TWI667723B - Cleanliness-inspection method of lithography apparatus and reflective mask - Google Patents

Cleanliness-inspection method of lithography apparatus and reflective mask Download PDF

Info

Publication number
TWI667723B
TWI667723B TW107128172A TW107128172A TWI667723B TW I667723 B TWI667723 B TW I667723B TW 107128172 A TW107128172 A TW 107128172A TW 107128172 A TW107128172 A TW 107128172A TW I667723 B TWI667723 B TW I667723B
Authority
TW
Taiwan
Prior art keywords
units
detecting
reflective
detection
alignment
Prior art date
Application number
TW107128172A
Other languages
Chinese (zh)
Other versions
TW202010030A (en
Inventor
李宗彥
傅中其
陳立銳
鄭博中
郭爵旗
鄭介任
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Priority to TW107128172A priority Critical patent/TWI667723B/en
Application granted granted Critical
Publication of TWI667723B publication Critical patent/TWI667723B/en
Publication of TW202010030A publication Critical patent/TW202010030A/en

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一種微影設備之潔淨度的檢測方法,包括:放置一反射式光罩至一曝光腔內之一光罩座上,且放置一晶圓至曝光腔內之一晶圓座上;經由反射式光罩實施一曝光製程至晶圓上;將反射式光罩由曝光腔移動至一光學檢測機台;以及藉由光學檢測機台檢測反射式光罩上之汙染物。 A method for detecting the cleanliness of a lithography apparatus includes: placing a reflective reticle onto a reticle holder in an exposure chamber, and placing a wafer onto one of the wafer holders in the exposure chamber; via reflection The photomask performs an exposure process onto the wafer; the reflective mask is moved from the exposure chamber to an optical inspection machine; and the optical detector detects the contaminants on the reflective mask.

Description

微影設備之潔淨度的檢測方法以及反射式光罩 Method for detecting the cleanliness of lithography equipment and reflective mask

本揭露主要關於一種檢測方法以及反射式光罩,尤指一種微影設備之潔淨度的檢測方法以及反射式光罩。 The disclosure relates to a detection method and a reflective mask, and more particularly to a method for detecting the cleanliness of a lithography apparatus and a reflective mask.

半導體裝置已使用於多種電子上的應用,例如個人電腦、手機、數位相機、以及其他電子設備。半導體裝置基本上依序經由沈積絕緣層或介電層、導電層、以及半導體層之材料至一晶圓、以及使用微影技術圖案化多種材料層來形成電路組件以及元件於其上而被製造。許多積體電路一般製造於一單一晶圓,且晶圓上個別的晶粒於積體電路之間沿著一切割線被切割分離。舉例而言,個別的晶粒基本上被分別的封裝於一多晶片模組或是其他類型的封裝。 Semiconductor devices have been used in a variety of electronic applications, such as personal computers, cell phones, digital cameras, and other electronic devices. The semiconductor device is fabricated substantially by sequentially depositing insulating or dielectric layers, conductive layers, and materials of the semiconductor layer to a wafer, and patterning a plurality of material layers using lithography techniques to form circuit components and components thereon. . Many integrated circuits are typically fabricated on a single wafer, and individual dies on the wafer are cut and separated along a cutting line between the integrated circuits. For example, individual dies are substantially packaged separately in a multi-wafer module or other type of package.

由於半導體製程的尺寸之小型化的要求,於微影設備中採用了超紫外線作為曝光製程中的光源,以使晶圓上之光阻形成適用於小於20nm半導體製程的圖案。 Due to the miniaturization of the size of the semiconductor process, ultra-ultraviolet light is used as a light source in the exposure process in the lithography apparatus to form a photoresist on the wafer to form a pattern suitable for a semiconductor process of less than 20 nm.

然而,雖然目前使用超紫外線作為曝光製程中之光源的微影設備符合了其使用之目的,但尚未滿足許多其他方面的要求。因此,需要提供微影設備的改進方案。 However, although lithographic apparatus that currently uses ultra-ultraviolet light as a light source in an exposure process meets its purpose of use, many other aspects have not been met. Therefore, there is a need to provide an improved solution for lithography equipment.

本揭露之一些實施例提供了一種反射式光罩,用 以檢測一微影設備之潔淨度,包括:一基板;一反射結構,設置於基板上;以及一圖案層,設置於反射結構上,包括複數個第一檢測單元。每一檢測圖案包括一第一檢測單元。檢測圖案之第一檢測單元沿一排列方向排列,且第一檢測單元之面積沿排列方向逐漸變大。 Some embodiments of the present disclosure provide a reflective reticle for use with To detect the cleanliness of a lithography apparatus, comprising: a substrate; a reflective structure disposed on the substrate; and a pattern layer disposed on the reflective structure, including a plurality of first detecting units. Each detection pattern includes a first detection unit. The first detecting units of the detecting patterns are arranged in an arrangement direction, and the area of the first detecting unit gradually becomes larger in the arrangement direction.

本揭露之一些實施例提供一種微影設備之潔淨度的檢測方法,包括:放置一反射式光罩至一曝光腔內之一光罩座上,且放置一晶圓至曝光腔內之一晶圓座上;經由反射式光罩實施一曝光製程至晶圓上;將反射式光罩由曝光腔移動至一第一光學檢測機台;以及藉經由第一光學檢測機台檢測反射式光罩上之汙染物。 Some embodiments of the present disclosure provide a method for detecting the cleanliness of a lithography apparatus, including: placing a reflective reticle onto a reticle of an exposure cavity, and placing a wafer to a cavity in the exposure cavity On the round seat; performing an exposure process on the wafer via the reflective mask; moving the reflective mask from the exposure chamber to a first optical inspection machine; and detecting the reflective mask by the first optical inspection machine Contaminants on it.

1‧‧‧微影設備 1‧‧‧ lithography equipment

10‧‧‧光源裝置 10‧‧‧Light source device

20‧‧‧曝光腔 20‧‧‧ exposure cavity

30‧‧‧照明裝置 30‧‧‧Lighting device

40‧‧‧光罩裝置 40‧‧‧Photomask device

41‧‧‧光罩座 41‧‧‧Photomask holder

50‧‧‧光學投影裝置 50‧‧‧Optical projection device

51‧‧‧反射鏡 51‧‧‧Mirror

60‧‧‧晶圓座 60‧‧‧ Wafer Holder

70‧‧‧光罩傳送裝置 70‧‧‧Photomask conveyor

80‧‧‧晶圓傳送裝置 80‧‧‧ wafer transfer device

A10‧‧‧激發腔 A10‧‧‧ excitation cavity

A11‧‧‧光線通道 A11‧‧‧Light channel

A20‧‧‧標的發射器 A20‧‧‧ target transmitter

A30‧‧‧標的回收器 A30‧‧‧ target recycler

A40‧‧‧光線聚集器 A40‧‧‧Light concentrator

A50‧‧‧雷射發射器 A50‧‧‧Laser transmitter

B1‧‧‧光學檢測機台 B1‧‧‧ optical inspection machine

B10‧‧‧承載埠 B10‧‧‧ Carrying equipment

C1‧‧‧第一焦點 C1‧‧‧ first focus

C2‧‧‧第二焦點 C2‧‧‧ second focus

D1、D2‧‧‧排列方向 D1, D2‧‧‧ direction

E1‧‧‧標的 E1‧‧‧

F1‧‧‧光罩保存盒 F1‧‧‧Photomask storage box

L1‧‧‧脈衝雷射 L1‧‧‧pulse laser

M1‧‧‧反射式光罩 M1‧‧‧reflective mask

M10‧‧‧基板 M10‧‧‧ substrate

M20‧‧‧反射結構 M20‧‧‧reflective structure

M21‧‧‧薄膜對 M21‧‧‧ film pair

M30‧‧‧保護層 M30‧‧‧ protective layer

M40‧‧‧圖案層 M40‧‧‧ pattern layer

M41‧‧‧氮化硼鉭層 M41‧‧‧ boron nitride layer

M42‧‧‧氧化硼鉭層 M42‧‧‧Boron Oxide Layer

M43‧‧‧檢測圖案 M43‧‧‧ inspection pattern

M431、M431a、M431b、M431c、M431n‧‧‧第一檢測單元 M431, M431a, M431b, M431c, M431n‧‧‧ first detection unit

M432‧‧‧第一基準單元 M432‧‧‧ first reference unit

M433、M433a、M433b、M433c、M433n‧‧‧第二檢測單元 M433, M433a, M433b, M433c, M433n‧‧‧ second detection unit

M434‧‧‧第二基準單元 M434‧‧‧second reference unit

M44‧‧‧主對位標記 M44‧‧‧Main registration mark

M441‧‧‧第一主對位單元 M441‧‧‧First primary alignment unit

M442‧‧‧第二主對位單元 M442‧‧‧Second main alignment unit

M443‧‧‧第三主對位單元 M443‧‧‧ third main alignment unit

M45‧‧‧次對位標記 M45‧‧ ‧ registration mark

M451‧‧‧次對位單元 M451‧‧ ‧ alignment unit

M452‧‧‧對位本體 M452‧‧‧ aligning ontology

M453‧‧‧穿孔 M453‧‧‧Perforation

N1、N2、N3、N4、N5、N6‧‧‧寬度 N1, N2, N3, N4, N5, N6‧‧‧ width

N11、N12、N13、N21、N22、N23‧‧‧寬度 N11, N12, N13, N21, N22, N23‧‧‧ width

P1‧‧‧長度 P1‧‧‧ length

Q1、Q2、Q3、Q4、Q5‧‧‧間距 Q1, Q2, Q3, Q4, Q5‧‧‧ spacing

R1、R2、R3、R4‧‧‧路徑 R1, R2, R3, R4‧‧‧ path

d1、d2‧‧‧距離 D1, d2‧‧‧ distance

W1‧‧‧晶圓 W1‧‧‧ wafer

W11‧‧‧光阻層 W11‧‧‧ photoresist layer

Z1‧‧‧第一檢測群組 Z1‧‧‧ first detection group

Z2‧‧‧第二檢測群組 Z2‧‧‧Second detection group

第1圖為根據本揭露之一些實施例之微影設備的示意圖。 1 is a schematic diagram of a lithography apparatus in accordance with some embodiments of the present disclosure.

第2圖為根據本揭露之一些實施例之微影設備之潔淨度的檢測方法的流程圖。 2 is a flow chart of a method of detecting the cleanliness of a lithography apparatus in accordance with some embodiments of the present disclosure.

第3圖為根據本揭露之一些實施例之光學檢測機台的示意圖。 Figure 3 is a schematic illustration of an optical inspection machine in accordance with some embodiments of the present disclosure.

