TWI667805B - Method for reducing the resistance of metal oxide semiconductor and making the quantum battery therefrom - Google Patents

Method for reducing the resistance of metal oxide semiconductor and making the quantum battery therefrom Download PDF

Info

Publication number
TWI667805B
TWI667805B TW106135065A TW106135065A TWI667805B TW I667805 B TWI667805 B TW I667805B TW 106135065 A TW106135065 A TW 106135065A TW 106135065 A TW106135065 A TW 106135065A TW I667805 B TWI667805 B TW I667805B
Authority
TW
Taiwan
Prior art keywords
metal oxide
oxide semiconductor
semiconductor layer
metal
resistance
Prior art date
Application number
TW106135065A
Other languages
Chinese (zh)
Other versions
TW201916397A (en
Inventor
徐聖權
王敏全
鄭寶堂
陳毅修
Original Assignee
行政院原子能委員會核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員會核能研究所 filed Critical 行政院原子能委員會核能研究所
Priority to TW106135065A priority Critical patent/TWI667805B/en
Publication of TW201916397A publication Critical patent/TW201916397A/en
Application granted granted Critical
Publication of TWI667805B publication Critical patent/TWI667805B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本發明提供一種降低金屬氧化物半導體之阻值的方法,其包含:在一含有一金屬離子的電解質溶液內對一沉積有一金屬氧化物半導體層且被固定在一陰極的導電基板提供一負電壓,以令該金屬離子注入該金屬氧化物半導體層中。該金屬離子是選自一由下列所構成之群組:鹼金屬離子、鹼土金屬離子,及前述金屬離子的一組合。本發明亦提供一種採上述方法來實施量子電池的製法。The present invention provides a method for reducing the resistance of a metal oxide semiconductor, comprising: providing a negative voltage to a conductive substrate deposited with a metal oxide semiconductor layer and fixed to a cathode in an electrolyte solution containing a metal ion So that the metal ions are implanted into the metal oxide semiconductor layer. The metal ion is selected from the group consisting of an alkali metal ion, an alkaline earth metal ion, and a combination of the foregoing metal ions. The present invention also provides a method of fabricating a quantum battery by the above method.

Description

降低金屬氧化物半導體之阻值的方法及其量子電池的製法Method for reducing resistance of metal oxide semiconductor and method for preparing same

本發明是有關於一種降低半導體之阻值的方法,特別是指一種降低金屬氧化物半導體之阻值的方法及其量子電池的製法。The present invention relates to a method for reducing the resistance of a semiconductor, and more particularly to a method for reducing the resistance of a metal oxide semiconductor and a method for fabricating the same.

參閱圖1,美國第2013/0276878A1早期公開號(以下稱前案)公開一種量子電池9,其包括一玻璃基板91、一形成於該玻璃基板91上的第一氧化銦錫(以下稱ITO)電極92、一形成於該第一ITO電極92上的n型金屬氧化物半導體層93、一形成於該n型金屬氧化物半導體層93上的充電層94、一形成於該充電層94上的p型金屬氧化物半導體層95,及一形成於該p型金屬氧化物半導體層95上的第二ITO電極96。該n型金屬氧化物半導體層93可以是由二氧化鈦(TiO2 )、二氧化錫(SnO2 )或氧化鋅(ZnO)所構成;該p型金屬氧化物半導體層95可以是由一氧化鎳(NiO)或銅鐵礦型銅鋁氧(CuAlO2 )所構成。Referring to FIG. 1, US Pat. No. 2013/0276878 A1 (hereinafter referred to as a prior) discloses a quantum battery 9 comprising a glass substrate 91 and a first indium tin oxide (hereinafter referred to as ITO) formed on the glass substrate 91. An electrode 92, an n-type metal oxide semiconductor layer 93 formed on the first ITO electrode 92, a charging layer 94 formed on the n-type metal oxide semiconductor layer 93, and a charging layer 94 formed on the charging layer 94. A p-type metal oxide semiconductor layer 95, and a second ITO electrode 96 formed on the p-type metal oxide semiconductor layer 95. The n-type metal oxide semiconductor layer 93 may be composed of titanium oxide (TiO 2 ), tin dioxide (SnO 2 ) or zinc oxide (ZnO); the p-type metal oxide semiconductor layer 95 may be made of nickel monoxide ( NiO) or copper iron ore type copper aluminum oxide (CuAlO 2 ).

前案也公開出該充電層94的製法,其是先在一溶劑內混合並攪拌含有脂肪酸鈦(aliphatic acid titanium)與矽油(silicone oil)之組成物以形成一塗佈溶液;接著,在該n型金屬氧化物半導體層93上旋塗(spin coating)上該塗佈溶液以形成一厚度約0.3 μm至1 μm間的塗佈層;後續,以50˚C的溫度乾燥(drying)該塗佈層;進一步以300˚C至400˚C的溫度同時退火(annealing)該n型金屬氧化物半導體層93與燒製(firing)乾燥後的該塗佈層10分鐘至1小時,以藉此降低該n型金屬氧化物半導體層93的阻值並分解該脂肪酸鈦與該矽油以形成如圖2所示之充電層94,令該充電層94具有複數二氧化鈦微粒941及包覆各二氧化鈦微粒941的矽樹脂(silicone)之絕緣膜942,使該充電層94具有核殼結構。最後,透過紫外光對該充電層94照光以激發各二氧化鈦微粒941內的載子。The charging layer 94 is also disclosed in the prior art, which first mixes and agitates a composition containing an aliphatic acid titanium and a silicone oil in a solvent to form a coating solution; The coating solution is spin coated on the n-type metal oxide semiconductor layer 93 to form a coating layer having a thickness of about 0.3 μm to 1 μm; subsequently, the coating is dried at a temperature of 50 ̊C. a layer; further annealing the n-type metal oxide semiconductor layer 93 at a temperature of 300 ̊C to 400 ̊C and firing the dried coating layer for 10 minutes to 1 hour, thereby The resistance of the n-type metal oxide semiconductor layer 93 is lowered and the fatty acid titanium and the eucalyptus oil are decomposed to form a charging layer 94 as shown in FIG. 2, and the charging layer 94 has a plurality of titanium oxide particles 941 and a coating of each of the titanium oxide particles 941. The insulating film 942 of the silicone has the charging layer 94 having a core-shell structure. Finally, the charging layer 94 is illuminated by ultraviolet light to excite the carriers in each of the titanium dioxide particles 941.

雖然前案1所公開之製法可降低其n型金屬氧化物半導體層93的阻值並製得該充電層94。然而,該n型金屬氧化物半導體層93與該充電層94必須同時經300˚C至400˚C的高溫退火與燒製,該第一ITO電極92將受高溫影響而造成片電阻(sheet resistance)的提升,不但因高溫製程而提高製作成本,且製作流程也甚為繁瑣。此外,混合有矽油的該脂肪酸鈦是經高溫燒製以令脂肪酸鈦熱裂解成該等二氧化鈦微粒941,並令矽油反應成矽樹脂之絕緣膜942以包覆於二氧化鈦微粒941外,其絕緣膜942容易因厚度不均以致於出現有未能完全包覆二氧化鈦微粒941的問題,令元件性能的穩定性下降。Although the method disclosed in the prior art 1 can lower the resistance of the n-type metal oxide semiconductor layer 93 and produce the charging layer 94. However, the n-type metal oxide semiconductor layer 93 and the charging layer 94 must be simultaneously annealed and fired at a high temperature of 300 ̊C to 400 ̊C, and the first ITO electrode 92 is affected by high temperature to cause sheet resistance. The improvement is not only due to the high temperature process, but also the production process is very cumbersome. Further, the fatty acid titanium mixed with eucalyptus oil is subjected to high-temperature firing to thermally crack the fatty acid titanium into the titanium oxide fine particles 941, and the eucalyptus oil is reacted into an insulating film 942 of the cerium resin to coat the titanium oxide fine particles 941, and the insulating film thereof. 942 is liable to cause unevenness in thickness so that the problem of not completely coating the titanium oxide fine particles 941 occurs, and the stability of the performance of the element is lowered.

