more negative charges are present at the interface layer 508 due to complementary DNA binding, a higher voltage is required to form a conductive inversion layer in the channel region 208. Therefore, according to an embodiment, a higher voltage may be applied to the liquid gate 510 before the FET sensor is conductive and an I ds current flows. This difference in threshold voltage can be measured and used to determine not only the presence of a target that matches the DNA sequence, but also its concentration. It should be understood that a net accumulated positive charge at one of the interface layers 508 will cause the threshold voltage to decrease rather than increase. In addition, the change in threshold voltage will have opposite sign for an n-channel FET compared to a p-channel FET. Referring to FIG. 16, another example biosensing test is performed using a dual gate backside sensing FET sensor. The probe antibody 1604 (another example of a capture reagent) is bound to the interface layer 508 via a linking molecule 1602. The linking molecule 1602 may have a reactive chemical group bonded to a portion of the interface layer 508. A sample solution 1601 may be provided above the probe antibody 1604 to determine whether a matching antigen is present in the sample solution 1601. According to an embodiment, the linking molecules 1602 are bonded to the interface layer 508 before performing any of the steps of the method 1300. The probe antibody 1604 can also be bound to the binding molecule 1602 before performing any of the steps of method 1300. In another example, a probe antibody 1604 is bound to a binding molecule 1602 at block 1302 of method 1300. Referring to FIG. 17, a binding procedure for matching antigen to probe antibody 1604 is illustrated. Here, the matched antigen will bind to the immobilized probe antibody and the unmatched antigen will not bind. Similar to the DNA hybridization procedure described above, matching the antigen will alter the accumulated charge present at the interface layer 508. The shift in threshold voltage due to the accumulated charge from the binding of the matched antibody to the probe antibody is measured in substantially the same manner as already discussed above with reference to FIG. 15B. Final remarks It should be understood that the sections of the implementation, not the summary section of this disclosure, are intended to be used to explain the scope of patent application. This disclosure abstract section may state one or more, but not all, exemplary embodiments of this disclosure as expected by the inventors, and therefore is not intended to limit the scope of this disclosure and the accompanying patent applications in any way. It should be understood that the wording or terminology herein is for the purpose of illustration and not limitation, so that the terminology or wording in this specification will be explained by those skilled in the art in view of teaching and guidance. The breadth and scope of this disclosure should not be limited by any of the exemplary embodiments set forth above, but should be defined solely in accordance with the scope of the attached application patents and their equivalents.

102‧‧‧生物感測盒體 102‧‧‧Biosensor Box

104‧‧‧場效應電晶體感測器/雙閘極背側感測場效應電晶體感測器/雙閘極背側生物場效應電晶體感測器/雙閘極背側場效應電晶體感測器104‧‧‧Field-Effect Transistor Sensor / Dual-Gate Backside Field-Effect Transistor / Double-Gate Backside Bio-Field-Effect Transistor / Double-Gate Backside Field-Effect Transistor Sensor

106‧‧‧生物介面106‧‧‧ biological interface

108‧‧‧晶片封裝108‧‧‧ Chip Package

110‧‧‧液體組件110‧‧‧Liquid components

200‧‧‧雙閘極背側感測場效應電晶體感測器200‧‧‧Dual-gate backside sensing field effect transistor sensor

202‧‧‧控制閘極/閘極/閘極結構202‧‧‧Control gate / gate / gate structure

204‧‧‧源極區域204‧‧‧Source area

206‧‧‧汲極區域206‧‧‧Drain region

208‧‧‧通道區域/主動區域208‧‧‧Aisle area / active area

210‧‧‧隔離層210‧‧‧Isolation layer

212‧‧‧開口212‧‧‧ opening

214‧‧‧基板214‧‧‧ substrate

215‧‧‧介入介電質215‧‧‧Intervening dielectric

220‧‧‧前側閘極220‧‧‧ front gate

222‧‧‧背側閘極222‧‧‧back gate

300‧‧‧可定址陣列/示意圖300‧‧‧Addressable Array / Schematic

302‧‧‧場效應電晶體/存取電晶體/n通道場效應電晶體302‧‧‧field effect transistor / access transistor / n-channel field effect transistor