第4圖為根據本揭露之一些實施例之反射式光罩的示意圖。 4 is a schematic illustration of a reflective reticle in accordance with some embodiments of the present disclosure.

第5圖為根據本揭露之一些實施例之反射式光罩的俯視圖。 Figure 5 is a top plan view of a reflective reticle in accordance with some embodiments of the present disclosure.

第6圖為根據本揭露之一些實施例之檢測圖案的示意圖。 Figure 6 is a schematic illustration of a detection pattern in accordance with some embodiments of the present disclosure.

第7圖為根據本揭露之一些實施例之主對位標記的示意 圖。 Figure 7 is a schematic illustration of a primary alignment mark in accordance with some embodiments of the present disclosure. Figure.

第8圖為根據第5圖之A部分的放大圖。 Fig. 8 is an enlarged view of a portion A according to Fig. 5.

第9圖為根據本揭露之一些實施例之檢測圖案的示意圖。 Figure 9 is a schematic illustration of a detection pattern in accordance with some embodiments of the present disclosure.

以下之說明提供了許多不同的實施例、或是例子,用來實施本揭露之不同特徵。以下特定例子所描述的元件和排列方式,僅用來精簡的表達本揭露實施例,其僅作為例子,而並非用以限制本揭露實施例。例如,第一特徵在一第二特徵上或上方的結構之描述包括了第一和第二特徵之間直接接觸,或是以另一特徵設置於第一和第二特徵之間,以致於第一和第二特徵並不是直接接觸。 The following description provides many different embodiments, or examples, for implementing the various features of the disclosure. The components and arrangements described in the following specific examples are only used to simplify the disclosure of the disclosed embodiments, which are merely by way of example, and are not intended to limit the disclosed embodiments. For example, the description of the structure of the first feature on or above a second feature includes direct contact between the first and second features, or another feature disposed between the first and second features such that The first and second features are not in direct contact.

此外,本說明書於不同的例子中沿用了相同的元件標號及/或文字。前述之沿用僅為了簡化以及明確,並不表示於不同的實施例以及設定之間必定有關聯。 In addition, the same reference numerals and/or characters are used in the present description in the different examples. The foregoing is merely for purposes of simplicity and clarity and is not intended to be

本說明書之第一以及第二等詞彙,僅作為清楚解釋之目的,並非用以對應於以及限制專利範圍。此外,第一特徵以及第二特徵等詞彙,並非限定是相同或是不同之特徵。 The vocabulary of the first and second words of this specification are for the purpose of clarity of explanation and are not intended to be construed as limiting. In addition, the first feature and the second feature are not limited to the same or different features.

於此使用之空間上相關的詞彙,例如上方或下方等,僅用以簡易描述圖式上之一元件或一特徵相對於另一元件或特徵之關係。除了圖式上描述的方位外,包括於不同之方位使用或是操作之裝置。圖式中之形狀、尺寸、以及厚度可能為了清楚說明之目的而未依照比例繪製或是被簡化,僅提供說明之用。 Spatially related terms used herein, such as above or below, are used to simply describe one element or the relationship of one feature to another. In addition to the orientations described in the drawings, the devices are used or operated in different orientations. The shapes, dimensions, and thicknesses of the drawings may not be drawn to scale or simplified for the purpose of clarity of description, and are merely illustrative.

第1圖為根據本揭露之一些實施例之微影設備1的 示意圖。微影設備1用以對一晶圓W1實施一微影製程。微影製程可包括光阻塗佈製程、軟烤製程、曝光製程、顯影製程、硬烤製程、以及其他適合的製程。 1 is a lithographic apparatus 1 according to some embodiments of the present disclosure. schematic diagram. The lithography apparatus 1 is configured to perform a lithography process on a wafer W1. The lithography process can include a photoresist coating process, a soft bake process, an exposure process, a development process, a hard bake process, and other suitable processes.

於本實施例中,微影設備1可為一曝光設備,用以針對一晶圓W1實施一曝光製程。微影設備1可包括一光源裝置10、一曝光腔20、一照明裝置30、一光罩裝置40、一光學投影裝置50、以及一晶圓座60。微影設備1可包括所有上述之裝置,但只要達到微影設備1使用上之目的,可不需包括所有上述之裝置。 In this embodiment, the lithography apparatus 1 can be an exposure apparatus for performing an exposure process on a wafer W1. The lithography apparatus 1 can include a light source device 10, an exposure chamber 20, an illumination device 30, a reticle device 40, an optical projection device 50, and a wafer holder 60. The lithography apparatus 1 may include all of the above-described devices, but as long as the lithographic apparatus 1 is used for the purpose, it is not necessary to include all of the above-described devices.

微影設備1不應限制於本揭露所描述之裝置。微影設備1可包括其他合適之裝置,例如塗佈裝置、軟烤裝置、顯影裝置、及/或硬烤裝置等,以使得微影設備1能實施完整之微影製程至晶圓W1。 The lithography apparatus 1 should not be limited to the apparatus described in the present disclosure. The lithography apparatus 1 may include other suitable devices, such as a coating device, a soft bake device, a developing device, and/or a hard bake device, to enable the lithography apparatus 1 to implement a complete lithography process to the wafer W1.

光源裝置10用以產生光線至照明裝置30。上述之光線可為超紫外線(EUV light)。於本實施例中,上述超紫外線的波長範圍可定義為1mm至124nm的範圍之間。於一些實施例中,上述之光線的波長可為3mm至20nm的範圍之間。因此,光源裝置10可為一超紫外線光源裝置。然而,光源裝置10不應被限制於用以產生超紫外線。光源裝置10可用以發射任何之來自激發於標的E1之任何波長與強度之光子。 The light source device 10 is for generating light to the illumination device 30. The above light may be EUV light. In the present embodiment, the wavelength range of the above ultra-ultraviolet light can be defined as being in the range of 1 mm to 124 nm. In some embodiments, the wavelength of the light may be between 3 mm and 20 nm. Therefore, the light source device 10 can be an ultra-ultraviolet light source device. However, the light source device 10 should not be limited to generate ultra-ultraviolet rays. Light source device 10 can be used to emit any photon from any wavelength and intensity that is excited by the target E1.

曝光腔20設置於光源裝置10之一側。在一些實施例中,照明裝置30、光罩裝置40、光學投影裝置50、以及晶圓座60可設置於曝光腔20內。然而,由於氣體分子會吸收超紫外線,因此曝光腔20內部可保持真空,以防止超紫外線損耗。 The exposure chamber 20 is disposed on one side of the light source device 10. In some embodiments, illumination device 30, photomask device 40, optical projection device 50, and wafer holder 60 can be disposed within exposure chamber 20. However, since gas molecules absorb ultra-ultraviolet rays, a vacuum can be maintained inside the exposure chamber 20 to prevent ultra-violet loss.

照明裝置30用以將光源裝置10所提供之光線(超紫外線)導向至設置於光源裝置10之一反射式光罩(mask、photomask、或reticle)M1。照明裝置30可包括一或多個光學元件,例如至少一個透鏡、至少一個反射鏡、及/或至少一個折射鏡。光源裝置10所發射之光線經由照明裝置30折射、反射、及/或聚光後導向至反射式光罩M1或光罩裝置40。 The illumination device 30 is configured to guide the light (ultraviolet light) provided by the light source device 10 to a reflective mask (mask, photomask, or reticle) M1 disposed in the light source device 10. Illumination device 30 can include one or more optical elements, such as at least one lens, at least one mirror, and/or at least one refractor. The light emitted by the light source device 10 is refracted, reflected, and/or condensed by the illumination device 30 and guided to the reflective reticle M1 or the reticle device 40.

光罩裝置40用以固持反射式光罩M1。於一些實施例中,光罩裝置40可用以移動反射式光罩M1以使由照明裝置30所發射之光線導向至反射式光罩M1之不同區域。於一些實施例中,光罩裝置40可包括一光罩座41,用以固持反射式光罩M1。光罩座41可為一靜電吸座(electrostatic chuck,e-chuck)。 The mask device 40 is for holding the reflective mask M1. In some embodiments, the reticle device 40 can be used to move the reflective reticle M1 to direct light emitted by the illuminating device 30 to different regions of the reflective reticle M1. In some embodiments, the reticle device 40 can include a reticle holder 41 for holding the reflective reticle M1. The mask holder 41 can be an electrostatic chuck (e-chuck).

光學投影裝置(projection optics device,or projection optics box,POB)50設置於反射式光罩M1以及晶圓座60之間,用以將反射式光罩M1的圖案形成於晶圓W1上。於一些實施例中,光學投影裝置50可包括多個光學元件,例如至少一個透鏡、至少一個反射鏡、及/或至少一個折射鏡。反射式光罩M1所發射之光線攜帶了定義於反射式光罩M1上之圖案的影像,且經由光學投影裝置50折射、反射、及/或聚光後導向至晶圓W1或晶圓座60。 An imaging optics device (or projection optics box, POB) 50 is disposed between the reflective mask M1 and the wafer holder 60 for forming a pattern of the reflective mask M1 on the wafer W1. In some embodiments, optical projection device 50 can include a plurality of optical elements, such as at least one lens, at least one mirror, and/or at least one refractive mirror. The light emitted by the reflective mask M1 carries an image defined by the pattern on the reflective mask M1, and is refracted, reflected, and/or condensed by the optical projection device 50 and guided to the wafer W1 or the wafer holder 60. .

於本實施例中,光學投影裝置50包括多個反射鏡51,用以反射光線(或超紫外線)。反射式光罩M1所發射之光線經由光學投影裝置50反射及聚光後導向至晶圓W1或晶圓座60。 In the present embodiment, the optical projection device 50 includes a plurality of mirrors 51 for reflecting light (or ultra-ultraviolet rays). The light emitted by the reflective mask M1 is reflected and concentrated by the optical projection device 50 and guided to the wafer W1 or the wafer holder 60.

晶圓座60設置於反射式光罩M1之下方。於本實施 例中,晶圓座60設置於光學投影裝置50之下方。晶圓座60用以固持晶圓W1。晶圓座60可為一靜電吸座(electrostatic chuck,e-chuck)。 The wafer holder 60 is disposed below the reflective mask M1. In this implementation In the example, the wafer holder 60 is disposed below the optical projection device 50. The wafer holder 60 is used to hold the wafer W1. The wafer holder 60 can be an electrostatic chuck (e-chuck).