經上述說明可知,降低金屬氧化物半導體之阻值以減少量子電池的內電阻,並簡化量子電池的製法以降低製作成本,是本發明相關技術領域的技術人員所待突破的課題。As can be seen from the above description, reducing the resistance of the metal oxide semiconductor to reduce the internal resistance of the quantum battery and simplifying the manufacturing method of the quantum battery to reduce the manufacturing cost is a subject to be solved by those skilled in the related art of the present invention.

因此,本發明的目的,即在提供一種降低金屬氧化物半導體之阻值的方法。Accordingly, it is an object of the present invention to provide a method of reducing the resistance of a metal oxide semiconductor.

本發明的另一目的,即在提供一種低內電阻之量子電池的製法。Another object of the present invention is to provide a method of fabricating a quantum cell having a low internal resistance.

於是,本發明降低金屬氧化物半導體之阻值的方法,包括:在一含有一金屬離子的電解質溶液(electrolytic solution)內對一沉積有一金屬氧化物半導體層且被固定在一陰極的導電基板提供一負電壓,以令該金屬離子注入該金屬氧化物半導體層中。該金屬離子是選自一由下列所構成之群組:鹼金屬離子(alkaline metal ions)、鹼土金屬離子(alkaline earth metal ions),及前述金屬離子的一組合。Thus, the method of the present invention for reducing the resistance of a metal oxide semiconductor comprises: providing a conductive substrate having a metal oxide layer deposited on a conductive substrate fixed to a cathode in an electrolyte solution containing a metal ion A negative voltage is applied to implant the metal ions into the metal oxide semiconductor layer. The metal ion is selected from the group consisting of alkali metal ions, alkaline earth metal ions, and a combination of the foregoing metal ions.

此外,本發明低內電阻之量子電池的製法,包括:(a)在一第一導電基板上沉積一呈一第一極型的金屬氧化物半導體層,從而製得一第一電極單元;(b)在一第二導電基板上沉積一呈一相反於該第一極型之第二極型的金屬氧化物半導體層,從而製得一第二電極單元;(c)對該第一極型之金屬氧化物半導體層及該第二極型之金屬氧化物半導體層兩者至少其中一者實施一如上所述之降低金屬氧化物半導體之阻值的方法;(d)調配一含有複數無機氧化物粉末的漿料,各無機氧化物粉末包括一n型金屬氧化物顆粒及一包覆該n型金屬氧化物顆粒的絕緣氧化物層;(e)於步驟(c)後,於該第一電極單元之金屬氧化物半導體層上及該第二電極單元之金屬氧化物半導體層上分別塗佈該漿料,從而分別取得一漿料膜;(f)乾燥該等漿料膜從而取得兩前驅物膜;(g)對該等前驅物膜層照光從而取得兩預形膜;及(h)接合該等預形膜以令經接合後的該等預形膜成為一充電層,並從而製得一低內電阻之量子電池。In addition, the method for fabricating a low internal resistance quantum cell of the present invention comprises: (a) depositing a first electrode type metal oxide semiconductor layer on a first conductive substrate to thereby obtain a first electrode unit; b) depositing a metal oxide semiconductor layer opposite to the first pole type of the first pole type on a second conductive substrate to thereby obtain a second electrode unit; (c) the first pole type At least one of the metal oxide semiconductor layer and the second-type metal oxide semiconductor layer is subjected to a method of reducing the resistance of the metal oxide semiconductor as described above; (d) formulating a compound containing a plurality of inorganic oxides a slurry of the powder, each inorganic oxide powder comprising an n-type metal oxide particle and an insulating oxide layer covering the n-type metal oxide particle; (e) after the step (c), at the first Coating the slurry on the metal oxide semiconductor layer of the electrode unit and the metal oxide semiconductor layer of the second electrode unit to obtain a slurry film, respectively; (f) drying the slurry film to obtain two precursors Film (g) film of the precursor film Such pre-shaped and after (h) engaging such preform via bonding film in order to make the film into a charging layer and thus obtain a low internal resistance of the quantum battery; thereby obtaining two pre-shaped film.

本發明的功效在於:令形成有該金屬氧化物半導體層的導電基板被固定在電解質溶液內的陰極上,並透過該負電壓令該電解質溶液內的金屬離子朝向該陰極移動以注入該金屬氧化物半導體層來降低其本身的阻值,在省略高溫熱退火與燒製等工序的前提下達到簡化製程工序與成本,並藉此降低量子電池的內電阻。The effect of the present invention is that the conductive substrate on which the metal oxide semiconductor layer is formed is fixed on the cathode in the electrolyte solution, and the negative voltage is applied to move the metal ions in the electrolyte solution toward the cathode to inject the metal oxide. The semiconductor layer reduces the resistance of the semiconductor layer, and simplifies the process and cost by omitting the steps of high-temperature thermal annealing and firing, thereby reducing the internal resistance of the quantum battery.

在本發明被詳細描述的前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。 <發明詳細說明>Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same reference numerals. <Detailed Description of the Invention>