304‧‧‧場效應電晶體感測器/雙閘極背側感測場效應電晶體感測器304‧‧‧Field-Effect Transistor Sensor

306‧‧‧位元線306‧‧‧bit line

308‧‧‧字線308‧‧‧Word line

400‧‧‧例示性佈局400‧‧‧ Exemplary layout

401‧‧‧陣列401‧‧‧Array

402‧‧‧可個別定址像素/像素402‧‧‧Can be individually addressed pixels / pixels

404‧‧‧列解碼器404‧‧‧column decoder

406‧‧‧行解碼器406‧‧‧line decoder

408‧‧‧加熱器408‧‧‧heater

410‧‧‧溫度感測器410‧‧‧Temperature sensor

412‧‧‧n通道場效應電晶體/場效應電晶體412‧‧‧n-channel field effect transistor / field effect transistor

500‧‧‧雙閘極背側感測場效應電晶體感測器/雙閘極背側場效應電晶體感測器500‧‧‧Dual-gate backside field effect transistor sensor

502‧‧‧金屬互連件502‧‧‧metal interconnect

504‧‧‧主體區域504‧‧‧body area

506‧‧‧電路/額外電路506‧‧‧Circuit / Extra Circuit

508‧‧‧介面層508‧‧‧Interface layer

510‧‧‧液體閘極510‧‧‧Liquid gate

512‧‧‧溶液512‧‧‧ solution

702‧‧‧半導體晶片/晶片/含晶圓晶片702‧‧‧Semiconductor wafer / wafer / wafer containing wafer

704‧‧‧感測器陣列704‧‧‧Sensor array

706‧‧‧參考電極706‧‧‧Reference electrode

708‧‧‧類比電路708‧‧‧ analog circuit

712‧‧‧串列周邊介面712‧‧‧Serial peripheral interface

714‧‧‧感測器陣列電路714‧‧‧Sensor array circuit

716‧‧‧輸入/輸出墊716‧‧‧Input / Output Pad

802‧‧‧載體層/經封裝晶片802‧‧‧ carrier layer / packaged chip

804‧‧‧導電材料804‧‧‧Conductive material

805‧‧‧底部表面/表面805‧‧‧ bottom surface / surface

806‧‧‧第一絕緣層806‧‧‧first insulating layer

808‧‧‧導電插塞808‧‧‧Conductive plug

810‧‧‧第二絕緣層810‧‧‧Second insulation layer

812‧‧‧電連接812‧‧‧electrical connection

814‧‧‧開口814‧‧‧ opening

816‧‧‧最終晶片封裝/晶片封裝816‧‧‧final chip package / chip package

902‧‧‧基板902‧‧‧ substrate

906‧‧‧參考電極906‧‧‧Reference electrode

908‧‧‧邊緣連接器908‧‧‧Edge Connector

1000‧‧‧液體盒體/盒體1000‧‧‧Liquid Case / Box

1002‧‧‧外殼1002‧‧‧Shell

1004‧‧‧第一通道1004‧‧‧The first channel

1006‧‧‧第二通道1006‧‧‧Second Channel

1008‧‧‧第三通道1008‧‧‧third channel

1010a‧‧‧液體入口/入口1010a‧‧‧Liquid inlet / inlet

1010b‧‧‧液體入口/入口1010b‧‧‧Liquid inlet / inlet

1012a‧‧‧插塞1012a‧‧‧plug

1012b‧‧‧插塞1012b‧‧‧plug

1014‧‧‧樣本入口1014‧‧‧Sample entrance

1016‧‧‧廢物室1016‧‧‧ Waste Room

1102a‧‧‧第一入口1102a‧‧‧First Entrance

1102b‧‧‧入口1102b‧‧‧ Entrance

1104‧‧‧第一通道1104‧‧‧First channel

1106‧‧‧第二通道1106‧‧‧Second Channel

1108‧‧‧第三通道1108‧‧‧Third channel

1110‧‧‧樣本入口1110‧‧‧Sample entrance

1112‧‧‧廢物室1112‧‧‧ Waste Room

1114‧‧‧氣泡陷阱1114‧‧‧ Bubble Trap

1200‧‧‧分析器1200‧‧‧ Analyzer

1202a‧‧‧第一注射器/注射器1202a‧‧‧First syringe / syringe

1202b‧‧‧第二注射器/注射器1202b‧‧‧Second syringe / syringe

1204a‧‧‧針1204a‧‧‧ needle

1204b‧‧‧針1204b‧‧‧pin

1206a‧‧‧致動器1206a‧‧‧Actuator

1206b‧‧‧致動器1206b‧‧‧Actuator

1208a‧‧‧馬達控制模組1208a‧‧‧Motor Control Module

1208b‧‧‧馬達控制模組1208b‧‧‧Motor control module

1210‧‧‧感測電子器件1210‧‧‧ Sensing Electronics

1212‧‧‧處理器1212‧‧‧Processor

1214‧‧‧通信模組1214‧‧‧Communication Module

1401‧‧‧樣本1401‧‧‧Sample

1402‧‧‧連結分子1402‧‧‧ Linker

1404‧‧‧探針DNA/匹配探針DNA1404‧‧‧Probe DNA / Matching Probe DNA

1406‧‧‧匹配單股DNA序列1406‧‧‧ matches single-stranded DNA sequence

1601‧‧‧樣本溶液1601‧‧‧Sample solution

1602‧‧‧連結分子1602‧‧‧ Linker

1604‧‧‧探針抗體1604‧‧‧Probe antibodies

Ids‧‧‧電流I ds ‧‧‧ current