晶圓W1可由矽或其他半導體材料所製成。於一些實施例中,晶圓W1可由複合半導體(compound semiconductor)材料所製成,例如碳化矽(silicon carbide,SiC)、砷化鎵(gallium arsenic,GaAs)、砷化銦(indium arsenide,InAs)、或是磷化銦(indium phosphide,InP)。於一些實施例中,晶圓W1可由合金半導體(alloy semiconductor)所製成,例如矽鍺(silicon germanium,SiGe)、矽碳化矽(silicon germanium carbide,SiGeC)、砷化鎵磷化物(gallium arsenic phosphide,GaAsP)、或是磷化銦鎵(gallium indium phosphide,GaInP)。於一些實施例中,晶圓W1可為一絕緣層上矽(silicon-on-insulator,SOI)或是一絕緣層上鍺(germanium-on-insulator,GOI)基材。 Wafer W1 can be made of tantalum or other semiconductor materials. In some embodiments, the wafer W1 may be made of a compound semiconductor material such as silicon carbide (SiC), gallium arsenic (GaAs), indium arsenide (InAs). Or indium phosphide (InP). In some embodiments, the wafer W1 may be made of an alloy semiconductor such as silicon germanium (SiGe), silicon germanium carbide (SiGeC), gallium arsenic phosphide (gallium arsenic phosphide). , GaAsP), or gallium indium phosphide (GaInP). In some embodiments, the wafer W1 can be a silicon-on-insulator (SOI) or a germanium-on-insulator (GOI) substrate.

此外,晶圓W1可具有多種裝置元件(device element)。舉例而言,形成於晶圓W1上之裝置元件可包括電晶體(transistor)、二極體(diode)、及/或其他適合的元件。多種不同之製程可用以形成上述之裝置元件。例如,沉積製程、蝕刻製程、植入製程、微影製程、及/或其他合適的製程。 Further, the wafer W1 may have various device elements. For example, device components formed on wafer W1 can include transistors, diodes, and/or other suitable components. A variety of different processes can be used to form the device components described above. For example, deposition processes, etching processes, implant processes, lithography processes, and/or other suitable processes.

於一些實施例中,晶圓W1塗布了光阻層W11,其可對於光線(或紫外光)產生化學反應。當經由光學投影裝置50所發射之圖案化光線照射至光阻層W11,可使得光阻層W11被圖案化。 In some embodiments, wafer W1 is coated with a photoresist layer W11 that can chemically react to light (or ultraviolet light). When the patterned light emitted through the optical projection device 50 is irradiated to the photoresist layer W11, the photoresist layer W11 can be patterned.

光源裝置10可使用脈衝雷射激發電漿(pulse laser produced plasma,pulse LPP)機構來使標的E1產生電漿,並由電漿出發出超紫外線。光源裝置10可包括一激發腔A10、一標的發射器A20、一標的回收器A30、一光線聚集器A40、以及一雷射發射器A50。 The light source device 10 can use a pulsed laser to excite plasma (pulse laser Produced plasma, pulse LPP) mechanism to make the standard E1 produce plasma, and the plasma emits ultra-ultraviolet light. The light source device 10 can include an excitation cavity A10, a target emitter A20, a target recycler A30, a light concentrator A40, and a laser emitter A50.

光源裝置10可包括所有上述之裝置,但只要達到光源裝置10使用上之目的,可不需包括所有上述之裝置。光源裝置10不應限制於本揭露所描述之裝置,可包括其他合適之元件。 The light source device 10 may include all of the above-described devices, but as long as the purpose of the light source device 10 is achieved, it is not necessary to include all of the above devices. Light source device 10 should not be limited to the devices described in this disclosure, and may include other suitable components.

激發腔A10可位於曝光腔20之一側。激發腔A10可經由一光線通道A11與曝光腔20連接。由於氣體分子會吸收超紫外線,因此激發腔A10內部可保持真空,以防止超紫外線損耗。 The excitation chamber A10 may be located on one side of the exposure chamber 20. The excitation cavity A10 can be connected to the exposure chamber 20 via a light tunnel A11. Since the gas molecules absorb ultra-ultraviolet rays, a vacuum can be maintained inside the excitation chamber A10 to prevent ultra-violet loss.

標的發射器A20設置於激發腔A10上方,可用以發射多個標的(target)E1。標的E1可於激發腔A10內被雷射發射器A50所射出之脈衝雷射L1照射,並激發出超紫外線。標的E1可為液態或是固態。於本實施例中,標的E1可為液態,且可為錫滴(tin droplet)。於一些實施例中,標的E1之材質可為包括液態材質之錫,例如包括錫、鋰(lithium,Li)、以及氙(xenon,Xe)之共晶合金(eutectic alloy)。 The target emitter A20 is disposed above the excitation chamber A10 and can be used to emit a plurality of targets E1. The target E1 can be illuminated by the pulsed laser L1 emitted by the laser emitter A50 in the excitation chamber A10 and excites the ultra-ultraviolet light. The target E1 can be liquid or solid. In this embodiment, the target E1 may be in a liquid state and may be a tin droplet. In some embodiments, the material of the target E1 may be tin including a liquid material, for example, a eutectic alloy including tin, lithium, and xenon (Xe).

標的回收器A30設置於激發腔A10上,用以回收由標的發射器A20所射出但未被脈衝雷射L1照射之標的E1。於本實施例中,標的回收器A30與標的發射器A20可為於激發腔A10之兩相對側。 The target recycler A30 is disposed on the excitation chamber A10 for recovering the target E1 emitted by the target emitter A20 but not irradiated by the pulsed laser L1. In this embodiment, the target collector A30 and the target emitter A20 may be on opposite sides of the excitation chamber A10.

光線聚集器(light collector)A40,用以反射超紫外 線,並將超紫外線經由光線通道A11傳送至曝光腔20內之照明裝置30。於本實施例中,光線聚集器A40可為例如一橢圓鏡片,其具有位於激發腔A10內之一第一焦點C1以及曝光腔20內之一第二焦點C2。 Light collector A40 for reflecting ultra-ultraviolet light The line and the ultra-ultraviolet light are transmitted to the illumination device 30 in the exposure chamber 20 via the light tunnel A11. In the present embodiment, the light concentrator A40 can be, for example, an elliptical lens having a first focus C1 located within the excitation cavity A10 and a second focus C2 within the exposure cavity 20.

當標的E1於第一焦點C1經由雷射發射器A50所發出之脈衝雷射L1照射後激發超紫外光時,超紫外光可經由光線聚集器A40反射至第二焦點C2。由於第二焦點C2可位於曝光腔20之照明裝置30,因此於本實施例中可藉由光線聚集器A40將超紫外光聚集於照明裝置30。 When the target E1 excites the ultra-ultraviolet light after the first focus C1 is irradiated by the pulsed laser L1 emitted by the laser emitter A50, the ultra-ultraviolet light can be reflected to the second focus C2 via the light concentrator A40. Since the second focus C2 can be located in the illumination device 30 of the exposure chamber 20, the ultra-ultraviolet light can be concentrated on the illumination device 30 by the light concentrator A40 in this embodiment.

於一些實施例中,第二焦點C2可位於激發腔A10或是光線通道A11內,於第二焦點C2之超紫外線可經由照明裝置30照射至反射式光罩M1。 In some embodiments, the second focus C2 may be located in the excitation cavity A10 or the light channel A11, and the ultra-ultraviolet light in the second focus C2 may be irradiated to the reflective mask M1 via the illumination device 30.

需注意的是,只要能將標的E1所激發出之紫外光聚集於一區域,光線聚集器A40之形狀或結構並不予以限制。舉例而言,光線聚集器A40可為拋物線狀。 It should be noted that the shape or structure of the light concentrator A40 is not limited as long as the ultraviolet light excited by the target E1 can be concentrated in an area. For example, the light concentrator A40 can be parabolic.

雷射發射器A50設置於激發腔A10上。雷射發射器A50可用以產生一脈衝雷射(pulse laser)L1,穿過光線聚集器A40並照射至第一焦點C1。脈衝雷射L1照射至標的E1時,可激發標的E1成為電漿,並使得電漿產生超紫外線。於一些實施例中,雷射發射器A50可具有兩個。光源裝置10可使用雙脈衝雷射激發電漿(dual-pulse laser produced plasma,dual-pulse LPP)。 The laser emitter A50 is disposed on the excitation chamber A10. The laser emitter A50 can be used to generate a pulse laser L1 that passes through the light concentrator A40 and illuminates the first focus C1. When the pulsed laser L1 is irradiated to the target E1, the target E1 can be excited to become a plasma, and the plasma is caused to generate ultra-ultraviolet rays. In some embodiments, the laser emitter A50 can have two. The light source device 10 can use a dual-pulse laser produced plasma (dual-pulse LPP).

第2圖為根據本揭露之一些實施例之微影設備1之潔淨度的檢測方法的流程圖。於步驟S101中,微影設備1之一 光罩傳送裝置70將反射式光罩M1放置於曝光腔20內之光罩座41上。藉由微影設備1之一晶圓傳送裝置80將晶圓W1放置於曝光腔20內之晶圓座60上。 2 is a flow chart of a method of detecting the cleanliness of lithography apparatus 1 in accordance with some embodiments of the present disclosure. In step S101, one of the lithography apparatuses 1 The mask transfer device 70 places the reflective mask M1 on the mask holder 41 in the exposure chamber 20. The wafer W1 is placed on the wafer holder 60 in the exposure chamber 20 by a wafer transfer device 80 of the lithography apparatus 1.

於步驟S103中,經由反射式光罩M1實施一曝光製程至晶圓W1上。於曝光製程中,雷射發射器A50產生脈衝雷射L1照射至標的E1,並產生一超紫外線。超紫外線經由光線聚集器A40反射至照明裝置30,並經由照明裝置30照射至反射式光罩M1。超紫外線經由反射式光罩M1反射後形成一圖案化超紫外線。圖案化超紫外線經由光學投影裝置50照射至晶圓W1上之光阻層W11。 In step S103, an exposure process is performed on the wafer W1 via the reflective mask M1. In the exposure process, the laser emitter A50 generates a pulsed laser L1 to illuminate the target E1 and produces an ultra-ultraviolet light. Ultraviolet rays are reflected to the illumination device 30 via the light concentrator A40, and are irradiated to the reflective reticle M1 via the illumination device 30. Ultraviolet light is reflected by the reflective mask M1 to form a patterned ultra-ultraviolet light. The patterned ultra-violet light is irradiated to the photoresist layer W11 on the wafer W1 via the optical projection device 50.

曝光的過程中,曝光腔20內若有灰塵等污染物,則可能會掉落及沾附於反射式光罩M1上。若反射式光罩M1之表面沾附汙染物則會造成具有瑕疵之光阻層W11,進而影響晶圓W1之良率。 During the exposure process, if there is dust or the like in the exposure chamber 20, it may fall and adhere to the reflective mask M1. If the surface of the reflective mask M1 is contaminated with contaminants, it will cause a photoresist layer W11, which in turn affects the yield of the wafer W1.