本發明低內電阻之量子電池的製法的一實施例,包括:(a)在一第一導電基板11上沉積一呈一第一極型的金屬氧化物半導體層12,從而製得一第一電極單元1(見圖3);(b)在一第二導電基板21上沉積一呈一相反於該第一極型之第二極型的金屬氧化物半導體層22,從而製得一第二電極單元2(見圖4);(c)對該第一極型之金屬氧化物半導體層12及該第二極型之金屬氧化物半導體層22兩者至少其中一者實施一降低金屬氧化物半導體之阻值的方法(見圖5);(d)調配一含有水、一聚烷氧類共聚物(polyalkoxylated polyol,亦稱為聚烷氧基多元醇)與複數無機氧化物粉末31之漿料(slurry)3d,該聚烷氧類共聚物至少含有一親水段(hydrophilic segment)及一疏水段(hydrophobic segment),各無機氧化物粉末31包括一n型金屬氧化物顆粒311及一包覆該n型金屬氧化物顆粒311的絕緣氧化物層312(見圖6);(e)於步驟(c)後,於該第一電極單元1之金屬氧化物半導體層12上及該第二電極單元2之金屬氧化物半導體層22上分別塗佈該漿料3d,從而分別取得一漿料膜3e(見圖7);(f)乾燥該等漿料膜3e從而取得兩前驅物膜3f(見圖8);(g)對該等前驅物膜3f照光從而取得兩預形膜3g(見圖9);及(h)接合該等預形膜3g以令經接合後的該等預形膜3g成為一充電層3,並從而製得一低內電阻之量子電池(見圖10)。An embodiment of the method for fabricating a low internal resistance quantum cell of the present invention comprises: (a) depositing a first electrode type metal oxide semiconductor layer 12 on a first conductive substrate 11 to thereby obtain a first Electrode unit 1 (see FIG. 3); (b) depositing a second oxide-type metal oxide semiconductor layer 22 opposite to the first-pole type on a second conductive substrate 21, thereby producing a second Electrode unit 2 (see FIG. 4); (c) performing a reduced metal oxide on at least one of the first-pole metal oxide semiconductor layer 12 and the second-pole metal oxide semiconductor layer 22 a method for resisting a semiconductor (see FIG. 5); (d) formulating a slurry containing water, a polyalkoxylated polyol (also referred to as a polyalkoxy polyol), and a plurality of inorganic oxide powders 31 Slurry 3d, the polyalkoxy copolymer contains at least a hydrophilic segment and a hydrophobic segment, and each inorganic oxide powder 31 includes an n-type metal oxide particle 311 and a coating. An insulating oxide layer 312 of the n-type metal oxide particles 311 (see FIG. 6); (e) in the step (c) The slurry 3d is coated on the metal oxide semiconductor layer 12 of the first electrode unit 1 and the metal oxide semiconductor layer 22 of the second electrode unit 2, respectively, to obtain a slurry film 3e (see FIG. 7); (f) drying the slurry film 3e to obtain two precursor films 3f (see FIG. 8); (g) illuminating the precursor film 3f to obtain two pre-shaped films 3g (see FIG. 9); And (h) joining the pre-formed films 3g so that the bonded pre-formed films 3g become a charging layer 3, and thereby producing a low internal resistance quantum cell (see FIG. 10).

再參閱圖3與圖4,適用於本發明該第一極型之金屬氧化物半導體層12是選自一由下列所構成之群組的金屬氧化物半導體所製成:三氧化鎢(WO3 )、二氧化鈦(TiO2 )、五氧化二釩(V2 O5 )、二氧化錫(SnO2 ),及一氧化鋯(ZrO)。在本發明該實施例中,該第一極型的金屬氧化物半導體層12是一由三氧化鎢(WO3 )所製成的n型金屬氧化物半導體層;該第二極型的金屬氧化物半導體層22是一由氧化鎳(NiO)所製成的p型金屬氧化物半導體層。此外。該步驟(a)之第一電極單元1之第一導電基板11具有一下玻璃板111及一形成於該下玻璃板111上的下ITO層112,且該步驟(b)之第二電極單元2之第二導電基板21具有一上玻璃板211及一形成於該上玻璃板211上的上ITO層212。本發明該第一導電基板11與該第二導電基板21並不限於使用上述ITO做為導電層,只要是片電阻小於等於1 Ω/單位面積的透明導電材料,如,石墨烯(graphene)或摻雜鋁的氧化鋅(AZO),皆可取代上述ITO層112、212。Referring to FIG. 3 and FIG. 4, the first electrode type metal oxide semiconductor layer 12 which is suitable for use in the present invention is made of a metal oxide semiconductor composed of the group consisting of tungsten trioxide (WO 3 ). ), titanium dioxide (TiO 2 ), vanadium pentoxide (V 2 O 5 ), tin dioxide (SnO 2 ), and zirconia (ZrO). In this embodiment of the invention, the first-pole metal oxide semiconductor layer 12 is an n-type metal oxide semiconductor layer made of tungsten trioxide (WO 3 ); the second-pole metal oxide The semiconductor layer 22 is a p-type metal oxide semiconductor layer made of nickel oxide (NiO). Also. The first conductive substrate 11 of the first electrode unit 1 of the step (a) has a lower glass plate 111 and a lower ITO layer 112 formed on the lower glass plate 111, and the second electrode unit 2 of the step (b) The second conductive substrate 21 has an upper glass plate 211 and an upper ITO layer 212 formed on the upper glass plate 211. The first conductive substrate 11 and the second conductive substrate 21 of the present invention are not limited to the use of the above ITO as a conductive layer, as long as it is a transparent conductive material having a sheet resistance of 1 Ω/unit area or less, such as graphene or Aluminum-doped zinc oxide (AZO) may be substituted for the above ITO layers 112, 212.

再參閱圖5,該步驟(c)所實施之降低金屬氧化物半導體之阻值的方法,是在一含有一金屬離子的電解質溶液6內透過一電連接有一陽極9的電源供應器8,對該沉積有該第二極型之金屬氧化物半導體層22且被固定在一陰極7的第一導電基板21提供一負電壓,以令該金屬離子注入該第二極型之金屬氧化物半導體層22中。適用於本發明該金屬離子是選自一由下列所構成之群組:鹼金屬離子、鹼土金屬離子,及前述金屬離子的一組合。Referring to FIG. 5, the method for reducing the resistance of the metal oxide semiconductor implemented in the step (c) is to pass through a power supply 8 electrically connected to an anode 9 in an electrolyte solution 6 containing a metal ion. The second electrode type metal oxide semiconductor layer 22 is deposited and provided on the first conductive substrate 21 of the cathode 7 to provide a negative voltage to inject the metal ions into the second electrode type metal oxide semiconductor layer. 22 in. Suitable for use in the present invention are metal ions selected from the group consisting of alkali metal ions, alkaline earth metal ions, and a combination of the foregoing metal ions.

較佳地,該鹼金屬離子是選自一由下列所構成之群組:鋰(Li)、鈉(Na)、鉀(K),及前述金屬離子的一組合;該鹼土金屬離子是選自一由下列所構成之群組:鈹(Be)、鎂(Mg),及前述金屬離子的一組合。更佳地,該電解質溶液6是經混合一含有該金屬離子的金屬鹽類與一極性溶劑所得。在本發明該實施例中,該金屬鹽類是過氯酸鋰(lithium perchlorate;以下稱LiClO4 );該極性溶劑是碳酸丙烯酯(propylene carbonate;以下稱C4 H6 O3 )。以該電解質溶液6之重量百分比計(wt%),該金屬鹽類於該電解質溶液6中的重量百分比濃度是介於1.7 wt%至其飽和濃度(saturated concentration)間。Preferably, the alkali metal ion is selected from the group consisting of lithium (Li), sodium (Na), potassium (K), and a combination of the foregoing metal ions; the alkaline earth metal ion is selected from the group consisting of A group consisting of beryllium (Be), magnesium (Mg), and a combination of the foregoing metal ions. More preferably, the electrolyte solution 6 is obtained by mixing a metal salt containing the metal ion with a polar solvent. In this embodiment of the invention, the metal salt is lithium perchlorate (hereinafter referred to as LiClO 4 ); the polar solvent is propylene carbonate (hereinafter referred to as C 4 H 6 O 3 ). The weight percentage of the metal salt in the electrolyte solution 6 is between 1.7 wt% and its saturated concentration, based on the weight percentage (wt%) of the electrolyte solution 6.