當藉助附圖閱讀時,自以下詳細說明最佳地理解本揭露之態樣。應注意,根據業內標準慣例,各種構件未按比例繪製。實際上,為了論述清晰,可任意地增加或減小各種構件之尺寸。 圖1係圖解說明一例示性生物感測盒體之組件之一圖式。 圖2係一例示性雙閘極背側感測FET感測器之一剖面圖。 圖3係組態成一例示性可定址陣列之複數個FET感測器之一電路圖。 圖4係雙閘極FET感測器及加熱器之一例示性可定址陣列之一電路圖。 圖5係組態為一pH感測器之一例示性雙閘極背側感測FET感測器之一剖面圖。 圖6A圖解說明將離子結合至一受體層之一實例。 圖6B圖解說明一例示性FET感測器中之臨限值電壓基於pH之一改變。 圖7係一例示性生物感測器晶片之一平面圖。 圖8展示圖解說明用於將一例示性生物感測器晶片安裝至一處置層之一製作程序之一系列剖面圖。 圖9係具有安裝至一基板之例示性生物感測器晶片之處置層之一俯視圖。 圖10係具有一積體生物感測器晶片之一例示性液體盒體之一示意圖。 圖11係例示性液體盒體中之液體通道中之某些液體通道之一示意圖。 圖12係耦合至一分析器之例示性液體盒體之一示意圖。 圖13係使用液體盒體之一例示性方法之一流程圖。 圖14係偵測DNA之一例示性雙閘極背側感測生物FET之一剖面圖。 圖15A圖解說明一受體表面上之DNA之結合力學。 圖15B圖解說明例示性雙閘極背側感測生物FET之臨限值電壓基於匹配分析物結合之一改變。 圖16係使抗體固定化在其感測層上之一例示性雙閘極背側感測生物FET之一剖面圖。 圖17圖解說明一受體表面上之抗原及抗體之結合力學。The aspect of the present disclosure is best understood from the following detailed description when read with the accompanying drawings. It should be noted that according to industry standard practice, various components are not drawn to scale. In fact, for clarity of discussion, the dimensions of various components can be arbitrarily increased or decreased. FIG. 1 is a diagram illustrating components of an exemplary biosensor cartridge. FIG. 2 is a cross-sectional view of an exemplary dual-gate backside sensing FET sensor. FIG. 3 is a circuit diagram of one of a plurality of FET sensors configured as an exemplary addressable array. 4 is a circuit diagram of an exemplary addressable array of a dual-gate FET sensor and heater. 5 is a cross-sectional view of an exemplary double-gate backside sensing FET sensor configured as a pH sensor. FIG. 6A illustrates an example of binding ions to an acceptor layer. 6B illustrates a threshold voltage change in one exemplary FET sensor based on one of pH. FIG. 7 is a plan view of an exemplary biosensor wafer. 8 shows a series of cross-sectional views illustrating a manufacturing process for mounting an exemplary biosensor wafer to a processing layer. FIG. 9 is a top view of one of the processing layers having an exemplary biosensor wafer mounted to a substrate. FIG. 10 is a schematic diagram of an exemplary liquid case having an integrated biosensor wafer. FIG. 11 is a schematic diagram of one of some liquid channels among the liquid channels in an exemplary liquid case. FIG. 12 is a schematic diagram of an exemplary liquid cartridge coupled to an analyzer. FIG. 13 is a flowchart of an exemplary method of using a liquid cartridge. 14 is a cross-sectional view of an exemplary double-gate backside sensing bioFET that detects DNA. Figure 15A illustrates the binding mechanics of DNA on the surface of a receptor. 15B illustrates a change in threshold voltage of an exemplary dual-gate backside sensing bioFET based on one of the matched analyte bindings. 16 is a cross-sectional view of an exemplary double-gate backside sensing bioFET with an antibody immobilized on its sensing layer. Figure 17 illustrates the binding mechanics of antigens and antibodies on the surface of a receptor.