第3圖為根據本揭露之一些實施例之光學檢測機台B1的示意圖。光學檢測機台B1可為一雷測光學檢測機台、或一電子顯微鏡檢測機台。於步驟S105中,光罩傳送裝置70將反射式光罩M1移出由曝光腔20並放入一光罩保存盒F1中。裝有反射式光罩M1之光罩保存盒F1可經由輸送裝置(圖未示)移動至光學檢測機台B1之承載埠B10上。 Figure 3 is a schematic illustration of an optical inspection machine B1 in accordance with some embodiments of the present disclosure. The optical inspection machine B1 can be a lightning detection optical inspection machine or an electron microscope inspection machine. In step S105, the mask transfer device 70 removes the reflective mask M1 from the exposure chamber 20 and puts it into a mask storage case F1. The reticle storage box F1 equipped with the reflective reticle M1 can be moved to the carrier 埠B10 of the optical inspection machine B1 via a transport device (not shown).

於步驟S107中,光學檢測機台B1將承載埠B10上之反射式光罩M1移動至光學檢測機台B1的內部進行檢測。光學檢測機台B1檢測反射式光罩M1上之汙染物的數目、分布、以及尺寸。 In step S107, the optical detecting machine B1 moves the reflective mask M1 on the carrier B10 to the inside of the optical detecting machine B1 for detection. The optical inspection machine B1 detects the number, distribution, and size of contaminants on the reflective mask M1.

步驟S109中,當光學檢測機台B1檢測出反射式光罩M1上之汙染物的量超過一預定數值時,可進行一光罩清潔程序。於光罩清潔程序中,可將反射式光罩M1經由一光罩清潔機台(圖未示)將反射式光罩M1上之汙染物加以清除。 In step S109, when the optical detecting machine B1 detects that the amount of the contaminant on the reflective mask M1 exceeds a predetermined value, a mask cleaning process can be performed. In the mask cleaning process, the reflective mask M1 can be used to remove contaminants from the reflective mask M1 via a mask cleaning machine (not shown).

於一些實施例中,反射式光罩M1為一產品光罩,故藉由產品光罩能於晶圓W1上形成對應於產品之電路布局之圖案。藉由本揭露之微影設備1之潔淨度的檢測方法,能有效地防止使用會造成曝光缺陷之反射式光罩M1於產品之晶圓W1的曝光製程中,進而能提高晶圓W1的良率。 In some embodiments, the reflective reticle M1 is a product reticle, so that a pattern of the circuit layout corresponding to the product can be formed on the wafer W1 by the product reticle. By the method for detecting the cleanliness of the lithography apparatus 1 of the present disclosure, it is possible to effectively prevent the use of the reflective mask M1 which causes exposure defects in the exposure process of the wafer W1 of the product, thereby improving the yield of the wafer W1. .

此外,當光學檢測機台B1檢測出反射式光罩M1上之汙染物的量超過一預定數值時,則可能代表曝光腔20內之潔淨度過低,可進行一機台清潔程序。此時,可停止微影設備1之運作,並針對曝光腔20進行去除汙染物之工作,例如以精潔液體擦拭曝光腔20內部之元件,以去除附著於曝光腔20內部之元件上之汙染物。 In addition, when the optical detecting machine B1 detects that the amount of the contaminant on the reflective mask M1 exceeds a predetermined value, it may represent that the cleanliness in the exposure chamber 20 is too low, and a machine cleaning procedure may be performed. At this time, the operation of the lithography apparatus 1 can be stopped, and the operation of removing the contaminants for the exposure chamber 20 can be performed, for example, the components inside the exposure chamber 20 are wiped with a clean liquid to remove the contamination attached to the components inside the exposure chamber 20. Things.

於一些實施例中,光學檢測機台B1可為一電子顯微鏡,可用以拍攝反射式光罩M1之表面,並分析反射式光罩M1之表面的影像以及汙染物於影像上之的數目及位置。於一些實施例中,光學檢測機台B1可為一雷射檢測機台,可用以發射雷射以掃描反射式光罩M1之表面,並分析經由反射式光罩M1之表面反射之雷射判斷汙染物於反射式光罩M1之表面的數目及位置。 In some embodiments, the optical inspection machine B1 can be an electron microscope, which can be used to capture the surface of the reflective mask M1, and analyze the image of the surface of the reflective mask M1 and the number and location of contaminants on the image. . In some embodiments, the optical inspection machine B1 can be a laser detection machine that can be used to emit a laser to scan the surface of the reflective reticle M1 and analyze the laser reflection through the surface of the reflective reticle M1. The number and location of contaminants on the surface of the reflective mask M1.

據此,於本揭露中利用檢測反射式光罩M1上之汙染物可即時地對曝光腔20進行機台清潔程序,避免反射式光罩 M1受到曝光腔20內之汙染物的無染而造成晶圓W1的缺陷。 Accordingly, in the present disclosure, by detecting the contaminants on the reflective mask M1, the exposure chamber 20 can be immediately cleaned by the machine to avoid the reflective mask. M1 is defective in the wafer W1 due to the contamination of the contaminants in the exposure chamber 20.

於一些實施例中,晶圓W1實施完整之微影製程後,可將晶圓W1傳送移動至光學檢測機台B1上檢測顯影後之光阻層W11的圖形。光學檢測機台B1可進一步比對光阻層W11的圖形以及反射式光罩M1之檢測結果,來進一步分析汙染物之數目、分布、以及尺寸,以更為精準地判斷是否進行一光罩清潔程序及/或一機台清潔程序。此外,可藉此分析反射式光罩M1上之汙染物對於晶圓W1之光阻層W11的圖形的影響,進而可作為改進微影設備1之依據。 In some embodiments, after the wafer W1 is subjected to the complete lithography process, the wafer W1 can be transported to the optical inspection machine B1 to detect the developed photoresist layer W11. The optical inspection machine B1 can further compare the pattern of the photoresist layer W11 and the detection result of the reflective mask M1 to further analyze the number, distribution, and size of the contaminants to more accurately determine whether to perform a mask cleaning. Program and / or a machine cleaning program. In addition, the influence of the contaminants on the reflective mask M1 on the pattern of the photoresist layer W11 of the wafer W1 can be analyzed, thereby serving as a basis for improving the lithography apparatus 1.

於一些實施例中,使用同一台光學檢測機台B1對於晶圓W1以及反射式光罩M1進行檢測。於一些實施例中,使用不同之光學檢測機台分別對於晶圓W1以及反射式光罩M1進行檢測。 In some embodiments, the wafer W1 and the reflective mask M1 are detected using the same optical inspection station B1. In some embodiments, the wafer W1 and the reflective mask M1 are separately detected using different optical inspection stations.

第4圖為根據本揭露之一些實施例之反射式光罩M1的示意圖。於一些實施例中,反射式光罩M1為一檢測光罩。檢測光罩可用於檢測曝光腔20內之潔淨度。反射式光罩M1具有針對微影設備1之潔淨度的檢測方法而設計之圖案層M40,藉此能更為精確地分析反射式光罩M1上汙染物之數目、分布、以及尺寸等情況,進而能更為精準地判斷是否進行一光罩清潔程序及/或一機台清潔程序。 FIG. 4 is a schematic illustration of a reflective reticle M1 in accordance with some embodiments of the present disclosure. In some embodiments, the reflective reticle M1 is a detection reticle. The detection reticle can be used to detect the cleanliness within the exposure chamber 20. The reflective mask M1 has a pattern layer M40 designed for the detection method of the cleanliness of the lithography apparatus 1, whereby the number, distribution, and size of the contaminants on the reflective mask M1 can be more accurately analyzed. In turn, it is possible to more accurately determine whether to perform a mask cleaning procedure and/or a machine cleaning procedure.

反射式光罩M1可包括基板M10、反射結構M20、保護層M30以及圖案層M40。基板M10的材質可包括一低熱膨脹材料(low thermal expansion metal(LTEM))。上述低熱膨脹材料可包含掺雜氧化鈦(TiO2)之氧化矽(SiO2),及/或其他低熱膨 脹材料。由低熱膨脹材料形成的基板M10可使加熱光罩所造成的影像扭曲問題最小化。在一些實施例中,在一些實施例中包含的材料具有低缺陷等級與平滑表面。 The reflective reticle M1 may include a substrate M10, a reflective structure M20, a protective layer M30, and a pattern layer M40. The material of the substrate M10 may include a low thermal expansion metal (LTEM). The aforementioned low thermal expansion material may comprise doped titanium oxide (TiO 2) of silicon oxide (SiO 2), and / or other low thermal expansion material. The substrate M10 formed of a low thermal expansion material minimizes image distortion problems caused by the heating mask. In some embodiments, the materials included in some embodiments have a low defect level and a smooth surface.

反射結構M20設置於基板M10上,用以反射光線或超紫外線。在一些實施例中,反射結構M20為多層結構(multi-layer structure)。反射結構M20可包括薄膜對(film pairs)M21,例如鉬-矽(molybdenum-silicon,Mo/Si)薄膜對,其中於每一薄膜對M21中,一層鉬設置於另一層矽之上或是下。於一些實施例中,薄膜對M21可為鉬-鈹(molybdenum-beryllium,Mo/Be)薄膜對,或是其他能夠對紫外線進行高反射之適合的材料。 The reflective structure M20 is disposed on the substrate M10 for reflecting light or ultra-ultraviolet light. In some embodiments, the reflective structure M20 is a multi-layer structure. The reflective structure M20 may include a film pair M21, such as a molybdenum-silicon (Mo/Si) film pair, wherein in each film pair M21, one layer of molybdenum is disposed on or under another layer of germanium. . In some embodiments, the film pair M21 may be a molybdenum-beryllium (Mo/Be) film pair or other suitable material capable of highly reflecting ultraviolet light.

在一些實施例中,反射結構M20中薄膜對M21的數目介於20至80之間,但並不以此為限。在一些實施例中,反射結構M20包含40個薄膜對M21。 In some embodiments, the number of the film pairs M21 in the reflective structure M20 is between 20 and 80, but is not limited thereto. In some embodiments, the reflective structure M20 comprises 40 film pairs M21.

保護層M30設置於反射結構M20上方。在一些實施例中,設置於反射結構M20上方的保護層M30用以防止反射結構M20氧化。在一些實施例中,保護層M30可包括單一膜或多層膜以具有額外功能。於一些實施例中,保護層M30可作為圖案層M40之圖案化或修補製程中的蝕刻停止層。 The protective layer M30 is disposed above the reflective structure M20. In some embodiments, the protective layer M30 disposed over the reflective structure M20 serves to prevent oxidation of the reflective structure M20. In some embodiments, the protective layer M30 can include a single film or a multilayer film to have additional functionality. In some embodiments, the protective layer M30 can serve as an etch stop layer in the patterning or repair process of the pattern layer M40.