此處需補充說明的是(再參閱圖6),本發明該實施例之步驟(d)所述之聚烷氧類共聚物中的親水段是用以結合該漿料3d內的水,而該聚烷氧類共聚物中的疏水段是用以結合該漿料3d內的無機氧化物粉末31。因此,該步驟(d)之聚烷氧類共聚物是可選自二段共聚物(diblock copolymer)及三段共聚物(triblock copolymer)兩者其中一者;該步驟(d)之n型金屬氧化物顆粒311是選自氧化鈦顆粒、氧化錫顆粒或氧化鋅顆粒(ZnO);該步驟(d)之絕緣氧化物層312是由氧化矽(SiO2 )或氧化鋁(Al2 O3 )所構成。It should be additionally noted here that (see FIG. 6 again), the hydrophilic segment in the polyalkoxy copolymer described in the step (d) of the embodiment of the present invention is used to bind the water in the slurry 3d, and The hydrophobic section in the polyalkoxy copolymer is used to bind the inorganic oxide powder 31 in the slurry 3d. Therefore, the polyalkoxy copolymer of the step (d) is one selected from the group consisting of a diblock copolymer and a triblock copolymer; the n-type metal of the step (d) The oxide particles 311 are selected from titanium oxide particles, tin oxide particles or zinc oxide particles (ZnO); the insulating oxide layer 312 of the step (d) is made of cerium oxide (SiO 2 ) or aluminum oxide (Al 2 O 3 ) Composition.

適用於本發明該實施例之該步驟(d)的聚烷氧類共聚物是三段共聚物;該步驟(d)之n型金屬氧化物顆粒311是氧化鈦顆粒;該步驟(d)之絕緣氧化物層312是由氧化矽所構成。在本發明該實施例中,該三段共聚物(即,聚烷氧基多元醇)為聚氧丙烯聚氧乙烯共聚物[(poly(ethylene glycol)-block-poly(propylene glycol)-block-(poly(ethylene glycol);以下稱PEG-PPG-PEG]。本發明該實施例僅以PEG-PPG-PEG為例做說明,但不限於此。The polyalkoxy-based copolymer suitable for the step (d) of this embodiment of the present invention is a three-stage copolymer; the n-type metal oxide particles 311 of the step (d) are titanium oxide particles; the step (d) The insulating oxide layer 312 is composed of yttrium oxide. In this embodiment of the invention, the three-stage copolymer (ie, polyalkoxy polyol) is a polyoxyethylene polyoxyethylene copolymer [(poly(ethylene glycol)-block-poly(propylene glycol)-block- (poly(ethylene glycol); hereinafter referred to as PEG-PPG-PEG]. This embodiment of the present invention is exemplified by PEG-PPG-PEG, but is not limited thereto.

較佳地,以該漿料3d之重量百分比計(wt%),水的含量是介於68.5 wt%至78.5 wt%間,該聚烷氧類共聚物的含量是介於20.0 wt%至30.0 wt%間,且該等無機氧化物粉末31的含量是介於1.5 wt%至3.0 wt%間。此外,適用於本發明該實施例之無機氧化物粉末31是使用組成為SiO2 (5 wt%至15 wt%間)/TiO2 (95 wt%至85 wt%間)之核殼結構的複合式疏水型粉末。換句話說,各無機氧化物粉末31內的SiO2 含量越高,意味著各無機氧化物物粉末31的n型金屬氧化物顆粒311的粒徑越小,且絕緣氧化物層312的厚度越厚。在本發明該實施例中,該等無機氧化物粉末31的粒徑是介於10 nm至50 nm間。Preferably, the content of water is between 68.5 wt% and 78.5 wt%, and the content of the polyalkoxy copolymer is between 20.0 wt% and 30.0, based on the weight percent (wt%) of the slurry 3d. Between wt%, and the content of the inorganic oxide powders 31 is between 1.5 wt% and 3.0 wt%. Further, the inorganic oxide powder 31 which is suitable for use in this embodiment of the present invention is a composite using a core-shell structure having a composition of SiO 2 (between 5 wt% and 15 wt%) / TiO 2 (between 95 wt% and 85 wt%). Hydrophobic powder. In other words, the higher the SiO 2 content in each of the inorganic oxide powders 31 means that the particle diameter of the n-type metal oxide particles 311 of each of the inorganic oxide powders 31 is smaller, and the thickness of the insulating oxide layer 312 is higher. thick. In this embodiment of the invention, the particle size of the inorganic oxide powder 31 is between 10 nm and 50 nm.

較佳地(再參閱圖7),該步驟(e)之該等漿料膜3e是以500 rpm至2000 rpm的轉速透過旋轉塗佈法分別塗佈於該第一極型的金屬氧化物半導體層12上與該第二極型的金屬氧化物半導體層22上。Preferably, (see FIG. 7 again), the slurry film 3e of the step (e) is applied to the first-pole metal oxide semiconductor by spin coating at a rotational speed of 500 rpm to 2000 rpm. The layer 12 is on the second electrode type metal oxide semiconductor layer 22.

較佳地(再參閱圖7、圖8與圖9),該步驟(f)是透過一爐管4以一介於100˚C至200˚C的溫度烘烤該等漿料膜3e,以令該等漿料膜3e成為該等前驅物膜3f;該步驟(g)是以一紫外光5對該等前驅物膜3f照光以取得該等預形膜3g。Preferably (refer to FIG. 7, FIG. 8 and FIG. 9 again), the step (f) is to bake the slurry film 3e through a furnace tube 4 at a temperature of between 100 ̊C and 200 ̊C. The slurry film 3e becomes the precursor film 3f; the step (g) illuminates the precursor film 3f with an ultraviolet light 5 to obtain the pre-shaped film 3g.

整合上述實施例之製法的詳細說明可知,本案僅需在該電解質溶液6內對該第二極型之金屬氧化物半導體層22施予電化學處理(electrochemistry treatment)以令金屬離子朝該陰極7移動並注入該第二極型之金屬氧化物半導體層22中,從而降低該第二極型之金屬氧化物半導體層22的阻值;此外,僅須對該等漿料膜3e施予100˚C至200˚C的乾燥,無需如同前案般,仍需經由300˚C以上的退火與燒製。就製程上來說,本案相對前案的製法來得簡化,且該等無機氧化物粉末31本身就是由n型金屬氧化物顆粒(TiO2 顆粒)311與包覆其n型金屬氧化物顆粒311之絕緣氧化物層(SiO2 )312所構成,其膜厚相對前案容易控制。就元件內電阻與電性的穩定度來說,本發明因該實施例之該第二極型之金屬氧化物半導體層22中注入有金屬離子而阻值下降,且充電層3的膜厚容易控制,其充放電時也穩定。本發明相關的電性測試之結果,容後說明。 <使用的起始原物料與分析設備>In the detailed description of the method for fabricating the above embodiments, it is only necessary to apply an electrochemical treatment to the second-pole metal oxide semiconductor layer 22 in the electrolyte solution 6 to cause metal ions toward the cathode 7 . Moving and injecting into the second-type metal oxide semiconductor layer 22, thereby lowering the resistance of the second-type metal oxide semiconductor layer 22; further, it is only necessary to apply 100 对该 to the slurry film 3e. Drying from C to 200 ̊C does not require annealing and firing above 300 ̊C as in the previous case. In terms of the process, the present method is simplified relative to the preparation method of the previous case, and the inorganic oxide powder 31 itself is insulated by the n-type metal oxide particles (TiO 2 particles) 311 and the n-type metal oxide particles 311 coated thereon. The oxide layer (SiO 2 ) 312 is formed, and the film thickness thereof is easily controlled with respect to the prior case. In the present invention, the metal oxide ions of the second-pole type metal oxide semiconductor layer 22 of the embodiment are implanted with metal ions, and the resistance value is lowered, and the film thickness of the charging layer 3 is easy. Control, it is also stable during charging and discharging. The results of the electrical tests related to the present invention are described later. <Starting raw materials and analytical equipment used>

LiClO4 是使用購自阿法埃莎(Alfa Aesar)之型號為A16059的商品;C4 H6 O3 是使用購自阿法埃莎之型號為A15552的商品。LiClO 4 is a product of the type A16059 available from Alfa Aesar; C 4 H 6 O 3 is a product of the type A15552 available from Alfa Aesar.