Claims (9)

一種液體盒體,其包括:一基板,其包括:複數個接點墊,其經組態以與一分析器電耦合,一半導體晶片,其具有一感測器陣列,其中該感測器陣列包括一雙閘極背側感測FET感測器陣列,及一參考電極;一第一液體通道,其具有一第一入口且耦合至一第二液體通道,該第二液體通道經對準使得該感測器陣列及該參考電極放置在該第二液體通道內;一樣本入口,其用於將一樣本放在該第一液體通道或該第二液體通道之一路徑內;及一第一插塞,其放置在該第一入口處且包括經組態以由一毛細管刺穿但不會使液體穿過該第一插塞洩露之一柔性材料。 A liquid box body includes a substrate including a plurality of contact pads configured to be electrically coupled with an analyzer, a semiconductor wafer having a sensor array, wherein the sensor array It includes a double-gate backside sensing FET sensor array and a reference electrode; a first liquid channel having a first inlet and coupled to a second liquid channel, the second liquid channel is aligned such that The sensor array and the reference electrode are placed in the second liquid channel; a sample inlet is used to place a sample in a path of the first liquid channel or the second liquid channel; and a first A plug is placed at the first inlet and includes a flexible material configured to be pierced by a capillary but not to allow liquid to leak through the first plug. 如請求項1之液體盒體,其進一步包括具有一第二入口之一第三液體通道。 The liquid cartridge of claim 1, further comprising a third liquid channel having a second inlet. 如請求項2之液體盒體,其中該第三液體通道耦合至該第二液體通道。 The liquid cartridge of claim 2, wherein the third liquid channel is coupled to the second liquid channel. 如請求項3之液體盒體,其進一步包括一第二插塞,該第二插塞放置 在該第二入口處且包括經組態以由一毛細管刺穿但不會使液體穿過該第二插塞洩漏之一柔性材料。 If the liquid cartridge of claim 3 further comprises a second plug, the second plug is placed At the second inlet and includes a flexible material configured to be pierced by a capillary but not to allow liquid to leak through the second plug. 如請求項4之液體盒體,其中該第一插塞及該第二插塞經組態以與耦合至該分析器之一第一毛細管及一第二毛細管對準,且其中當使該液體盒體與該分析器實體接觸時該複數個接點墊與該分析器耦合。 The liquid cartridge of claim 4, wherein the first plug and the second plug are configured to align with a first capillary and a second capillary coupled to the analyzer, and wherein when the liquid is made The plurality of contact pads are coupled to the analyzer when the box body is in contact with the analyzer entity. 如請求項5之液體盒體,其中當使該液體盒體與該分析器實體接觸時該第一毛細管及該第二毛細管分別刺穿該第一插塞及該第二插塞。 The liquid cartridge of claim 5, wherein when the liquid cartridge is brought into contact with the analyzer entity, the first capillary and the second capillary pierce the first plug and the second plug, respectively. 如請求項1之液體盒體,其進一步包括耦合至該第二液體通道之一廢物室。 The liquid cartridge of claim 1, further comprising a waste chamber coupled to one of the second liquid channels. 一種液體盒體,其包括:一第一液體通道,其具有一第一入口且耦合至一第二液體通道,該第二液體通道經對準使得一感測器陣列及一參考電極放置在該第二液體通道內,其中該感測器陣列包括一雙閘極背側感測FET感測器陣列;一樣本入口,其用於將一樣本放在該第一液體通道或該第二液體通道之一路徑內;及一第一插塞,其放置在該第一入口處且包括經組態以由一毛細管刺穿但不會使液體穿過該第一插塞洩漏之一柔性材料,其中該毛細管耦合至一分析器,且其中當使該液體盒體與該分析器實體接觸時 該毛細管刺穿該第一插塞。 