於一些實施例中,保護層M30的材質包括釕(Ru)、釕化合物如硼化釕(RuB)或釕矽(RuSi)、鉻(Cr)、氧化鉻(CrO)、或氮化鉻(CrN)。 In some embodiments, the material of the protective layer M30 comprises ruthenium (Ru), a ruthenium compound such as ruthenium boride (RuB) or ruthenium (RuSi), chromium (Cr), chromium oxide (CrO), or chromium nitride (CrN). ).

圖案層M40設置於保護層M30上方。如第4圖所示,圖案層M40覆蓋部分反射結構M20。圖案層M40吸收照射 於其上的超紫外線,而未被圖案層M40覆蓋之反射結構M20反射超紫外線。因此被反射式光罩M1所反射之超紫外線形成一圖案化之超紫外線。 The pattern layer M40 is disposed above the protective layer M30. As shown in FIG. 4, the pattern layer M40 covers the partial reflection structure M20. Pattern layer M40 absorbs illumination The ultra-ultraviolet light thereon, and the reflective structure M20 not covered by the pattern layer M40 reflects ultra-ultraviolet rays. Therefore, the ultra-ultraviolet light reflected by the reflective mask M1 forms a patterned ultra-ultraviolet light.

圖案層M40可包括多層膜層,且每一膜層的材質可包括鉻、氧化鉻、氮化鉻、鈦、氧化鈦、氮化鈦、鉭、氧化鉭、氮化鉭、氮氧化鉭、氮化硼鉭、氧化硼鉭、氮氧化硼鉭、鋁、鋁-銅、氧化鋁、銀、氧化銀、鈀、釕、鉬、其他合適材料或上述之組合。如第4圖所示,圖案層M40包括位於保護層M30上方的氮化硼鉭(TaBN)層M41和位於氮化硼鉭層M41上方的氧化硼鉭(TaBO)層M42。在一些實施例中,氮化硼鉭層M41的厚度約為50nm至80nm,例如約為68nm。在一些實施例中,氧化硼鉭層M42的厚度約為1nm至10nm,例如約為2nm。 The pattern layer M40 may include a plurality of film layers, and the material of each film layer may include chromium, chromium oxide, chromium nitride, titanium, titanium oxide, titanium nitride, tantalum, hafnium oxide, tantalum nitride, niobium oxynitride, nitrogen. Boron bismuth, boron oxynitride, boron oxynitride, aluminum, aluminum-copper, aluminum oxide, silver, silver oxide, palladium, rhodium, molybdenum, other suitable materials or combinations thereof. As shown in FIG. 4, the pattern layer M40 includes a boron nitride tantalum (TaBN) layer M41 over the protective layer M30 and a boron oxide tantalum (TaBO) layer M42 over the boron nitride layer M41. In some embodiments, the boron nitride layer M41 has a thickness of about 50 nm to 80 nm, such as about 68 nm. In some embodiments, the boron oxynitride layer M42 has a thickness of about 1 nm to 10 nm, such as about 2 nm.

第5圖為根據本揭露之一些實施例之反射式光罩M1的俯視圖。圖案層M40包括多個檢測圖案M43、一主對位標記M44、以及多個次對位標記M45。檢測圖案M43可以陣列的方式排列於圖案層M40內。檢測圖案M43之數目依據反射式光罩M1之尺寸而定並不予以限制。於一些實施例中,檢測圖案M43之數目可為16個至900個。檢測圖案M43可為矩形,但並不以此為限。 Figure 5 is a top plan view of a reflective reticle M1 in accordance with some embodiments of the present disclosure. The pattern layer M40 includes a plurality of detection patterns M43, a main alignment mark M44, and a plurality of sub-alignment marks M45. The detection patterns M43 may be arranged in an array in the pattern layer M40. The number of detection patterns M43 depends on the size of the reflective mask M1 and is not limited. In some embodiments, the number of detection patterns M43 may be from 16 to 900. The detection pattern M43 may be rectangular, but is not limited thereto.

檢測圖案M43之寬度N1可約為3mm至7mm的範圍之間。於一些實施例中,檢測圖案M43之寬度N1度可約為5mm。檢測圖案M43之長度P1可約為5mm至9mm的範圍之間。於一些實施例中,檢測圖案M43之長度P1可約為7mm。上述寬度N1可沿排列方向D1進行測量。上述長度P1可沿排列方向D2進 行測量。排列方向D1可垂直於排列方向D2。 The width N1 of the detection pattern M43 may be between about 3 mm and 7 mm. In some embodiments, the detection pattern M43 may have a width N1 of about 5 mm. The length P1 of the detection pattern M43 may be between about 5 mm and 9 mm. In some embodiments, the length P1 of the detection pattern M43 can be about 7 mm. The above width N1 can be measured in the arrangement direction D1. The above length P1 can enter along the arrangement direction D2 Line measurement. The arrangement direction D1 may be perpendicular to the arrangement direction D2.

兩相鄰之檢測圖案M43之最小間距Q1約為0.5mm至3mm的範圍之間。於一些實施例中,兩相鄰之檢測圖案M43之最小間距Q1約為1mm。檢測圖案M43與反射式光罩M1邊緣之間距Q2約為0.5mm至3mm的範圍之間。於一些實施例中,兩相鄰之檢測圖案M43之最小間距Q2約為1mm或1.5mm。 The minimum pitch Q1 of the two adjacent detection patterns M43 is between about 0.5 mm and 3 mm. In some embodiments, the minimum spacing Q1 of the two adjacent detection patterns M43 is about 1 mm. The distance between the detection pattern M43 and the edge of the reflective mask M1 is between about 0.5 mm and 3 mm. In some embodiments, the minimum spacing Q2 of the two adjacent detection patterns M43 is about 1 mm or 1.5 mm.

於一些實施例中,沿排列方向D1排列之檢測圖案M43可相同。沿排列方向D2排列之檢測圖案M43可不同。舉例而言,於第5圖中第3排之檢測圖案M43可為一標準檢測圖案,於第5圖中第4排之檢測圖案M43可為一產品檢測圖案。標準檢測圖案以及產品檢測圖案呈現一至多種的電路布局。 In some embodiments, the detection patterns M43 arranged in the arrangement direction D1 may be the same. The detection patterns M43 arranged in the arrangement direction D2 may be different. For example, the detection pattern M43 of the third row in FIG. 5 may be a standard detection pattern, and the detection pattern M43 of the fourth row in FIG. 5 may be a product detection pattern. Standard inspection patterns and product inspection patterns present one or more circuit layouts.

於一些實施例中,檢測圖案M43排列於一陣列,主對位標記M44鄰近於檢測圖案M43所形成之陣列之一角落。於一些實施例中,反射式光罩M1為一四邊形。主對位標記M44鄰近於反射式光罩M1之一角落。此外,主對位標記M44可鄰近於反射式光罩M1之一角落與一次對位標記M45之間。於一些實施例中,檢測圖案M43可為一四邊形。次對位標記M45鄰近於位於每一檢測圖案M43之一角落。 In some embodiments, the detection patterns M43 are arranged in an array, and the main alignment mark M44 is adjacent to a corner of the array formed by the detection pattern M43. In some embodiments, the reflective reticle M1 is a quadrilateral. The main registration mark M44 is adjacent to a corner of the reflective mask M1. Further, the main alignment mark M44 may be adjacent to a corner of the reflective mask M1 and the primary alignment mark M45. In some embodiments, the detection pattern M43 can be a quadrilateral. The sub-alignment mark M45 is adjacent to a corner located in each of the detection patterns M43.

第6圖為根據本揭露之一些實施例之檢測圖案M43的示意圖。檢測圖案M43可包括多個第一檢測單元M431(M431a、M431b、M431c…M431n)、多個第一基準單元M432、多個第二檢測單元M433a(M433b、M433c…M433n)以及多個第二基準單元M434。於一些實施例中,一個第一檢測單元M431以及多個第一基準單元M432形成一第一檢測群組Z1,且上述 多個第一基準單元M432排列於一個第一檢測單元M431之周圍。一個第二檢測單元M433以及多個第二基準單元M434形成一第二檢測群組Z2,且上述多個第二基準單元M434排列於一個第二檢測單元M433之周圍。 Figure 6 is a schematic illustration of a detection pattern M43 in accordance with some embodiments of the present disclosure. The detection pattern M43 may include a plurality of first detecting units M431 (M431a, M431b, M431c...M431n), a plurality of first reference units M432, a plurality of second detecting units M433a (M433b, M433c...M433n), and a plurality of second references Unit M434. In some embodiments, a first detecting unit M431 and a plurality of first reference units M432 form a first detecting group Z1, and the above The plurality of first reference units M432 are arranged around one of the first detecting units M431. A second detecting unit M433 and a plurality of second reference units M434 form a second detecting group Z2, and the plurality of second reference units M434 are arranged around a second detecting unit M433.

舉例而言,在第6圖中的每個第一檢測單元M431a、M431b、M431c…或M431n係與4個第一基準單元M432形成一個第一檢測群組Z1。第一檢測群組Z1可為矩形,且4個第一基準單元M432分別位於第一檢測群組Z1之角落。在第6圖中的每個第二檢測單元M433a、M433b、M433c…或M433n亦與4個第二基準單元M434形成一個第二檢測群組Z2。第二檢測群組Z2可為矩形,且4個第二基準單元M434分別位於第二檢測群組Z2之角落。需注意的是,每個第一檢測群組Z1中之第一基準單元M432的數量和每個第二檢測群組Z2中之第二基準單元M434的數量可視需求調整。 For example, each of the first detecting units M431a, M431b, M431c... or M431n in FIG. 6 forms a first detecting group Z1 with the four first reference units M432. The first detection group Z1 may be a rectangle, and the four first reference units M432 are respectively located at the corners of the first detection group Z1. Each of the second detecting units M433a, M433b, M433c... or M433n in FIG. 6 also forms a second detecting group Z2 with the four second reference units M434. The second detection group Z2 may be a rectangle, and the four second reference units M434 are respectively located at the corners of the second detection group Z2. It should be noted that the number of the first reference units M432 in each of the first detection groups Z1 and the number of the second reference units M434 in each of the second detection groups Z2 may be adjusted as needed.