PEG-PPG-PEG是使用購自Sigma-Aldrich 有限公司之型號為Pluronic P123的EO20PO70EO20。PEG-PPG-PEG was an EO20PO70EO20 model Pluronic P123 available from Sigma-Aldrich Co., Ltd.

該等無機氧化物粉末31是使用粒徑約10 nm的疏水型矽鈦混合氧化物粉末,其組成為SiO2 (5 wt%)/TiO2 (95 wt%)。These inorganic oxide powders 31 are hydrophobic type titanium-titanium mixed oxide powders having a particle diameter of about 10 nm and having a composition of SiO 2 (5 wt%) / TiO 2 (95 wt%).

電性測試是使用購自普林斯頓應用研究(Princeton Applied Research)之型號為VersaSTAT4的恆電位恆電流儀。 <具體例>The electrical test was performed using a constant potential galvanometer model VersaSTAT4 from Princeton Applied Research. <Specific example>

本發明降低金屬氧化物半導體之阻值的方法及低內電阻之量子電池的製法的具體例,是根據上述製法之實施例來實施,其詳細製作流程與參數是說明於下。Specific examples of the method for reducing the resistance of the metal oxide semiconductor of the present invention and the method for producing the quantum battery having low internal resistance are carried out according to the embodiment of the above-described production method, and the detailed production flow and parameters are described below.

首先,於一下玻璃板及一上玻璃板上分別依序濺鍍(sputtering)一ITO層與一厚度為120 nm之WO3 的n型金屬氧化物半導體層及一厚度為270 nm之NiO的p型金屬氧化物半導體層,以分別製得該具體例之一第一、二電極單元。在本發明該具體例中,該WO3 之n型金屬氧化物半導體層及該NiO之p型金屬氧化物半導體層的面積皆為5 cm × 5 cm。First, an ITO layer and a WO 3 n-type metal oxide semiconductor layer having a thickness of 120 nm and a NiO having a thickness of 270 nm are sequentially sputtered on the glass plate and the upper glass plate, respectively. The metal oxide semiconductor layer is used to separately produce the first and second electrode units of the specific example. In this specific example of the present invention, the area of the n-type metal oxide semiconductor layer of WO 3 and the p-type metal oxide semiconductor layer of the NiO are both 5 cm × 5 cm.

接著,混合10.6 g的LiClO4 、200 ml的C4 H6 O3 (密度為1.205 g/cm3 ,經換算其重量為241 g),與50 ml的去離子水(DI water),以配製出該具體例之一含有Li+ 之電解質溶液(LiClO4 於該電解質溶液中的含量為3.515 wt%),並將該第二電極單元浸泡於該電解質溶液內以固定於一陰極上,且透過一電連接有一陽極(不鏽鋼)的電源供應器對該陰極提供一-2.5 V的電壓約120秒,以令該電解質溶液中的Li+ 注入該NiO之p型金屬氧化物半導體層中。Next, mix 10.6 g of LiClO 4 , 200 ml of C 4 H 6 O 3 (density 1.205 g/cm 3 , converted to a weight of 241 g), and 50 ml of deionized water (DI water) to prepare One of the specific examples contains an electrolyte solution containing Li + (the content of LiClO 4 in the electrolyte solution is 3.515 wt%), and the second electrode unit is immersed in the electrolyte solution to be fixed on a cathode, and is permeated. A power supply electrically connected to an anode (stainless steel) supplies a voltage of -2.5 V to the cathode for about 120 seconds to allow Li + in the electrolyte solution to be implanted into the p-type metal oxide semiconductor layer of the NiO.

後續,充分地混合並攪拌1 g的疏水型矽鈦混合氧化物粉末、15 g的EO20PO70EO20,及50 g的去離子水,以調配出該具體例之一含有1.51 wt%的疏水型矽鈦混合氧化物粉末、75.76 wt%的去離子水,與22.73 wt%的EO20PO70EO20之漿料後,並依序以500 rpm的轉速與2000 rpm的轉速將該漿料分別塗佈於該WO3 的n型金屬氧化物半導體層上及該NiO的p型金屬氧化物半導體層上,從而分別取得該具體例的一漿料膜。Subsequently, 1 g of hydrophobic cerium-titanium mixed oxide powder, 15 g of EO20PO70EO20, and 50 g of deionized water were thoroughly mixed and stirred to prepare a mixture of hydrophobic cerium and titanium containing 1.51% by weight of one of the specific examples. Oxide powder, 75.76 wt% deionized water, and 22.73 wt% of EO20PO70EO20 slurry, and sequentially applied to the WO 3 n-type at 500 rpm and 2000 rpm. A slurry film of this specific example was obtained on the metal oxide semiconductor layer and on the p-type metal oxide semiconductor layer of the NiO.

於完成該等漿料膜後,是依序乾燥該等漿料膜從而取得該具體例之兩前驅物膜,並以254 nm之波長的紫外光對該等前驅物膜照光從而取得該具體例之兩預形膜。最後,接合該等預形膜以令經接合後的該等預形膜成為該具體例的一充電層,並從而製得該具體例之一低內電阻之量子電池。 <比較例>After the slurry film is completed, the slurry films are sequentially dried to obtain the two precursor films of the specific example, and the precursor films are irradiated with ultraviolet light having a wavelength of 254 nm to obtain the specific example. Two pre-formed films. Finally, the pre-shaped films are joined such that the bonded pre-formed films become a charging layer of the specific example, and thereby a quantum battery having a low internal resistance of the specific example is obtained. <Comparative example>

本發明降低金屬氧化物半導體之阻值的方法及低內電阻之量子電池的製法的一比較例大致上是相同於該具體例,其不同處是在於,該比較例未實施降低金屬氧化物半導體之阻值的方法。 <分析數據>A comparative example of the method for reducing the resistance of a metal oxide semiconductor of the present invention and the method for producing a quantum battery having low internal resistance is substantially the same as the specific example, and the difference is that the comparative example does not implement a metal oxide semiconductor reduction. The method of resistance. <Analysis data>

圖11顯示有該具體例之長時間充放電的穩定性測試結果。具體地來說,本發明該具體例是在2 μA之定電流下對其充電層進行30分鐘(1800秒)的充電,之後以負載電阻(RL )大於10 GΩ的開路模式對其充電層進行自放電(self-discharge)。由圖11顯示可知,該具體例僅經過約8分鐘左右的充電時間,其最大電位便可超過1.85 V,在達到前述最大電位後便開始呈現穩定充電;相對地,該具體例在自放電時是自1.5 V開始放電。Fig. 11 shows the results of the stability test of the long-term charge and discharge of this specific example. Specifically, the specific example of the present invention charges the charging layer for 30 minutes (1800 seconds) at a constant current of 2 μA, and then charges the layer with an open circuit mode in which the load resistance (R L ) is greater than 10 GΩ. Perform self-discharge. As can be seen from Fig. 11, this specific example only takes about 8 minutes of charging time, and its maximum potential can exceed 1.85 V. After reaching the aforementioned maximum potential, stable charging begins; relatively, this specific example is self-discharge. It is discharged from 1.5 V.