A liquid box body includes a first liquid channel having a first inlet and coupled to a second liquid channel. The second liquid channel is aligned such that a sensor array and a reference electrode are placed on the liquid channel. Inside the second liquid channel, wherein the sensor array includes a double-gate backside sensing FET sensor array; a sample inlet for placing a sample in the first liquid channel or the second liquid channel A path; and a first plug that is placed at the first inlet and includes a flexible material configured to be pierced by a capillary but not to allow liquid to leak through the first plug, wherein The capillary is coupled to an analyzer, and when the liquid cartridge is brought into contact with the analyzer entity The capillary pierces the first plug. 一種經組態以與一液體盒體耦合之分析器,該分析器包括:一注射器,其經配置使得當該液體盒體實體地耦合至該分析器時該注射器之一針與該液體盒體之一對應輸入埠對準;一致動器,其經組態以控制該注射器之操作;一感測模組,其經組態以經由複數個導電墊發送及接收來自該液體盒體之訊號,當該液體盒體實體地耦合至該分析器時該複數個導電墊接觸該液體盒體上之對應複數個導電墊;及一處理器,其電耦合至該感測模組,且經組態以基於自該液體盒體接收之訊號而判定來自該液體盒體中之一樣本之一給定分析物之一濃度位準;其中該液體盒體包括一半導體晶片,其具有一感測器陣列,且該感測器陣列包括一雙閘極背側感測FET感測器陣列。 An analyzer configured to be coupled with a liquid cartridge, the analyzer comprising: a syringe configured such that when the liquid cartridge is physically coupled to the analyzer, a needle of the syringe and the liquid cartridge One is aligned with the corresponding input port; the actuator is configured to control the operation of the syringe; a sensing module is configured to send and receive signals from the liquid box through a plurality of conductive pads, When the liquid box is physically coupled to the analyzer, the plurality of conductive pads contact the corresponding plurality of conductive pads on the liquid box; and a processor, which is electrically coupled to the sensing module and is configured Determining a concentration level of a given analyte from a sample in the liquid cartridge based on a signal received from the liquid cartridge; wherein the liquid cartridge includes a semiconductor wafer having a sensor array The sensor array includes a dual-gate backside sensing FET sensor array.
TW106120731A 2016-08-09 2017-06-21 Cartridge and analyzer for fluid analysis TWI672486B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662372596P 2016-08-09 2016-08-09
US62/372,596 2016-08-09
US15/406,066 2017-01-13
US15/406,066 US11119101B2 (en) 2017-01-13 2017-01-13 Cartridge and analyzer for fluid analysis

Publications (2)

Publication Number Publication Date
TW201805610A TW201805610A (en) 2018-02-16
TWI672486B true TWI672486B (en) 2019-09-21

Family

ID=61170686

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106120731A TWI672486B (en) 2016-08-09 2017-06-21 Cartridge and analyzer for fluid analysis

Country Status (3)