多個第一檢測群組Z1沿排列方向D1排列。多個第二檢測群組Z2沿排列方向D1排列。在一些實施例中,第一檢測群組Z1以及第二檢測群組Z2沿排列方向D2交錯間隔排列。舉例而言,於排列方向D2上,第二排的第二檢測群組Z2是位於第一排的第一檢測群組Z1與第三排的第一檢測群組Z1之間,而第三排的第一檢測群組Z1是位於第二排的第二檢測群組Z2與第四排的第二檢測群組Z2之間,依此類推。 The plurality of first detection groups Z1 are arranged in the arrangement direction D1. The plurality of second detection groups Z2 are arranged along the arrangement direction D1. In some embodiments, the first detection group Z1 and the second detection group Z2 are staggered in the arrangement direction D2. For example, in the arrangement direction D2, the second detection group Z2 of the second row is located between the first detection group Z1 of the first row and the first detection group Z1 of the third row, and the third row The first detection group Z1 is located between the second detection group Z2 of the second row and the second detection group Z2 of the fourth row, and so on.

於每一列的第一檢測群組Z1中,第一檢測單元M431a、M431b、M431c…M431n沿排列方向D1排列,且第一檢測單元M431a、M431b、M431c…M431n之面積沿排列方向 D1逐漸變大。每一第一基準單元M432之面積可相同。在一些實施例中,每一第一基準單元M432之中心與第一檢測單元M431a、M431b、M431c…M431n中之一者之中心的最短距離d1相等。 In the first detection group Z1 of each column, the first detection units M431a, M431b, M431c...M431n are arranged along the arrangement direction D1, and the areas of the first detection units M431a, M431b, M431c...M431n are arranged along the arrangement direction. D1 gradually becomes larger. The area of each of the first reference units M432 may be the same. In some embodiments, the center of each first reference unit M432 is equal to the shortest distance d1 of the center of one of the first detecting units M431a, M431b, M431c...M431n.

於一些實施例中,第一檢測單元M431b之寬度N12大於第一檢測單元M431a之寬度N11。第一檢測單元M431b之寬度N12與第一檢測單元M431a之寬度N11之間的差值為0.5nm。第一檢測單元M431c之寬度N13大於第一檢測單元M431b之寬度N12。第一檢測單元M431c之寬度N13與第一檢測單元M431b之寬度N12之間的差值為0.5nm。換句話說,第一檢測單元M431之寬度沿排列方向D1逐漸增加一預定數值。於一些實施例中,上述預定數值可為0.2nm至1.0nm的範圍之間。 In some embodiments, the width N12 of the first detecting unit M431b is greater than the width N11 of the first detecting unit M431a. The difference between the width N12 of the first detecting unit M431b and the width N11 of the first detecting unit M431a is 0.5 nm. The width N13 of the first detecting unit M431c is larger than the width N12 of the first detecting unit M431b. The difference between the width N13 of the first detecting unit M431c and the width N12 of the first detecting unit M431b is 0.5 nm. In other words, the width of the first detecting unit M431 is gradually increased by a predetermined value in the arrangement direction D1. In some embodiments, the predetermined value may be between 0.2 nm and 1.0 nm.

於每一列的第二檢測群組Z2中,第二檢測單元M433a、M433b、M433c…M433n沿排列方向D1排列,且第二檢測單元M433a、M433b、M433c…M433n之面積沿排列方向D1逐漸變小。每一第二基準單元M434之面積可相同。在一些實施例中,每一第二基準單元M434之中心與第二檢測單元M433b、M433c…M433n中之一者之中心的最短距離d2相等。 In the second detection group Z2 of each column, the second detection units M433a, M433b, M433c...M433n are arranged along the arrangement direction D1, and the areas of the second detection units M433a, M433b, M433c...M433n are gradually reduced along the arrangement direction D1. . The area of each second reference unit M434 may be the same. In some embodiments, the center of each second reference unit M434 is equal to the shortest distance d2 of the center of one of the second detection units M433b, M433c...M433n.

於一些實施例中,第二檢測單元M433b之寬度N2小於第二檢測單元M433a之寬度N21。第二檢測單元M433b之寬度N22與第二檢測單元M433a之寬度N21之間的差值為0.5nm。第二檢測單元M433c之寬度N33大於第二檢測單元M433b之寬度N32。第二檢測單元M433c之寬度N33與第二檢測單元M433b之寬度N32之間的差值為0.5nm。換句話說,第二檢測單 元M433之寬度沿排列方向D1逐漸減少一預定數值。於一些實施例中,上述預定數值可為0.2nm至1.0nm的範圍之間。 In some embodiments, the width N2 of the second detecting unit M433b is smaller than the width N21 of the second detecting unit M433a. The difference between the width N22 of the second detecting unit M433b and the width N21 of the second detecting unit M433a is 0.5 nm. The width N33 of the second detecting unit M433c is larger than the width N32 of the second detecting unit M433b. The difference between the width N33 of the second detecting unit M433c and the width N32 of the second detecting unit M433b is 0.5 nm. In other words, the second test list The width of the element M433 is gradually reduced by a predetermined value along the arrangement direction D1. In some embodiments, the predetermined value may be between 0.2 nm and 1.0 nm.

藉由上述本揭露之檢測圖案M43的設計,當多個汙染物掉落至不同之檢測圖案M43上時,光學檢測機台B1分析反射式光罩M1之表面後,可精確地分析出汙染物分別掉落至那些檢測圖案M43上,且能計算出汙染物覆蓋於檢測圖案M43之數目、位置及面積。因此,光學檢測機台B1可更為精確地分析汙染物之數目、分布、以及尺寸,以更為精準地判斷是否進行一光罩清潔程序及/或一機台清潔程序。 With the design of the detection pattern M43 of the present disclosure, when the plurality of contaminants are dropped onto the different detection patterns M43, the optical inspection machine B1 can accurately analyze the pollutants after analyzing the surface of the reflective mask M1. They are dropped onto those detection patterns M43, respectively, and the number, position and area of the contaminants covering the detection pattern M43 can be calculated. Therefore, the optical inspection machine B1 can more accurately analyze the number, distribution, and size of the contaminants to more accurately determine whether or not to perform a mask cleaning process and/or a machine cleaning program.

第7圖為根據本揭露之一些實施例之主對位標記M44的示意圖。主對位標記M44之最大寬度N2可約為150um至250um的範圍之間。於一些實施例中,主對位標記M44之最大寬度N2可約為200um。上述寬度N2沿延伸方向D1進行測量。 Figure 7 is a schematic illustration of a primary alignment mark M44 in accordance with some embodiments of the present disclosure. The maximum width N2 of the main registration mark M44 may be between about 150 um and 250 um. In some embodiments, the maximum width N2 of the primary alignment mark M44 can be approximately 200 um. The above width N2 is measured along the extending direction D1.

主對位標記M44包括多個第一主對位單元M441、多個第二主對位單元M442以及多個第三主對位單元M443。於一些實施例中,第一主對位單元M441、第二主對位單元M442以及第三主對位單元M443可為多邊形或是四邊形,但並不以此為限。於一些實施例中,第一主對位單元M441、第二主對位單元M442以及第三主對位單元M443可為矩形。第一主對位單元M441之面積大於第二主對位單元M442之面積。第二主對位單元M442之面積大於第三主對位單元M443之面積。 The main registration mark M44 includes a plurality of first main alignment units M441, a plurality of second main alignment units M442, and a plurality of third main alignment units M443. In some embodiments, the first primary alignment unit M441, the second primary alignment unit M442, and the third primary alignment unit M443 may be polygonal or quadrilateral, but are not limited thereto. In some embodiments, the first primary alignment unit M441, the second primary alignment unit M442, and the third primary alignment unit M443 may be rectangular. The area of the first main aligning unit M441 is larger than the area of the second main aligning unit M442. The area of the second main aligning unit M442 is larger than the area of the third main aligning unit M443.

第一主對位單元M441之最大寬度N3可約為40um至140um的範圍之間。於一些實施例中,第一主對位單元M441之最大寬度N3可約為90um。兩相鄰之第一主對位單元M441之 間的最小間距Q3可約為10um至30um的範圍之間。於一些實施例中,兩相鄰之第一主對位單元M441之間的最小間距Q3可約為20um。上述寬度N3以及間距Q3沿延伸方向D1進行測量。 The maximum width N3 of the first main alignment unit M441 may be between about 40 um to 140 um. In some embodiments, the maximum width N3 of the first primary alignment unit M441 may be approximately 90 um. Two adjacent first main alignment units M441 The minimum spacing Q3 between may be between about 10 um and 30 um. In some embodiments, the minimum spacing Q3 between two adjacent first primary alignment units M441 may be approximately 20 um. The width N3 and the pitch Q3 are measured along the extending direction D1.

第二主對位單元M442之最大寬度N4可約為13um至23um的範圍之間。於一些實施例中,第二主對位單元M442之最大寬度N4可約為18um。兩相鄰之第二主對位單元M442之最小間距Q4可約為2um至6um的範圍之間。於一些實施例中,兩相鄰之第二主對位單元M442之間的最小間距Q4可約為4um。上述寬度N4以及間距Q4沿延伸方向D1進行測量。 The maximum width N4 of the second main alignment unit M442 may be between about 13 um to 23 um. In some embodiments, the maximum width N4 of the second primary alignment unit M442 can be approximately 18 um. The minimum spacing Q4 of the two adjacent second primary aligning units M442 may be between about 2 um and 6 um. In some embodiments, the minimum spacing Q4 between two adjacent second primary alignment units M442 may be approximately 4 um. The width N4 and the pitch Q4 are measured along the extending direction D1.

第三主對位單元M443之最大寬度N5可約為1um至3um的範圍之間。於一些實施例中,第三主對位單元M443之最大寬度N5可約為2um。兩相鄰之第三主對位單元M443之最小間距Q4可約為0.5um至1.5um的範圍之間。於一些實施例中,兩相鄰之第三主對位單元M443之間的最小間距Q4可約為1um。上述寬度N5以及間距Q5沿延伸方向D1進行測量。 The maximum width N5 of the third main alignment unit M443 may be between about 1 um to 3 um. In some embodiments, the maximum width N5 of the third primary alignment unit M443 may be approximately 2 um. The minimum spacing Q4 of the two adjacent third primary aligning units M443 may be between about 0.5 um to 1.5 um. In some embodiments, the minimum spacing Q4 between two adjacent third primary alignment units M443 may be approximately 1 um. The width N5 and the pitch Q5 are measured along the extending direction D1.

於一些實施例中,第一主對位單元M441之數目可為三個。第一主對位單元M441之中心位於一矩形路徑R1的三個頂端,且第二主對位單元M442鄰近於矩形路徑R1的另一頂端。第一主對位單元M441之任一者之面積大於第二主對位單元M442之總面積。 In some embodiments, the number of first primary alignment units M441 can be three. The center of the first main alignment unit M441 is located at the three top ends of a rectangular path R1, and the second main alignment unit M442 is adjacent to the other top end of the rectangular path R1. The area of any of the first primary alignment units M441 is greater than the total area of the second primary alignment unit M442.