此外,圖12顯示有該具體例之充放電測試結果。具體地來說,本發明該具體例同樣是在2 μA之定電流下對其充電層進行30分鐘的充電,之後迫以反向電流(-1 μA)的負電流模式對其充電層進行放電。由圖12顯示可知,該具體例經過約12分鐘左右的充電時間,其最大電位已達1.8 V,在達前述最大電位後便開始呈現穩定充電,且該具體例同樣是自1.5 V開始放電。In addition, FIG. 12 shows the results of the charge and discharge test of this specific example. Specifically, in the specific example of the present invention, the charging layer is charged for 30 minutes at a constant current of 2 μA, and then the charging layer is discharged in a negative current mode of reverse current (-1 μA). . As can be seen from Fig. 12, the specific example has a charging time of about 12 minutes, and its maximum potential has reached 1.8 V. After reaching the maximum potential, stable charging is started, and this specific example is also discharged from 1.5 V.

反觀該比較例(見圖13與圖14),該比較例之充電條件以及在開路模式(圖13)與負電流模式(圖14)下的放電條件皆相同於該具體例。由圖13顯示可知,該比較例經過約9分鐘左右的充電時間,其最大電位值僅達1.5 V,充電時間相對大於該具體例的8分鐘,且最大電位卻低於該具體例的1.85 V;又,在達前述最大電位後所呈現的充電狀態並不穩定,且該比較例於開路模式下是自1.2 V開始放電,其電壓降(voltage drop)明顯低於該具體例的1.5 V,相對證明本案該具體例因該NiO之p型金屬氧化物半導體層中注入有Li+ 離子導致降低該NiO之p型金屬氧化物半導體層本身的阻值,因而使該具體例之量子電池的內電阻下降。In contrast, the comparative example (see FIG. 13 and FIG. 14), the charging conditions of the comparative example and the discharge conditions in the open mode (FIG. 13) and the negative current mode (FIG. 14) are the same as in the specific example. As can be seen from FIG. 13, the comparative example has a charging time of about 9 minutes, the maximum potential value is only 1.5 V, the charging time is relatively larger than 8 minutes of the specific example, and the maximum potential is lower than 1.85 V of the specific example. Moreover, the state of charge presented after reaching the aforementioned maximum potential is not stable, and the comparative example starts discharging from 1.2 V in the open mode, and its voltage drop is significantly lower than 1.5 V of the specific example. The specific example of the present invention is to reduce the resistance of the p-type metal oxide semiconductor layer itself of the NiO by injecting Li + ions into the p-type metal oxide semiconductor layer of NiO, thereby making the inside of the quantum battery of the specific example The resistance drops.

同樣地,由圖14顯示可知,該比較例經過約12分鐘30秒左右的充電時間,其最大電位值僅達1.45 V,充電時間雖略大於該具體例的12分鐘,但最大電位卻低於該具體例的1.8 V;又,在達前述最大電位後所呈現的充電狀態亦不穩定,且該比較例也是自1.2 V開始放電,其電壓降明顯小於該具體例的1.5 V,相對證明本案該具體例因該NiO之p型金屬氧化物半導體層中注入有Li+ 離子導致降低該NiO之p型金屬氧化物半導體層本身的阻值,因而該具體例之量子電池的內電阻低。Similarly, as shown in FIG. 14, the comparative example has a charging time of about 12 minutes and 30 seconds, and the maximum potential value is only 1.45 V. Although the charging time is slightly larger than 12 minutes of the specific example, the maximum potential is lower than 1.8 V of the specific example; further, the state of charge presented after reaching the aforementioned maximum potential is also unstable, and the comparative example is also discharged from 1.2 V, and the voltage drop thereof is significantly smaller than 1.5 V of the specific example, which proves the case relatively. In this specific example, since the Li + ion is implanted into the p-type metal oxide semiconductor layer of NiO to lower the resistance of the p-type metal oxide semiconductor layer itself of the NiO, the internal resistance of the quantum battery of this specific example is low.

綜上所述,本發明降低金屬氧化物半導體之阻值的方法及其量子電池的製法,令形成有該NiO之n型金屬氧化物半導體層的第二電極單元被固定在該電解質溶液內的陰極上,並透過該負電壓令該電解質溶液內的Li+ 離子朝向該陰極移動以注入該NiO之n型金屬氧化物半導體層來降低其本身的阻值,在省略高溫熱退火與燒製等工序的前提下達到簡化製程工序與成本,並藉此降低量子電池的內電阻,故確實能達成本發明的目的。In summary, the present invention reduces the resistance of a metal oxide semiconductor and a method of manufacturing the same, and the second electrode unit of the n-type metal oxide semiconductor layer in which the NiO is formed is fixed in the electrolyte solution. Passing the negative voltage to move the Li + ions in the electrolyte solution toward the cathode to inject the NiO n-type metal oxide semiconductor layer to reduce the resistance value thereof, and omitting the high temperature thermal annealing and firing Under the premise of the process, the process and cost are simplified, and the internal resistance of the quantum battery is lowered, so that the object of the present invention can be achieved.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above is only the embodiment of the present invention, and the scope of the invention is not limited thereto, and all the simple equivalent changes and modifications according to the scope of the patent application and the patent specification of the present invention are still Within the scope of the invention patent.