Country Link
KR (1) KR102138344B1 (en)
CN (1) CN107703198B (en)
TW (1) TWI672486B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752423B (en) * 2019-01-21 2022-03-11 上海交通大学 Uric acid sensor based on organic thin film transistor array and control method
US11747298B2 (en) 2020-01-30 2023-09-05 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer-level packaging of solid-state biosensor, microfluidics, and through-silicon via
CN112858418B (en) * 2021-02-24 2022-09-06 北京大学 Preparation method of sensor for detecting tumor cells
CN116297762A (en) * 2023-03-07 2023-06-23 复旦大学 Micro-fluidic platform-based photoelectric combined pathogen detection device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896829A (en) * 2007-07-20 2010-11-24 皇家飞利浦电子股份有限公司 Sensor box
CN102215965A (en) * 2008-11-13 2011-10-12 布勒医药股份公司 Disposable cassette and method of use for blood analysis on blood analyzer
TW201541080A (en) * 2014-04-30 2015-11-01 Tanaka Precious Metal Ind Immune chromatography analysis kit, immune chromatography analysis device, and immune chromatography analysis method
US20160091509A1 (en) * 2014-09-26 2016-03-31 Abbott Point Of Care Inc. Cartridge device with segmented fluidics for assaying coagulation in fluid samples

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674615B2 (en) * 2004-05-04 2010-03-09 Bayer Healthcare Llc Mechanical cartridge with test strip fluid control features for use in a fluid analyte meter
JP2006308428A (en) * 2005-04-28 2006-11-09 Hitachi High-Technologies Corp Nucleic acid analysis method, nucleic acid analyzer, and cartridge for nucleic acid analysis
KR100885074B1 (en) * 2007-07-26 2009-02-25 주식회사 아이센스 Microfluidic sensor complex structures
CN101592627B (en) * 2009-03-19 2012-12-05 中国科学院苏州纳米技术与纳米仿生研究所 Method for manufacturing and integrating multichannel high-sensitive biosensor
DE102012205171B3 (en) * 2012-03-29 2013-09-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Integrated disposable chip cartridge system for mobile multi-parameter analysis of chemical and / or biological substances
US9091647B2 (en) * 2012-09-08 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Direct sensing bioFETs and methods of manufacture
CN104781658B (en) * 2012-10-16 2017-11-21 皇家飞利浦有限公司 Integrated circuit, sensor device, measuring method and manufacture method with nano wire CHEMFET sensors
US20160016171A1 (en) * 2013-03-15 2016-01-21 Nanobiosym, Inc. Systems and Methods for Mobile Device Analysis of Nucleic Acids and Proteins
US10048282B2 (en) * 2014-09-26 2018-08-14 Abbott Point Of Care Inc. Cartridge device with fluidic junctions for coagulation assays in fluid samples
CN107407656B (en) * 2014-12-18 2020-04-07 生命科技公司 Method and apparatus for measuring analytes using large scale FET arrays

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896829A (en) * 2007-07-20 2010-11-24 皇家飞利浦电子股份有限公司 Sensor box
CN102215965A (en) * 2008-11-13 2011-10-12 布勒医药股份公司 Disposable cassette and method of use for blood analysis on blood analyzer
TW201541080A (en) * 2014-04-30 2015-11-01 Tanaka Precious Metal Ind Immune chromatography analysis kit, immune chromatography analysis device, and immune chromatography analysis method
US20160091509A1 (en) * 2014-09-26 2016-03-31 Abbott Point Of Care Inc. Cartridge device with segmented fluidics for assaying coagulation in fluid samples

Also Published As

Publication number Publication date
CN107703198B (en) 2021-06-22
CN107703198A (en) 2018-02-16
TW201805610A (en) 2018-02-16
KR102138344B1 (en) 2020-07-29
KR20180018287A (en) 2018-02-21

Similar Documents

Publication Publication Date Title
US11808731B2 (en) Bio-field effect transistor device
US20210263022A1 (en) Cartridge and analyzer for fluid analysis
TWI672486B (en) Cartridge and analyzer for fluid analysis
US20210109059A1 (en) On-chip heater
US10984211B1 (en) Semiconductor device with bioFET and biometric sensors
US20230288369A1 (en) Differential Sensing With Biofet Sensors
US10702869B2 (en) Miniaturized fluid manipulation system
US20200371059A1 (en) Integrated reference electrode and fluid dispenser
US11243184B2 (en) Digital time-domain readout circuit method for BioFET sensor cascades
US20240036037A1 (en) Fluidic cartridge module, biosensor device, method of detecting analyte in sample