於一些實施例中,第二主對位單元M442之數目可為三個。第二主對位單元M442之中心位於一矩形路徑R2的三個頂端,且第三主對位單元M443鄰近於矩形路徑R2的另一頂端。第二主對位單元M442之任一者之面積大於第三主對位單 元M443。 In some embodiments, the number of second primary alignment units M442 can be three. The center of the second main aligning unit M442 is located at the three top ends of a rectangular path R2, and the third main aligning unit M443 is adjacent to the other top end of the rectangular path R2. The area of any one of the second primary alignment units M442 is greater than the third primary alignment table Yuan M443.

於一些實施例中,第三主對位單元M443之數目可為三個,且第三主對位單元M443之中心位於一矩形路徑R3的三個頂端。上述矩形路徑R2環繞矩形路徑R3,且矩形路徑R1環繞第二矩形路徑R2。於一些實施例中,上述矩形路徑R1、R2、R3可為正方形路徑。 In some embodiments, the number of third primary alignment units M443 may be three, and the center of the third primary alignment unit M443 is located at three top ends of a rectangular path R3. The rectangular path R2 described above surrounds the rectangular path R3, and the rectangular path R1 surrounds the second rectangular path R2. In some embodiments, the rectangular paths R1, R2, R3 described above may be square paths.

藉由上述本揭露之主對位標記M44的設計,可更為精確地分析,當汙染物覆蓋於主對位標記M44時對於晶圓W1之光阻層W11所形成之對位標記圖案的影響。 By the design of the main alignment mark M44 of the above disclosure, the influence of the contaminant mark pattern formed on the photoresist layer W11 of the wafer W1 when the contaminant is covered by the main alignment mark M44 can be more accurately analyzed. .

第8圖為根據第5圖之A部分的放大圖。每一次對位標記M45鄰近於一個檢測圖案M43。次對位標記M45可包括多個次對位單元M451。次對位單元M451之形狀可為一多邊形或四邊形,但並不以此為限。次對位單元M451之形狀可為一矩形或正方形。於一些實施例中,次對位單元M451之數目可為三個。次對位單元M451之中心位於一矩形路徑R4的三個頂端。檢測圖案M43之一角落位於矩形路徑R4的另一頂端。於一些實施例中,上述矩形路徑R4可為正方形路徑。 Fig. 8 is an enlarged view of a portion A according to Fig. 5. Each of the alignment marks M45 is adjacent to one detection pattern M43. The secondary alignment mark M45 may include a plurality of secondary alignment units M451. The shape of the sub-alignment unit M451 may be a polygon or a quadrangle, but is not limited thereto. The shape of the secondary alignment unit M451 may be a rectangle or a square. In some embodiments, the number of secondary alignment units M451 can be three. The center of the secondary alignment unit M451 is located at the three top ends of a rectangular path R4. One corner of the detection pattern M43 is located at the other top end of the rectangular path R4. In some embodiments, the rectangular path R4 described above can be a square path.

第9圖為根據本揭露之一些實施例之檢測圖案M43的示意圖。每一次對位單元M451包括一對位本體M452以及多個對位孔M453。對位孔M453形成於對位本體M452。於一些實施例中,對位孔M453以陣列的方式排列。對位孔之數目約為100至10000個的範圍之間,但並不以此為限。對位孔M453之寬度N6可約為50nm至200nm的範圍之間。於一些實施例中,對位孔M453之寬度N6可約為100nm。上述寬度N6沿延伸方向D1 進行測量。 Figure 9 is a schematic illustration of a detection pattern M43 in accordance with some embodiments of the present disclosure. Each alignment unit M451 includes a pair of bit bodies M452 and a plurality of alignment holes M453. The registration hole M453 is formed in the alignment body M452. In some embodiments, the alignment holes M453 are arranged in an array. The number of alignment holes is between about 100 and 10,000, but is not limited thereto. The width N6 of the alignment holes M453 may be between about 50 nm and 200 nm. In some embodiments, the width N6 of the alignment holes M453 can be about 100 nm. The above width N6 is along the extending direction D1 Make measurements.

藉由上述本揭露之次對位標記M45的設計可更為精確地分析,當汙染物覆蓋於次對位標記M45時對於晶圓W1之光阻層W11所形成之對位標記圖案的影響。此外,由於每一次對位標記M45對應於一個檢測圖案M43,因此亦可使得光學檢測機台B1分析汙染物之數目、分布、以及尺寸,以更為精準地判斷是否進行一光罩清潔程序及/或一機台清潔程序。 The design of the sub-alignment mark M45 according to the above disclosure can more accurately analyze the influence on the alignment mark pattern formed by the photoresist layer W11 of the wafer W1 when the contaminant covers the sub-alignment mark M45. In addition, since each of the alignment marks M45 corresponds to one detection pattern M43, the optical inspection machine B1 can also be configured to analyze the number, distribution, and size of the contaminants to more accurately determine whether or not to perform a mask cleaning process and / or a machine cleaning program.

於一些實施例中,第一主對位單元M441、第二主對位單元M442、以及第三主對位單元M443可依據次對位單元M451之設計形成多個對位孔。 In some embodiments, the first main aligning unit M441, the second main aligning unit M442, and the third main aligning unit M443 may form a plurality of aligning holes according to the design of the secondary aligning unit M451.

綜上所述,本揭露之微影設備利用檢查反射式光罩上汙染物的量,來決定是否對反射式光罩進行一光罩清潔程序及/或對微影設備進行一機台清潔程序,能減少晶圓之缺陷進而提高晶圓之良率。 In summary, the lithographic apparatus of the present disclosure utilizes the amount of contaminants on the reflective reticle to determine whether to perform a reticle cleaning procedure on the reflective reticle and/or a machine cleaning procedure for the lithographic apparatus. Can reduce wafer defects and increase wafer yield.

本揭露之一些實施例提供了一種反射式光罩,用以檢測一微影設備之潔淨度,包括:一基板;一反射結構,設置於基板上;以及一圖案層,設置於反射結構上,包括複數個第一檢測單元。每一檢測圖案包括一第一檢測單元。檢測圖案之第一檢測單元沿一排列方向排列,且第一檢測單元之面積沿排列方向逐漸變大。 Some embodiments of the present disclosure provide a reflective reticle for detecting the cleanliness of a lithography apparatus, including: a substrate; a reflective structure disposed on the substrate; and a patterned layer disposed on the reflective structure, A plurality of first detecting units are included. Each detection pattern includes a first detection unit. The first detecting units of the detecting patterns are arranged in an arrangement direction, and the area of the first detecting unit gradually becomes larger in the arrangement direction.

於一些實施例中,圖案層更包括複數個第一基準單元,排列於第一檢測單元之周圍,其中每一第一基準單元之中心與第一檢測單元中之一者之中心的最短距離相等。 In some embodiments, the pattern layer further includes a plurality of first reference cells arranged around the first detecting unit, wherein a center of each of the first reference cells has a shortest distance from a center of one of the first detecting units .

於一些實施例中,每一檢測圖案更包括一第二檢 測單元,其中檢測圖案之第二檢測單元沿排列方向排列,且第二檢測單元之面積沿排列方向逐漸變小。 In some embodiments, each detection pattern further includes a second inspection The measuring unit, wherein the second detecting units of the detecting patterns are arranged in the arrangement direction, and the area of the second detecting unit gradually becomes smaller in the arrangement direction.

於一些實施例中,每一檢測圖案更包括複數個第二基準單元,排列於第二檢測單元之周圍,其中每一第二基準單元之中心與第二檢測單元中之一者之中心的最短距離相等。 In some embodiments, each of the detection patterns further includes a plurality of second reference units arranged around the second detection unit, wherein the center of each of the second reference units and the center of one of the second detection units are the shortest The distance is equal.

於一些實施例中,第一檢測單元與第二檢測單元於垂直於排列方向之方向上交錯排列。 In some embodiments, the first detecting unit and the second detecting unit are staggered in a direction perpendicular to the arrangement direction.

於一些實施例中,圖案層更包括一主對位標記,鄰近於檢測圖案所形成之一陣列之一角落,且主對位標記包括複數個第一主對位單元以及複數個第二主對位單元,其中第一主對位單元之任一者之面積大於第二主對位單元之總面積,其中第一主對位單元之數目可為三個,第一主對位單元之中心位於一矩形路徑的三個頂端,且第二主對位單元鄰近於矩形路徑的另一頂端。 In some embodiments, the pattern layer further includes a main alignment mark adjacent to a corner of one of the arrays formed by the detection pattern, and the main alignment mark includes a plurality of first main alignment units and a plurality of second main pairs a bit unit, wherein an area of any one of the first main aligning units is greater than a total area of the second main aligning unit, wherein the number of the first main aligning units may be three, and the center of the first main aligning unit is located The three top ends of a rectangular path, and the second main alignment unit is adjacent to the other top end of the rectangular path.

於一些實施例中,圖案層更包括複數個次對位標記,其中每一次對位標記鄰近於檢測圖案中之一者的角落,且每一次對位標記包括至少三個次對位單元,該至少三個次對位單元之中心分別位於一矩形路徑的三個頂端,其中檢測圖案中之一者位於矩形路徑的另一頂端,每一次對位單元包括以陣列的方式排列之複數個對位孔,且對位孔之數目大於100個。 In some embodiments, the pattern layer further includes a plurality of sub-alignment marks, wherein each of the alignment marks is adjacent to a corner of one of the detection patterns, and each of the alignment marks includes at least three sub-alignment units, The centers of the at least three sub-alignment units are respectively located at three top ends of a rectangular path, wherein one of the detection patterns is located at the other top end of the rectangular path, and each alignment unit includes a plurality of alignments arranged in an array manner Holes, and the number of alignment holes is greater than 100.

本揭露之一些實施例提供一種微影設備之潔淨度的檢測方法,包括:放置一反射式光罩至一曝光腔內之一光罩座上,且放置一晶圓至曝光腔內之一晶圓座上;經由反射式光罩實施一曝光製程至晶圓上;將反射式光罩由曝光腔移動至一 第一光學檢測機台上;以及藉由第一光學檢測機台檢測反射式光罩上之汙染物。 Some embodiments of the present disclosure provide a method for detecting the cleanliness of a lithography apparatus, including: placing a reflective reticle onto a reticle of an exposure cavity, and placing a wafer to a cavity in the exposure cavity On the round seat; performing an exposure process on the wafer via the reflective mask; moving the reflective mask from the exposure chamber to a a first optical inspection machine; and detecting a contaminant on the reflective reticle by the first optical inspection machine.