1‧‧‧第一電極單元 1‧‧‧First electrode unit

311‧‧‧n型金屬氧化物顆粒 311‧‧‧n type metal oxide particles

11‧‧‧第一導電基板 11‧‧‧First conductive substrate

312‧‧‧絕緣氧化物層 312‧‧‧Insulating oxide layer

111‧‧‧下玻璃板 111‧‧‧Under the glass plate

3d‧‧‧漿料 3d‧‧‧Slurry

112‧‧‧下ITO層 112‧‧‧Under ITO layer

3e‧‧‧漿料膜 3e‧‧‧Slurry film

12‧‧‧第一極型的金屬氧化物半導體層 12‧‧‧First-pole metal oxide semiconductor layer

3f‧‧‧前驅物膜 3f‧‧‧Precursor film

2‧‧‧第二電極單元 2‧‧‧Second electrode unit

3g‧‧‧預型膜 3g‧‧‧Preform film

21‧‧‧第二導電基板 21‧‧‧Second conductive substrate

4‧‧‧爐管 4‧‧‧ furnace tube

211‧‧‧上玻璃板 211‧‧‧Upper glass plate

5‧‧‧紫外光 5‧‧‧UV light

212‧‧‧上ITO層 212‧‧‧Upper ITO layer

6‧‧‧電解質溶液 6‧‧‧Electrolyte solution

22‧‧‧第二極型的金屬氧化物半導體層 22‧‧‧Second-pole metal oxide semiconductor layer

7‧‧‧陰極 7‧‧‧ cathode

3‧‧‧充電層 3‧‧‧Charging layer

8‧‧‧電源供應器 8‧‧‧Power supply

31‧‧‧無機氧化物粉末 31‧‧‧Inorganic oxide powder

9‧‧‧陽極 9‧‧‧Anode

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:  圖1是一正視示意圖,說明美國第2013/0276878A1早期公開號所公開的量子電池的膜層結構;  圖2是圖1之量子電池的一充電層的細部結構;  圖3是一正視示意圖,說明本發明低內電阻之量子電池的製法的一實施例之一步驟(a);  圖4是一正視示意圖,說明本發明該實施例之製法的一步驟(b);  圖5是一正視示意圖,說明本發明該實施例之製法的一步驟(c);  圖6是一正視示意圖,說明本發明該實施例之製法的一步驟(d);  圖7是一正視示意圖,說明本發明該實施例之製法的一步驟(e);  圖8是一正視示意圖,說明本發明該實施例之製法的一步驟(f);  圖9是一正視示意圖,說明本發明該實施例之製法的一步驟(g);  圖10是一正視示意圖,說明本發明該實施例之製法的一步驟(h)及其製法所製得的一量子電池;  圖11是一電壓(V)對時間(sec)曲線圖,說明本發明低內電阻之量子電池的一具體例於開路模式(open circuit mode)下的電性;  圖12是一電壓(V)對時間(sec)曲線圖,說明本發明該具體例於負電流模式(negative current mode)下的電性;  圖13是一電壓(V)對時間(sec)曲線圖,說明本發明低內電阻之量子電池之一比較例於開路電壓模式下的電性;及  圖14是一電壓(V)對時間(sec)曲線圖,說明本發明該比較例於負電流模式下的電性。Other features and advantages of the present invention will be apparent from the following description of the drawings, wherein: Figure 1 is a front elevational view showing the film structure of the quantum cell disclosed in the US Publication No. 2013/0276878 A1; 2 is a detailed view of a charging layer of the quantum battery of FIG. 1; FIG. 3 is a front elevational view showing a step (a) of an embodiment of the method for fabricating a low internal resistance quantum cell of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 5 is a front elevational view showing a step (c) of the process of the embodiment of the present invention; FIG. 6 is a front elevational view showing the present invention. A step (d) of the method of the embodiment; FIG. 7 is a front elevational view showing a step (e) of the method of the embodiment of the present invention; FIG. 8 is a front view showing a first embodiment of the method of the present invention. Step (f); Figure 9 is a front elevational view showing a step (g) of the process of the embodiment of the present invention; Figure 10 is a front elevational view showing a step (h) of the process of the embodiment of the present invention A quantum battery produced by the method of the invention; FIG. 11 is a voltage (V) versus time (sec) graph illustrating a specific example of the low internal resistance quantum cell of the present invention in an open circuit mode. Figure 12 is a voltage (V) vs. time (sec) graph illustrating the electrical properties of the specific example of the present invention in a negative current mode; Figure 13 is a voltage (V) vs. time (sec) a graph illustrating the electrical properties of one of the quantum cells of the low internal resistance of the present invention in an open circuit voltage mode; and FIG. 14 is a voltage (V) vs. time (sec) graph illustrating the comparative example of the present invention. Electrical properties in negative current mode.

Claims (8)

一種降低金屬氧化物半導體之阻值的方法,包含:在一含有一金屬離子的電解質溶液內對一沉積有一金屬氧化物半導體層且被固定在一陰極的導電基板提供一負電壓,以令該金屬離子注入該金屬氧化物半導體層中,該金屬離子是選自一由下列所構成之群組:鹼金屬離子、鹼土金屬離子,及前述金屬離子的一組合;其中,該電解質溶液是經混合一含有該金屬離子的金屬鹽類與一極性溶劑所得;及其中,以該電解質溶液之重量百分比計,該金屬鹽類於該電解質溶液中的重量百分比濃度是介於1.7wt%至其飽和濃度間。 A method for reducing the resistance of a metal oxide semiconductor, comprising: providing a negative voltage to a conductive substrate deposited with a metal oxide semiconductor layer and fixed to a cathode in an electrolyte solution containing a metal ion; Metal ions are implanted into the metal oxide semiconductor layer, the metal ions being selected from the group consisting of alkali metal ions, alkaline earth metal ions, and a combination of the foregoing metal ions; wherein the electrolyte solution is mixed a metal salt containing the metal ion and a polar solvent; and wherein, by weight percentage of the electrolyte solution, the concentration of the metal salt in the electrolyte solution is from 1.7 wt% to a saturation concentration thereof between. 如請求項1所述的降低金屬氧化物半導體之阻值的方法,其中,該鹼金屬離子是選自一由下列所構成之群組:鋰、鈉、鉀,及前述金屬離子的一組合;該鹼土金屬離子是選自一由下列所構成之群組:鈹、鎂,及前述金屬離子的一組合。 The method for reducing the resistance of a metal oxide semiconductor according to claim 1, wherein the alkali metal ion is selected from the group consisting of lithium, sodium, potassium, and a combination of the foregoing metal ions; The alkaline earth metal ion is selected from the group consisting of ruthenium, magnesium, and a combination of the foregoing metal ions. 如請求項1所述的降低金屬氧化物半導體之阻值的方法,其中,該金屬鹽類是過氯酸鋰;該極性溶劑是碳酸丙烯酯。 The method of reducing the resistance of a metal oxide semiconductor according to claim 1, wherein the metal salt is lithium perchlorate; and the polar solvent is propylene carbonate. 如請求項1所述的降低金屬氧化物半導體之阻值的方法,其中,該金屬氧化物半導體層是選自一由下列所構成之群組的金屬氧化物半導體所製成:一氧化鎳、三氧化鎢、二氧化鈦、五氧化二釩、二氧化錫,及一氧化鋯。 The method of reducing the resistance of a metal oxide semiconductor according to claim 1, wherein the metal oxide semiconductor layer is made of a metal oxide semiconductor selected from the group consisting of nickel oxide, Tungsten trioxide, titanium dioxide, vanadium pentoxide, tin dioxide, and zirconia. 一種低內電阻之量子電池的製法,包含:(a)在一第一導電基板上沉積一呈一第一極型的金屬氧化物半導體層,從而製得一第一電極單元;(b)在一第二導電基板上沉積一呈一相反於該第一極型之第二極型的金屬氧化物半導體層,從而製得一第二電極單元;(c)對該第一極型之金屬氧化物半導體層及該第二極型之金屬氧化物半導體層兩者至少其中一者實施一如請求項1所述的方法;(d)調配一含有複數無機氧化物粉末的漿料,各無機氧化物粉末包括一n型金屬氧化物顆粒及一包覆該n型金屬氧化物顆粒的絕緣氧化物層;(e)於步驟(c)後,於該第一電極單元之金屬氧化物半導體層上及該第二電極單元之金屬氧化物半導體層上分別塗佈該漿料,從而分別取得一漿料膜;(f)乾燥該等漿料膜從而取得兩前驅物膜;(g)對該等前驅物膜層照光從而取得兩預形膜;及(h)接合該等預形膜以令經接合後的該等預形膜成為一充電層,並從而製得一低內電阻之量子電池。 A method for fabricating a low internal resistance quantum cell, comprising: (a) depositing a first electrode type metal oxide semiconductor layer on a first conductive substrate to thereby obtain a first electrode unit; (b) Depositing a metal oxide semiconductor layer opposite to the first pole type of the first pole type on a second conductive substrate to form a second electrode unit; (c) oxidizing the metal of the first pole type At least one of the semiconductor layer and the second-type metal oxide semiconductor layer is subjected to the method of claim 1; (d) a slurry containing a plurality of inorganic oxide powders, each inorganic oxide The powder comprises an n-type metal oxide particle and an insulating oxide layer covering the n-type metal oxide particle; (e) after the step (c), on the metal oxide semiconductor layer of the first electrode unit And coating the slurry on the metal oxide semiconductor layer of the second electrode unit to obtain a slurry film; (f) drying the slurry film to obtain two precursor films; (g) The precursor film layer illuminates to obtain two pre-shaped films; and (h) joins the same Such pre-shaped so that after the film was shaped into a charging bonding film layer, and to produce a low resistance of the obtained quantum battery. 如請求項5所述的低內電阻之量子電池的製法,其中,該步驟(d)的漿料中還含有水及一聚烷氧類共聚物,該聚烷氧類共聚物至少含有一親水段及一疏水段。 The method for producing a low internal resistance quantum cell according to claim 5, wherein the slurry of the step (d) further comprises water and a polyalkoxy copolymer, the polyalkoxy copolymer having at least one hydrophilic Segment and a hydrophobic section. 如請求項6所述的低內電阻之量子電池的製法,其中,該步驟(d)之聚烷氧類共聚物是選自二段共聚物及三段共聚 物兩者其中一者;該步驟(d)之n型金屬氧化物顆粒是選自氧化鈦顆粒、氧化錫顆粒或氧化鋅顆粒;該步驟(d)之絕緣氧化物層是由氧化矽或氧化鋁所構成。 The method for producing a low internal resistance quantum cell according to claim 6, wherein the polyalkoxy copolymer of the step (d) is selected from the group consisting of a two-stage copolymer and a three-stage copolymerization. One of the two; the n-type metal oxide particles of the step (d) are selected from the group consisting of titanium oxide particles, tin oxide particles or zinc oxide particles; the insulating oxide layer of the step (d) is made of cerium oxide or oxidized Made of aluminum. 如請求項7所述的低內電阻之量子電池的製法,其中,該步驟(d)之聚烷氧類共聚物是聚氧丙烯聚氧乙烯共聚物;該步驟(d)之n型金屬氧化物顆粒是氧化鈦顆粒;該步驟(d)之絕緣氧化物層是由氧化矽所構成。 The method for producing a low internal resistance quantum cell according to claim 7, wherein the polyalkoxy copolymer of the step (d) is a polyoxypropylene polyoxyethylene copolymer; and the n-type metal oxidation of the step (d) The particles of the particles are titanium oxide particles; the insulating oxide layer of the step (d) is composed of cerium oxide.
TW106135065A 2017-10-13 2017-10-13 Method for reducing the resistance of metal oxide semiconductor and making the quantum battery therefrom TWI667805B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106135065A TWI667805B (en) 2017-10-13 2017-10-13 Method for reducing the resistance of metal oxide semiconductor and making the quantum battery therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106135065A TWI667805B (en) 2017-10-13 2017-10-13 Method for reducing the resistance of metal oxide semiconductor and making the quantum battery therefrom

Publications (2)

Publication Number Publication Date
TW201916397A TW201916397A (en) 2019-04-16
TWI667805B true TWI667805B (en) 2019-08-01

Family

ID=66992020

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106135065A TWI667805B (en) 2017-10-13 2017-10-13 Method for reducing the resistance of metal oxide semiconductor and making the quantum battery therefrom

Country Status (1)

Country Link
TW (1) TWI667805B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130276878A1 (en) * 2010-10-07 2013-10-24 Guala Technology Co., Ltd. Photovoltaic cell
TW201523964A (en) * 2013-12-10 2015-06-16 Nihon Micronics Kk Secondary cell and method for producing same
TW201711215A (en) * 2015-06-25 2017-03-16 日本麥克隆尼股份有限公司 Method for manufacturing secondary battery
US20170098870A1 (en) * 2014-03-18 2017-04-06 Kabushiki Kaisha Nihon Micronics Battery
TW201717415A (en) * 2015-08-31 2017-05-16 日本麥克隆尼股份有限公司 Oxide semiconductor secondary cell and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130276878A1 (en) * 2010-10-07 2013-10-24 Guala Technology Co., Ltd. Photovoltaic cell
TW201523964A (en) * 2013-12-10 2015-06-16 Nihon Micronics Kk Secondary cell and method for producing same
US20170098870A1 (en) * 2014-03-18 2017-04-06 Kabushiki Kaisha Nihon Micronics Battery
TW201711215A (en) * 2015-06-25 2017-03-16 日本麥克隆尼股份有限公司 Method for manufacturing secondary battery
TW201717415A (en) * 2015-08-31 2017-05-16 日本麥克隆尼股份有限公司 Oxide semiconductor secondary cell and method for manufacturing the same

Also Published As

Publication number Publication date
TW201916397A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
CN107039640B (en) Combination electrode material and its application
EP0568524B1 (en) Composite element comprising a titanium chalcogen or oxychalcogen layer, suitable in particular for use as a positive electrode in a thin-layer fuel cell
CN107195962B (en) A kind of composite solid electrolyte and preparation method thereof
JP2018026321A (en) Sulfide solid electrolytic material, positive electrode material, and battery
JP5987103B2 (en) All solid ion secondary battery
WO2011125481A1 (en) Lithium ion secondary battery and method for producing same
CN106252585A (en) Electrode complex and battery
JP2007066703A (en) Lithium ion secondary battery and solid electrolyte
JP2014116149A (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP2018032621A (en) Electrode material and battery
CN104681808B (en) Method for preparing strontium salt doped lithium nickel manganese oxide cathode material of lithium ion battery
CN109768215A (en) A kind of solid state lithium battery anode low resistance interface processing method and anode structure
CN109792078A (en) All solid state lithium ion secondary cell
JP2016039062A (en) Positive electrode composite material and sulfide all-solid battery arranged by use thereof
EP4143900A1 (en) Method for manufacturing an assembly consisting of a separator and porous electrode, an assembly consisting of a separator and porous electrode, and microbattery containing such an assembly
CN110364697A (en) Positive electrode and the secondary cell for using the positive electrode
WO2021220176A1 (en) Method for manufacturing a porous electrode, and battery containing such an electrode
WO2021220174A1 (en) Method for manufacturing a porous electrode, and microbattery containing such an electrode
He et al. Synthesis and interface modification of oxide solid-state electrolyte-based all-solid-state lithium-ion batteries: Advances and perspectives
TWI667805B (en) Method for reducing the resistance of metal oxide semiconductor and making the quantum battery therefrom
EP4143902A1 (en) Method for manufacturing an assembly consisting of a separator and porous electrode, an assembly consisting of a separator and porous electrode, and electrochemical device containing such an assembly
JP5602541B2 (en) All-solid-state lithium ion battery
TWI618260B (en) Method for making quantum battery with core-shell structure and the product thereof
Il’ina et al. All-solid-state battery Li–Ga–Ag| Li 7 La 3 Zr 2 O 12+ Li 2 O–Y 2 O 3–SiO 2| Li 2 O–V 2 O 5–B 2 O 3
CN115911529A (en) Composite garnet type solid electrolyte, secondary battery and preparation method