於一些實施例中,微影設備之潔淨度的檢測方法包括,當反射式光罩上之汙染物的量超過一預定數值時,進行一光罩清潔程序及/或一機台清潔程序。 In some embodiments, the method of detecting the cleanliness of the lithography apparatus includes performing a reticle cleaning procedure and/or a machine cleaning procedure when the amount of contaminants on the reflective reticle exceeds a predetermined value.

於一些實施例中,微影設備之潔淨度的檢測方法包括,將晶圓移動至一第二光學檢測機台上;以及經由第二光學檢測機台檢測晶圓上之曝光圖形。 In some embodiments, the method of detecting the cleanliness of the lithography apparatus comprises: moving the wafer onto a second optical inspection machine; and detecting the exposure pattern on the wafer via the second optical inspection machine.

本揭露雖以各種實施例揭露如上,然而其僅為範例參考而非用以限定本揭露的範圍,任何熟習此項技藝者,在不脫離本揭露之精神和範圍內,當可做些許的更動與潤飾。因此上述實施例並非用以限定本揭露之範圍,本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 The present disclosure is disclosed in the above embodiments, but is not intended to limit the scope of the disclosure. Any one skilled in the art can make some changes without departing from the spirit and scope of the disclosure. With retouching. Therefore, the above embodiments are not intended to limit the scope of the disclosure, and the scope of the disclosure is defined by the scope of the appended claims.

Claims (10)

一種反射式光罩,用以檢測一微影設備之潔淨度,包括:一基板;一反射結構,設置於該基板上;以及一圖案層,設置於該反射結構上,且包括複數個檢測圖案,其中每一該等檢測圖案包括一第一檢測單元;其中該等檢測圖案之該等第一檢測單元沿一排列方向排列,且該等第一檢測單元之面積沿該排列方向逐漸變大。 A reflective reticle for detecting the cleanliness of a lithography apparatus, comprising: a substrate; a reflective structure disposed on the substrate; and a pattern layer disposed on the reflective structure and including a plurality of detection patterns Each of the detection patterns includes a first detecting unit; wherein the first detecting units of the detecting patterns are arranged along an arrangement direction, and an area of the first detecting units gradually becomes larger along the arrangement direction. 如申請專利範圍第1項所述之反射式光罩,其中每一該等檢測圖案更包括複數個第一基準單元,排列於該第一檢測單元之周圍,其中每一該等第一基準單元之中心與該等第一檢測單元中之一者之中心的最短距離相等。 The reflective reticle of claim 1, wherein each of the detection patterns further comprises a plurality of first reference units arranged around the first detection unit, wherein each of the first reference units The center is equal to the shortest distance of the center of one of the first detection units. 如申請專利範圍第2項所述之反射式光罩,其中每一該等檢測圖案更包括一第二檢測單元,其中該等檢測圖案之該等第二檢測單元沿該排列方向排列,且該等第二檢測單元之面積沿該排列方向逐漸變小。 The reflective reticle of claim 2, wherein each of the detection patterns further comprises a second detecting unit, wherein the second detecting units of the detecting patterns are arranged along the arrangement direction, and the The area of the second detecting unit gradually becomes smaller along the arrangement direction. 如申請專利範圍第3項所述之反射式光罩,其中每一該等檢測圖案更包括複數個第二基準單元,排列於該第二檢測單元之周圍,其中每一該等第二基準單元之中心與該等第二檢測單元中之一者之中心的最短距離相等。 The reflective reticle of claim 3, wherein each of the detection patterns further comprises a plurality of second reference units arranged around the second detection unit, wherein each of the second reference units The center is equal to the shortest distance of the center of one of the second detecting units. 如申請專利範圍第4項所述之反射式光罩,其中該等第一檢測單元與該等第二檢測單元於垂直於該排列方向之方向上交錯排列。 The reflective reticle of claim 4, wherein the first detecting unit and the second detecting unit are staggered in a direction perpendicular to the arranging direction. 如申請專利範圍第1項所述之反射式光罩,其中該圖案層更 包括一主對位標記,鄰近於該等檢測圖案所形成之一陣列之一角落,且該主對位標記包括複數個第一主對位單元以及複數個第二主對位單元,其中該等第一主對位單元之任一者之面積大於該等第二主對位單元之總面積,其中該等第一主對位單元之數目為三個,該等第一主對位單元之中心位於一矩形路徑的三個頂端,且該等第二主對位單元鄰近於該矩形路徑的另一頂端。 The reflective reticle of claim 1, wherein the pattern layer is further Included as a primary alignment mark adjacent to a corner of one of the arrays formed by the detection patterns, and the primary alignment mark includes a plurality of first primary alignment units and a plurality of second primary alignment units, wherein The area of any one of the first primary aligning units is greater than the total area of the second primary aligning units, wherein the number of the first primary aligning units is three, and the centers of the first primary aligning units Located at three top ends of a rectangular path, and the second primary alignment unit is adjacent to the other top end of the rectangular path. 如申請專利範圍第1項所述之反射式光罩,其中該圖案層更包括複數個次對位標記,其中每一該等次對位標記鄰近於該等檢測圖案中之一者的角落,且每一該等次對位標記包括至少三個次對位單元,該至少三個次對位單元之中心分別位於一矩形路徑的三個頂端,其中該等檢測圖案中之一者位於該矩形路徑的另一頂端,每一該等次對位單元包括以陣列的方式排列之複數個對位孔,且該等對位孔之數目大於100個。 The reflective reticle of claim 1, wherein the pattern layer further comprises a plurality of sub-alignment marks, wherein each of the sub-alignment marks is adjacent to a corner of one of the detection patterns, And each of the secondary alignment marks includes at least three secondary alignment units, the centers of the at least three secondary alignment units are respectively located at three top ends of a rectangular path, wherein one of the detection patterns is located in the rectangle At the other top of the path, each of the equal-order alignment units includes a plurality of alignment holes arranged in an array, and the number of the alignment holes is greater than 100. 一種微影設備之潔淨度的檢測方法,包括:放置如申請專利範圍第1項所述之反射式光罩至一曝光腔內之一光罩座上,且放置一晶圓至該曝光腔內之一晶圓座上;經由該反射式光罩實施一曝光製程至該晶圓上;將該反射式光罩由該曝光腔移動至一第一光學檢測機台;以及藉由該第一光學檢測機台檢測該反射式光罩上之汙染物。 A method for detecting the cleanliness of a lithography apparatus, comprising: placing a reflective mask as described in claim 1 to a mask holder in an exposure chamber, and placing a wafer into the exposure chamber Performing an exposure process on the wafer via the reflective mask; moving the reflective mask from the exposure chamber to a first optical inspection machine; and by using the first optical The inspection machine detects the contaminants on the reflective reticle. 如申請專利範圍第8項所述之微影設備之潔淨度的檢測方 法,包括:當該反射式光罩上之汙染物的量超過一預定數值時,進行一光罩清潔程序及/或一機台清潔程序。 The detection method of the cleanliness of the lithography apparatus as described in claim 8 The method includes: performing a reticle cleaning procedure and/or a machine cleaning procedure when the amount of the contaminant on the reflective reticle exceeds a predetermined value. 如申請專利範圍第8項所述之微影設備之潔淨度的檢測方法,包括:將該晶圓移動至一第二光學檢測機台上;以及經由該第二光學檢測機台檢測該晶圓上之曝光圖形。 The method for detecting the cleanliness of a lithography apparatus according to claim 8, comprising: moving the wafer to a second optical inspection machine; and detecting the wafer via the second optical inspection machine Exposure graphics on.
TW107128172A 2018-08-13 2018-08-13 Cleanliness-inspection method of lithography apparatus and reflective mask TWI667723B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107128172A TWI667723B (en) 2018-08-13 2018-08-13 Cleanliness-inspection method of lithography apparatus and reflective mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107128172A TWI667723B (en) 2018-08-13 2018-08-13 Cleanliness-inspection method of lithography apparatus and reflective mask

Publications (2)

Publication Number Publication Date
TWI667723B true TWI667723B (en) 2019-08-01
TW202010030A TW202010030A (en) 2020-03-01

Family

ID=68316154

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107128172A TWI667723B (en) 2018-08-13 2018-08-13 Cleanliness-inspection method of lithography apparatus and reflective mask

Country Status (1)

Country Link
TW (1) TWI667723B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9280043B2 (en) * 2011-03-31 2016-03-08 Toppan Printing Co., Ltd. Method for repairing mask for EUV exposure and mask for EUV exposure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9280043B2 (en) * 2011-03-31 2016-03-08 Toppan Printing Co., Ltd. Method for repairing mask for EUV exposure and mask for EUV exposure

Also Published As

Publication number Publication date
TW202010030A (en) 2020-03-01

Similar Documents

Publication Publication Date Title
US9996011B2 (en) System and method for lithography alignment
US20150104736A1 (en) Reflective mask and method of making same
US9281191B2 (en) Semiconductor device manufacturing method
US10001701B1 (en) Pellicle structures and methods of fabricating thereof
CN104656367A (en) EUV mask for use during EUV photolithography processes
JPH11354404A (en) Method and apparatus for inspecting mask blank and reflecting mask
TWI663480B (en) Lithographic apparatus and method for exposing an exposure region on a substrate using said lithographic apparatus
US9952503B2 (en) Method for repairing a mask
TWI667723B (en) Cleanliness-inspection method of lithography apparatus and reflective mask
KR20100104120A (en) Reflective photomask and method of fabricating the same
KR20210093714A (en) Euv masks to prevent carbon contamination
CN110824851B (en) Method for detecting cleanliness of photoetching equipment and reflection type photomask
US6872497B1 (en) Reflective mask for short wavelength lithography
KR20230009819A (en) Interstitial type absorber for extreme ultraviolet mask
US7101645B1 (en) Reflective mask for short wavelength lithography
US20120135340A1 (en) Photomask and formation method thereof
US9298085B2 (en) Method for repairing a mask
US11221562B2 (en) Reticle and method of detecting intactness of reticle stage using the same
TWI703403B (en) Mask, method for forming the same, and method for using the same
US9274411B2 (en) Reflection type blank masks, methods of fabricating the same, and methods of fabricating reflection type photo masks using the same
US8673521B2 (en) Blank substrates for extreme ultra violet photo masks and methods of fabricating an extreme ultra violet photo mask using the same
JP2003158067A (en) Method for manufacturing semiconductor device and aligner
US11226551B2 (en) Lithographic mask, a pellicle therein and method of forming the same
CN110783180B (en) Method for forming photomask and semiconductor manufacturing method
US8748065B2 (en) Reflection type blank masks, methods of fabricating the same, and methods of fabricating reflection type photo masks using the same